JP2007237895A - Marine vessel - Google Patents
Marine vessel Download PDFInfo
- Publication number
- JP2007237895A JP2007237895A JP2006062418A JP2006062418A JP2007237895A JP 2007237895 A JP2007237895 A JP 2007237895A JP 2006062418 A JP2006062418 A JP 2006062418A JP 2006062418 A JP2006062418 A JP 2006062418A JP 2007237895 A JP2007237895 A JP 2007237895A
- Authority
- JP
- Japan
- Prior art keywords
- bow
- ship
- shape
- flare
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T70/00—Maritime or waterways transport
- Y02T70/10—Measures concerning design or construction of watercraft hulls
Landscapes
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
Description
本発明は、満載状態における推進性能を向上できる船舶に関し、より詳細には、船首部における水面上昇に起因する満載喫水線より上の船体部分から発生する造波抵抗、及び、波浪中抵抗増加を減少できる船首部の形状を有する船舶に関する。 The present invention relates to a ship capable of improving the propulsion performance in a full load state, and more specifically, to reduce the wave-making resistance generated from the hull portion above the full load water line due to the rise in the water surface at the bow and the increase in resistance in the waves. The present invention relates to a ship having a bow shape.
従来の船舶においては、図6〜図8に示すように、船首フレアは最大喫水(構造喫水:Scantling 喫水) の喫水線Z0の直上付近から水線面積を徐々に大きくして船首上甲板Z3につながるように広げている。これは、船首部にはアンカリングのための装置の格納スペースが必要になり、また、船首の上甲板には、係船作業やアンカリング作業などのために、ある程度の甲板面積が必要となるためである。 In the conventional ship, as shown in FIGS. 6 to 8, the bow flare gradually increases the water line area from directly above the draft line Z0 of the maximum draft (structural draft: Scantling draft) and leads to the upper deck Z3. It spreads like so. This is because the bow requires a storage space for the anchoring device, and the upper deck of the bow requires a certain deck area for mooring work and anchoring work. It is.
この船首フレアの形状は、図9に示すように船首部の淀み点Oの近傍で水面が最大喫水Z0より上昇してもその影響は少なく、最大喫水Z0より上の部分に対する水の作用を特に考えなくてもよいとの設計思想に基づいている。 As shown in FIG. 9, the bow flare has a small effect even when the water level rises above the maximum draft Z0 in the vicinity of the stagnation point O of the bow, and the action of water on the portion above the maximum draft Z0 is particularly small. It is based on the design philosophy that there is no need to think about it.
しかしながら、本発明者らは、水槽実験や実船の航海の様子を観察した結果、船首部の淀み点O付近を中心した水面上昇分を考慮することが重要であり、この水面上昇分を考慮した船首部形状を採用することにより、平水航走中の造波抵抗及び波浪中抵抗増加を減少できるとの知見を得た。 However, as a result of observing the state of the aquarium experiment and the voyage of the actual ship, the present inventors have taken into consideration the rise in the water level around the stagnation point O of the bow, and this rise in the water level is taken into account. It was found that by adopting the bow shape, it was possible to reduce the wave-making resistance and the wave resistance increase during flat water navigation.
図9に示すように、船舶の航走中は、船首部と水とは相対的に航走速度Vsを持っており、船舶側に固定した座標系で見た場合には、船首部に水が流速Vsで流入してくることになる。従って、船首部がブラントな肥大船では、船首部の船体中心線(センターライン:C.L.)上の淀み点Oで水流速度Voがゼロとなるので、水の密度をρとし、重力加速度をgとすると、淀み点Oに於ける水頭h1と遠方の水頭hsとの関係は、ベルヌーイの定理により、ρ×g×ho+ρ×Vo2 /2=ρ×g×hs+ρ×Vs2 /2となり、淀み点Oに於ける水頭h1は、h1=Vs2 /(2×g)−Vo2 /(2×g)+hsとなる。ここで、Vo=0,hs=0とすると、h1=Vs2 /(2×g)となる。 As shown in FIG. 9, during the navigation of the ship, the bow and water have a relative speed Vs, and when viewed in a coordinate system fixed on the ship, Will flow in at a flow velocity Vs. Therefore, in an enlarged ship with a blunt bow, the water flow velocity Vo becomes zero at the stagnation point O on the hull center line (center line: CL) of the bow, so that the density of water is ρ, and the gravitational acceleration When the the g, the relationship between the in hydrocephalus h1 and distant hydrocephalus hs the stagnation point O, the Bernoulli's theorem, ρ × g × ho + ρ × Vo 2/2 = ρ × g × hs + ρ × Vs 2/2 next The water head h1 at the stagnation point O is h1 = Vs 2 / (2 × g) −Vo 2 / (2 × g) + hs. Here, when Vo = 0 and hs = 0, h1 = Vs 2 / (2 × g).
つまり、船首部の淀み点Oで水面が上昇する量を示す水頭h1は、Vs2 /(2×g)となり、船首部の先端では、航走時には、この水頭h1(Z1のライン)程度まで上昇することになる。従って、実際の水没部分は船首近傍では、満載喫水Z0よりも水頭h1分だけ高い位置Z1の近傍までとなる。例えば、船速が15kt(ノット)の船舶では、Vs=7.72m/sとなり、この水頭h1は3.0mとなる。 In other words, the water head h1 indicating the amount of water rising at the stagnation point O of the bow is Vs 2 / (2 × g), and at the tip of the bow, up to about this water head h1 (Z1 line) when sailing. Will rise. Accordingly, the actual submerged portion is in the vicinity of the position Z1 that is higher than the full draft D0 by the head h1 in the vicinity of the bow. For example, in a ship having a ship speed of 15 kt (knots), Vs = 7.72 m / s, and the head h1 is 3.0 m.
そのため、図6〜図8に示す従来の船型のように、最大喫水Z0から直ぐにフレアが広がる船首形状を採用した場合は、平水航行中においても、このフレア部分で発生する波が大きくなり、船型の肥大度が大きく、かつ、船首端部が船首垂線(F.P.)に近い船型では、船首フレアが従来の船型よりも、張出が少なくなるため、フレアの傾斜角度θが大きい場合には、船首に衝突した波が、デッキに上がりやすく海水が打ち込み易くなる。また、船首に衝突した波が上に上がり易くなるため、船首端での波の上下動が大きくなり、前への押し出し(波の反射)も大きくなり、波の反射が主成分である波浪中抵抗増加も増大する。 Therefore, when the bow shape in which the flare immediately spreads from the maximum draft Z0 is adopted as in the conventional hull form shown in FIGS. 6 to 8, the wave generated in the flare part becomes large even during the flat water navigation, and the hull form When the hull is large and the bow end is close to the bow normal (FP), the bow flare has less overhanging than the conventional hull so that the flare inclination angle θ is large. The wave that hit the bow is easy to go up to the deck and seawater is easy to drive. In addition, the wave that collided with the bow is likely to rise upward, so that the vertical movement of the wave at the bow end increases, the forward push (wave reflection) also increases, and the wave reflection is the main component in the waves. The resistance increase also increases.
これに関連して、この最大喫水よりも上の部分に関して、すべての水線面形状において、船首形状を船首水線から0.02×Lov(船舶の全長)後方を50°以内に収めて、船首をできるだけ前方に尖らせて、この船首での前方への波反射、波崩れ現象を緩和し、波浪中抵抗増加を減少するた肥大船が提案されている(例えば、特許文献1参照。)。 In this connection, with respect to the portion above this maximum draft, in all waterline surface shapes, the bow shape is within 0.02 × Lov (the total length of the ship) behind the bow waterline within 50 °, A hypersized ship that sharpens the bow as much forward as possible to alleviate the wave reflection and wave breaking phenomenon at the bow forward and reduce the increase in resistance in waves has been proposed (see, for example, Patent Document 1). .
しかしながら、この船首形状においては、最大喫水線を境にして上下で水線面形状の変化が大きいため、上述した船首部において水面が上昇することによる造波抵抗を減少できないという問題がある。また、船首上甲板の形状が制限されるため、アンカリング装置の格納やアンカリング作業用のスペースの確保が難しいという問題がある。
本発明は、上記の問題を解決するためになされたものであり、その目的は、船型の肥大度が大きく、かつ、船首端が船首垂線(F.P.)に近い船型で、平水中造波抵抗を減少すると共に、波浪中抵抗増加を抑え、かつ、上甲板への海水打ち込みを抑えることができる船舶を提供することにある。 The present invention has been made in order to solve the above-described problems. The object of the present invention is to create a flat water structure with a hull shape in which the hull shape is large and the bow end is close to the bow perpendicular (FP). An object of the present invention is to provide a ship that can reduce wave resistance, suppress an increase in resistance in waves, and suppress seawater driving into an upper deck.
上記の目的を達成するための本発明の船舶は、船長方向に関して、船首端の位置から船首垂線(F.P.)の後方の少なくとも垂線間長(Lpp)の10%の位置の間の範囲において、最大喫水よりも上の船首部のフレアの横断面の形状を、鉛直線よりも船体中心線(C.L.)側にくびれた凹部を有して形成し、該凹部の中心の高さを、前記最大喫水よりも上側で、船舶の航海速力をVsとし、重力加速度をgとした時に、(0.5×Vs×Vs)/gで計算される水頭(h1)の0.5倍以上3.0倍以下の範囲内の高さとするように構成される。 The ship of the present invention for achieving the above object is a range between the position of the bow end and the position at least 10% of the length between the normals (Lpp) behind the bow perpendicular (FP) with respect to the direction of the captain. The cross-sectional shape of the flare of the bow portion above the maximum draft is formed with a concave portion constricted on the hull center line (CL) side with respect to the vertical line, and the height of the center of the concave portion is increased. This is 0.5 above the head (h1) calculated by (0.5 × Vs × Vs) / g, where Vs is the navigational speed of the ship, and g is the acceleration of gravity. It is comprised so that it may be set as the height within the range of more than twice and less than 3.0 times.
この最大喫水は、材料寸法などから構造強度の面から決められる構造喫水(スカントリング(Scantling )喫水) 等のその船舶の航行可能な最大の喫水のことであり、船舶は、通常、この基本設計時に決められる構造喫水よりも浅い喫水で航海することになっている。なお、構造喫水は、国際満載吃水条約(ILLC)によって定められた方式によって計算される夏季満載吃水に対応する喫水であり、この喫水によって材料寸法が決められるため、構造喫水と呼ばれる。そして、この構造喫水より大きな喫水で船舶が航行することは無い。 This maximum draft is the maximum draft that can be navigated by the ship, such as a structural draft (Scantling draft), which is determined by the structural strength in terms of material dimensions, etc. Sailing is to be carried out at a draft that is shallower than the draft draft that is determined at the time of design. In addition, the structural draft is a draft corresponding to the summer full-scale drought calculated by a method defined by the International Full Flooding Convention (ILLC), and the material dimensions are determined by this draft, and hence is called the structural draft. And a ship does not navigate by a draft larger than this structural draft.
この凹部の中心の高さ(Hm)とは、船体横断面における船型の形状が最大喫水線(Z0)と交差する点を通る鉛直線と凹部との交点の上端(Ht)と下端(Hb)との平均高さ(Hm=(Ht+Hb)/2)のことをいう。 The height (Hm) of the center of the recess means the upper end (Ht) and the lower end (Hb) of the intersection of the vertical line passing through the point where the shape of the hull in the cross section of the hull intersects the maximum waterline (Z0) and the recess. Mean height (Hm = (Ht + Hb) / 2).
そして、船首部正面では水面が盛り上がるので、凹部の中心の高さを最大水線より上の適切な位置に配置することにより、ピッチング量及び波浪中抵抗増加を減少する効果を大きくすることができる。凹部の中心の高さを水頭(h1=(0.5×Vs×Vs)/g)の0.5倍よりも小さくすると、水面上昇により、水流がフレアの広がり部分にも届くようになるため、抵抗減少効果が少なくなる。一方、この凹部の中心の高さを水頭の3.0倍よりも大きくすると、波浪中でも水流がフレアの広がり部分にも届き難くなり、抵抗減少効果を期待できるが、アンカリング装置の格納が難しくなるという問題や急激にフレアを広げることにより船首衝撃力が大きくなるという問題が生じてくる。 And since the water surface rises in front of the bow part, the effect of reducing the pitching amount and the increase in resistance in waves can be increased by arranging the height of the center of the recess at an appropriate position above the maximum water line. . If the height of the center of the recess is made smaller than 0.5 times the head of water (h1 = (0.5 × Vs × Vs) / g), the water flow will reach the spread of flare due to the rise of the water surface. The resistance reduction effect is reduced. On the other hand, if the height of the center of the recess is made larger than 3.0 times the head of the water, it is difficult for the water flow to reach the flared area even in the waves, and a resistance reduction effect can be expected, but it is difficult to store the anchoring device. And the problem that the bow impact force increases due to the sudden expansion of the flare.
また、この凹部10の中心の高さを、水頭の0.9倍〜2.6倍の範囲内とすると、この範囲から上甲板に向けて拡大すると、フレア傾斜角度が比較的小さいままで、上甲板における船首フレアの広がりを比較的大きくすることができ、船首衝撃力を少ない状態に維持したまま、アンカリング装置の格納や甲板配置が容易となるので、より好ましい。特に、満載喫水が最大喫水から大きく離れない船舶に適している。
Moreover, if the height of the center of this
この構成によれば、船首部近傍において、最大喫水より上部で従来の船型の形状を削って凹部(括れ部)を設けるので、船首部で盛り上がる水や船首部に入射してくる波が、この凹部により左右の舷側側に逃げて円滑に後方に流れるようになる。そのため、平水中では、船首部における造波抵抗が減少して平水中推進抵抗が減少し、波浪中では、船首部における入射波の反射が減少して波の反射が主成分である波浪中抵抗増加が減少する。 According to this configuration, in the vicinity of the bow portion, the shape of the conventional hull shape is cut above the maximum draft and a concave portion (constricted portion) is provided, so that water rising at the bow portion and waves incident on the bow portion are The recesses escape to the left and right heel sides and flow smoothly backward. Therefore, in flat water, wave resistance at the bow is reduced and propulsion resistance in flat water is reduced, and in waves, the reflection of incident waves at the bow is reduced and wave resistance is mainly composed of waves. Increase decreases.
上記の船舶において、船長方向に関して、船首端の位置と、船首垂線の後方の垂線間長の2%の位置との間の範囲において、横断面形状で型深さの位置における水平線からの船首フレア傾斜角度を30度以上50度以下とするように構成される。 In the above-mentioned ship, the bow flare from the horizontal line at the mold depth position in the cross-sectional shape in the range between the position of the bow end and the position of 2% of the length between the vertical lines behind the bow perpendicular in the ship direction. The tilt angle is configured to be not less than 30 degrees and not more than 50 degrees.
この船首フレア傾斜角度の30度以上50度以下の範囲は実験的に求めた値であり、船首フレア傾斜角度をこの範囲にすることにより、船首フレアが従来船型よりも両舷側に開いた形状となり、船首に衝突した波がデッキ付近で返され、船首部分に衝突する波が上甲板(デッキ)付近で返されるので、上甲板上に波が打ち込まれ難くなる。船首フレア傾斜角度が、30度より小さいと、船体のピッチングを抑制する効果が小さくなり、また、上甲板への海水打ち込みを抑制する効果も少なくなる。また、30度より小さいと船舶建造時の工作が難しさを増すという問題がある。そして、船首フレア傾斜角度が、50度より大きいと、船首フレア部が開きすぎて下からの波に叩かれるので強度を補強する必要が生じたり、船体のピッチングが促進されるのでピッチング抑制効果が薄れる。 The range of the bow flare tilt angle between 30 ° and 50 ° is an experimentally obtained value. By setting the bow flare tilt angle to this range, the bow flare has a shape that is open on both sides of the conventional ship shape. The wave that collided with the bow is returned near the deck, and the wave that collides with the bow part is returned near the upper deck (deck), so that it is difficult for the wave to be driven onto the upper deck. When the bow flare inclination angle is smaller than 30 degrees, the effect of suppressing the pitching of the hull is reduced, and the effect of suppressing seawater driving on the upper deck is also reduced. In addition, when the angle is less than 30 degrees, there is a problem that the work at the time of ship construction increases. And if the bow flare inclination angle is larger than 50 degrees, the bow flare part will open too much and it will be hit by waves from below, so it will be necessary to reinforce the strength, and the pitching of the hull will be promoted, so the pitching suppression effect will be Fade.
上記の船舶において、前記凹部の中心の高さの位置を連結した形状に関して、平面視で、船首垂線(F.P.)の後方の垂線間長(Lpp)の1%の位置における幅方向位置が、船体中心線(C.L.)と船首部との交点から後方に向かって両舷側に100度以上140度以下(片舷側それぞれ50度以上70度以下)に開いた扇形状内に収まるように形成される。 In the above-mentioned ship, the width direction position at a position of 1% of the length (Lpp) between the vertical lines behind the bow perpendicular line (FP) in a plan view regarding the shape in which the positions of the center heights of the concave portions are connected. Is within a fan shape that opens from 100 ° to 140 ° on both sides toward the rear from the intersection of the hull center line (CL) and the bow (from 50 ° to 70 ° on each side). Formed as follows.
この構成によれば、凹部の中心の高さの位置を連結した形状が、膨らみを帯びず、凹部に流入する水流が後方に円滑に流れ易くなる形状になるため、船首方向に反射される波が少なくなるので、平水中推進抵抗及び波浪中抵抗増加が減少する。一方、前記の水線面の幅方向位置がこの扇形状より外側になると、船首部分の水線面形状が膨らみを帯び、凹部に流入する水流が後方に円滑に流れなくなると共に、船首方向に反射される波が多くなるので、平水中推進抵抗の増加及び波浪中抵抗の増加を抑制できなくなる。 According to this configuration, the shape connecting the height positions of the centers of the recesses does not bulge, and the water flow flowing into the recesses easily flows backward, so that the wave reflected in the bow direction Therefore, the propulsion resistance in flat water and the increase in resistance in waves are reduced. On the other hand, when the position in the width direction of the waterline surface is outside the fan shape, the shape of the waterline surface of the bow portion is swollen, and the water flow flowing into the concave portion does not flow smoothly backward and is reflected in the bow direction. Since more waves are generated, it is impossible to suppress an increase in the resistance to propulsion in plain water and an increase in resistance in waves.
また、上記の船舶は、船首の最前端が船首垂線(F.P.)より前方に垂線間長(Lpp)の0%以上3.0%以下の範囲にあり、かつ、方形係数(Cb)が0.80〜0.90で、航海速力がフルード数(Fn)換算で0.12〜0.19の船舶である場合や垂線間長(Lpp)が150m〜350m等の大きな船舶の場合に特に大きな効果を奏することができる。 In the above-mentioned ship, the foremost end of the bow is in the range of 0% to 3.0% of the length between the perpendiculars (Lpp) forward of the bow perpendicular (FP), and the square coefficient (Cb) Is 0.80 to 0.90 and the ship has a voyage speed of 0.12 to 0.19 in terms of Froude number (Fn) or a large ship with a vertical length (Lpp) of 150 to 350 m In particular, a great effect can be achieved.
この船首の最前端(船首端)の位置が船首垂線(F.P.)より前方に垂線間長Lppの0%以上3.0%以下の範囲にあるような、船首端が比較的船首垂線(F.P.)に近い船型では、従来の船首フレア形状のままでは海水打ち込みが発生し易いので、本発明の効果は大きい。 The fore end of the bow (the bow end) is in the range of 0% to 3.0% of the length Lpp between the fronts in front of the bow perpendicular (FP), and the bow end is relatively perpendicular to the bow perpendicular. In a ship shape close to (FP), seawater can easily be driven with the conventional bow flare shape, so the effect of the present invention is great.
また、方形係数Cbは、船舶の排水容積をVとし、船の垂線間長をLpp、型幅をB、型喫水をdとした時に、Cb=V/(Lpp×B×d)となる無次元の値であり、この方形係数の値が大きいと肥大の度合いが大きいので、本発明の効果はより大きくなる。 The square coefficient Cb is Cb = V / (Lpp × B × d), where V is the drainage volume of the ship, Lpp is the vertical length of the ship, B is the mold width, and d is the draft. Since this is a dimension value, and the value of this square coefficient is large, the degree of enlargement is large, so the effect of the present invention is further increased.
フルード数Fnは、船速Vs(m/s)に関する無次元表示であり、船の垂線間長をLpp(m),重力加速度をg(m/s2 )とした時に、Fn=Vs/(g×Lpp)1/2 となる無次元の値であり、船首正面部分における水面の上昇が比較的高くなると共に、推進抵抗や波浪中抵抗増加は極端に大きくならないので、本発明の効果が占める割合も比較的大きくなる。なお、航海速力Vsは、計画速力等と呼ばれることもあるので、ここでも、航海速力の中に計画速力を含むものとする。 The Froude number Fn is a dimensionless display with respect to the ship speed Vs (m / s). When the length between the normals of the ship is Lpp (m) and the gravitational acceleration is g (m / s 2 ), Fn = Vs / ( g × Lpp) 1/2 , which is a dimensionless value. The rise of the water surface in the front part of the bow becomes relatively high, and the propulsion resistance and the increase in resistance in the waves do not become extremely large. The proportion is also relatively large. Note that the nautical speed Vs is sometimes referred to as a planned speed or the like, and therefore the nautical speed is assumed to include the planned speed in this case as well.
更に、船長(垂線間長Lpp)が150m〜350m程度の船舶になると、比較的大きく肥大化し、船速も比較的遅い船舶となり、本発明の効果が大きくなる。 Furthermore, when the ship length (inter-vertical length Lpp) becomes a ship of about 150 m to 350 m, the ship becomes relatively large and the ship speed becomes relatively slow, and the effect of the present invention is enhanced.
本発明の船舶によれば、船型の肥大度が大きく、かつ、船首端が船首垂線(F.P.)に近い船型で、船長方向に関して、船首端の位置から船首垂線(F.P.)の後方の少なくとも垂線間長(Lpp)の10%の位置の間の範囲において、船体中心線(C.L.)側にくびれた凹部を最大喫水よりも上側の適当な高さに設けたので、平水中造波抵抗を減少すると共に、波浪中抵抗増加を抑え、かつ、上甲板への海水打ち込みを抑えることができる。 According to the ship of the present invention, the degree of enlargement of the hull form is large and the bow end is close to the bow perpendicular (FP), and the bow perpendicular (FP) from the position of the bow end in the captain direction. In the range between at least 10% of the length between the vertical lines (Lpp) at the rear of the ship, the concavity narrowed on the hull centerline (CL) side is provided at an appropriate height above the maximum draft In addition to reducing wave resistance in plain water, it is possible to suppress an increase in resistance in waves and to suppress seawater intrusion into the upper deck.
以下図面を参照して本発明に係る船舶の実施の形態について説明する。
図1〜図3に示すように、本発明に係る実施の形態の船舶1は、船長方向に関して、船首端の位置Xfから船首垂線(F.P.)の後方の少なくとも垂線間長Lppの10%の位置X3の間の範囲において、最大喫水Z0よりも上の船首部のフレアの横断面の形状Yb(x,z)を、鉛直線Lよりも船体中心線C.L.側にくびれた凹部10を有して形成する。
Hereinafter, embodiments of a ship according to the present invention will be described with reference to the drawings.
As shown in FIG. 1 to FIG. 3, the ship 1 according to the embodiment of the present invention has a length Lpp of at least 10 from the position Xf of the bow end to the rear of the bow perpendicular (FP) in the ship length direction. % Of the cross-sectional shape Yb (x, z) of the bow flare above the maximum draft Z0 in the range between the position X3 and the vertical axis L. L. It is formed with a
図1に示すように、凹部10を設ける船体横断面(X=x)において、この凹部10の中心の高さHm(x)を、船体横断面における船型の形状Yb(x,z)が最大喫水線Z0と交差する点P0を通る鉛直線L(x)と凹部10との交点の上端Ht(x)と下端Hb(x)との平均高さHm(x)(=(Ht(x)+Hb(x))/2)とする。そして、船首部正面では水面が盛り上がるので、凹部10の中心の高さHm(x)を最大水線Z0より上の適切な位置に配置することにより、ピッチング量及び波浪中抵抗増加を減少する効果を大きくすることができる。この中心の高さHm(x)を、船舶の航海速力をVsとし、重力加速度をgとした時に、(0.5×Vs×Vs)/gで計算される水頭h1(=(0.5×Vs×Vs)/g)の0.5倍〜3.0倍の範囲内の値とする。また、より好ましくは、この凹部10の中心の高さHm(x)を、水頭h1の0.9倍〜2.6倍の範囲内の値とする。
As shown in FIG. 1, in the hull cross section (X = x) in which the
凹部10の中心の高さHmを水頭(h1=(0.5×Vs×Vs)/g)の0.5倍よりも小さくすると、水面上昇により、水流がフレアの広がり部分にも届くようになるため、抵抗減少効果が少なくなる。一方、この凹部10の中心の高さHmを水頭h1の3.0倍よりも大きくすると、波浪中でも水流がフレアの広がり部分にも届き難くなり、抵抗減少効果を期待できるが、アンカリング装置の格納が難しくなるという問題や急激にフレアを広げることにより船首衝撃力が大きくなるという問題が生じてくる。
If the height Hm of the center of the
また、この凹部10の中心の高さHmを、水頭h1の0.9倍〜2.6倍の範囲内とすると、この範囲から上甲板Z3に向けて拡大すると、フレア傾斜角度θが比較的小さいままで、上甲板における船首フレアの広がりを比較的大きくすることができ、船首衝撃力を少ない状態に維持したまま、アンカリング装置の格納や甲板配置が容易となるので、より好ましい。特に、満載喫水dfullが最大喫水Z0から大きく離れない船舶に適している。
Further, when the height Hm of the center of the
また、凹部10を設ける船体横断面(X=x)において、凹部10の上端Ht(x)と下端Hb(x)との差である凹部の縦長さ(Lz(x)=Ht(x)−Hb(x))は、水頭h1の0.5倍以上3.0倍以下とすることが好ましい。この凹部の縦長さLz(x)が水頭h1の0.5倍よりも小さいと水流を円滑に両舷側側に流すことができなくなり、水頭h1の3.0倍よりも大きいと、フレアを広げることが難しくなり、アンカリング装置の格納が難しくなる。また、急激にフレアを広げると船首衝撃力が大きくなる。
Further, in the hull transverse section (X = x) in which the
また、凹部10を設ける船体横断面(X=x)において、凹部10の深さを、凹部10の最も船体中心線C.L.側の、即ち、最も内側の位置Pb(x)と、船型の形状Yb(x,z)が最大喫水線Z0と交差する点P0(x)を通る鉛直線L(x)との距離Ly(x)で定義し、この凹部10の深さLy(x)を、型幅Bの5%以上15%以下とすることが好ましい。この凹部の深さLy(x)が型幅Bの5%よりも小さいと水流を円滑に両舷側側に流すことができなくなり、型幅Bの15%よりも大きいと、フレアを広げることが難しくなり、アンカリング装置の格納が難しくなる。また、急激にフレアを広げると船首衝撃力が大きくなる。
Further, in the hull transverse section (X = x) where the
この構成によれば、船首部近傍において、最大喫水Z0より上部で従来の船型の形状を削って凹部(括れ部)10を設けるので、船首部で盛り上がる水や船首部に入射してくる波が、この凹部10により左右の舷側側に逃げて円滑に後方に流れるようになる。そのため、平水中では、船首部における造波抵抗が減少して平水中推進抵抗が減少する。また、波浪中では、入射波の前方への反射(波の前方への押し出し)が抑制されるので、波の反射が主成分である波浪中抵抗増加が減少する。また、それと共に、凹部10を設けることで、船首端に対する波の相対的な上下変動量が少なくなるので、波が上甲板(デッキ)Z3上に打ち込まれ難くなる。
According to this configuration, in the vicinity of the bow portion, the shape of the conventional hull shape is cut away from the maximum draft Z0 and the concave portion (constricted portion) 10 is provided, so that water rising at the bow portion and waves incident on the bow portion are generated. The
また、船首端Xfの位置と、船首垂線(F.P.)の後方の垂線間長(Lpp)の2%の位置Xrとの間の範囲において、型深さDの位置における船首フレア傾斜角度θ(x)を30度〜50度とするように構成される。 In addition, the bow flare inclination angle at the position of the mold depth D in the range between the position of the bow end Xf and the position Xr of 2% of the length (Lpp) between the perpendiculars behind the bow perpendicular (FP). θ (x) is configured to be 30 ° to 50 °.
この船首フレア傾斜角度θ(x)とは、水平線からの角度である。また、船首フレア傾斜角度θ(x)を実験的に求めた30度〜50度の範囲にすることにより、船首フレアが従来船型よりも両舷側に開いた形状となる。そのため、船首に衝突した波がデッキ付近で返され、船首部分に衝突する波が上甲板(デッキ)付近で返されるので、上甲板上に波が打ち込まれ難くなる。船首フレア傾斜角度θ(x)が、30度より小さいと、船体のピッチングを抑制する効果が小さくなり、また、上甲板への海水打ち込みを抑制する効果も少なくなる。また、30度より小さいと船舶建造時の工作が難しさを増すという問題がある。そして、船首フレア傾斜角度θ(x)が、50度より大きいと、船首フレア部が開きすぎて下からの波に叩かれるので強度を補強する必要が生じたり、船体のピッチングが促進されるのでピッチング抑制効果が薄れる。 The bow flare inclination angle θ (x) is an angle from the horizon. Further, by setting the bow flare inclination angle θ (x) in the range of 30 ° to 50 ° obtained experimentally, the bow flare has a shape that is open on both sides of the conventional hull form. Therefore, the wave that collided with the bow is returned near the deck, and the wave that collides with the bow part is returned near the upper deck (deck), so that it is difficult for the wave to be driven onto the upper deck. When the bow flare inclination angle θ (x) is smaller than 30 degrees, the effect of suppressing the pitching of the hull is reduced, and the effect of suppressing seawater driving into the upper deck is also reduced. In addition, when the angle is less than 30 degrees, there is a problem that the work at the time of ship construction increases. If the bow flare inclination angle θ (x) is greater than 50 degrees, the bow flare portion will open too much and will be hit by waves from below, so that it will be necessary to reinforce the strength or the pitching of the hull will be promoted. The effect of suppressing pitching is reduced.
更に、図3に示すように、凹部10の中心の高さ(Z=Hm(x))の位置を連結した形状に関して、平面視で、船首垂線(F.P.)の後方の垂線間長(Lpp)の1%の位置Xpにおける幅方向位置Ybp(X=0.01×Lpp、Z=Hm(X=0.01×Lpp))が、船体中心線C.L.と船首部との交点Pfから後方に向かって両舷側に100度〜140度(片舷側にそれぞれ50度〜70度)開いた扇形状内(図3の斜線部)に収まるように形成する。あるいは、平面視で、この位置Xpの幅方向位置Ybpにおける船体中心線C.L.に対する傾斜角βが、60度以内に収まるように形成する。
Further, as shown in FIG. 3, the length between the vertical lines behind the bow perpendicular (FP) in a plan view with respect to the shape in which the positions of the center heights (Z = Hm (x)) of the
この構成によれば、凹部10の中心の高さHmにおける水線面形状が、丸みを帯びず、凹部10に流入する水流が後方に円滑に流れ易くなると共に、船首方向に反射される波が少なくなるので、平水中推進抵抗及び波浪中抵抗増加が減少する。一方、この水線面の幅方向位置Ybpがこの扇形状より外側になると、船首部分の水線面形状が丸みを帯び、凹部10に流入する水流が後方に円滑に流れなくなると共に、船首方向に反射される波が多くなるので、平水中推進抵抗の増加及び波浪中抵抗の増加を抑制できなくなる。
According to this configuration, the shape of the water line at the height Hm at the center of the
また、上記の船舶は、船首の最前端が船首垂線(F.P.)より前方に垂線間長Lppの0%以上3.0%以下の範囲にあり、かつ、方形係数Cbが0.80〜0.90で、航海速力Vsがフルード数Fn換算で0.12〜0.19の船舶である場合や垂線間長(Lpp)が150m〜350m等の大きな船舶の場合に特に効果が大きい。 Further, in the above-mentioned ship, the foremost end of the bow is in the range of 0% to 3.0% of the length Lpp between the perpendiculars ahead of the bow perpendicular (FP), and the square coefficient Cb is 0.80. This is particularly effective in the case of a ship having a voyage speed Vs of 0.12 to 0.19 in terms of Froude number Fn or a large ship having a perpendicular length (Lpp) of 150 m to 350 m.
実施例として、方形係数(Cb)が0.85のバルクキャリアの船型において、図4に示すように、最大喫水Z0から所定の設定高さh1までの間で変形した船型As,Bs,Cs,Dsのそれぞれに対して、船長Lppが3.42mの模型船を用意した。 As an example, in a bulk carrier hull with a square coefficient (Cb) of 0.85, as shown in FIG. 4, hulls As, Bs, Cs, deformed between a maximum draft Z0 and a predetermined set height h1. For each Ds, a model ship with a captain Lpp of 3.42 m was prepared.
水槽における波浪中抵抗試験結果を全抵抗係数で図5に示すが、実施例Csでは、波浪中抵抗も比較例As及び実施例Bs,Dsよりは小さい。また、実施例Bs,Cs,Dsの中でも、凹部が実施例BsとDsの間にある実施例Csの抵抗が小さくなっており、凹部の形状を適切な形状にすることにより、本発明の効果をより有効なものとすることができることが分かった。 FIG. 5 shows the total resistance coefficient in the wave resistance test in the water tank. In Example Cs, the wave resistance is also smaller than those in Comparative Example As and Examples Bs and Ds. Further, among the examples Bs, Cs, and Ds, the resistance of the example Cs in which the recess is between the examples Bs and Ds is small, and the effect of the present invention is achieved by making the shape of the recess appropriate. Has been found to be more effective.
1,1X 船舶
10 凹部(括れ部)
As 比較例
Bs,Cs,Ds 実施例
B 型幅
C.L. 船体中央線(センターライン)
D 型深さ
F.P. 船首垂線
Fn フルード数
g 重力加速度
h1 淀み点における水頭
hs 船首から遠方に離れた位置での水頭
Hb(x) 鉛直線と凹部との交点の下端
Hm(x) 凹部の中心の高さ
Ht(x) 鉛直線と凹部との交点の上端
Lh(x) 凹部の縦長さ
Ly(x) 凹部の深さ
L(x) 鉛直線
O 淀み点
P0(x) 船体横断面における船型の形状が最大喫水線と交差する点
Pb(x) 凹部の最も内側の位置の点
Pf 凹部の中心の高さの位置を連結した形状と船体中心線との交点
Vs 航海速力
Vo 淀み点の流速
Xf 船首端の位置
Xr 0.02×Lppの位置
Xp 0.01×Lppの位置
X3 0.1×Lppの位置
Yb(x,z) 船型の形状(フレアの横断面の形状)
Ybp 凹部の中心の高さの位置を連結した形状のXpにおける幅方向位置
Z0 最大喫水(構造喫水)
Z3 上甲板
θ(x) 船首フレア傾斜角度
α 扇形状の角度
β 傾斜角
1,
As Comparative Example Bs, Cs, Ds Example B Mold Width C.I. L. Hull Chuo Line (Center Line)
D type depth P. Bow vertical line Fn Froude number g Gravity acceleration h1 Water head at the stagnation point hs Water head far away from the bow Hb (x) Lower end of intersection of vertical line and recess Hm (x) Center height of recess Ht (x ) Upper end of intersection of vertical line and recess Lh (x) Vertical length of recess Ly (x) Depth of recess L (x) Vertical line O Stagnation point
P0 (x) Point where the shape of the hull shape in the cross section of the hull intersects the maximum waterline Pb (x) Point of the innermost position of the recess Pf Intersection of the shape connecting the height of the center of the recess and the hull centerline Vs Velocity Velocity Vo Stagnation velocity Xf Bow end position Xr 0.02 × Lpp position Xp 0.01 × Lpp position X3 0.1 × Lpp position Yb (x, z) Hull shape (crossing flare) Surface shape)
Ybp Width direction position in Xp of the shape of connecting the height position of the center of the recess Z0 Maximum draft (structural draft)
Z3 Upper deck θ (x) Bow flare tilt angle α Fan-shaped angle
β tilt angle
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006062418A JP4744329B2 (en) | 2006-03-08 | 2006-03-08 | Ship |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006062418A JP4744329B2 (en) | 2006-03-08 | 2006-03-08 | Ship |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007237895A true JP2007237895A (en) | 2007-09-20 |
JP4744329B2 JP4744329B2 (en) | 2011-08-10 |
Family
ID=38583849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006062418A Active JP4744329B2 (en) | 2006-03-08 | 2006-03-08 | Ship |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4744329B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011178334A (en) * | 2010-03-03 | 2011-09-15 | Universal Shipbuilding Corp | Enlarged ship |
JP2012091740A (en) * | 2010-10-28 | 2012-05-17 | Honda Motor Co Ltd | Bow structure of ship |
JP2012096756A (en) * | 2010-11-05 | 2012-05-24 | Shin Kurushima Dockyard Co Ltd | Fore shape of enlarged ship |
WO2015079710A1 (en) * | 2013-11-29 | 2015-06-04 | 独立行政法人海上技術安全研究所 | Inwardly inclined bow shape, ship having inwardly inclined bow shape, and method for designing inwardly inclined bow shape |
RU2561186C1 (en) * | 2014-06-04 | 2015-08-27 | Открытое акционерное общество Конструкторское бюро по проектированию судов "Вымпел" | Combination navigation ship fore |
RU2570511C2 (en) * | 2013-11-28 | 2015-12-10 | Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации | Shape of ship fore freeboard for operation under high-intensity heaving |
JP2017043117A (en) * | 2015-08-24 | 2017-03-02 | 三井造船株式会社 | Ship |
CN116902164A (en) * | 2023-09-14 | 2023-10-20 | 常州市戍海智能技术有限公司 | Unmanned ship navigation stability performance simulation test system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4831238B1 (en) * | 1967-08-15 | 1973-09-27 | ||
JPH0733071A (en) * | 1993-07-19 | 1995-02-03 | Ishikawajima Harima Heavy Ind Co Ltd | Hull shape |
JP2006224811A (en) * | 2005-02-17 | 2006-08-31 | Mitsubishi Heavy Ind Ltd | Bow shape of ship |
-
2006
- 2006-03-08 JP JP2006062418A patent/JP4744329B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4831238B1 (en) * | 1967-08-15 | 1973-09-27 | ||
JPH0733071A (en) * | 1993-07-19 | 1995-02-03 | Ishikawajima Harima Heavy Ind Co Ltd | Hull shape |
JP2006224811A (en) * | 2005-02-17 | 2006-08-31 | Mitsubishi Heavy Ind Ltd | Bow shape of ship |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011178334A (en) * | 2010-03-03 | 2011-09-15 | Universal Shipbuilding Corp | Enlarged ship |
JP2012091740A (en) * | 2010-10-28 | 2012-05-17 | Honda Motor Co Ltd | Bow structure of ship |
JP2012096756A (en) * | 2010-11-05 | 2012-05-24 | Shin Kurushima Dockyard Co Ltd | Fore shape of enlarged ship |
RU2570511C2 (en) * | 2013-11-28 | 2015-12-10 | Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации | Shape of ship fore freeboard for operation under high-intensity heaving |
CN105764789A (en) * | 2013-11-29 | 2016-07-13 | 国立研究开发法人海上·港湾·航空技术研究所 | Inwardly inclined bow shape, ship having inwardly inclined bow shape, and method for designing inwardly inclined bow shape |
WO2015079710A1 (en) * | 2013-11-29 | 2015-06-04 | 独立行政法人海上技術安全研究所 | Inwardly inclined bow shape, ship having inwardly inclined bow shape, and method for designing inwardly inclined bow shape |
KR20160096113A (en) | 2013-11-29 | 2016-08-12 | 고쿠리츠겐큐카이하츠호진 가이죠·고완·고쿠기쥬츠겐큐죠 | Inwardly inclined bow shape, ship having inwardly inclined bow shape, and method for designing inwardly inclined bow shape |
JPWO2015079710A1 (en) * | 2013-11-29 | 2017-03-16 | 国立研究開発法人 海上・港湾・航空技術研究所 | Inwardly inclined bow shape, ship having inwardly inclined bow shape, and inwardly inclined bow shape design method |
RU2561186C1 (en) * | 2014-06-04 | 2015-08-27 | Открытое акционерное общество Конструкторское бюро по проектированию судов "Вымпел" | Combination navigation ship fore |
JP2017043117A (en) * | 2015-08-24 | 2017-03-02 | 三井造船株式会社 | Ship |
WO2017033921A1 (en) * | 2015-08-24 | 2017-03-02 | 三井造船株式会社 | Ship |
CN107848601A (en) * | 2015-08-24 | 2018-03-27 | 三井造船株式会社 | Ship |
CN107848601B (en) * | 2015-08-24 | 2019-09-10 | 三井易艾斯造船有限公司 | Ship |
CN116902164A (en) * | 2023-09-14 | 2023-10-20 | 常州市戍海智能技术有限公司 | Unmanned ship navigation stability performance simulation test system |
CN116902164B (en) * | 2023-09-14 | 2023-11-21 | 常州市戍海智能技术有限公司 | Unmanned ship navigation stability performance simulation test system |
Also Published As
Publication number | Publication date |
---|---|
JP4744329B2 (en) | 2011-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4744329B2 (en) | Ship | |
RU2374120C2 (en) | Design of front part in vessel of displacement type | |
JP5986856B2 (en) | Commercial cargo ship | |
KR101094539B1 (en) | Stern shape for displacement type ship | |
JP6590813B2 (en) | Ship with improved hull shape | |
JP2008260445A (en) | Vessel | |
JP4414793B2 (en) | Ship | |
JP2002347688A (en) | Enlarged ship | |
EP0866763B1 (en) | Propeller configuration for sinusoidal waterline ships | |
JP5091518B2 (en) | Ship | |
JP2011178334A (en) | Enlarged ship | |
JP2012517931A (en) | Method and configuration for spherical bow | |
CN102770339B (en) | Possess and reduce the hull structure that resistance in waves increases end difference | |
JP4721836B2 (en) | Ship | |
JP4722072B2 (en) | Ship | |
JP4889238B2 (en) | Ship with bow fin | |
JP2007118950A (en) | Enlarged vessel | |
JP2008149819A (en) | Vessel | |
JP5103689B2 (en) | Hull structure with step of increasing resistance in waves | |
JP5028000B2 (en) | Ship | |
JP2006008091A (en) | Vessel shape for small high speed vessel | |
JP5896598B2 (en) | Ship | |
JP7527215B2 (en) | Ships | |
JP4789484B2 (en) | Bow valve and ship equipped with the same | |
KR100359933B1 (en) | Full ship |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080402 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100907 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100914 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110419 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110510 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140520 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4744329 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |