[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007230784A - Manufacturing process of lithium-iron complex oxide - Google Patents

Manufacturing process of lithium-iron complex oxide Download PDF

Info

Publication number
JP2007230784A
JP2007230784A JP2004100021A JP2004100021A JP2007230784A JP 2007230784 A JP2007230784 A JP 2007230784A JP 2004100021 A JP2004100021 A JP 2004100021A JP 2004100021 A JP2004100021 A JP 2004100021A JP 2007230784 A JP2007230784 A JP 2007230784A
Authority
JP
Japan
Prior art keywords
raw material
iron
lithium
compound
material component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004100021A
Other languages
Japanese (ja)
Inventor
Ryoji Yamada
亮治 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Seimi Chemical Ltd
Original Assignee
AGC Seimi Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGC Seimi Chemical Ltd filed Critical AGC Seimi Chemical Ltd
Priority to JP2004100021A priority Critical patent/JP2007230784A/en
Priority to PCT/JP2005/006703 priority patent/WO2005095273A1/en
Publication of JP2007230784A publication Critical patent/JP2007230784A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new manufacturing process of an olivine-type lithium-iron complex oxide exhibiting an excellent battery performance using an inexpensive iron compound as a raw material and an electrode active material for non-aqueous electrolyte secondary cells having a high discharge capacity and excellent charge/discharge characteristics using the lithium-iron complex oxide manufactured. <P>SOLUTION: The manufacturing process of the lithium-iron complex oxide comprises pulverizing raw material components including an iron compound containing a trivalent iron, a lithium compound, a phosphate compound and a carbon-containing compound to the extent that the 50% volume-accumulative size (D50) of the finely pulverized particle is ≤2 μm and the 90% volume-accumulative size (D90) is ≤10 μm, coagulating the finely pulverized particle to the extent that the 50% volume-accumulative size (D50) of the finely pulverized particle is ≤30 μm and the 90% volume-accumulative size (D90) is ≤100 μm and heat-treating the particle at 300-1,150°C to obtain LiFePO<SB>4</SB>having an olivine structure. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はオリビン型構造のリチウム鉄複合酸化物の製造方法及び製造されたリチウム鉄複合酸化物を含有する非水電解質電極活物質に関する。   The present invention relates to a method for producing a lithium iron composite oxide having an olivine structure and a non-aqueous electrolyte electrode active material containing the produced lithium iron composite oxide.

モバイル機器用エネルギ源として高出力で高エネルギ密度のリチウムイオン二次電池が認知され、従来のアルカリ二次電池やニッケル水素電池と急速に置き換えられてきた。その一方、中型・大型電池のリチウムイオン二次電池は環境問題・エネルギ問題の深刻化を緩和できる一つの解答として期待されているが、安全性に関する不安が解消されないままで進行していない。   A lithium ion secondary battery having a high output and a high energy density has been recognized as an energy source for mobile devices, and has been rapidly replaced with conventional alkaline secondary batteries and nickel metal hydride batteries. On the other hand, lithium-ion secondary batteries of medium- and large-sized batteries are expected as one solution that can alleviate the seriousness of environmental problems and energy problems, but the safety concerns have not been resolved and are not progressing.

安全で安価な正極活物質材料としては、これまでにもMn系やFe系を中心とした検討が進められてきた。特にスピネル型LiMn4は精力的に検討された材料ではあったが、高温貯蔵時の安定性が乏しいといった欠点を克服できず、本格的実用化には至っていない。層状岩塩構造LiFeOも長年に渡って検討されてきたが、未だ満足な電気化学特性を発現できない状況にある。 As a safe and inexpensive positive electrode active material, investigations centering on Mn-based and Fe-based materials have been made so far. In particular, spinel type LiMn 2 O 4 was a material that has been energetically studied, but it has not been able to overcome the shortcomings of poor stability during high-temperature storage, and has not yet been put into practical use. Although the layered rock salt structure LiFeO 2 has been studied for many years, it is still in a situation where satisfactory electrochemical properties cannot be expressed.

これに対し、特許文献1によって提案されたLiFePO4は、安全性にかかわる正極活物質中の酸素が全てリンと共有結合して強固に固定されていることから、極めて安全で、安定性に優れた正極活物質であると期待された。しかしながらその電気化学特性は、理論量の高々70%しか発現できないといった課題を有するものであった(非特許文献1)。 On the other hand, LiFePO 4 proposed by Patent Document 1 is extremely safe and excellent in stability because all oxygen in the positive electrode active material related to safety is covalently bonded to phosphorus and firmly fixed. It was expected to be a positive electrode active material. However, the electrochemical characteristics have a problem that only 70% of the theoretical amount can be expressed (Non-patent Document 1).

従来のLiFePO4が抱える課題は、LiFePO4結晶が乏しい電子伝導性しか持たないことである。そのためリチウムの結晶内への挿入と結晶からの脱離が進行し難いうえ結晶内での拡散が遅く、スムースに充放電を繰り返すことができなかった。またLiFePO4が2価鉄の化合物であることから、鉄源として安易に2価鉄化合物を用いたことである。取り扱い容易な2価鉄化合物は限られ、汎用性が乏しく高価である。 The problem with conventional LiFePO 4 is that LiFePO 4 crystals have poor electronic conductivity. For this reason, lithium insertion into the crystal and desorption from the crystal are difficult to proceed, and diffusion within the crystal is slow, so that charging and discharging cannot be smoothly repeated. Further, since LiFePO 4 is a divalent iron compound, the divalent iron compound was easily used as the iron source. The divalent iron compounds that are easy to handle are limited and are not versatile and expensive.

上記の課題克服のための一つの対策は活物質の微粒化である(非特許文献2)。これにより電荷移動反応に寄与できる表面を増やせ、結晶中の電子移動距離を短縮できる。非特許文献2には、粒径10μm以下の粒子を含有するLiFePO4を調製して放電容量160mAh/gを達成したことが報告されている。しかし、これは価数2の鉄化合物であって極めて高価な酢酸鉄を鉄源とし、焼結粒子を多発させた負荷特性の発現し難いものであった。 One countermeasure for overcoming the above problem is atomization of the active material (Non-patent Document 2). Thereby, the surface which can contribute to a charge transfer reaction can be increased, and the electron transfer distance in a crystal | crystallization can be shortened. Non-Patent Document 2 reports that LiFePO 4 containing particles having a particle size of 10 μm or less was prepared to achieve a discharge capacity of 160 mAh / g. However, this is an iron compound having a valence of 2, which uses iron acetate as an extremely expensive iron source, and hardly exhibits load characteristics in which sintered particles are frequently generated.

活物質粒子表面に導電性コーティングを施して粒子表面と電極コンポジットの導電性を高めることによっても電気化学特性を改善することが報告されている。コンポジットの導電助剤として使用される炭素質材料を、粒子の導電性コーティングに用いることも有効である。非特許文献3には、フェノール樹脂由来カーボンと原料の混合物を焼成して得たLiFePO4を用いて、高負荷時においても高い放電容量を発現できることが報告されている。しかし、この場合も、鉄源としては高価な酢酸鉄が使用されている。 It has been reported that the electrochemical properties can also be improved by applying a conductive coating to the surface of the active material particles to increase the conductivity of the particle surface and the electrode composite. It is also effective to use a carbonaceous material used as a conductive aid for the composite for the conductive coating of the particles. Non-Patent Document 3 reports that LiFePO 4 obtained by baking a mixture of a phenol resin-derived carbon and a raw material can exhibit a high discharge capacity even under a high load. However, also in this case, expensive iron acetate is used as the iron source.

特許文献2には、平均粒径0.2〜5μmのLiFePO4粒子に炭素物質微粒子を複合化させる方法が提案されている。しかしながらこうして調製された活物質を用いて組まれた電池の初期放電容量は、2価鉄化合物である蓚酸鉄を鉄源としているにもかかわらず、88mAh/gと低い特性しか発現できない。これは取り扱い困難な微細粒子の電池性能を、うまく引き出せなかったためと判断される。 Patent Document 2 proposes a method in which carbon substance fine particles are combined with LiFePO 4 particles having an average particle diameter of 0.2 to 5 μm. However, the initial discharge capacity of the battery assembled using the active material thus prepared can only exhibit a low characteristic of 88 mAh / g, although iron oxalate, which is a divalent iron compound, is used as the iron source. This is considered to be because the battery performance of the fine particles difficult to handle could not be drawn out well.

結晶自体の導電性を高めて活物質の電気化学特性を改善しようとする試みも検討されている。非特許文献4には、NbやZr等を1モル%ドープすることによりLiFePOの電子伝導性を8桁高められたとし、高負荷特性に優れた電池性能を発現できたと報告している。しかし、これらも2価鉄化合物の蓚酸鉄を鉄源として検討されたものであって、経済的には実用性が乏しい。 Attempts to improve the electrochemical properties of the active material by increasing the conductivity of the crystal itself are also being considered. Non-Patent Document 4 reports that by doping 1 mol% of Nb, Zr, or the like, the electronic conductivity of LiFePO 4 was increased by 8 orders of magnitude, and battery performance excellent in high load characteristics could be expressed. However, these are also studied using iron oxalate, which is a divalent iron compound, as an iron source, and economically impractical.

汎用性が高く、安価な鉄化合物を用いてLiFePO4を合成する試みも検討されている。非特許文献5には、容易に入手できて安価な3価鉄の化合物であるFeを鉄源に、炭素質材料を3価鉄から2価鉄に還元するための還元剤に用いて、LiFe0.9Mg0.1POを合成し、良好な電池性能を発現できることが報告されている。しかし、その報告にあるLiFePOのXRDプロファイルは未反応酸化鉄の回折ピークを残すもので、反応が完結していないことを示す。 Attempts to synthesize LiFePO 4 using an iron compound that is highly versatile and inexpensive are also being studied. Non-Patent Document 5 uses Fe 2 O 3 , which is a readily available and inexpensive trivalent iron compound, as an iron source, and a carbonaceous material as a reducing agent for reducing trivalent iron to divalent iron. Thus, it has been reported that LiFe 0.9 Mg 0.1 PO 4 can be synthesized to exhibit good battery performance. However, the XRD profile of LiFePO 4 in the report leaves a diffraction peak of unreacted iron oxide, indicating that the reaction is not complete.

上記のように従来も良好な電池性能を発現できるLiFePOを合成可能ではあったが、それらは2価の鉄化合物を原料とした合成方法によるものであって、安価なLiFePOを豊富に安定して供給しようとする点からは、実用的ではない。 Although it has been possible to synthesize LiFePO 4 that can express good battery performance as described above, they are based on a synthesis method using a divalent iron compound as a raw material, and abundantly stable inexpensive LiFePO 4 From the point of trying to supply, it is not practical.

一方、安価で取り扱い勝手が良く容易に入手可能な鉄化合物は酸化鉄が有利である。酸化鉄を鉄源としてLiFePOを合成する手法も従来から知られてはいたが、反応を完結させることができず、高負荷特性を大きく低下させてしまうことから実用に供されなかった。
特許第3319258号公報 特開2003−36889号公報 J. Electrochem. Soc. 144,1188(1997) J. Electrochem. Soc. 148,A224(2001) Electrochem. Solid-State Lett. 4,A170(2001) Nature Mater. 2, 123(2002) Electrochem. Solid-State Lett. 6,A53(2003)
On the other hand, iron oxide is advantageous as an iron compound that is inexpensive, easy to handle and easily available. Although a method for synthesizing LiFePO 4 using iron oxide as an iron source has been conventionally known, it has not been put to practical use because the reaction cannot be completed and the high load characteristics are greatly reduced.
Japanese Patent No. 3319258 JP 2003-36889 A J. Electrochem. Soc. 144,1188 (1997) J. Electrochem. Soc. 148, A224 (2001) Electrochem. Solid-State Lett. 4, A170 (2001) Nature Mater. 2, 123 (2002) Electrochem. Solid-State Lett. 6, A53 (2003)

本発明は、前記従来技術の課題を克服し、3価鉄を含有する汎用で安価な鉄化合物を原料として、電池特性発現に最適な粒子形状を保持させながら合成反応を遂行できる、オリビン型構造のリチウム鉄複合酸化物の新規な製造方法と、かかる方法により製造された、高い放電容量及び優れた充放電特性を有するオリビン型リチウム鉄複合酸化物の提供を目的とする。   The present invention overcomes the above-mentioned problems of the prior art and uses a general-purpose and inexpensive iron compound containing trivalent iron as a raw material, and can carry out a synthesis reaction while maintaining the optimal particle shape for battery characteristics expression. It is an object of the present invention to provide a novel method for producing a lithium iron composite oxide and an olivine type lithium iron composite oxide produced by such a method and having a high discharge capacity and excellent charge / discharge characteristics.

本発明者は、上記課題を達成すべく鋭意研究を進めたところ、原子価数3の鉄を含有する鉄化合物、リチウム化合物、リン酸化合物、及び炭素含有化合物を含む原料成分を微細化処理し、該微細化粒子の50%体積累積径(D50)を2μm以下で、かつ90%体積累積径(D90)を10μm以下にせしめた後、該微細化粒子を凝集処理し、該凝集粒子の50%体積累積径(D50)が30μm以下で、かつ90%体積累積径(D90)が100μm以下にせしめた後に300〜1150℃で熱処理し、オリビン型構造LiFePO4にせしめることを特徴とするリチウム鉄複合酸化物の製造方法に到達した。 The present inventor has intensively studied to achieve the above-mentioned problems. As a result, the raw material components including iron compound, lithium compound, phosphate compound, and carbon-containing compound containing iron having a valence of 3 are refined. After the 50% volume cumulative diameter (D50) of the fine particles is 2 μm or less and the 90% volume cumulative diameter (D90) is 10 μm or less, the fine particles are agglomerated to give 50% of the aggregate particles. % Volume cumulative diameter (D50) of 30 μm or less and 90% volume cumulative diameter (D90) of 100 μm or less, followed by heat treatment at 300 to 1150 ° C. to give olivine type structure LiFePO 4 A method for producing a composite oxide has been reached.

かかる本発明の製造方法によれば、原料成分中には微細な鉄化合物と微細な炭素含有化合物が均質に分布しており、炭素は近接する3価の鉄をほぼ定量的に還元して2価を保持するように作用し、LiFePOの合成反応を遂行すると共に、再酸化等の好ましくない副反応を防止するよう機能する。また予め制御された粒径分布を持つ原料成分の凝集粒子は、熱処理されてLiFePOとなった後も熱処理前の分布の多くの特徴を維持するように作用して、一次粒子、二次粒子の過剰な焼結を防止するように機能する。 According to the production method of the present invention, the fine iron compound and the fine carbon-containing compound are homogeneously distributed in the raw material components, and the carbon reduces the adjacent trivalent iron almost quantitatively by 2 It acts to maintain the valence, performs the synthesis reaction of LiFePO 4 , and functions to prevent undesirable side reactions such as reoxidation. In addition, the agglomerated particles of the raw material component having a pre-controlled particle size distribution act so as to maintain many characteristics of the distribution before the heat treatment even after being heat-treated to become LiFePO 4 , so that primary particles, secondary particles It functions to prevent excessive sintering.

かくして、本発明のリチウム鉄複合酸化物は、微細な一次粒子が集まった、粒径の制御された凝集粒子からなり、その一次粒子の表面には炭素含有化合物由来の炭素質粒子層が設けられている。このような形態が反映されて本発明のリチウム鉄複合酸化物を正極活物質とした非水電解液二次電池は、界面電荷移動反応をスムースに進行させ、優れた電池特性を発現する。すなわち大電流を流すことができてパワーが取れ、しかも信頼性高い安全性と長寿命を達成できる。   Thus, the lithium iron composite oxide of the present invention comprises aggregated particles having a controlled particle size in which fine primary particles are gathered, and a carbonaceous particle layer derived from a carbon-containing compound is provided on the surface of the primary particles. ing. Reflecting such a form, the non-aqueous electrolyte secondary battery using the lithium iron composite oxide of the present invention as the positive electrode active material allows the interface charge transfer reaction to proceed smoothly and exhibits excellent battery characteristics. That is, a large current can be flowed to obtain power, and a highly reliable safety and long life can be achieved.

これに対して従来のリチウム鉄複合酸化物は、比重の大きく異なる原料成分のミクロな混合が不十分であったため、未反応部分や再酸化部分を残してしまっていた。加えて熱処理時に独立した一次粒子や微細な二次粒子がバインダーとなり、大きな一次粒子や凝集粒子を多発させていた。このような不具合が従来のリチウム鉄複合酸化物を非水電解質二次電池用電極活物質に使用した場合にサイクル特性や負荷特性の劣化を引き起こしていたものと推測される。   On the other hand, the conventional lithium iron composite oxides have left unreacted parts and reoxidized parts because micro-mixing of raw material components having greatly different specific gravities was insufficient. In addition, independent primary particles and fine secondary particles became a binder during heat treatment, and large primary particles and agglomerated particles were frequently generated. It is inferred that such a defect caused deterioration of cycle characteristics and load characteristics when a conventional lithium iron composite oxide was used as an electrode active material for a non-aqueous electrolyte secondary battery.

本発明は、2価鉄化合物であるLiFePOの合成を、3価の鉄を含有する原料からでも達成でき、高性能な電池特性の発現と両立できるところに特徴がある。従って、本発明に使用可能な鉄原料としては何ら限定されることなく、広範囲な鉄化合物の中から選択して用いることができる。しかしながら入手と取り扱いが容易で、しかも安価であることから、本発明には酸化鉄を鉄原料成分として用いるのが好ましい。酸化鉄としてはFeのみでなく、FeあるいはFeOOH等も好適に用いられる。異方性の強い針状酸化鉄も好適に用いられる。 The present invention is characterized in that the synthesis of LiFePO 4 , which is a divalent iron compound, can be achieved even from a raw material containing trivalent iron, and is compatible with the development of high-performance battery characteristics. Therefore, the iron raw material that can be used in the present invention is not limited at all and can be selected from a wide range of iron compounds. However, since it is easy to obtain and handle and is inexpensive, iron oxide is preferably used as an iron raw material component in the present invention. As the iron oxide, not only Fe 2 O 3 but also Fe 3 O 4 or FeOOH is preferably used. Acicular iron oxide having strong anisotropy is also preferably used.

本発明に用いられるリチウム化合物としてはリチウムを含有するものであればいずれも使用可能である。しかし、取り扱い容易な点からリチウムの酸化物、水酸化物、塩類、又はこれら化合物2種以上の混合物等が好ましい。   Any lithium compound may be used as long as it contains lithium. However, from the viewpoint of easy handling, lithium oxides, hydroxides, salts, or a mixture of two or more of these compounds are preferred.

本発明に用いられるリン酸化合物も何ら限定されるものではない。しかしながら入手し易く取り扱い容易なことから、リン酸、リン酸鉄、リン酸リチウム及びリン酸アンモニウム類、リン酸トリエチルやリン酸2−エチルへキシルジフェニルといったリン酸エステル類が例示でき、いずれも好ましく使用できる。   The phosphoric acid compound used in the present invention is not limited at all. However, since it is easy to obtain and easy to handle, phosphoric acid esters such as phosphoric acid, iron phosphate, lithium phosphate and ammonium phosphate, triethyl phosphate and 2-ethylhexyldiphenyl phosphate can be exemplified, and all are preferable. Can be used.

本発明に使用できる炭素含有化合物も炭素を含有する広範囲な化合物の中から選択して用いることができる。しかしながら好ましくは、炭素含有量が少なくとも35重量%の常温で液体状態か固体状態を呈する化合物であるのが、3価の鉄から2価鉄への還元反応を効率良く進行できることから好ましい。具体的には、グルコース、ショ糖、ラクトースといった還元糖類;エチレンオキサイド、グリセリン、アスコルビン酸、ラウリン酸、ステアリン酸といった有機化合物;ポリビニルアルコール、ポリエチレングリコールといった水溶性高分子類;ポリプロピレン、ポリスチレン、ポリアクリロニトリル、セルロース、エポキシ樹脂、フェノール樹脂といった樹脂・プラスチック類、アセチレンブラック、カーボンブラック、グラファイトといった炭素質材料を例示できる。また炭素含有化合物は、材料をそのまま用いることも可能であるが、溶液、エマルション、サスペンション等といった形態で用いることも可能である。   The carbon-containing compound that can be used in the present invention can also be selected from a wide range of compounds containing carbon. However, it is preferable that the compound has a carbon content of at least 35% by weight and exhibits a liquid state or a solid state at normal temperature because the reduction reaction from trivalent iron to divalent iron can proceed efficiently. Specifically, reducing sugars such as glucose, sucrose and lactose; organic compounds such as ethylene oxide, glycerin, ascorbic acid, lauric acid and stearic acid; water-soluble polymers such as polyvinyl alcohol and polyethylene glycol; polypropylene, polystyrene and polyacrylonitrile Examples thereof include resins and plastics such as cellulose, epoxy resin and phenol resin, and carbonaceous materials such as acetylene black, carbon black and graphite. The carbon-containing compound can be used as it is, but it can also be used in the form of a solution, emulsion, suspension or the like.

上記の原子価数3の鉄を含有する鉄化合物、リチウム化合物、リン酸化合物、及び、炭素含有化合物を含む原料成分は、微細化処理される。微細化処理は、原料成分を粉砕や解砕の工程を通じて成される。各原料成分を単独で、あるいは2種以上の原料成分を同時に微細化処理することができる。微細化処理された各原料成分は好ましくは均一に混合される。本発明において微細化処理と混合工程はそれぞれ独立に行うことも可能であるが、ほぼ同時に2つの処理を行うこともできる。   The raw material component containing the iron compound, lithium compound, phosphate compound, and carbon-containing compound containing iron having a valence of 3 is subjected to a fine treatment. The refinement process is performed through a process of crushing and crushing raw material components. Each raw material component can be refined separately or two or more raw material components can be simultaneously refined. The respective raw material components subjected to the fine treatment are preferably mixed uniformly. In the present invention, the miniaturization process and the mixing process can be performed independently, but two processes can be performed almost simultaneously.

上記原料成分の微細化処理は、原料成分と分散媒から形成されたスラリーにて行うのが、散逸を防止しながら充分な微細化が可能である点で好ましい。スラリーの分散媒は原料成分の溶媒であってもよい。分散媒としては、水性系、ハイドロカーボン系、又はハロゲン化カーボン系のいずれも使用可能である。なかでも、取り扱い容易で安価であることから、水系分散媒が特に好ましい。   It is preferable to carry out the above-mentioned raw material component refinement treatment with a slurry formed from the raw material component and the dispersion medium because sufficient refinement is possible while preventing dissipation. The dispersion medium of the slurry may be a raw material component solvent. As the dispersion medium, any of an aqueous system, a hydrocarbon system, and a halogenated carbon system can be used. Among these, an aqueous dispersion medium is particularly preferable because it is easy to handle and inexpensive.

本発明において、原料成分を上記スラリーの形態で微細化処理する場合の方法は、スラリーにせん断力を加えるなどの手段がいずれも使用可能である。なかでも、効率よく微細化できて異物の混入を低く制御できる点で、原料と分散媒からなるスラリーを、回転速度の大きく異なる2つのローター間、2つのディスク間、あるいはローターとステーター間に通して微細化する方法、ノズルから高圧で噴射し、相互に衝突させるか、又は遮蔽物に衝突させて微細化する方法、スラリー中にキャビテーションを起こして微細化する方法、ビーズミル、遊星ボールミル、又はボールミルといった方法を用いるのが好ましい。   In the present invention, any method such as applying a shearing force to the slurry can be used as the method for refining the raw material components in the form of the slurry. In particular, the slurry consisting of the raw material and the dispersion medium can be passed between two rotors, two disks, or between a rotor and a stator, which have greatly different rotational speeds, because it can be efficiently miniaturized and the contamination can be controlled low. , Method of pulverizing by cavitation in the slurry, bead mill, planetary ball mill, or ball mill Such a method is preferably used.

このようにして、微細化処理は、原料成分の微細化粒子のD50が2μm以下、好ましくは1μm以下、かつD90が10μm以下、好ましくは5μm以下にするのが好ましい。D90が10μmより大きいと合成反応を達成できず、電池特性を大きく損ねてしまう。また、D50が2μmより大きいとサイクル特性や負荷特性を損ねてしまうことから、好ましくない。   In this way, in the miniaturization treatment, it is preferable that D50 of the fine particles of the raw material component is 2 μm or less, preferably 1 μm or less, and D90 is 10 μm or less, preferably 5 μm or less. If D90 is larger than 10 μm, the synthesis reaction cannot be achieved, and the battery characteristics are greatly impaired. Further, if D50 is larger than 2 μm, cycle characteristics and load characteristics are impaired, which is not preferable.

上記の原料成分のスラリーの微細化処理は、それぞれの原料成分について単独で行うこともできるし、また、2種以上の原料成分を同時に処理することもできる。後者の場合には各原料成分の微細化処理と同時に各原料の均質混合をも完了できる。   The above-mentioned refinement of the raw material component slurry can be performed individually for each raw material component, or two or more raw material components can be simultaneously processed. In the latter case, the homogenous mixing of the raw materials can be completed simultaneously with the refinement of the raw material components.

本発明は、次いで、微細化処理された原料成分粒子を凝集させる。原料成分粒子を凝集させる方法は種々の手段で行うことができ、また、凝集された粒子は乾燥状態で得られるのが好ましい。かくして、例えば、微細化処理で得られたスラリーを好ましくは攪拌させてせん断力を加えながら加熱及び又は減圧下に置き、原料成分の凝集と溶媒の除去、乾燥を行う方法を用いるのが好ましい。これにより原料成分のほとんど全てを回収でき、得られる凝集粒子の粒径制御も容易にできる。   The present invention then agglomerates the raw material component particles that have been refined. The method of aggregating the raw material component particles can be carried out by various means, and the agglomerated particles are preferably obtained in a dry state. Thus, for example, it is preferable to use a method in which the slurry obtained by the refining treatment is preferably stirred and placed under heating and / or reduced pressure while applying a shearing force to aggregate the raw material components, remove the solvent, and dry. Thereby, almost all of the raw material components can be recovered, and the particle size control of the obtained aggregated particles can be easily performed.

また、乾燥気流中に微細化処理されたスラリーを供給することにより原料成分粒子の凝集と乾燥を同時に行う手段も好適に用いられる。さらに、微細化処理されたスラリーを噴霧乾燥することによっても原料成分の凝集と乾燥を同時に行うことができ、本発明に好適である。   In addition, a means for simultaneously aggregating and drying the raw material component particles by supplying a finely-treated slurry in a dry air stream is also preferably used. Furthermore, the raw material components can be coagulated and dried simultaneously by spray drying the refined slurry, which is suitable for the present invention.

このようにして凝集処理された原料成分粒子は、原料成分の凝集粒子のD50が30μm以下、好ましくは20μm以下、かつD90が100μm以下、好ましくは60μm以下にするのが好ましい。D50が30μmより大きいとサイクル特性や負荷特性を損ねてしまう。また、D90が100μmより大きいと合成反応を達成できず、電池特性を大きく損ねてしまい好ましくない。   The raw material component particles thus agglomerated are preferably such that the D50 of the raw material component aggregated particles is 30 μm or less, preferably 20 μm or less, and D90 is 100 μm or less, preferably 60 μm or less. If D50 is larger than 30 μm, cycle characteristics and load characteristics are impaired. On the other hand, if D90 is larger than 100 μm, the synthesis reaction cannot be achieved, and the battery characteristics are greatly impaired.

また、原料成分の凝集粒子が過度に小さいと一次粒子、二次粒子の過剰な焼結を進行させてしまうので、D50が2μm以上、かつD90が10μm以上が好ましい。   Further, if the aggregated particles of the raw material component are excessively small, excessive sintering of the primary particles and the secondary particles proceeds, so that it is preferable that D50 is 2 μm or more and D90 is 10 μm or more.

本発明では、次いで、原料成分の凝集粒子は300〜1150℃、好ましくは350〜1100℃にて熱処理することにより、LiFePOが合成される。熱処理温度は300℃より低いと合成反応は達成し難く、また1150℃より高いと目的外の反応性生物を多発してしまい、修復困難となる。 In the present invention, the aggregated particles of the raw material components are then heat-treated at 300 to 1150 ° C., preferably 350 to 1100 ° C., thereby synthesizing LiFePO 4 . If the heat treatment temperature is lower than 300 ° C., it is difficult to achieve the synthesis reaction.

熱処理における処理時間は、各原料成分の微細化の度合い、混合の均一性、加熱システム、処理温度等により、好ましい処理時間は大きく変化する。本発明では数秒〜48時間の範囲で熱処理されるのが好ましい。LiFePOの合成反応は、秒のオーダーで達成することもできる。さらに処理時間を短縮することも可能であるが、これにより特性向上せず、また、48時間を超えて熱処理を続けても特性向上にはつながり難い。 The processing time in the heat treatment varies greatly depending on the degree of refinement of each raw material component, the uniformity of mixing, the heating system, the processing temperature, and the like. In the present invention, the heat treatment is preferably performed in the range of several seconds to 48 hours. The synthesis reaction of LiFePO 4 can also be achieved on the order of seconds. Further, the processing time can be shortened, but this does not improve the characteristics, and it is difficult to improve the characteristics even if the heat treatment is continued for more than 48 hours.

本発明の上記の熱処理は、本質的に3価の鉄化合物を2価に還元してオリビン型構造のLiFePOの合成反応を進行させるものであるが、処理雰囲気の酸素濃度制御もLiFePOの合成反応に影響を与える。本発明においては、原料成分中の炭素含有化合物が原料鉄化合物近傍で還元剤として機能するため、大気雰囲気下そのままでも熱処理を完了させることが可能である。特に短時間の熱処理で反応を達成できる手法を用いた場合や、熱処理雰囲気中に占める雰囲気ガスの比率が原料に対して小さい場合、大気雰囲気そのままであっても支障はない。 The above heat treatment of the present invention are those which proceed essentially trivalent synthesis reaction of LiFePO 4 of reduced to olivine structure iron compound bivalent, the treatment atmosphere oxygen concentration control also of LiFePO 4 Affects the synthesis reaction. In the present invention, since the carbon-containing compound in the raw material component functions as a reducing agent in the vicinity of the raw material iron compound, it is possible to complete the heat treatment even in an air atmosphere. In particular, when using a method capable of achieving the reaction with a short heat treatment, or when the ratio of the atmosphere gas in the heat treatment atmosphere is small relative to the raw material, there is no problem even if the atmosphere is left as it is.

熱処理を不活性雰囲気下、あるいは不活性気流中で行うこともできる。熱処理雰囲気を不活性にすることにより、設備や処理条件面での制約が少なくなり、種々の熱処理手法を採用することが可能となることから好ましい。さらに、本発明では水素や一酸化炭素といった還元性のガス雰囲気下で熱処理することも可能である。原料の過剰な還元を防止するため、窒素等の不活性ガスで還元性ガスを希釈して使用するのも有効である。   The heat treatment can also be performed in an inert atmosphere or in an inert air stream. By inactivating the heat treatment atmosphere, there are less restrictions on facilities and processing conditions, and various heat treatment methods can be employed. Further, in the present invention, it is possible to perform heat treatment in a reducing gas atmosphere such as hydrogen or carbon monoxide. In order to prevent excessive reduction of the raw material, it is effective to dilute the reducing gas with an inert gas such as nitrogen.

本発明においては、噴霧熱分解の手法を用いて原料成分のスラリーから直接LiFePOを合成することもできる。微細化処理されたスラリーを、本発明の熱処理温度に調整された炉内に噴霧しながら供給することにより、原料成分の凝集、乾燥、及び熱処理をほぼ同時に進行し、LiFePOを一つの工程で合成することができて好ましい。噴霧熱分解中の雰囲気制御は、噴霧に圧縮空気、不活性ガスあるいは還元性ガスを用いることにより調整できる。さらに燃焼炉を用い、還元炎中にスラリーを噴霧して還元反応を進行させる手法を用いることも可能である。 In the present invention, LiFePO 4 can also be synthesized directly from a slurry of raw material components using a spray pyrolysis technique. By supplying the refined slurry while spraying it into the furnace adjusted to the heat treatment temperature of the present invention, the aggregation, drying, and heat treatment of the raw material components proceed almost simultaneously, and LiFePO 4 is made in one step. It is preferable because it can be synthesized. The atmosphere control during spray pyrolysis can be adjusted by using compressed air, inert gas or reducing gas for spraying. Furthermore, it is also possible to use a technique of using a combustion furnace and spraying slurry in a reducing flame to advance the reduction reaction.

本発明で製造されるオリビン型構造のリチウム鉄複合酸化物には、粉体特性及び電気化学特性の改良目的でその他の物質を配合することができる。例えば、亜鉛、アルミニウム、硫黄、インジウム、カドミウム、ガリウム、カルシウム、クロム、コバルト、ジルコニウム、錫、ストロンチウム、セリウム、タングステン、タンタル、チタン、銅、トリウム、鉛、ニオブ、ニッケル、バナジウム、バリウム、ビスマス、フッ素、ベリリウム、ホウ素、マグネシウム、マンガン、モリブデン等が好適に用いられる。これらは単体あるいは種々の化合物の形態で、また、単独あるいは2種以上の組み合わせで用いられ、本発明のリチウム鉄複合酸化物の内部及び/又は表面に配合される。   The olivine-type lithium iron composite oxide produced in the present invention can be blended with other substances for the purpose of improving powder characteristics and electrochemical characteristics. For example, zinc, aluminum, sulfur, indium, cadmium, gallium, calcium, chromium, cobalt, zirconium, tin, strontium, cerium, tungsten, tantalum, titanium, copper, thorium, lead, niobium, nickel, vanadium, barium, bismuth, Fluorine, beryllium, boron, magnesium, manganese, molybdenum and the like are preferably used. These are used alone or in the form of various compounds, and are used alone or in combination of two or more thereof, and are blended in and / or on the surface of the lithium iron composite oxide of the present invention.

これらの補助的に添加される物質は、単体、あるいはその酸化物、水酸化物、過酸化物、塩類、アルコキシド、アシレート、キレート類等の粉体、液体、溶液、分散液の形態で用いられる。これらの物質は、上記したリチウム鉄複合酸化物の製造過程において原料成分中に添加してもよいし、また、リチウム鉄複合酸化物が合成された後に、リチウム鉄複合酸化物に添加することもできる。   These auxiliary substances can be used alone or in the form of oxides, hydroxides, peroxides, salts, alkoxides, acylates, chelates, etc., powders, liquids, solutions, and dispersions. . These substances may be added to the raw material components in the production process of the above-described lithium iron composite oxide, or may be added to the lithium iron composite oxide after the lithium iron composite oxide is synthesized. it can.

本発明の方法で製造されたオリビン型構造のリチウム鉄複合酸化物は、電池電極、二次電池用電極の正極活物質として有効に使用される。特にリチウム一次電池を含めた、リチウムイオン電池、リチウムイオンポリマー電池、リチウムポリマー電池等の非水電解液二次電池用正極活物質として極めて有効である。本発明の電極活物質を用いた非水電解液二次電池は、大きな充放電容量と高いエネルギ密度を持ち、優れたサイクル特性、高負荷特性、低温特性、高温特性、安全性を発現する。特にパワーの取れるエネルギ密度及び高負荷特性と、信頼性高い安全性を両立できた本発明のリチウム鉄複合酸化物は、中・大型二次電池や車載用二次電池の正極活物質として有効に適用できる。   The lithium iron composite oxide having an olivine structure produced by the method of the present invention is effectively used as a positive electrode active material for battery electrodes and secondary battery electrodes. In particular, it is extremely effective as a positive electrode active material for non-aqueous electrolyte secondary batteries such as lithium ion batteries, lithium ion polymer batteries, and lithium polymer batteries, including lithium primary batteries. The non-aqueous electrolyte secondary battery using the electrode active material of the present invention has a large charge / discharge capacity and high energy density, and exhibits excellent cycle characteristics, high load characteristics, low temperature characteristics, high temperature characteristics, and safety. In particular, the lithium iron composite oxide of the present invention, which has both high energy density and high load characteristics that can be powered, and reliable safety, is effective as a positive electrode active material for medium- and large-sized secondary batteries and in-vehicle secondary batteries. Applicable.

以下に実施例によって本発明を更に具体的に説明するが、本発明はこれらに制限されるものではない。なお、実施例において、容量維持率は以下の式で求めた。
容量維持率(%)=100サイクル目の放電容量/初期放電容量
× 100
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples. In the examples, the capacity retention rate was determined by the following formula.
Capacity retention rate (%) = 100th cycle discharge capacity / initial discharge capacity
× 100

例1
長軸方向の平均粒子長が1.0μmである針状結晶の凝集した、鉄含有量69.4重量%の酸化鉄を入手した。この酸化鉄の79.8g、リン酸二水素アンモニウムの115.0g、炭酸リチウムの36.9g、カーボンブラックの6.1gをステンレスバットに秤量し、純水を加えて3kgとした。これを攪拌しながら、ステーターと高速回転するローターからなるホモジナイザーに通し、D50が0.64μm、D90が0.99μmの原料成分スラリーを得た。このスラリーを高速回転するカッター中に大量の熱風と共に供給して乾燥させた結果、D50が4.37μm、D90が10.1μmの原料成分粉体が得られた。
Example 1
Iron oxide having an iron content of 69.4% by weight obtained by agglomerating needle-like crystals having an average particle length in the major axis direction of 1.0 μm was obtained. 79.8 g of this iron oxide, 115.0 g of ammonium dihydrogen phosphate, 36.9 g of lithium carbonate, and 6.1 g of carbon black were weighed in a stainless steel vat, and pure water was added to make 3 kg. While stirring this, a raw material component slurry having a D50 of 0.64 μm and a D90 of 0.99 μm was obtained through a homogenizer comprising a stator and a rotor rotating at high speed. As a result of supplying and drying this slurry together with a large amount of hot air into a cutter rotating at high speed, a raw material component powder having D50 of 4.37 μm and D90 of 10.1 μm was obtained.

この原料成分粉体を、0.8リットル/分の窒素ガス気流中600℃にて24時間熱処理し、D50が5.10μm、D90が11.1μmのLiFePO(A)138.1gを得た。図1、図2、図3は、それぞれX線回折パターン、粒径分布、SEM観察写真である。図より、微細な一次粒子の凝集した、結晶性良好なLiFePOであることがわかる。 This raw material component powder was heat-treated at 600 ° C. in a nitrogen gas stream at 0.8 liter / min for 24 hours to obtain 138.1 g of LiFePO 4 (A) having a D50 of 5.10 μm and a D90 of 11.1 μm. . 1, 2, and 3 are an X-ray diffraction pattern, a particle size distribution, and an SEM observation photograph, respectively. From the figure, it can be seen that it is LiFePO 4 with fine crystal grains and good crystallinity.

この(A)の90重量部、カーボン5重量部、及びポリフッ化ビニリデン5重量部に20重量部のN−メチルピロリドンンを加えて混練りし、ペーストとした。このペーストをアルミ箔に塗布して乾燥後、圧延して所定の大きさに打ち抜き、正極板とした。次に95重量部のカーボンと5重量部のポリフッ化ビニリデンに20重量部のN−メチルピロリドンを加えて混練りしてペーストとした。このペーストを銅箔に塗布して乾燥後、圧延して所定の大きさに打ち抜き、負極板とした。   20 parts by weight of N-methylpyrrolidone was added to 90 parts by weight of (A), 5 parts by weight of carbon, and 5 parts by weight of polyvinylidene fluoride and kneaded to obtain a paste. This paste was applied to an aluminum foil, dried, rolled and punched to a predetermined size to obtain a positive electrode plate. Next, 95 parts by weight of carbon and 5 parts by weight of polyvinylidene fluoride were mixed with 20 parts by weight of N-methylpyrrolidone to obtain a paste. This paste was applied to a copper foil, dried, rolled and punched to a predetermined size to obtain a negative electrode plate.

こうして得られた正極板、負極板にそれぞれリード線を取り付け、ポリオレフィン系セパレータを介してステンレス製セルケースに収納した。続いて、エチレンカーボネートとジエチレンカーボネートの混合液に六フッ化リン酸リチウムを1モル/リットル溶かした電解質溶液を注入し、モデルセルとした。電池特性は充放電測定装置を用い、25℃において充電電流0.6mA/cm2で電池電圧4.3Vになるまで充電した後放電電流2.0mA/cm2(1.25Cレートに相当)で2.0Vになるまで放電する充放電の繰り返しを行い、初期放電容量と100サイクル後の放電容量を求めて評価した。その結果を表1に示した。 Lead wires were attached to the positive electrode plate and the negative electrode plate obtained in this way, respectively, and stored in a stainless steel cell case via a polyolefin-based separator. Subsequently, an electrolyte solution in which 1 mol / liter of lithium hexafluorophosphate was dissolved in a mixed solution of ethylene carbonate and diethylene carbonate was injected to form a model cell. Battery characteristics were measured using a charge / discharge measuring device at a charge current of 0.6 mA / cm 2 at 25 ° C. until the battery voltage reached 4.3 V, and then a discharge current of 2.0 mA / cm 2 (corresponding to a 1.25 C rate). Charging / discharging was repeated until the voltage reached 2.0 V, and the initial discharge capacity and the discharge capacity after 100 cycles were determined and evaluated. The results are shown in Table 1.

例2
カーボンブラック6.1gの代わりに樹脂含有量17.3重量%のポリスチレン樹脂エマルション50gを用いたことを除き、例1と同様にしてホモジナイザー処理したところ、D50が0.68μmでD90が0.98μmの原料成分スラリーを得た。このスラリーを高速攪拌しながら92℃にて減圧乾燥したところ、D50が5.41μm、D90が15.5μmの原料成分粉体が得られた。この原料成分粉体を0.8リットル/分の窒素ガス気流中500℃にて24時間熱処理し、D50が5.56μm、D90が19.2μmのLiFePO(B)152.8gを得た。
(A)の代わりにこの(B)を用いたことを除き、実施例1と同様にしてモデルセルを作成して、充放電特性を調べた結果を表1に示した。
Example 2
A homogenizer treatment was carried out in the same manner as in Example 1 except that 50 g of a polystyrene resin emulsion having a resin content of 17.3% by weight was used instead of 6.1 g of carbon black. As a result, D50 was 0.68 μm and D90 was 0.98 μm. The raw material component slurry was obtained. When this slurry was dried under reduced pressure at 92 ° C. with high-speed stirring, raw material component powders having D50 of 5.41 μm and D90 of 15.5 μm were obtained. This raw material component powder was heat-treated at 500 ° C. in a nitrogen gas stream at 0.8 liter / min for 24 hours to obtain 152.8 g of LiFePO 4 (B) having a D50 of 5.56 μm and a D90 of 19.2 μm.
Table 1 shows the results of creating a model cell in the same manner as in Example 1 and examining the charge / discharge characteristics except that (B) was used instead of (A).

例3
鉄含有量69.5重量%、サブミクロンオーダー擬似球状粒子の集合した平均凝集粒子径2.1μmである酸化鉄を入手した。この酸化鉄の79.8g、リン酸二水素アンモニウムの115.0g、炭酸リチウムの36.9gをステンレスバットに秤量し、純水を加えて3kgとした。これを0.5mmのジルコニアボールを用いて1時間ビーズミル処理した後、13.3重量%のポリビニルアルコール水溶液90gを加えて攪拌・混合して、D50が0.72μm、D90が1.29μmの原料成分スラリーを得た。このスラリーを高速で流動する大量の熱風中に送り込んで乾燥させた結果、D50が5.17μm、D90が12.2μmの原料成分粉体が得られた。この原料成分粉体を0.8リットル/分の窒素ガス気流中700℃にて5時間熱処理し、D50が6.21μm、D90が20.8μmのLiFePO(C)134.6gを得た。
(A)の代わりにこの(C)を用いたことを除き、実施例1と同様にしてモデルセルを作成して、充放電特性を調べた結果を表1に示した。
Example 3
Iron oxide having an iron content of 69.5% by weight and an average aggregated particle diameter of 2.1 μm in which sub-micron-order pseudospherical particles are aggregated was obtained. 79.8 g of this iron oxide, 115.0 g of ammonium dihydrogen phosphate, and 36.9 g of lithium carbonate were weighed in a stainless steel vat, and pure water was added to make 3 kg. This was bead milled for 1 hour using 0.5 mm zirconia balls, then 90 g of a 13.3% by weight aqueous polyvinyl alcohol solution was added and stirred and mixed to obtain a raw material having a D50 of 0.72 μm and a D90 of 1.29 μm. A component slurry was obtained. As a result of sending this slurry into a large amount of hot air flowing at high speed and drying, a raw material component powder having D50 of 5.17 μm and D90 of 12.2 μm was obtained. This raw material component powder was heat-treated in a nitrogen gas stream at 0.8 liter / min for 5 hours at 700 ° C. to obtain 134.6 g of LiFePO 4 (C) having a D50 of 6.21 μm and a D90 of 20.8 μm.
Table 1 shows the results of creating a model cell in the same manner as in Example 1 and examining the charge / discharge characteristics except that (C) was used instead of (A).

例4
例1の酸化鉄79.8g、リン酸二水素アンモニウム115.0g、炭酸リチウム36.9g、カーボンブラック6.1gをステンレスバットに秤量し、純水を加えて3kgとした。これを例3と同様にしてビーズミル処理したところ、D50が0.49μm、D90が0.83μmの原料成分スラリーを得た。このスラリーを噴霧乾燥したところ、D50が4.59μm、D90が9.86μmの原料成分粉体が得られた。この原料成分粉体を0.8リットル/分の窒素ガス気流中650℃にて12時間熱処理し、D50が5.27μm、D90が10.4μmのLiFePO(D)129.8gを得た。
(A)の代わりにこの(D)を用いたことを除き、実施例1と同様にしてモデルセルを作成して、充放電特性を調べた結果を表1に示した。
Example 4
79.8 g of iron oxide of Example 1, 115.0 g of ammonium dihydrogen phosphate, 36.9 g of lithium carbonate, and 6.1 g of carbon black were weighed in a stainless steel vat, and pure water was added to make 3 kg. When this was subjected to bead mill treatment in the same manner as in Example 3, a raw material component slurry having D50 of 0.49 μm and D90 of 0.83 μm was obtained. When this slurry was spray-dried, raw material component powders having D50 of 4.59 μm and D90 of 9.86 μm were obtained. This raw material component powder was heat-treated at 650 ° C. for 12 hours in a nitrogen gas stream of 0.8 liter / min to obtain 129.8 g of LiFePO 4 (D) having a D50 of 5.27 μm and a D90 of 10.4 μm.
Table 1 shows the results of creating a model cell and examining the charge / discharge characteristics in the same manner as in Example 1 except that (D) was used instead of (A).

例5
ビーズミル処理の代わりに対向する2つのノズルからスラリーを高圧で放出して互いに衝突させる処理を施したことを除き、例4と同様にしてD50が0.64μm、D90が1.00μmの原料成分スラリーを得た。このスラリーを、875℃に設定した炉内に窒素ガスを用いて噴霧しながら熱処理し、D50が10.6μm、D90が23.2μmのLiFePO(E)115.2gを得た。
(A)の代わりにこの(E)を用いたことを除き、実施例1と同様にしてモデルセルを作成して、充放電特性を調べた結果を表1に示した。
Example 5
Raw material component slurry having a D50 of 0.64 μm and a D90 of 1.00 μm, as in Example 4, except that instead of the bead mill treatment, the slurry was discharged from two opposing nozzles at high pressure and collided with each other. Got. This slurry was heat-treated in a furnace set at 875 ° C. while spraying with nitrogen gas to obtain 115.2 g of LiFePO 4 (E) having D50 of 10.6 μm and D90 of 23.2 μm.
Table 1 shows the results of preparing a model cell in the same manner as in Example 1 and examining the charge / discharge characteristics except that (E) was used instead of (A).

例6
例5と同様の原料成分スラリーを噴霧乾燥したところ、D50が8.03μm、D90が13.5μmの原料成分粉体が得られた。この原料成分粉体をアルミナトレーに敷き詰めた後アルミナ板を被せ、マイクロ波炉を用いて大気雰囲気下600℃にて2分間熱処理し、D50が8.15μm、D90が12.7μmのLiFePO(F)130.2gを得た。
(A)の代わりにこの(F)を用いたことを除き、実施例1と同様にしてモデルセルを作成して、充放電特性を調べた結果を表1に示した。
Example 6
When the raw material component slurry similar to that in Example 5 was spray-dried, raw material component powders having D50 of 8.03 μm and D90 of 13.5 μm were obtained. This raw material component powder was spread on an alumina tray, and then covered with an alumina plate, and heat treated at 600 ° C. for 2 minutes in an air atmosphere using a microwave furnace. LiFePO 4 (D50: 8.15 μm, D90: 12.7 μm) F) 130.2 g was obtained.
Table 1 shows the results of creating a model cell in the same manner as in Example 1 and examining the charge / discharge characteristics except that (F) was used instead of (A).

例7
ビーズミル処理の代わりに高速で回転するディスクと固定されたディスクの隙間にスラリーを通す処理を施したことを除き、例4と同様にしてD50が0.68μm、D90が1.05μmの原料成分スラリーを得た。このスラリーを例1と同様にして乾燥させた結果、D50が5.44μm、D90が10.8μmの原料成分粉体が得られた。この原料成分粉体を1.5リットル/分の窒素ガスを流しながらロータリーキルンを用いて熱処理し、D50が5.58μm、D90が10.8μmのLiFePO(G)140.5gを得た。たこの時原料成分粉体に施された熱処理は1085℃にて1分であった。
(A)の代わりにこの(G)を用いたことを除き、実施例1と同様にしてモデルセルを作成して、充放電特性を調べた結果を表1に示した。
Example 7
Raw material component slurry having a D50 of 0.68 μm and a D90 of 1.05 μm, as in Example 4, except that the slurry was passed through the gap between the disk rotating at high speed and the fixed disk instead of the bead mill process. Got. As a result of drying this slurry in the same manner as in Example 1, a raw material component powder having D50 of 5.44 μm and D90 of 10.8 μm was obtained. This raw material component powder was heat-treated using a rotary kiln while flowing nitrogen gas of 1.5 liters / minute to obtain 140.5 g of LiFePO 4 (G) having a D50 of 5.58 μm and a D90 of 10.8 μm. At this time, the heat treatment applied to the raw material component powder was 10 minutes at 1085 ° C.
Table 1 shows the results of creating a model cell in the same manner as in Example 1 and examining the charge / discharge characteristics except that (G) was used instead of (A).

例8
平均粒子径0.6μmの擬似球状一次粒子が凝集して成るFe3O4と例3の酸化鉄を混合して、鉄含有量70.4重量%の酸化鉄混合物を調製した。
Example 8
Fe3O4 formed by agglomeration of pseudospherical primary particles having an average particle diameter of 0.6 μm was mixed with the iron oxide of Example 3 to prepare an iron oxide mixture having an iron content of 70.4% by weight.

例1の酸化鉄79.8gの代わりに、この酸化鉄混合物79.3gを、カーボンブラック6.1gの変わりにショ糖14.3gを用いたことを除き、例4と同様にして、D50が0.57μm、D90が1.01μmの原料成分スラリーを得、さらにD50が4.96μm、D90が11.3μmの原料成分粉体を得た。この原料成分粉体を0.8リットル/分の窒素ガス気流中450℃にて30時間熱処理し、D50が5.04μm、D90が11.0μmのLiFePO(H)130.3gを得た。
(A)の代わりにこの(H)を用いたことを除き、実施例1と同様にしてモデルセルを作成して、充放電特性を調べた結果を表1に示した。
In place of 79.8 g of the iron oxide of Example 1, 79.3 g of this iron oxide mixture was used in the same manner as in Example 4 except that 14.3 g of sucrose was used instead of 6.1 g of carbon black. A raw material component slurry having 0.57 μm and D90 of 1.01 μm was obtained, and further, raw material component powder having D50 of 4.96 μm and D90 of 11.3 μm was obtained. This raw material component powder was heat-treated at 450 ° C. for 30 hours in a nitrogen gas stream of 0.8 liter / min to obtain 130.3 g of LiFePO 4 (H) having a D50 of 5.04 μm and a D90 of 11.0 μm.
Table 1 shows the result of examining the charge / discharge characteristics by creating a model cell in the same manner as in Example 1 except that (H) was used instead of (A).

例9
長軸方向平均粒子長が0.8μmである針状結晶の凝集したFeOOHを入手した。このFeOOHと例1の酸化鉄を混合し、Fe含有量63.9重量%の酸化鉄混合物を調製した。
Example 9
Agglomerated FeOOH having an average particle length in the long axis direction of 0.8 μm was obtained. This FeOOH and the iron oxide of Example 1 were mixed to prepare an iron oxide mixture having an Fe content of 63.9% by weight.

例1の酸化鉄79.8gの代わりにこの酸化鉄混合物87.4gを用いたことを除き、例4と同様にして、D50が0.45μm、D90が0.75μmの原料成分スラリーを得、さらにD50が4.63μm、D90が9.57μmの原料成分粉体を得た。この原料成分粉体を0.8リットル/分の窒素ガス気流中550℃にて24時間熱処理し、D50が4.85μm、D90が9.88μmのLiFePO(J)127.4gを得た。
(A)の代わりにこの(J)を用いたことを除き、実施例1と同様にしてモデルセルを作成して、充放電特性を調べた結果を表1に示した。
A raw material component slurry having a D50 of 0.45 μm and a D90 of 0.75 μm was obtained in the same manner as in Example 4 except that 87.4 g of this iron oxide mixture was used instead of 79.8 g of the iron oxide of Example 1. Furthermore, raw material component powders having D50 of 4.63 μm and D90 of 9.57 μm were obtained. This raw material component powder was heat-treated in a nitrogen gas stream at 0.8 liter / min for 24 hours at 550 ° C. to obtain 127.4 g of LiFePO 4 (J) having a D50 of 4.85 μm and a D90 of 9.88 μm.
Table 1 shows the results of creating a model cell and examining the charge / discharge characteristics in the same manner as in Example 1 except that (J) was used instead of (A).

例10
平均粒径が0.03μmの超微粒子酸化鉄79.8g、リン酸二水素アンモニウム115.0g、炭酸リチウム36.9g、カーボンブラック6.1gを乳鉢混合した後、例4と同様にして熱処理し、D50が29.8μm、D90が97.4μmのLiFePO(K)154.0gを得た。
(A)の代わりにこの(K)を用いたことを除き、実施例1と同様にしてモデルセルを作成して、充放電特性を調べた結果を表1に示した。
Example 10
79.8 g of ultrafine particle iron oxide having an average particle size of 0.03 μm, 115.0 g of ammonium dihydrogen phosphate, 36.9 g of lithium carbonate, and 6.1 g of carbon black were mixed in a mortar and then heat treated in the same manner as in Example 4. , 154.0 g of LiFePO 4 (K) having a D50 of 29.8 μm and a D90 of 97.4 μm was obtained.
Table 1 shows the results of creating a model cell and examining the charge / discharge characteristics in the same manner as in Example 1 except that (K) was used instead of (A).

例11
例1の酸化鉄200gをステンレスバットに秤量し、純水を加えて3kgとした。これを例4と同様にしてビーズミル処理し、D50が0.40μm、D90が0.66μmの酸化鉄スラリーを得た。このスラリーを噴霧乾燥したところ、D50が5.43μm、D90が10.7μmの酸化鉄粉体が得られた。
Example 11
200 g of the iron oxide of Example 1 was weighed into a stainless steel vat, and pure water was added to make 3 kg. This was subjected to bead mill treatment in the same manner as in Example 4 to obtain an iron oxide slurry having D50 of 0.40 μm and D90 of 0.66 μm. When this slurry was spray-dried, an iron oxide powder having a D50 of 5.43 μm and a D90 of 10.7 μm was obtained.

この酸化鉄粉体79.8g、リン酸二水素アンモニウム115.0g、炭酸リチウム36.9g、カーボンブラック6.1gを乳鉢混合して原料成分粉体を得た。これを例4と同様にして熱処理し、D50が30.7μm、D90が107.5μmのLiFePO(L)152.8gを得た。
(A)の代わりにこの(L)を用いたことを除き、実施例1と同様にしてモデルセルを作成して、充放電特性を調べた結果を表1に示した。
79.8 g of this iron oxide powder, 115.0 g of ammonium dihydrogen phosphate, 36.9 g of lithium carbonate, and 6.1 g of carbon black were mixed in a mortar to obtain a raw material component powder. This was heat-treated in the same manner as in Example 4 to obtain 152.8 g of LiFePO 4 (L) having a D50 of 30.7 μm and a D90 of 107.5 μm.
Table 1 shows the results of creating a model cell and examining the charge / discharge characteristics in the same manner as in Example 1 except that (L) was used instead of (A).

例12
(L)の50gをエタノール媒体のボールミル粉砕し、D50が6.72μm、D90が31.1μmのLiFePO(M)48.3gを得た。
(A)の代わりにこの(M)を用いたことを除き、実施例1と同様にしてモデルセルを作成して、充放電特性を調べた結果を表1に示した。
Example 12
50 g of (L) was ball milled with an ethanol medium to obtain 48.3 g of LiFePO 4 (M) having a D50 of 6.72 μm and a D90 of 31.1 μm.
Table 1 shows the results of creating a model cell in the same manner as in Example 1 and examining the charge / discharge characteristics except that (M) was used instead of (A).

例13
例4と同様にして原料成分スラリーを得た。このスラリーをエバポレーターで減圧乾燥し、カッターミルで解砕して、D50が12.5μm、D90が40.9μmの原料成分粉体を得た。これを例4と同様に熱処理し、D50が25.9μm、D90が50.6μmのLiFePO(N)121.5gを得た。
(A)の代わりにこの(N)を用いたことを除き、実施例1と同様にしてモデルセルを作成して、充放電特性を調べた結果を表1に示した。
Example 13
In the same manner as in Example 4, a raw material component slurry was obtained. This slurry was dried under reduced pressure with an evaporator and pulverized with a cutter mill to obtain a raw material component powder having a D50 of 12.5 μm and a D90 of 40.9 μm. This was heat-treated in the same manner as in Example 4 to obtain 121.5 g of LiFePO 4 (N) having a D50 of 25.9 μm and a D90 of 50.6 μm.
Table 1 shows the results of creating a model cell in the same manner as in Example 1 and examining the charge / discharge characteristics except that (N) was used instead of (A).

例14
650℃の12時間であった熱処理を250℃の48時間に代えたことを除き、例4と同様にしてD50が4.47μm、D90が9.81μmのLiFePO(P)130.5gを得た。
(A)の代わりにこの(P)を用いたことを除き、実施例1と同様にしてモデルセルを作成して、充放電特性を調べようとしたが充放電ができなかった。
Example 14
130.5 g of LiFePO 4 (P) having a D50 of 4.47 μm and a D90 of 9.81 μm was obtained in the same manner as in Example 4 except that the heat treatment which was 12 hours at 650 ° C. was replaced with 48 hours at 250 ° C. It was.
Except for using (P) instead of (A), a model cell was prepared in the same manner as in Example 1 and the charge / discharge characteristics were examined, but charge / discharge could not be performed.

例15
650℃の12時間であった熱処理を1250℃の12時間に代えたことを除き、例4と同様にしてD50が59.2μm、D90が257μmのLiFePO(Q)123.6gを得た。
(A)の代わりにこの(Q)を用いたことを除き、実施例1と同様にしてモデルセルを作成して、充放電特性を調べた結果を表1に示した。
Example 15
Except that the heat treatment, which was 12 hours at 650 ° C., was replaced with 12 hours at 1250 ° C., LiFePO 4 (Q) 123.6 g having a D50 of 59.2 μm and a D90 of 257 μm was obtained in the same manner as in Example 4.
Table 1 shows the results of creating a model cell in the same manner as in Example 1 and examining the charge / discharge characteristics except that (Q) was used instead of (A).

Figure 2007230784
Figure 2007230784

例1で調製したLiFePO(A)のX線回折パターン図。X-ray diffraction pattern diagram of LiFePO 4 (A) prepared in Example 1. 例1で調製したLiFePO(A)及びその原料成分スラリー、原料成分粉体の粒径分布図。2 is a particle size distribution diagram of LiFePO 4 (A) prepared in Example 1, its raw material component slurry, and raw material component powder. FIG. 例1で調製したLiFePO(A)の走査電子顕微鏡(SEM)観察写真。A scanning electron microscope (SEM) observation photograph of LiFePO 4 (A) prepared in Example 1.

Claims (7)

原子価数3の鉄を含有する鉄化合物、リチウム化合物、リン酸化合物、及び、炭素含有化合物を含む原料成分を微細化処理し、該微細化粒子の50%体積累積径(D50)を2μm以下で、かつ90%体積累積径(D90)を10μm以下にせしめた後、該微細化粒子を凝集処理し、該凝集粒子の50%体積累積径(D50)を30μm以下で、かつ90%体積累積径(D90)を100μm以下にせしめて300〜1150℃で熱処理し、オリビン型構造のLiFePO4を得ることを特徴とする、リチウム鉄複合酸化物の製造方法。 A raw material component containing an iron compound, a lithium compound, a phosphate compound, and a carbon-containing compound containing iron having a valence of 3 is refined, and the 50% volume cumulative diameter (D50) of the refined particles is 2 μm or less. And the 90% volume cumulative diameter (D90) is reduced to 10 μm or less, and then the fine particles are agglomerated, and the 50% volume cumulative diameter (D50) of the aggregated particles is 30 μm or less and 90% volume cumulative. A method for producing a lithium iron composite oxide, wherein the diameter (D90) is set to 100 μm or less and heat treatment is performed at 300 to 1150 ° C. to obtain LiFePO 4 having an olivine structure. 前記炭素含有化合物が、炭素含有量が35重量%以上の常温で液体状態又は固体状態を呈する請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the carbon-containing compound exhibits a liquid state or a solid state at a normal temperature with a carbon content of 35 wt% or more. 前記原料成分の微細化処理が、前記原料成分と分散媒から形成されたスラリーに施される請求項1又は2に記載の製造方法。   The manufacturing method of Claim 1 or 2 with which the refinement | miniaturization process of the said raw material component is given to the slurry formed from the said raw material component and a dispersion medium. 前記微細粒子の凝集処理が、微細化処理後のスラリーから原料成分を分離・回収して成される請求項1〜3のいずれかに記載の製造方法。   The production method according to claim 1, wherein the aggregation process of the fine particles is performed by separating and collecting the raw material components from the slurry after the refinement process. 前記熱処理が、大気下、不活性雰囲気下、又は還元雰囲気下で成される請求項1〜4のいずれかに記載の製造方法。   The manufacturing method according to any one of claims 1 to 4, wherein the heat treatment is performed in air, in an inert atmosphere, or in a reducing atmosphere. 前記微細粒子の凝集処理と熱処理が、微細化処理後のスラリーを加熱炉中に噴霧する噴霧熱分解法で成される請求項1〜3のいずれかに記載の製造方法。   The manufacturing method according to any one of claims 1 to 3, wherein the agglomeration treatment and heat treatment of the fine particles are performed by a spray pyrolysis method in which the slurry after the refinement treatment is sprayed into a heating furnace. 請求項1〜6のいずれかに記載の製造方法で得られたリチウム鉄複合酸化物を含有する非水電解質二次電池用電極活物質。   The electrode active material for nonaqueous electrolyte secondary batteries containing the lithium iron complex oxide obtained by the manufacturing method in any one of Claims 1-6.
JP2004100021A 2004-03-30 2004-03-30 Manufacturing process of lithium-iron complex oxide Withdrawn JP2007230784A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004100021A JP2007230784A (en) 2004-03-30 2004-03-30 Manufacturing process of lithium-iron complex oxide
PCT/JP2005/006703 WO2005095273A1 (en) 2004-03-30 2005-03-30 Method for producing lithium-iron composite oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004100021A JP2007230784A (en) 2004-03-30 2004-03-30 Manufacturing process of lithium-iron complex oxide

Publications (1)

Publication Number Publication Date
JP2007230784A true JP2007230784A (en) 2007-09-13

Family

ID=35063660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004100021A Withdrawn JP2007230784A (en) 2004-03-30 2004-03-30 Manufacturing process of lithium-iron complex oxide

Country Status (2)

Country Link
JP (1) JP2007230784A (en)
WO (1) WO2005095273A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006347805A (en) * 2005-06-15 2006-12-28 Seimi Chem Co Ltd Method for producing lithium iron multiple oxide
JP2007022894A (en) * 2005-07-21 2007-02-01 Seimi Chem Co Ltd Method for producing lithium-iron multiple oxide
WO2009122686A1 (en) * 2008-03-31 2009-10-08 戸田工業株式会社 Lithium iron phosphate powder manufacturing method, olivine structured lithium iron phosphate powder, cathode sheet using said lithium iron phosphate powder, and non-aqueous solvent secondary battery
JP2009266813A (en) * 2008-03-31 2009-11-12 Toda Kogyo Corp Olivine type composite oxide particle powder for nonaqueous electrolyte secondary battery, method of manufacturing the same, and secondary battery
JP2010161038A (en) * 2009-01-09 2010-07-22 Sumitomo Osaka Cement Co Ltd Electrode active substance, electrode material, method of manufacturing the same, electrode, and battery
WO2010107039A1 (en) * 2009-03-17 2010-09-23 日本化学工業株式会社 Lithium phosphorus complex oxide-carbon composite, method for producing same, positive electrode active material for lithium secondary battery, and lithium secondary battery
KR20110008218A (en) * 2008-04-17 2011-01-26 바스프 에스이 Process for the preparation of crystalline lithium-, iron-and phosphate-comprising materials
JP2011505536A (en) * 2007-11-14 2011-02-24 チャン、チュン−チエ Method and apparatus for manufacturing an air sensitive electrode material for application in a lithium ion battery
JP2011517653A (en) * 2008-04-17 2011-06-16 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing crystalline material containing lithium, iron and phosphoric acid
JP2011530153A (en) * 2008-08-05 2011-12-15 ダウ グローバル テクノロジーズ エルエルシー Lithium metal phosphate / carbon nanocomposites as cathode active materials for rechargeable lithium batteries
US20120025149A1 (en) * 2010-07-15 2012-02-02 Phostech Lithium Inc. Battery grade cathode coating formulation
JP2012204079A (en) * 2011-03-24 2012-10-22 Nichia Chem Ind Ltd Olivine-type lithium transition metal oxide and method for producing the same
WO2012162861A1 (en) * 2011-05-27 2012-12-06 江苏乐能电池股份有限公司 Method for preparing nanometric spherical iron phosphate followed by carbon fusion process to continuously prepare nanometric spherical lithium iron phosphate
WO2013024585A1 (en) * 2011-08-18 2013-02-21 三井化学株式会社 Method for producing porous positive electrode material and lithium ion cell
JP2013518379A (en) * 2010-01-28 2013-05-20 プレイオン Lithium battery containing lithium-containing iron phosphate and carbon
JP2013163618A (en) * 2012-02-13 2013-08-22 Nippon Kagaku Kikai Seizo Kk Liquid phase high speed synthesis method for olivine type compound or carbon composite thereof
JP2014201472A (en) * 2013-04-03 2014-10-27 株式会社村田製作所 Method for manufacturing lithium iron phosphate
JP2015034127A (en) * 2009-08-07 2015-02-19 株式会社半導体エネルギー研究所 Preparation method of lithium-transition metal oxides
KR101618907B1 (en) 2008-08-26 2016-05-09 바스프 에스이 Synthesis of lifepo4 under hydrothermal conditions

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100385713C (en) * 2005-11-30 2008-04-30 重庆大学 Method for preparing ferrous lithium phosphate
JP2007250417A (en) * 2006-03-17 2007-09-27 Sumitomo Osaka Cement Co Ltd Electrode material, its manufacturing method and lithium ion battery
CN100361893C (en) * 2006-03-30 2008-01-16 上海交通大学 Method of preparing carbon cladded ferrous lithium phosphate by using ironic phosphate
CN100389062C (en) * 2006-09-07 2008-05-21 上海交通大学 Method for preparing composite material of carbon coated lithium ferrous phosphate through iron phosphate
JP5895848B2 (en) 2010-12-24 2016-03-30 昭栄化学工業株式会社 Method and apparatus for producing double oxide
CN102173402B (en) * 2011-01-17 2013-08-14 深圳科雷拉能源科技有限公司 Low-temperature continuous production process for lithium iron phosphate and dedicated device therefor
GB201810231D0 (en) * 2018-06-21 2018-08-08 Cambridge Entpr Ltd Electrode active materials and method for their manufacture

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100672879B1 (en) * 1999-04-06 2007-01-23 소니 가부시끼 가이샤 Active Material of Positive Plate, Nonaqueous Electrolyte Secondary Cell, Method for Producing Active Material of Positive Material
JP4491947B2 (en) * 2000-10-04 2010-06-30 ソニー株式会社 Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP4187524B2 (en) * 2002-01-31 2008-11-26 日本化学工業株式会社 Lithium iron phosphorus composite oxide carbon composite, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
JP4058680B2 (en) * 2002-08-13 2008-03-12 ソニー株式会社 Method for producing positive electrode active material and method for producing non-aqueous electrolyte secondary battery

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006347805A (en) * 2005-06-15 2006-12-28 Seimi Chem Co Ltd Method for producing lithium iron multiple oxide
JP2007022894A (en) * 2005-07-21 2007-02-01 Seimi Chem Co Ltd Method for producing lithium-iron multiple oxide
JP2011505536A (en) * 2007-11-14 2011-02-24 チャン、チュン−チエ Method and apparatus for manufacturing an air sensitive electrode material for application in a lithium ion battery
JP2009266813A (en) * 2008-03-31 2009-11-12 Toda Kogyo Corp Olivine type composite oxide particle powder for nonaqueous electrolyte secondary battery, method of manufacturing the same, and secondary battery
JP2009263222A (en) * 2008-03-31 2009-11-12 Toda Kogyo Corp Method for producing lithium iron phosphate powder, olivine-structured lithium iron phosphate powder, cathode sheet using the lithium iron phosphate powder and non-aqueous solvent secondary battery
WO2009122686A1 (en) * 2008-03-31 2009-10-08 戸田工業株式会社 Lithium iron phosphate powder manufacturing method, olivine structured lithium iron phosphate powder, cathode sheet using said lithium iron phosphate powder, and non-aqueous solvent secondary battery
KR20110008218A (en) * 2008-04-17 2011-01-26 바스프 에스이 Process for the preparation of crystalline lithium-, iron-and phosphate-comprising materials
US9147877B2 (en) 2008-04-17 2015-09-29 Basf Se Process for the preparation of crystalline lithium-, iron- and phosphate-comprising materials
JP2011517653A (en) * 2008-04-17 2011-06-16 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing crystalline material containing lithium, iron and phosphoric acid
JP2011519806A (en) * 2008-04-17 2011-07-14 ビーエーエスエフ ソシエタス・ヨーロピア Method for producing crystalline material containing lithium, iron and phosphoric acid
KR101592049B1 (en) * 2008-04-17 2016-02-11 바스프 에스이 Process for the preparation of crystalline lithium-, iron-and phosphate-comprising materials
JP2011530153A (en) * 2008-08-05 2011-12-15 ダウ グローバル テクノロジーズ エルエルシー Lithium metal phosphate / carbon nanocomposites as cathode active materials for rechargeable lithium batteries
KR101618907B1 (en) 2008-08-26 2016-05-09 바스프 에스이 Synthesis of lifepo4 under hydrothermal conditions
JP2010161038A (en) * 2009-01-09 2010-07-22 Sumitomo Osaka Cement Co Ltd Electrode active substance, electrode material, method of manufacturing the same, electrode, and battery
WO2010107039A1 (en) * 2009-03-17 2010-09-23 日本化学工業株式会社 Lithium phosphorus complex oxide-carbon composite, method for producing same, positive electrode active material for lithium secondary battery, and lithium secondary battery
JP2010218884A (en) * 2009-03-17 2010-09-30 Nippon Chem Ind Co Ltd Lithium phosphorous complex oxide-carbon composite and method of manufacturing the same, positive electrode active material for lithium secondary battery, and lithium secondary battery
JP2015034127A (en) * 2009-08-07 2015-02-19 株式会社半導体エネルギー研究所 Preparation method of lithium-transition metal oxides
US9809456B2 (en) 2009-08-07 2017-11-07 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for positive electrode active material
JP2013518379A (en) * 2010-01-28 2013-05-20 プレイオン Lithium battery containing lithium-containing iron phosphate and carbon
US8486296B2 (en) * 2010-07-15 2013-07-16 Clariant (Canada) Inc. Battery grade cathode coating formulation
US20120025149A1 (en) * 2010-07-15 2012-02-02 Phostech Lithium Inc. Battery grade cathode coating formulation
JP2012204079A (en) * 2011-03-24 2012-10-22 Nichia Chem Ind Ltd Olivine-type lithium transition metal oxide and method for producing the same
WO2012162861A1 (en) * 2011-05-27 2012-12-06 江苏乐能电池股份有限公司 Method for preparing nanometric spherical iron phosphate followed by carbon fusion process to continuously prepare nanometric spherical lithium iron phosphate
WO2013024585A1 (en) * 2011-08-18 2013-02-21 三井化学株式会社 Method for producing porous positive electrode material and lithium ion cell
JPWO2013024585A1 (en) * 2011-08-18 2015-03-05 三井化学株式会社 Method for producing porous positive electrode material and lithium ion battery
JP2013163618A (en) * 2012-02-13 2013-08-22 Nippon Kagaku Kikai Seizo Kk Liquid phase high speed synthesis method for olivine type compound or carbon composite thereof
JP2014201472A (en) * 2013-04-03 2014-10-27 株式会社村田製作所 Method for manufacturing lithium iron phosphate

Also Published As

Publication number Publication date
WO2005095273A1 (en) 2005-10-13

Similar Documents

Publication Publication Date Title
CN109874306B (en) Cathode material, preparation method thereof, cathode and lithium ion battery
JP2007230784A (en) Manufacturing process of lithium-iron complex oxide
JP5266861B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP4829557B2 (en) Method for producing lithium iron composite oxide
JP5165515B2 (en) Lithium ion secondary battery
JP5612392B2 (en) Method for producing lithium vanadium phosphate carbon composite
US20120021292A1 (en) Anode active material for lithium secondary battery and method for preparing the same
JP6251843B2 (en) Method for producing lithium metal composite oxide having layer structure
TW201417380A (en) Electrode material for lithium ion secondary batteries, method for producing electrode material for lithium ion secondary batteries, and lithium ion secondary battery
WO2017146248A1 (en) Lithium metal composite oxide having layered structure
JP4804045B2 (en) Method for producing lithium iron composite oxide
JP5604217B2 (en) Method for producing lithium vanadium phosphate carbon composite
JP6231966B2 (en) Electrode material and manufacturing method thereof, electrode, and lithium ion battery
JP5604216B2 (en) Method for producing lithium vanadium phosphate carbon composite
JP6729369B2 (en) Lithium manganese phosphate nanoparticles and method for producing the same, carbon-coated lithium manganese phosphate nanoparticles, carbon-coated lithium manganese phosphate nanoparticles, and lithium ion battery
JP2014118335A (en) Lithium multiple oxide and method for manufacturing the same, anode active material for a secondary battery including the lithium multiple oxide, anode for a secondary battery including the same, and lithium ion secondary battery using the same as an anode
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
Du et al. Synthesis of spinel LiMn2O4 with manganese carbonate prepared by micro-emulsion method
JP2005276597A (en) Lithium transition metal composite oxide powder for positive active material of lithium secondary battery, positive electrode of lithium secondary battery, and lithium secondary battery
JP5585847B2 (en) Method for producing electrode active material
JP2004192846A (en) Negative electrode active material for lithium secondary battery and its manufacturing method
CN116565180A (en) High tap density lithium iron phosphate positive electrode material, and preparation method and application thereof
JP2020140827A (en) Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6394391B2 (en) Method for producing polyanionic positive electrode active material composite particles
JP2014044897A (en) Lithium composite oxide and method for producing the same, positive electrode active material for secondary battery including the lithium composite oxide, positive electrode for secondary battery including the same, and lithium ion secondary battery using the same as positive electrode

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904