JP2007227009A - Porous carbon electrode substrate and fuel cell using it - Google Patents
Porous carbon electrode substrate and fuel cell using it Download PDFInfo
- Publication number
- JP2007227009A JP2007227009A JP2006043953A JP2006043953A JP2007227009A JP 2007227009 A JP2007227009 A JP 2007227009A JP 2006043953 A JP2006043953 A JP 2006043953A JP 2006043953 A JP2006043953 A JP 2006043953A JP 2007227009 A JP2007227009 A JP 2007227009A
- Authority
- JP
- Japan
- Prior art keywords
- porous
- porous carbon
- carbon electrode
- electrode substrate
- polymer electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Abstract
Description
本発明は、固体高分子型燃料電池に用いられる多孔質炭素電極基材とそれを用いた燃料電池等に関するものである。 The present invention relates to a porous carbon electrode substrate used for a polymer electrolyte fuel cell, a fuel cell using the same, and the like.
固体高分子型燃料電池はプロトン伝導性の高分子電解質膜を用いることを特徴としており、水素等の燃料ガスと酸素等の酸化ガスを電気化学的に反応させることにより起電力を得る装置である。固体高分子型燃料電池は、自家発電装置や、自動車等の移動体用の発電装置として利用可能である。 A polymer electrolyte fuel cell is characterized by using a proton-conducting polymer electrolyte membrane, and is an apparatus for obtaining an electromotive force by electrochemically reacting a fuel gas such as hydrogen and an oxidizing gas such as oxygen. . The polymer electrolyte fuel cell can be used as a self-power generation device or a power generation device for a moving body such as an automobile.
このような固体高分子型燃料電池は、水素イオン(プロトン)を選択的に伝導する高分子電解質膜を有する。また、貴金属系触媒を担持したカーボン粉末を主成分とする触媒層と多孔質炭素電極基材とを有するガス拡散電極が、触媒層側を内側にして、高分子電解質膜の両面に接合された構造となっている。 Such a polymer electrolyte fuel cell has a polymer electrolyte membrane that selectively conducts hydrogen ions (protons). In addition, a gas diffusion electrode having a catalyst layer mainly composed of carbon powder supporting a noble metal catalyst and a porous carbon electrode substrate was bonded to both surfaces of the polymer electrolyte membrane with the catalyst layer side inside. It has a structure.
このような高分子電解質膜と2枚のガス拡散電極からなる接合体は膜電極接合体(MEA:Membrane Electrode Assembly)と呼ばれている。またMEAの両外側には燃料ガスまたは酸化ガスを供給し、かつ生成ガスおよび過剰ガスを排出することを目的としたガス流路を形成したセパレーターが設置されている。 Such a joined body composed of a polymer electrolyte membrane and two gas diffusion electrodes is called a membrane electrode assembly (MEA). In addition, separators are provided on both outer sides of the MEA so as to supply a fuel gas or an oxidizing gas and to form a gas flow path for the purpose of discharging generated gas and excess gas.
多孔質炭素電極基材は主に次の3つの機能を持つ。第1に多孔質炭素電極基材の外側に配置されたセパレーターに形成されたガス流路より触媒層中の貴金属系触媒に均一に燃料ガスまたは酸化ガスを供給する機能である。第2に触媒層で反応により生成した水を排出する機能である。第3に触媒層での反応に必要な電子または生成される電子をセパレーターへ導電する機能である。 The porous carbon electrode substrate mainly has the following three functions. The first function is to supply the fuel gas or the oxidizing gas uniformly to the noble metal catalyst in the catalyst layer from the gas flow path formed in the separator disposed outside the porous carbon electrode substrate. The second function is to discharge water generated by the reaction in the catalyst layer. The third function is to conduct electrons necessary for the reaction in the catalyst layer or generated electrons to the separator.
したがって、多孔質炭素電極基材には高い反応ガスおよび酸化ガス透過能と水の排出性、電子導電性が必要である。加えて、一般的な固体高分子型燃料電池で用いられる高分子電解質膜は、含水状態でプロトン伝導性を示すことより、多孔質炭素電極基材には生成水の排水のみでなく、高分子電解質膜の保水という相反する機能が求められている。多孔質炭素電極基材のガス透気度を高くし生成水の排水能を高くしたものでは高分子電解質膜が乾燥することによりプロトン伝導抵抗が増大し、発電性能が低下する。逆に多孔質炭素電極基材のガス透気度を低くし高分子電解質膜の保水能を高めたものでは、生成水の排水不良によって反応ガスおよび酸化ガスの拡散が阻害されるフラッディングにより発電性能が低下する。 Therefore, the porous carbon electrode base material needs to have high reactive gas and oxidizing gas permeability, water dischargeability, and electronic conductivity. In addition, polymer electrolyte membranes used in general polymer electrolyte fuel cells exhibit proton conductivity in a water-containing state, so that the porous carbon electrode substrate is not only a drainage of produced water, but also a polymer. The contradictory function of water retention of the electrolyte membrane is required. In the case where the gas permeability of the porous carbon electrode base material is increased and the drainage capacity of the generated water is increased, the proton conduction resistance is increased by the drying of the polymer electrolyte membrane, and the power generation performance is decreased. On the other hand, in the case where the gas permeability of the porous carbon electrode substrate is lowered and the water retention capacity of the polymer electrolyte membrane is increased, power generation performance is achieved by flooding in which the diffusion of reaction gas and oxidizing gas is hindered due to poor drainage of generated water Decreases.
フラッディングおよびそれに起因するガス拡散性の低下を抑制しようとする技術として、例えば特許文献1(特開2003−109604号公報)には、触媒を担持した炭素粉末および高分子電解質からなる触媒層と、炭素材料からなり前記触媒層を支持する多孔質基材と、前記多孔質基材に付与された撥水剤とからなるガス拡散電極であって、前記多孔質基材内における前記撥水剤の量が、前記触媒層と接する側から他方の側に向かって連続的に変化していることを特徴とする燃料電池用ガス拡散電極が開示される。
固体高分子型燃料電池に用いられる多孔質炭素電極基材には生成水の排水と高分子電解質膜の保水という固体高分子型燃料電池内部での水分管理機能が必要となる。この水分管理機能の発現のためにフッ素樹脂などの撥水剤や、シリカ等の酸化物を多孔質炭素電極基材に分散させる手法が用いられてきたが、これらのフッ素樹脂などの撥水剤やシリカ等の酸化物は絶縁体であることが多いため、多孔質炭素電極基材中にフッ素樹脂やシリカ等の酸化物を分散させることにより導電率が低下するという問題があり、それらの分散量に制限が生じている。 The porous carbon electrode base material used in the polymer electrolyte fuel cell requires a moisture management function inside the polymer electrolyte fuel cell such as drainage of generated water and water retention of the polymer electrolyte membrane. In order to develop this moisture management function, water repellents such as fluororesins and methods of dispersing oxides such as silica in porous carbon electrode base materials have been used. Water repellents such as these fluororesins Since oxides such as silica and silica are often insulators, there is a problem in that the conductivity decreases when oxides such as fluororesin and silica are dispersed in the porous carbon electrode substrate. There is a limit on the amount.
また、この水分管理機能の発現のためには、高分子電解質膜と接する側においては生成水が液体状態で存在することになるが、多孔質炭素電極基材中では燃料ガスまたは酸化ガスの拡散経路を確保しなければならないため、液体状態ではなく気体状態である水蒸気として余剰な生成水を多孔質炭素電極基材を通じて外部に移動させる必要がある。したがって、多孔質炭素電極基材の触媒層と接する面側とセパレーターと接する面側とでは異なる水分管理機能の発現が必要となる。 In addition, for the manifestation of this moisture management function, the generated water exists in a liquid state on the side in contact with the polymer electrolyte membrane, but in the porous carbon electrode base material, diffusion of fuel gas or oxidizing gas Since a path must be secured, it is necessary to move the surplus generated water as water vapor that is in a gaseous state rather than a liquid state through the porous carbon electrode substrate. Therefore, it is necessary to develop different moisture management functions on the side of the porous carbon electrode substrate that contacts the catalyst layer and the side of the porous carbon electrode substrate that contacts the separator.
加えて、水分管理機能を発現するために、撥水剤等の付着量を多孔質炭素電極基材中で、厚み方向に連続的に変化させたものでは、それらの付着量を精度よく制御することが困難であり、固体高分子型燃料電池の性能を電極面積内で均一にすることができない。 In addition, in order to express the moisture management function, the amount of adhesion of water repellent and the like is continuously controlled in the thickness direction in the porous carbon electrode substrate, and the amount of adhesion is accurately controlled. It is difficult to make the performance of the polymer electrolyte fuel cell uniform within the electrode area.
本発明はこれら上記従来の技術の課題を解決するもので、多孔質炭素電極基材の燃料電池内部での水分管理機能の発現を容易にし、かつその水分管理機能の平面内での均一性を高くすることができる多孔質炭素電極基材およびそれを用いた燃料電池を提供することを目的とするものである。 The present invention solves the above-mentioned problems of the prior art, facilitates the expression of the moisture management function inside the fuel cell of the porous carbon electrode substrate, and improves the uniformity of the moisture management function in the plane. It is an object of the present invention to provide a porous carbon electrode substrate that can be made high and a fuel cell using the same.
上記課題は、本発明の主要な構成要素のひとつである2枚の同じ多孔質炭素電極基材を積層し、積層された多孔質炭素電極基材に付与された撥水剤の量が異なる、多孔質炭素電極基材によって解決される。 The above-mentioned problem is that two identical porous carbon electrode substrates that are one of the main components of the present invention are laminated, and the amount of water repellent applied to the laminated porous carbon electrode substrates is different. Solved by a porous carbon electrode substrate.
すなわち本発明は、同じ炭素材からなる導電性多孔質基材のうち1枚以上に撥水剤を付与しており、かつ撥水剤の量が異なる前記炭素材からなる導電性多孔質基材の少なくとも2枚を撥水剤量順に積層したことを特徴とする多孔質炭素電極基材に関する。 That is, the present invention provides a conductive porous substrate made of the above carbon material in which a water repellent is applied to one or more of the conductive porous substrates made of the same carbon material and the amount of the water repellent is different. It is related with the porous carbon electrode base material characterized by laminating | stacking at least 2 of these in order of the amount of water-repellent agents.
本発明によれば、同じ炭素材からなる導電性多孔質基材のうち1枚以上に撥水剤を付与しており、かつ撥水剤の量が異なる前記炭素材からなる導電性多孔質基材の少なくとも2枚を撥水剤量順に積層することにより、多孔質炭素電極基材として撥水剤量が段階的に変化しており、各積層する導電性多孔質基材の撥水剤量を容易に制御でき、又、任意の積層が可能であることから、これらを組み合わせることにより、水分管理機能の平面内での均一性を高くすることが可能となる。 According to the present invention, one or more conductive porous substrates made of the same carbon material are provided with a water repellent, and the conductive porous groups made of the carbon material differ in the amount of the water repellent. By laminating at least two of the materials in the order of the amount of water repellent, the amount of water repellent varies stepwise as a porous carbon electrode substrate, and the amount of water repellent of each conductive porous substrate to be laminated Therefore, it is possible to increase the uniformity of the moisture management function in the plane by combining them.
以下、本発明の実施形態について、図面を参照しながら、さらに詳細に説明する。図1は本発明で提案する多孔質炭素電極基材を用いた燃料電池の概略的構成図である。 Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings. FIG. 1 is a schematic configuration diagram of a fuel cell using a porous carbon electrode substrate proposed in the present invention.
図1に示されるように、本実施形態にかかる固体高分子型燃料電池は、プロトン伝導性を有する高分子電解質膜1の片面に酸化ガス用触媒からなるカソード側触媒層2を、もう片面には燃料ガス用触媒からなるアノード側触媒層3を備えており、それぞれの触媒層の外側には炭素短繊維からなるカソード側多孔質炭素電極基材4,アノード側多孔質炭素電極基材5が備えられている。さらに、これらの高分子電解質膜1、触媒層2,3、多孔質炭素電極基材4,5からなる膜−電極接合体6を挟持するように、カソード側ガス流路13が形成されたカソード側セパレーター7、アノード側ガス流路14が形成されたアノード側セパレーター8を備えている。
As shown in FIG. 1, the polymer electrolyte fuel cell according to this embodiment includes a cathode-
また、それぞれのセパレーターには酸化ガス導入部9と排出部10、燃料ガス導入部11と排出部12が備えられている。燃料ガスは導入部11から導入され、アノード側セパレーター8に形成されたガス流路14から多孔質炭素電極基材5を介して触媒層3に供給され、プロトンと電子に解離される。電子は触媒層3から多孔質炭素電極基材5を介してセパレーター8に伝導され、外部の負荷に供給される。またプロトンは高分子電解質膜1中を伝導し、カソードへ移動する。一方、酸化ガスは導入部9から導入され、カソード側セパレーター7に形成されたガス流路13から多孔質炭素電極基材4を介して触媒層2に供給され、高分子電解質膜1中を伝導してきたプロトンと結合して水を生成する。このようにして所望の起電力が取り出せる。
Each separator is provided with an oxidizing gas introduction part 9 and a
図2は本発明で提案する多孔質炭素電極基材の一例を示す略断面図である。本発明にかかる多孔質炭素電極基材は、同じ炭素材からなる導電性多孔質基材のうち1枚以上に撥水剤を付与しており、かつ撥水剤の量が異なる前記炭素材からなる導電性多孔質基材を少なくとも2枚以上重ねることにより、触媒層と接触する側とセパレーターと接触する側とでは異なる水分管理機能を示す。図2(a)に示すように、撥水剤量の異なる2枚の導電性多孔質基材を積層したもの、図2(b)に示すように、撥水剤量の異なる3枚の導電性多孔質基材を積層したもの、図2(c)に示すように、撥水剤量の同じ2枚の導電性多孔質基材とこれらと異なる撥水剤量の導電性多孔質基材(図2(c)では撥水剤量の少ない導電性多孔質基材を2枚と撥水剤量の多い導電性多孔質基材を1枚としているが、逆にしてもよい)とを積層したものなどが挙げられる。撥水剤量の異なる導電性多孔質基材を3枚以上使用する場合、一方の面から他方の面に向けて順に撥水剤量が増加するか減少するように組み合わせる。 FIG. 2 is a schematic cross-sectional view showing an example of a porous carbon electrode substrate proposed in the present invention. The porous carbon electrode substrate according to the present invention includes a water repellent agent applied to one or more conductive porous substrates made of the same carbon material, and the amount of the water repellent agent is different from the carbon material. By stacking at least two conductive porous substrates, different moisture management functions are exhibited on the side in contact with the catalyst layer and the side in contact with the separator. As shown in FIG. 2 (a), two conductive porous substrates with different amounts of water repellent are laminated, as shown in FIG. 2 (b), three sheets of conductive with different amounts of water repellent. As shown in FIG. 2 (c), two conductive porous substrates having the same amount of water repellent and conductive porous substrates having a different amount of water repellent as shown in FIG. (In FIG. 2 (c), two conductive porous substrates with a small amount of water repellent agent and one conductive porous substrate with a large amount of water repellent agent are used, but this may be reversed.) The thing laminated | stacked etc. are mentioned. When three or more conductive porous substrates having different amounts of water repellent are used, they are combined so that the amount of water repellent increases or decreases sequentially from one surface to the other.
本発明にかかる炭素材からなる導電性多孔質基材としては、固体高分子型燃料電池では、内部が酸性雰囲気となっているため、耐酸性を有する炭素多孔質材料がより好ましい。炭素多孔質材料としては、炭素多孔質フィルムや、複数の炭素繊維が集合してなる織物や、複数本の炭素短繊維が集合してなる抄紙体が好ましく、表面平滑性が高く、電気的接触が良好で、かつ高分子電解質膜への突き刺さりによる短絡が低減される複数本の炭素短繊維が集合してなる抄紙体がより好ましい。 As the conductive porous base material made of the carbon material according to the present invention, in the polymer electrolyte fuel cell, the inside is an acidic atmosphere, and therefore a carbon porous material having acid resistance is more preferable. The carbon porous material is preferably a carbon porous film, a woven fabric formed by aggregating a plurality of carbon fibers, or a paper body formed by aggregating a plurality of carbon short fibers, and has a high surface smoothness and electrical contact. A papermaking body formed by aggregating a plurality of short carbon fibers that is good in that the short circuit due to the piercing of the polymer electrolyte membrane is reduced is more preferable.
抄紙体を構成する炭素短繊維としては、どのようなものでも用いることができるが、ポリアクリロニトリル(以後PANと略す。)系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維、フェノール系炭素繊維から選ばれる1つ以上の炭素繊維を含むことが好ましく、PAN系炭素繊維を含むことがより好ましい。 Any carbon short fiber constituting the paper body can be used, but from polyacrylonitrile (hereinafter abbreviated as PAN) carbon fiber, pitch carbon fiber, rayon carbon fiber, phenolic carbon fiber. It is preferable to include one or more selected carbon fibers, and it is more preferable to include PAN-based carbon fibers.
炭素短繊維の平均径は、表面平滑性、導電性の付与のためには3〜30μm程度が好ましく、4〜20μmがより好ましく、4〜8μmがさらに好ましい。また、異なる平均径の炭素短繊維を2種類以上用いることも、表面平滑性、導電性の両立のために好ましい The average diameter of the short carbon fibers is preferably about 3 to 30 μm, more preferably 4 to 20 μm, and even more preferably 4 to 8 μm for imparting surface smoothness and conductivity. It is also preferable to use two or more types of short carbon fibers having different average diameters in order to achieve both surface smoothness and conductivity.
炭素短繊維の長さは、抄紙時の分散性、および機械的強度を高めるために、3mm以上12mm以下が好ましく、4mm以上9mm以下がさらに好ましい。炭素短繊維を互いに結着させるための炭素材としては、樹脂を加熱によって炭素化して得られる炭素材を用いることができる。このために用いる樹脂としては、炭素化した段階で多孔質炭素電極基材の炭素繊維を結着することのできる公知の樹脂から適宜選んで用いることができる。炭素化後に導電性物質として残存しやすいという観点から、フェノール樹脂、エポキシ樹脂、フラン樹脂、ピッチ等が好ましく、加熱による炭素化の際の炭化率の高いフェノール樹脂が特に好ましい。 The length of the short carbon fibers is preferably 3 mm or more and 12 mm or less, and more preferably 4 mm or more and 9 mm or less in order to improve the dispersibility during papermaking and the mechanical strength. As a carbon material for binding the short carbon fibers to each other, a carbon material obtained by carbonizing a resin by heating can be used. The resin used for this purpose can be appropriately selected from known resins that can bind the carbon fibers of the porous carbon electrode substrate at the stage of carbonization. From the viewpoint of easily remaining as a conductive substance after carbonization, a phenol resin, an epoxy resin, a furan resin, pitch, and the like are preferable, and a phenol resin having a high carbonization rate upon carbonization by heating is particularly preferable.
次に本発明で提案する膜−電極接合体について図1を参照しながら説明する。
高分子電解質膜1としては、プロトン解離性の基、例えば−OH基、−OSO3H基、―COOH基、−SO3H基等が導入された高分子を用いることが好ましく、パーフルオロスルホン酸系の膜を用いることが、化学的安定性、プロトン伝導性の点よりさらに好ましい。
Next, the membrane-electrode assembly proposed in the present invention will be described with reference to FIG.
As the
触媒としては、白金、白金合金、パラジウム、マグネシウム、バナジウム等があるが、白金、白金合金を用いることが好ましい。 Examples of the catalyst include platinum, a platinum alloy, palladium, magnesium, vanadium, etc., but it is preferable to use platinum or a platinum alloy.
固体高分子型燃料電池はカソード側において電極反応生成物としての水や高分子電解質膜を浸透した水が発生する。またアノード側では高分子電解質膜の乾燥を抑制するために加湿された燃料が供給される。このような点より本発明にかかる多孔質炭素電極基材は、ガス透過性を確保するために、撥水剤として撥水性の高分子を少なくとも1層の導電性多孔質基材に含むものである。撥水性の高分子としては、化学的に安定でかつ高い撥水性を有するポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)などのフッ素樹脂を用いることが好ましい。 In the polymer electrolyte fuel cell, water as an electrode reaction product and water penetrating the polymer electrolyte membrane are generated on the cathode side. On the anode side, humidified fuel is supplied to suppress drying of the polymer electrolyte membrane. From such points, the porous carbon electrode substrate according to the present invention includes a water-repellent polymer as a water-repellent agent in at least one conductive porous substrate in order to ensure gas permeability. Water-repellent polymers include chemically stable and highly water-repellent polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-perfluoroalkyl vinyl ether. It is preferable to use a fluororesin such as a polymer (PFA).
撥水性の高分子の多孔質炭素電極基材への導入法としては、撥水性の高分子の微粒子が分散した分散水溶液中に多孔質基材を浸漬させるディップ法、分散水溶液を噴霧するスプレー法などを用いることができるが、面内方向、厚み方向への導入量の均一性の高いディップ法が好ましい。 As a method for introducing a water-repellent polymer into the porous carbon electrode substrate, a dip method in which the porous substrate is immersed in a dispersion solution in which fine particles of the water-repellent polymer are dispersed, or a spray method in which the dispersion solution is sprayed However, a dipping method with a high uniformity of the introduction amount in the in-plane direction and the thickness direction is preferable.
また、多孔質炭素電極基材の触媒層と接する面側とセパレーターと接する面側とで異なる水分管理機能を多孔質炭素電極基材の面内において均一に発現させるためには、撥水性の高分子の導入量が異なる物性量が等しい多孔質炭素電極基材を2枚以上重ねることが好ましい。 In addition, in order to evenly express different moisture management functions in the surface of the porous carbon electrode substrate on the surface side in contact with the catalyst layer of the porous carbon electrode substrate and on the surface side in contact with the separator, It is preferable to stack two or more porous carbon electrode substrates having the same physical properties but different amounts of molecules.
撥水性の高分子の導入量は以下のように定義される。
撥水性の高分子の導入量=導入された撥水性の高分子の単位面積当たりの質量/多孔質基材の単位面積当たりの質量
The amount of water-repellent polymer introduced is defined as follows.
Introduction amount of water-repellent polymer = mass per unit area of introduced water-repellent polymer / mass per unit area of porous substrate
上記撥水性高分子の導入量は多孔質炭素電極基材の水分管理機能の発現のためには0〜50質量%が好ましく、ガス透過性、電気抵抗の観点より0〜40質量%がさらに好ましい。 The amount of the water-repellent polymer introduced is preferably 0 to 50% by mass for manifesting the moisture management function of the porous carbon electrode substrate, and more preferably 0 to 40% by mass from the viewpoint of gas permeability and electrical resistance. .
また、重ね合わせた2枚以上の導電性多孔質基材の撥水性の高分子の導入量の差は5質量%以上であることが好ましい。5質量%未満となると水分管理機能の差が明確にならず、実質的に厚み方向に均一な水分管理機能が発現する。従って、少なくとも1枚の導電性多孔質多孔質基材には5質量%以上の撥水性高分子を含むこととなる。 Moreover, it is preferable that the difference in the introduction amount of the water-repellent polymer between two or more superposed conductive porous substrates is 5% by mass or more. When the amount is less than 5% by mass, the difference in moisture management function is not clear, and a substantially uniform moisture management function appears in the thickness direction. Therefore, at least one conductive porous porous substrate contains 5% by mass or more of the water-repellent polymer.
本発明の多孔質炭素電極基材は、触媒を担持した炭素粉末を主体とする触媒層および高分子電解質膜側へ向かって、撥水性の高分子の導入量が減少するように、撥水剤量の異なる導電性多孔質基材を2枚以上重ねて配置することが好ましい。また、触媒を担持した炭素粉末を主体とする触媒層および高分子電解質膜側へ向かって、撥水性の高分子の導入量が増加するように、撥水剤量の異なる導電性多孔質基材を2枚以上重ねて配置することも好ましい。これにより、高分子電解質膜の保水性が向上するとともに生成水によるフラッディングが抑制される。 The porous carbon electrode substrate of the present invention has a water repellent so that the amount of water-repellent polymer introduced decreases toward the catalyst layer and polymer electrolyte membrane side mainly composed of carbon powder carrying a catalyst. It is preferable to arrange two or more conductive porous substrates having different amounts. Also, conductive porous substrates with different amounts of water repellent so that the amount of water repellent polymer introduced increases toward the catalyst layer and the polymer electrolyte membrane side mainly composed of carbon powder carrying the catalyst. It is also preferable to arrange two or more of them. Thereby, the water retention of the polymer electrolyte membrane is improved and flooding due to the generated water is suppressed.
異なる導電性多孔質基材を積層して多孔質炭素電極基材を製造する際、各導電性多孔質基材の厚みは所望の水分管理機能が得られるのであればどのように組み合わせてもよいが、同じ厚みとするか、撥水剤量の導入量の少ない方の基材を厚くするのが好ましい。 When a porous carbon electrode substrate is manufactured by laminating different conductive porous substrates, the thickness of each conductive porous substrate may be combined in any way as long as a desired moisture management function can be obtained. However, it is preferable to use the same thickness or to thicken the base material having a smaller amount of the water repellent introduced.
〔実施例1〕
長さ3mmにカットした平均直径4μmのPAN系炭素短繊維を30質量%と、長さ3mmにカットした平均直径7μmのPAN系炭素短繊維を70質量%とからなる炭素短繊維を水中で分散させ、連続的に金網上に抄造し、バインダーとしてポリビニルアルコール(PVA)(商品名:VBP105−1、クラレ株式会社製)を28質量%付着させた後、乾燥させて炭素繊維紙を得た。
[Example 1]
30% by mass of PAN-based carbon short fibers cut to 3 mm length and 4 μm in average diameter and 70% by mass of PAN-based carbon short fibers cut to 3 mm in length and average diameter of 7 μm are dispersed in water The paper was continuously made on a wire mesh, and 28% by mass of polyvinyl alcohol (PVA) (trade name: VBP105-1, manufactured by Kuraray Co., Ltd.) was adhered as a binder, followed by drying to obtain carbon fiber paper.
この炭素繊維紙に、フェノール樹脂(商品名:フェノライトJ−325、大日本インキ化学株式会社製)のメタノール溶液を含浸させ、室温でメタノールを十分に乾燥させ、フェノール樹脂の不揮発分を、30質量%付着させたフェノール樹脂含浸炭素繊維紙を得た。 This carbon fiber paper is impregnated with a methanol solution of a phenol resin (trade name: Phenolite J-325, manufactured by Dainippon Ink Chemical Co., Ltd.), and the methanol is sufficiently dried at room temperature. A phenol resin-impregnated carbon fiber paper adhered by mass% was obtained.
このフェノール樹脂含浸炭素繊維紙を2枚重ねて250℃の温度で、1.0MPaの圧力を加えてロールプレスを行い、フェノール樹脂を硬化させ、不活性ガス(窒素)雰囲気中で、1900℃で連続的に炭素化して、炭素短繊維の抄紙体からなる導電性多孔質基材(厚み115μm、厚さ方向ガス透過度420ml/cm2・hr・Pa)を得た。 Two sheets of this carbon fiber paper impregnated with phenol resin are stacked and roll pressed by applying a pressure of 1.0 MPa at a temperature of 250 ° C. to cure the phenol resin, and in an inert gas (nitrogen) atmosphere at 1900 ° C. Carbonization was continuously performed to obtain a conductive porous substrate (thickness 115 μm, thickness direction gas permeability 420 ml / cm 2 · hr · Pa) made of a short carbon fiber paper body.
この導電性多孔質基材2枚をそれぞれ10質量%、30質量%と濃度が異なるPTFEディスパージョン(商品名:PTFEディスパージョン、三井−デュポンフロロケミカル株式会社製)に含浸し、2枚の濾紙で挟んで乾燥させた後、360℃で1時間熱処理した。これによってそれぞれの導電性多孔質基材に対し13質量%の撥水性高分子化合物が含有された導電性多孔質基材Aと、39質量%の撥水性高分子化合物が含有された導電性多孔質基材Bを得た。この撥水性高分子化合物が導入された導電性多孔質基材A及びB(それぞれ115μm厚)をそれぞれ1枚ずつ使用しこれらを重ねることによって、厚み方向に撥水性高分子の導入量が変化した燃料電池用多孔質炭素電極基材を得た。 Two pieces of the conductive porous base material are impregnated in PTFE dispersion (trade name: PTFE dispersion, manufactured by Mitsui-DuPont Fluorochemical Co., Ltd.) having a concentration different from 10% by mass and 30% by mass, respectively. And then heat treated at 360 ° C. for 1 hour. Accordingly, the conductive porous substrate A containing 13% by mass of the water-repellent polymer compound and the conductive porous material containing 39% by mass of the water-repellent polymer compound with respect to each conductive porous substrate. A base material B was obtained. The amount of the introduced water-repellent polymer changed in the thickness direction by using one each of the conductive porous substrates A and B (thickness of 115 μm each) into which the water-repellent polymer compound was introduced and overlapping them. A porous carbon electrode substrate for a fuel cell was obtained.
各多孔質基材について撥水性高分子の導入量、導入後の厚みの結果を表1に示す。 Table 1 shows the results of the introduction amount of the water-repellent polymer and the thickness after introduction of each porous substrate.
〔実施例2〕
PTEFディスパージョン濃度を0質量%、20質量%に変えた以外は実施例1と同様にして、撥水性高分子化合物を導入していない導電性多孔質基材C(多孔質基材に対し撥水性高分子化合物導入量0質量%)、多孔質基材に対し26質量%の撥水性高分子を導入した導電性多孔質基材Dを得た。、得られた導電性多孔質基材C及びDをそれぞれ1枚ずつ使用し、これらを重ねることによって、厚み方向に撥水性高分子の導入量が変化した燃料電池用多孔質炭素電極基材を得た。また実施例1同様、物性値を測定した。測定結果を表1に示す。
[Example 2]
Except for changing the PTEF dispersion concentration to 0% by mass and 20% by mass, in the same manner as in Example 1, the conductive porous substrate C into which the water-repellent polymer compound was not introduced (repels the porous substrate). A conductive porous substrate D in which 26% by mass of a water-repellent polymer was introduced with respect to the porous substrate was obtained. A porous carbon electrode substrate for a fuel cell in which the amount of introduced water-repellent polymer was changed in the thickness direction by using each of the obtained conductive porous substrates C and D one by one and overlapping them. Obtained. Further, the physical property values were measured as in Example 1. The measurement results are shown in Table 1.
〔比較例1〕
フェノール樹脂含浸炭素繊維紙を4枚重ねて250℃の温度で、1.0MPaの圧力を加えてロールプレスを行い、フェノール樹脂を硬化させ、不活性ガス(窒素)雰囲気中で、1900℃で連続的に炭素化した導電性多孔質基材(厚み200μm、厚さ方向ガス透過度130ml/cm2・hr・Pa)にPTEFディスパージョン濃度を20質量%とした以外は実施例1と同様にして、導電性多孔質基材に対し26質量%の撥水性高分子を導入した導電性多孔質基材Eを得た。、この導電性多孔質基材Eのみを用いて厚み方向に撥水性高分子の導入量が変化しない燃料電池用多孔質炭素電極基材を得た。また実施例1同様、物性値を測定した。測定結果を表1に示す。
[Comparative Example 1]
Four sheets of carbon fiber paper impregnated with phenol resin are stacked and roll pressed by applying a pressure of 1.0 MPa at a temperature of 250 ° C. to cure the phenol resin and continuously at 1900 ° C. in an inert gas (nitrogen) atmosphere. A carbonized conductive porous substrate (thickness 200 μm, thickness direction gas permeability 130 ml / cm 2 · hr · Pa) was used in the same manner as in Example 1 except that the PTEF dispersion concentration was 20% by mass. Thus, a conductive porous substrate E into which 26% by mass of a water-repellent polymer was introduced with respect to the conductive porous substrate was obtained. Using this conductive porous substrate E alone, a porous carbon electrode substrate for a fuel cell was obtained in which the amount of water-repellent polymer introduced did not change in the thickness direction. Further, the physical property values were measured as in Example 1. The measurement results are shown in Table 1.
〔比較例2〕
実施例2で得られた導電性多孔質基材Dを2枚積層し、厚み方向に撥水性高分子の導入量が変化しない燃料電池用多孔質炭素電極基材を得た。
[Comparative Example 2]
Two conductive porous substrates D obtained in Example 2 were laminated to obtain a porous carbon electrode substrate for a fuel cell in which the amount of introduced water-repellent polymer did not change in the thickness direction.
〔比較例3〕
PTEFディスパージョン濃度を10質量%とした以外は比較例1と同様にして、導電性多孔質基材に対し13質量%の撥水性高分子を導入した導電性多孔質基材Fを得た。この導電性多孔質基材Fのみを用いて、厚み方向に撥水性高分子の導入量が変化しない燃料電池用多孔質炭素電極基材を得た。また実施例1同様、物性値を測定した。測定結果を表1に示す。
[Comparative Example 3]
A conductive porous substrate F into which 13% by mass of a water repellent polymer was introduced was obtained in the same manner as in Comparative Example 1 except that the PTEF dispersion concentration was 10% by mass. Using only this conductive porous substrate F, a porous carbon electrode substrate for a fuel cell was obtained in which the amount of water-repellent polymer introduced did not change in the thickness direction. Further, the physical property values were measured as in Example 1. The measurement results are shown in Table 1.
〔比較例4〕
実施例1で得られた導電性多孔質基材Aを2枚積層し、厚み方向に撥水性高分子の導入量が変化しない燃料電池用多孔質炭素電極基材を得た。
[Comparative Example 4]
Two conductive porous substrates A obtained in Example 1 were laminated to obtain a porous carbon electrode substrate for a fuel cell in which the amount of introduced water-repellent polymer did not change in the thickness direction.
上記多孔質炭素電極基材の特性評価は、次のようにして行った。
〔撥水剤量〕
撥水剤量は以下の式を用いて算出した。
撥水剤量(質量%)=導入された撥水性の高分子の単位面積当たりの質量/多孔質基材の単位面積当たりの質量
The characteristic evaluation of the porous carbon electrode substrate was performed as follows.
[Water repellent amount]
The amount of water repellent was calculated using the following formula.
Water repellent amount (% by mass) = mass per unit area of the introduced water-repellent polymer / mass per unit area of the porous substrate
〔厚み〕
厚み測定装置ダイヤルシックネスゲージ7321(商品名。ミツトヨ社製)を使用し、測定した。なお、このときの測定子の大きさは、直径10mmで測定圧力は1.5kPaで行った。
[Thickness]
The thickness was measured using a dial thickness gauge 7321 (trade name, manufactured by Mitutoyo Corporation). Note that the size of the probe at this time was 10 mm in diameter and the measurement pressure was 1.5 kPa.
〔厚さ方向ガス透過度〕
JIS−P8117に準拠し、ガーレー式デンソメーターを使用し、200mm3の気体が通過する時間を測定し、算出した。
[Thickness direction gas permeability]
Based on JIS-P8117, a Gurley type densometer was used, and the time required for 200 mm 3 gas to pass through was measured and calculated.
〔実施例3〕
(1)MEAの作製
実施例1の多孔質炭素電極基材をカソード用、アノード用に2組用意した。両面に触媒担持カーボン(触媒:Pt、触媒担持量50質量%)からなる触媒層(触媒層面積25cm2、Pt付量0.3mg/cm2)を形成したパーフルオロスルホン酸系の高分子電解質膜(膜厚30μm)を、この2組の多孔質炭素電極基材の導電性多孔質基材A側を内側として挟持し、これらを接合してMEAを得た。
Example 3
(1) Production of MEA Two sets of porous carbon electrode substrates of Example 1 were prepared for the cathode and the anode. Perfluorosulfonic acid-based polymer electrolyte in which a catalyst layer (catalyst layer area 25 cm 2 , Pt attached amount 0.3 mg / cm 2 ) made of catalyst-supported carbon (catalyst: Pt, catalyst support amount 50% by mass) is formed on both sides Membranes (thickness 30 μm) were sandwiched with the conductive porous substrate A side of the two sets of porous carbon electrode substrates as the inside, and these were joined to obtain MEA.
(2)MEAの燃料電池特性評価
前記(1)において作製したMEAを、蛇腹状のガス流路を有する2枚のカーボンセパレーターによって挟み、固体高分子型燃料電池(単セル)を形成した。
(2) Evaluation of MEA Fuel Cell Characteristics The MEA produced in (1) was sandwiched between two carbon separators having a bellows-like gas flow path to form a solid polymer fuel cell (single cell).
この単セルについて、電流密度−電圧特性を測定することによって燃料電池特性評価を行った。燃料ガスとして水素ガスを用い、酸化ガスとしては空気を用いた。セル温度80℃、燃料ガス利用率60%、酸化ガス利用率40%とした。また、ガス加湿は80℃のバブラーにそれぞれ燃料ガスと酸化ガスを通すことによって行った。電流密度が0.6A/cm2のときの燃料電池セルのセル電圧が0.624V、セルの内部抵抗が1.9mΩであり、良好な特性を示した。 About this single cell, the fuel cell characteristic evaluation was performed by measuring a current density-voltage characteristic. Hydrogen gas was used as the fuel gas, and air was used as the oxidizing gas. The cell temperature was 80 ° C., the fuel gas utilization rate was 60%, and the oxidizing gas utilization rate was 40%. Gas humidification was performed by passing fuel gas and oxidizing gas through a bubbler at 80 ° C., respectively. When the current density was 0.6 A / cm 2 , the cell voltage of the fuel cell was 0.624 V, and the internal resistance of the cell was 1.9 mΩ, showing good characteristics.
〔実施例4〕
MEAを作製する際、実施例1の多孔質炭素電極基材の導電性多孔質基材B側を内側として触媒層の形成された高分子電解質膜を挟持した以外は実施例3と同様にして単セルを組み立て、評価した。
Example 4
When producing MEA, it carried out similarly to Example 3 except having pinched the polymer electrolyte membrane in which the catalyst layer was formed by making the electroconductive porous base material B side of the porous carbon electrode base material of Example 1 into the inner side. A single cell was assembled and evaluated.
電流密度が0.6A/cm2のときの燃料電池セルのセル電圧が0.623V、セルの内部抵抗が2.0mΩであり、良好な特性を示した。 When the current density was 0.6 A / cm 2 , the cell voltage of the fuel cell was 0.623 V, and the internal resistance of the cell was 2.0 mΩ, which showed good characteristics.
〔比較例5〕
実施例1の多孔質炭素電極基材に替えて比較例1の多孔質炭素電極基材を用いたこと以外は、実施例3と同様にして単セルを組み立て、評価した。
電流密度が0.6A/cm2ではフラッディングが起こり、発電ができなかった。
[Comparative Example 5]
A single cell was assembled and evaluated in the same manner as in Example 3 except that the porous carbon electrode substrate of Comparative Example 1 was used instead of the porous carbon electrode substrate of Example 1.
When the current density was 0.6 A / cm 2 , flooding occurred and power generation was not possible.
〔比較例6〕
実施例1の多孔質炭素電極基材に替えて比較例2の多孔質炭素電極基材を用いたこと以外は、実施例3と同様にして単セルを組み立て、評価した。
[Comparative Example 6]
A single cell was assembled and evaluated in the same manner as in Example 3 except that the porous carbon electrode substrate of Comparative Example 2 was used instead of the porous carbon electrode substrate of Example 1.
電流密度が0.6A/cm2のときの燃料電池セルのセル電圧が0.490V、セルの内部抵抗が1.9mΩであり、実施例3、4より低い特性を示した。 When the current density was 0.6 A / cm 2 , the cell voltage of the fuel cell was 0.490 V, the internal resistance of the cell was 1.9 mΩ, and the characteristics were lower than those of Examples 3 and 4.
〔実施例5〕
実施例1の多孔質炭素電極基材に替えて実施例2の多孔質炭素電極基材を用い、導電性多孔質基材C側を内側として触媒層の形成された高分子電解質膜を挟持してMEAを作製したこと以外は、実施例3と同様にして単セルを組み立て、評価した。
Example 5
The porous carbon electrode substrate of Example 2 is used instead of the porous carbon electrode substrate of Example 1, and the polymer electrolyte membrane with the catalyst layer formed is sandwiched with the conductive porous substrate C side inside. A single cell was assembled and evaluated in the same manner as in Example 3 except that the MEA was manufactured.
電流密度が0.6A/cm2のときの燃料電池セルのセル電圧が0.625V、セルの内部抵抗が1.9mΩであり、良好な特性を示した。 When the current density was 0.6 A / cm 2 , the cell voltage of the fuel cell was 0.625 V, the internal resistance of the cell was 1.9 mΩ, and good characteristics were exhibited.
〔実施例6〕
実施例2の多孔質炭素電極基材を用い、導電性多孔質基材D側を内側として触媒層の形成された高分子電解質膜を挟持してMEAを作製したこと以外は、実施例5と同様にして単セルを組み立て、評価した。
Example 6
Example 5 is the same as Example 5 except that the porous carbon electrode substrate of Example 2 was used, and the polymer electrolyte membrane on which the catalyst layer was formed was sandwiched with the conductive porous substrate D side as the inside. A single cell was assembled and evaluated in the same manner.
電流密度が0.6A/cm2のときの燃料電池セルのセル電圧が0.658V、セルの内部抵抗が1.9mΩであり、良好な特性を示した。 When the current density was 0.6 A / cm 2 , the cell voltage of the fuel cell was 0.658 V, and the internal resistance of the cell was 1.9 mΩ, which showed good characteristics.
〔比較例7〕
実施例1の多孔質炭素電極基材に替えて比較例3の多孔質炭素電極基材を用いたこと以外は、実施例3と同様にして単セルを組み立て、評価した。
[Comparative Example 7]
A single cell was assembled and evaluated in the same manner as in Example 3 except that the porous carbon electrode substrate of Comparative Example 3 was used instead of the porous carbon electrode substrate of Example 1.
電流密度が0.6A/cm2のときの燃料電池セルのセル電圧が0.532V、セルの内部抵抗が1.8mΩであり、実施例5、6より低い特性を示した。 When the current density was 0.6 A / cm 2 , the cell voltage of the fuel cell was 0.532 V, the internal resistance of the cell was 1.8 mΩ, and the characteristics were lower than those of Examples 5 and 6.
〔比較例8〕
実施例1の多孔質炭素電極基材に替えて比較例4の多孔質炭素電極基材を用いたこと以外は、実施例3と同様にして単セルを組み立て、評価した。
[Comparative Example 8]
A single cell was assembled and evaluated in the same manner as in Example 3 except that the porous carbon electrode substrate of Comparative Example 4 was used instead of the porous carbon electrode substrate of Example 1.
電流密度が0.6A/cm2のときの燃料電池セルのセル電圧が0.504V、セルの内部抵抗が1.9mΩであり、実施例5、6より低い特性を示した。 When the current density was 0.6 A / cm 2 , the cell voltage of the fuel cell was 0.504 V, the internal resistance of the cell was 1.9 mΩ, and the characteristics were lower than those of Examples 5 and 6.
1:高分子電解質膜
2:カソード側触媒層
3:アノード側触媒層
4:カソード側多孔質炭素電極基材
5:アノード側多孔質炭素電極基材
6:膜−電極接合体(MEA)
7:カソード側セパレーター
8:アノード側セパレーター
9:酸化ガス導入部
10:酸化ガス排出部
11:燃料ガス導入部
12:燃料ガス排出部
13:カソード側ガス流路
14:アノード側ガス流路
1: Polymer electrolyte membrane 2: Cathode side catalyst layer 3: Anode side catalyst layer 4: Cathode side porous carbon electrode base material 5: Anode side porous carbon electrode base material 6: Membrane-electrode assembly (MEA)
7: Cathode side separator 8: Anode side separator 9: Oxidizing gas introduction part 10: Oxidizing gas discharge part 11: Fuel gas introduction part 12: Fuel gas discharge part 13: Cathode side gas flow path 14: Anode side gas flow path
Claims (6)
A polymer electrolyte fuel cell using the membrane-electrode assembly according to claim 3 or 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006043953A JP2007227009A (en) | 2006-02-21 | 2006-02-21 | Porous carbon electrode substrate and fuel cell using it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006043953A JP2007227009A (en) | 2006-02-21 | 2006-02-21 | Porous carbon electrode substrate and fuel cell using it |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007227009A true JP2007227009A (en) | 2007-09-06 |
Family
ID=38548645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006043953A Pending JP2007227009A (en) | 2006-02-21 | 2006-02-21 | Porous carbon electrode substrate and fuel cell using it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007227009A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012026498A1 (en) | 2010-08-27 | 2012-03-01 | 東邦テナックス株式会社 | Conductive sheet and production method for same |
JP2016178094A (en) * | 2014-10-17 | 2016-10-06 | 東レ株式会社 | Carbon sheet, gas diffusion electrode base material and fuel cell |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07134993A (en) * | 1993-11-09 | 1995-05-23 | Toyota Central Res & Dev Lab Inc | Fuel cell |
JP2002164056A (en) * | 2000-11-22 | 2002-06-07 | Aisin Seiki Co Ltd | Solid high molecular electrolyte-type fuel cell and electrode and method of manufacturing electrode |
-
2006
- 2006-02-21 JP JP2006043953A patent/JP2007227009A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07134993A (en) * | 1993-11-09 | 1995-05-23 | Toyota Central Res & Dev Lab Inc | Fuel cell |
JP2002164056A (en) * | 2000-11-22 | 2002-06-07 | Aisin Seiki Co Ltd | Solid high molecular electrolyte-type fuel cell and electrode and method of manufacturing electrode |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012026498A1 (en) | 2010-08-27 | 2012-03-01 | 東邦テナックス株式会社 | Conductive sheet and production method for same |
US8916310B2 (en) | 2010-08-27 | 2014-12-23 | Toho Tenax Co., Ltd. | Conductive sheet and production method for same |
JP2016178094A (en) * | 2014-10-17 | 2016-10-06 | 東レ株式会社 | Carbon sheet, gas diffusion electrode base material and fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8007953B2 (en) | Process for producing membrane/electrode assembly for polymer electrolyte fuel cell | |
JP2008204945A (en) | Gas diffusion electrode substrate, gas diffusion electrode, its manufacturing method, and fuel cell | |
EP2461401B1 (en) | Use of a gas diffusion layer member in a solid polymer fuel cell | |
JP2008243453A (en) | Membrane electrode assembly for fuel cell, and its manufaturing method | |
JP2008311180A (en) | Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly | |
JP2010146965A (en) | Membrane-electrode assembly for solid polymer fuel cell, coating liquid for forming catalyst layer of solid polymer fuel cell, and manufacturing method for membrane-electrode assembly of solid polymer fuel cell | |
JP5106808B2 (en) | Porous carbon electrode substrate and polymer electrolyte fuel cell using the same | |
JP2005026174A (en) | Solid polymer type fuel cell | |
JP4942362B2 (en) | Membrane-electrode assembly and polymer electrolyte fuel cell using the same | |
KR102175009B1 (en) | Membrane-electrode assembly for fuel cell, method for manufacturing of the same, and fuel cell comprising the same | |
JP2007214019A (en) | Membrane electrode assembly for fuel cell and gas diffusion layer for fuel cell | |
JP2007214019A5 (en) | ||
JP6571961B2 (en) | ELECTRODE FOR FUEL CELL, MEMBRANE ELECTRODE COMPLEX FOR FUEL CELL, AND FUEL CELL | |
JP5694638B2 (en) | Gas diffusion layer, membrane-electrode assembly and fuel cell | |
JP5328407B2 (en) | Moisture management sheet, gas diffusion sheet, membrane-electrode assembly, and polymer electrolyte fuel cell | |
JP5311538B2 (en) | Method for producing porous carbon electrode substrate | |
JP4959945B2 (en) | Polymer electrolyte fuel cell | |
JP5023591B2 (en) | Membrane / electrode assembly for fuel cells | |
JP2008311181A (en) | Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly | |
JP2011076739A (en) | Gas diffusion layer for solid polymer fuel cell, and manufacturing method thereof | |
JP2011049179A (en) | Membrane-electrode assembly for polymer electrolyte fuel cell and gas diffusion electrode substrate | |
JP2007227009A (en) | Porous carbon electrode substrate and fuel cell using it | |
JP4872202B2 (en) | Fuel cell and fuel cell manufacturing method | |
JP5843682B2 (en) | Diffusion layer structure of fuel cell | |
JP2006019174A (en) | Gas diffusion electrode, membrane-electrode assembly, its manufacturing method, and solid polymer fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090122 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110707 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110713 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110909 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120214 |