[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007225180A - Combustor wall structure for gas turbine - Google Patents

Combustor wall structure for gas turbine Download PDF

Info

Publication number
JP2007225180A
JP2007225180A JP2006046065A JP2006046065A JP2007225180A JP 2007225180 A JP2007225180 A JP 2007225180A JP 2006046065 A JP2006046065 A JP 2006046065A JP 2006046065 A JP2006046065 A JP 2006046065A JP 2007225180 A JP2007225180 A JP 2007225180A
Authority
JP
Japan
Prior art keywords
wall
heat
gas turbine
combustor
wall structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006046065A
Other languages
Japanese (ja)
Other versions
JP4154511B2 (en
Inventor
Tadashi Matsumoto
匡史 松本
Yasuhiro Kinoshita
康裕 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2006046065A priority Critical patent/JP4154511B2/en
Publication of JP2007225180A publication Critical patent/JP2007225180A/en
Application granted granted Critical
Publication of JP4154511B2 publication Critical patent/JP4154511B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combustor wall structure of a gas turbine reduced in required cooling air volume capable of being used even at high temperatures of 1700-1800°C. <P>SOLUTION: This combustor wall structure K of the gas turbine has an inner wall 20 composed of inner wall segments 20A densely arranged on an outer wall. The inner wall segment 20A is equipped with a heat-resistant block 30, a holding member 40 holding the heat-resistant blocks 30, and a cover member 50 having a sleeve 53 having a protrusion 53a on the inner face for covering the holding member 40. A clearance L1 is formed between the sleeve 53 and the heat resistant block 30. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はガスタービンの燃焼器壁構造に関する。さらに詳しくは、必要冷却空気が低減されてなるガスタービンの燃焼器壁構造に関する。   The present invention relates to a combustor wall structure of a gas turbine. More specifically, the present invention relates to a combustor wall structure of a gas turbine in which necessary cooling air is reduced.

従来、ガスタービンの燃焼器壁を形成しているライナの燃焼室側は、耐熱合金により構成され、それを冷却空気により冷却するという構成が一般的に採られている。図10に、かかる構成とされているライナの一例の要部を示し、図11にその下流側端部を示す。   Conventionally, the combustion chamber side of the liner forming the combustor wall of the gas turbine is generally made of a heat-resistant alloy and cooled by cooling air. FIG. 10 shows the main part of an example of such a liner, and FIG. 11 shows the downstream end thereof.

ライナ100は、図10に示すように、外壁110と内壁120との間が若干の隙間130が設けられてなる二重壁構造とされ、その隙間130に外壁110のバーナー側に設けられた多数の冷却孔111から、ライナ100の外側を流れている燃焼用空気の一部が冷却空気として供給され内壁120の冷却がなされ、燃焼室BR出口の温度を1300℃程度の高温下においても使用可能とされている。そして、この冷却に使用された冷却空気は、ライナ100の下流側端の排気口(図11参照)140から燃焼室BRに放出され燃焼ガスと混合されて下流側のタービンに供給される。   As shown in FIG. 10, the liner 100 has a double wall structure in which a slight gap 130 is provided between the outer wall 110 and the inner wall 120, and a number of the liners 100 provided on the burner side of the outer wall 110. A portion of the combustion air flowing outside the liner 100 is supplied as cooling air from the cooling holes 111 of the liner 100 to cool the inner wall 120 and can be used even at a high temperature of about 1300 ° C. at the combustion chamber BR outlet. It is said that. The cooling air used for this cooling is discharged from the exhaust port (see FIG. 11) 140 at the downstream end of the liner 100 to the combustion chamber BR, mixed with the combustion gas, and supplied to the downstream turbine.

しかるに、高効率のガスタービンを実現させる場合、燃焼室BR出口の温度を1700℃〜1800℃程度の高温にする必要がある。その一方で、窒素酸化物の排出低減の要求から多量の燃焼用空気を確保する必要があり、従来、ライナ100の冷却に使用されている空気を燃料の燃焼に回す必要が生じ、結果的にライナ100に供給される冷却空気が減少する。   However, when realizing a highly efficient gas turbine, it is necessary to set the temperature of the outlet of the combustion chamber BR to a high temperature of about 1700 ° C to 1800 ° C. On the other hand, it is necessary to secure a large amount of combustion air from the demand for reducing nitrogen oxide emissions, and it is necessary to use the air conventionally used for cooling the liner 100 for the combustion of the fuel. The cooling air supplied to the liner 100 is reduced.

しかしながら、ライナ100に供給される冷却空気が減少すると、ライナ100の素材温度が耐熱温度以上になり、予定されている温度条件下での使用が不可能となるという問題が生じる。   However, if the cooling air supplied to the liner 100 decreases, the material temperature of the liner 100 becomes higher than the heat resistance temperature, and there arises a problem that it becomes impossible to use it under a predetermined temperature condition.

この問題に対して、発明者等は、燃焼器ライナの内壁に超高温に耐えることができるセラミック(例えば、MGC(Melt-Growth Composites:液融成長複合材料))を適用するものとし、これによって空気冷却をほとんど行うことなく超高温場でガスタービン燃焼器を使用することができるようにしたガスタービンの燃焼器壁構造を提案している(特願2005−29978号参照)。   In response to this problem, the inventors shall apply ceramics (eg, MGC (Melt-Growth Composites)) that can withstand ultra-high temperatures to the inner wall of the combustor liner, thereby A gas turbine combustor wall structure has been proposed in which a gas turbine combustor can be used in an extremely high temperature field with little air cooling (see Japanese Patent Application No. 2005-29978).

ところが、前記提案に係る壁構造では、金属製のカバー部材によりセラミックを両側から挟むような状態でライナー外壁に保持させる構造とされており、カバー部材によるセラミックの拘束によりセラミックに割れ等が発生するという別の問題を生じるおそれがある。   However, in the wall structure according to the above proposal, the ceramic is held on the liner outer wall in such a state that the ceramic is sandwiched from both sides by the metal cover member, and the ceramic is cracked by the restraint of the ceramic by the cover member. This may cause another problem.

また、前記カバー部材は空気冷却されており、セラミックがカバー部材と接触することによりセラミックに過大な熱応力が生じ、これによりセラミックに割れ等が発生するという問題も生じるおそれもある。   In addition, the cover member is air-cooled, and when the ceramic comes into contact with the cover member, an excessive thermal stress is generated in the ceramic, which may cause a problem that the ceramic is cracked.

本発明はかかる従来技術の課題に鑑みなされたものであって、必要冷却空気量が低減され、しかも1700℃〜1800℃程度の高温においても使用可能であり、かつ耐久性の高いガスタービンの燃焼器壁構造を提供することを目的としている。   The present invention has been made in view of the problems of the prior art, and the required amount of cooling air is reduced. Further, the present invention can be used even at a high temperature of about 1700 ° C. to 1800 ° C., and has high durability. The purpose is to provide a wall structure.

本発明のガスタービンの燃焼器壁構造は、外壁と内壁との二重壁構造とされたガスタービンの燃焼器壁構造であって、内壁は、内壁セグメントを外壁に密集配列にて装着してなり、前記内壁セグメントは、耐熱ブロックと、該耐熱ブロックを保持する保持部材と、該保持部材をカバーするカバー部材を備えてなるものとされ、前記保持部材は、保持片が内側に向けて形成されたリップ溝形鋼状とされ、前記カバー部材は、前記リップ溝形鋼状とされた保持部材の開口端を塞ぐ袖部を有し、前記袖部と前記保持部材に保持されている耐熱ブロック端部との間に隙間が設けられてなることを特徴とする。   The combustor wall structure of the gas turbine of the present invention is a gas turbine combustor wall structure having a double wall structure of an outer wall and an inner wall, and the inner wall has inner wall segments mounted on the outer wall in a dense arrangement. And the inner wall segment includes a heat-resistant block, a holding member that holds the heat-resistant block, and a cover member that covers the holding member, and the holding member is formed with a holding piece facing inward. The cover member has a sleeve portion that closes an open end of the holding member that is the lip groove steel shape, and is held by the sleeve portion and the holding member. A gap is provided between the block ends.

本発明のガスタービンの燃焼器壁構造においては、袖部内面に突起が設けられてなるのが好ましい。   In the combustor wall structure of the gas turbine of the present invention, it is preferable that a protrusion is provided on the inner surface of the sleeve portion.

また、本発明のガスタービンの燃焼器壁構造は、外壁に内壁セグメントを冷却する冷却孔が配設されてなるのが好ましい。   Further, in the combustor wall structure of the gas turbine of the present invention, it is preferable that a cooling hole for cooling the inner wall segment is disposed on the outer wall.

しかして、前記ガスタービンの燃焼器壁構造は、ガスタービンの燃焼器に備えられる。   Therefore, the combustor wall structure of the gas turbine is provided in the combustor of the gas turbine.

本発明によれば、運転時におけるカバー部材による耐熱ブロックの拘束が回避され、かつ、耐熱ブロックとカバー部材の接触時の発生熱応力が大きく低減され、耐熱ブロックに割れが生ずるおそれはないという優れた効果が得られる。   According to the present invention, restraint of the heat-resistant block by the cover member during operation is avoided, and the generated thermal stress at the time of contact between the heat-resistant block and the cover member is greatly reduced, and there is no possibility that the heat-resistant block is cracked. Effect.

以下、添付図面を参照しながら本発明を実施形態に基づいて説明するが、本発明はかかる実施形態のみに限定されるものではない。   Hereinafter, although the present invention is explained based on an embodiment, referring to an accompanying drawing, the present invention is not limited only to this embodiment.

図1および図2に、本発明の一実施形態に係るガスタービンの燃焼器壁構造(以下、単に壁構造という)を示す。図1は燃焼器壁の燃焼ガスの流れ方向に沿った部分側面図を示し、図2は同燃焼器壁の部分展開図である。   1 and 2 show a combustor wall structure (hereinafter simply referred to as a wall structure) of a gas turbine according to an embodiment of the present invention. FIG. 1 is a partial side view of the combustor wall along the flow direction of the combustion gas, and FIG. 2 is a partial development view of the combustor wall.

壁構造Kは、図1および図2に示すように、外壁10と、内壁20の二重壁構造からなるもので、内壁20を内壁セグメント20Aにより構成し、この内壁セグメント20Aを外壁10にボルト・ナット留めしてなるものとされる。この内壁セグメント20Aは、所要数が密集配列にて外壁10内面に配設される。   As shown in FIGS. 1 and 2, the wall structure K is composed of a double wall structure of an outer wall 10 and an inner wall 20, and the inner wall 20 is constituted by an inner wall segment 20A, and the inner wall segment 20A is bolted to the outer wall 10.・ It is supposed to be nut-fastened. The required number of inner wall segments 20A is arranged on the inner surface of the outer wall 10 in a dense arrangement.

外壁10は、従来、ライナの外壁として用いられている耐熱合金からなる円筒状部材とされる。外壁10には、後述する内壁セグメント20Aに設けられているボルトを挿通するためのボルト挿通孔11が所定配列にて貫通形成されるとともに、外壁10の外側を流れている燃焼用空気の一部を冷却空気として用い、内壁セグメント20A、より具体的には、保持部材40およびカバー部材50をインピンジ冷却するための所要数の冷却孔12が貫通形成されている。   The outer wall 10 is a cylindrical member made of a heat-resistant alloy conventionally used as an outer wall of a liner. A bolt insertion hole 11 for inserting a bolt provided in an inner wall segment 20 </ b> A (described later) is formed in the outer wall 10 in a predetermined arrangement, and a part of combustion air flowing outside the outer wall 10. Is used as cooling air, and the required number of cooling holes 12 for impingement cooling of the inner wall segment 20A, more specifically, the holding member 40 and the cover member 50 are formed therethrough.

内壁セグメント20Aは、図3〜図8に示すように、耐熱ブロック30と、耐熱ブロック30を保持する保持部材40と、保持部材40の側方開口端40aをカバーするカバー部材50とを備えてなるものとされる。   As shown in FIGS. 3 to 8, the inner wall segment 20 </ b> A includes a heat-resistant block 30, a holding member 40 that holds the heat-resistant block 30, and a cover member 50 that covers the side opening end 40 a of the holding member 40. It is supposed to be.

耐熱ブロック30は、耐高温ガスセラミック層31と、耐火セラミック層32と、断熱材層33とを燃焼室BR側からこの順で積層してなるものとされる。ここで、耐火セラミック層32および断熱材層33を設けるのは、空冷されている保持部材40上部と耐高温ガスセラミック層31との間の伝熱抵抗を大きくして、耐高温ガスセラミック層31の温度差に起因する亀裂発生を防ぐためである。   The heat resistant block 30 is formed by laminating a high temperature resistant gas ceramic layer 31, a refractory ceramic layer 32, and a heat insulating material layer 33 in this order from the combustion chamber BR side. Here, the provision of the refractory ceramic layer 32 and the heat insulating material layer 33 increases the heat transfer resistance between the upper part of the holding member 40 that is air-cooled and the high temperature resistant gas ceramic layer 31, and the high temperature resistant gas ceramic layer 31. This is to prevent cracking due to the temperature difference.

耐高温ガスセラミック層31は、1700℃程度の耐熱度を有する例えばMGC(Melt-Growth Composites:液融成長複合材料)セラミック31aからなる板状体とされ、その断面形状は逆台形状とされている(図9参照)。これにより、保持部材40のリップ(保持片)45との接触を線接触に近い状態としながら、つまり一対の側面を傾斜面としてその接触面積の低減を図りながら耐熱ブロック30を保持し、かつ耐高温ガスセラミック層31の表面31bをリップ45よりも燃焼室BR側に突出させることが可能となる。   The high temperature resistant gas ceramic layer 31 is a plate-like body made of, for example, MGC (Melt-Growth Composites) ceramic 31a having a heat resistance of about 1700 ° C., and its cross-sectional shape is an inverted trapezoid. (See FIG. 9). As a result, while the contact of the holding member 40 with the lip (holding piece) 45 is in a state close to a line contact, that is, the heat-resistant block 30 is held while reducing the contact area by using a pair of side surfaces as inclined surfaces, The surface 31b of the hot gas ceramic layer 31 can be protruded from the lip 45 toward the combustion chamber BR.

なお、断面形状は、前記に限定されるものではなく、接触面積を低減しながら耐高温ガスセラミック層31の表面31bを燃焼室BR側に突出させることができる各種形状とされていればよい。例えば、角部が面取りされた形状とされてもよい。   In addition, the cross-sectional shape is not limited to the above, and any cross-sectional shape may be used as long as the surface 31b of the high temperature resistant gas ceramic layer 31 can protrude toward the combustion chamber BR while reducing the contact area. For example, the corner may be chamfered.

耐火セラミック層32は、例えば1500℃程度の耐熱度を有するのものからなる板状体とされている。この耐火セラミック層32を設けるのは、MGCセラミック31aが断熱材と反応して劣化するのを防ぐためである。そのため、耐高温ガスセラミック層31が 断熱材と反応しない材質とされれば、この耐火セラミック層32は設けられなくてもよい。   The refractory ceramic layer 32 is a plate-like body having a heat resistance of about 1500 ° C., for example. The reason why the refractory ceramic layer 32 is provided is to prevent the MGC ceramic 31a from reacting with the heat insulating material and deteriorating. Therefore, if the high temperature resistant gas ceramic layer 31 is made of a material that does not react with the heat insulating material, the refractory ceramic layer 32 may not be provided.

断熱材層33は、例えばクッション性を有するグラスウールからなる直方体とされる。このクッション性を有する断熱材層33が設けられていることにより、耐高温ガスセラミック層31および耐火セラミック層32の熱膨張が吸収されそれらの熱応力による損傷が防止される。   The heat insulating material layer 33 is a rectangular parallelepiped made of glass wool having cushioning properties, for example. By providing the heat insulating material layer 33 having the cushioning property, the thermal expansion of the high temperature resistant gas ceramic layer 31 and the refractory ceramic layer 32 is absorbed, and damage due to the thermal stress is prevented.

保持部材40は、耐熱合金、例えばハステロイX(商品名)からなる板を幅広のリップ溝形鋼状に折り曲げ成形し、その内部に耐熱ブロック30を保持するようにされてなるものとされる。この保持部材40の上面(外壁10に向いた面)41の中央には平頭付ボルト42がボルト部43を外方に向けて垂設されている。平頭44の高さは、カバー部材50の外壁10との間に所定の隙間が形成され、保持部材40およびカバー部材50のインピンジ冷却がなし得るように調整されている。   The holding member 40 is formed by bending a plate made of a heat-resistant alloy such as Hastelloy X (trade name) into a wide lip groove steel shape and holding the heat-resistant block 30 therein. At the center of the upper surface 41 (the surface facing the outer wall 10) 41 of this holding member 40, a flat headed bolt 42 hangs down with the bolt part 43 facing outward. The height of the flat head 44 is adjusted such that a predetermined gap is formed between the outer wall 10 of the cover member 50 and impingement cooling of the holding member 40 and the cover member 50 can be performed.

ここで、保持部材40は、リップ(保持片)45、45を耐高温ガスセラミック層31の一対の傾斜面31c、31c(図9参照)と両側から当接させて保持するものとされる。   Here, the holding member 40 holds the lips (holding pieces) 45 and 45 in contact with the pair of inclined surfaces 31c and 31c (see FIG. 9) of the high temperature resistant gas ceramic layer 31 from both sides.

また、リップ(保持片)45を含む先端部つまり保持部46には耐熱コーティング47(図4および図5参照)が施されている。なお、図4中、斜線が施された部分は保持部材40のコーティング箇所を示す。   In addition, a heat-resistant coating 47 (see FIGS. 4 and 5) is applied to the tip portion including the lip (holding piece) 45, that is, the holding portion 46. In FIG. 4, the hatched portion indicates the coating portion of the holding member 40.

耐熱コーティング47の材質は、例えばジルコニア・イットリヤ複合物とされる。この耐熱コーティング47がなされていることにより、保持部46と耐高温ガスセラミックとの熱衝撃が緩和され耐高温ガスセラミック層31の損傷が防止される。この場合、図7に示すように、リップ45に適宜切り欠き45aを設け、耐高温ガスセラミック層31とリップ45との接触面積を減少させることにより、熱衝撃による損傷のより一層の防止が図られる。   The material of the heat resistant coating 47 is, for example, a zirconia / yttria composite. By applying the heat resistant coating 47, the thermal shock between the holding portion 46 and the high temperature resistant gas ceramic is mitigated, and the high temperature resistant gas ceramic layer 31 is prevented from being damaged. In this case, as shown in FIG. 7, the lip 45 is appropriately provided with a notch 45a to reduce the contact area between the high temperature resistant gas ceramic layer 31 and the lip 45, thereby further preventing damage due to thermal shock. It is done.

カバー部材50は、耐熱合金、例えばハステロイX(商品名)からなる板を幅広溝型鋼状に折り曲げ成形してなるものとされる。このカバー部材50の上面(外壁10に向いた面)51の中央には平頭付ボルト42の平頭44が挿通される透孔52が形成されている。このカバー部材50は、その袖部53により保持部材40の側方開口端40aを塞ぐようにして保持部材40に装着される。   The cover member 50 is formed by bending a plate made of a heat-resistant alloy such as Hastelloy X (trade name) into a wide groove steel shape. A through hole 52 through which the flat head 44 of the flat head bolt 42 is inserted is formed at the center of the upper surface (surface facing the outer wall 10) 51 of the cover member 50. The cover member 50 is attached to the holding member 40 so that the sleeve portion 53 closes the side opening end 40 a of the holding member 40.

ここで、図4に示すように、インピンジ冷却されているカバー部材50の袖部53と、耐熱ブロック30、より具体的には耐高温ガスセラミック層31の一対の対向側面31d、31dとの間には、対向側面31dと袖部53との大幅な接触を避けるために隙間L1、L1が設けられている。この隙間L1は、具体的には、稼働時に耐高温ガスセラミック層31が対向側面31d、後述する突起53aと接触しない程度の隙間とする。つまり、大きな隙間を設けると冷却空気や燃焼ガスが流入しやすいので、必要最低限の隙間とする。   Here, as shown in FIG. 4, between the sleeve portion 53 of the cover member 50 that is impingement cooled and the pair of opposing side surfaces 31 d and 31 d of the heat resistant block 30, more specifically, the high temperature resistant gas ceramic layer 31. In order to avoid significant contact between the opposing side surface 31d and the sleeve portion 53, gaps L1 and L1 are provided. Specifically, the gap L1 is a gap that does not allow the high-temperature resistant gas ceramic layer 31 to come into contact with the opposing side surface 31d and a protrusion 53a described later during operation. That is, if a large gap is provided, the cooling air and the combustion gas easily flow in, so the minimum gap is set.

また、袖部53の内側には、前記隙間L1による耐熱ブロック30の位置ずれを防止するため、図3および図4に示すように、前記対向面31d、31dと対向する袖部53の所定箇所、例えば袖部53の先端両端部近傍に突起53a、53aが、前記隙間L1より短い突出量で設けられるものとされる。ここで、突起53a、53aは、図には明瞭に示されていないが、保持部46の耐熱コーティング47と同様のコーティングがなされてもよい。   Further, inside the sleeve portion 53, in order to prevent the displacement of the heat-resistant block 30 due to the gap L1, as shown in FIGS. 3 and 4, a predetermined portion of the sleeve portion 53 that faces the facing surfaces 31d and 31d is provided. For example, the protrusions 53a and 53a are provided in the vicinity of both ends of the end of the sleeve portion 53 with a projecting amount shorter than the gap L1. Here, the protrusions 53 a and 53 a are not clearly shown in the figure, but may be coated similarly to the heat resistant coating 47 of the holding portion 46.

すなわち、耐熱ブロック30が保持部材40内で移動する等して前記対向面31d、31dとカバー部材50の袖部53とが大幅に接触すると、耐高温ガスセラミック層31表面の温度勾配が大きくなり、過大な熱応力が生じて耐高温ガスセラミック層31が割れる等するおそれがある。したがって、そのような場合の耐高温ガスセラミック層31とカバー部材50との接触面積をできるだけ小さくするように、両材の対向箇所に突起53a、53aを設けるとともに、その突起53aに断熱性を高めるためのコーティングを施すものとされる。これにより、耐高温ガスセラミック層31とカバー部材50とが接触したときに耐高温ガスセラミック層31に発生する温度勾配を抑えて耐高温ガスセラミック層31の損傷を避けることが可能となる。   That is, if the heat-resistant block 30 moves within the holding member 40 and the opposing surfaces 31d and 31d and the sleeve portion 53 of the cover member 50 come into substantial contact, the temperature gradient on the surface of the high-temperature resistant gas ceramic layer 31 increases. In addition, excessive thermal stress may occur and the high temperature resistant gas ceramic layer 31 may crack. Accordingly, in order to minimize the contact area between the high-temperature gas-resistant ceramic layer 31 and the cover member 50 in such a case, the protrusions 53a and 53a are provided at the opposing positions of the two materials, and the heat insulation is enhanced on the protrusion 53a. It is supposed to be coated for. Accordingly, it is possible to suppress the temperature gradient generated in the high temperature resistant gas ceramic layer 31 when the high temperature resistant gas ceramic layer 31 and the cover member 50 are in contact with each other, thereby avoiding damage to the high temperature resistant gas ceramic layer 31.

このように、本実施形態の燃焼器壁構造Kにおいては、耐高温ガスセラミック層31を有する耐熱ブロック30を保持部材40により保持し、その保持部材40の開口端40aをカバー部材50によりカバーしてなる内壁セグメント20Aより内壁20を構成しているので、耐熱度が向上し、しかも吸い込み空気量に対する必要冷却空気量の割合を従来の15%程度から数%にまで低減することが可能となる。   Thus, in the combustor wall structure K of the present embodiment, the heat-resistant block 30 having the high-temperature resistant gas ceramic layer 31 is held by the holding member 40, and the open end 40 a of the holding member 40 is covered by the cover member 50. Since the inner wall 20 is composed of the inner wall segment 20A, the heat resistance is improved and the ratio of the required cooling air amount to the intake air amount can be reduced from about 15% to several percent of the conventional amount. .

これに加えて、カバー部材50の袖部53と、耐熱ブロック30の耐高温ガスセラミック層31の一対の対向側面31d、31dとの間に隙間L1、L1を設けたことにより、カバー部材50による耐高温ガスセラミック層31の拘束を回避して耐高温ガスセラミック層31に割れ等の損傷が発生するのを防止するとともに、インピンジ冷却されているカバー部材50と耐高温ガスセラミック層31との接触に起因する温度勾配から耐高温ガスセラミック層31に熱応力が生じ、これにより耐高温ガスセラミック層31に割れ等が発生するのを抑えて耐高温ガスセラミック層31の状態を健全に保つことが可能となる。   In addition to this, gaps L1 and L1 are provided between the sleeve portion 53 of the cover member 50 and the pair of opposing side surfaces 31d and 31d of the high-temperature resistant gas ceramic layer 31 of the heat-resistant block 30, thereby The high temperature resistant gas ceramic layer 31 is prevented from being restrained to prevent the high temperature resistant gas ceramic layer 31 from being damaged such as cracking, and the impingement cooled cover member 50 and the high temperature resistant gas ceramic layer 31 are in contact with each other. It is possible to keep the state of the high-temperature resistant gas ceramic layer 31 healthy by suppressing the occurrence of thermal stress in the high-temperature resistant gas ceramic layer 31 due to the temperature gradient caused by this, and thereby causing cracks in the high-temperature resistant gas ceramic layer 31. It becomes possible.

さらに、カバー部材50の耐高温ガスセラミック層31との対向箇所に突起53aを設けたので、保持部材40内で耐熱ブロック30が移動する等して耐高温ガスセラミック層31とカバー部材50とが接触した場合にもその接触面積が小さくなり、さらに突起53aに断熱性のあるコーティングを施すことで、両材が接触した場合に耐高温ガスセラミック層31に発生する温度勾配を小さくして、耐高温ガスセラミック層31の状態を長く健全に保つことが可能となる。したがって、壁構造Kの耐久性を向上させることが可能となる。   Further, since the protrusion 53a is provided at a position where the cover member 50 faces the high temperature resistant gas ceramic layer 31, the high temperature resistant gas ceramic layer 31 and the cover member 50 are moved by the movement of the heat resistant block 30 within the holding member 40. When contacted, the contact area is reduced, and furthermore, by applying a heat-insulating coating to the protrusion 53a, the temperature gradient generated in the high-temperature resistant gas ceramic layer 31 when both materials are in contact is reduced, and the It becomes possible to keep the state of the high temperature gas ceramic layer 31 healthy for a long time. Therefore, the durability of the wall structure K can be improved.

そのため、本実施形態の燃焼器壁構造Kは、高効率ガスタービンの燃焼器壁に適用可能である。   Therefore, the combustor wall structure K of the present embodiment can be applied to the combustor wall of a high efficiency gas turbine.

本発明は、高効率ガスタービンの燃焼器に適用できる。   The present invention can be applied to a combustor of a high efficiency gas turbine.

本発明の一実施形態に係るガスタービンの燃焼器壁の燃焼ガスの流れ方向に沿った部分側面図である。It is a partial side view along the flow direction of the combustion gas of the combustor wall of the gas turbine which concerns on one Embodiment of this invention. 同燃焼器壁の部分展開図である。It is a partial expanded view of the combustor wall. 同燃焼器壁の内壁セグメントの分解斜視図である。It is a disassembled perspective view of the inner wall segment of the combustor wall. 図2の矢視B図である。FIG. 3 is an arrow B view of FIG. 2. 図2の矢視C図である。It is arrow C figure of FIG. 図2のD−D線断面図である。It is the DD sectional view taken on the line of FIG. 図6の矢視E図である。It is an arrow E figure of FIG. 図7のF−F線断面図である。It is the FF sectional view taken on the line of FIG. 耐高温ガスセラミック層の2面図である。It is a 2nd page figure of a high temperature-resistant gas ceramic layer. 従来の燃焼器ライナの図1相当図である。FIG. 2 is a view corresponding to FIG. 1 of a conventional combustor liner. 図10の矢視A図である。It is arrow A figure of FIG.

符号の説明Explanation of symbols

K 燃焼器壁構造
L1 隙間
BR 燃焼室
10 外壁
11 ボルト挿通孔
12 冷却孔
20 内壁
20A 内壁セグメント
30 耐熱ブロック
31 耐高温ガスセラミック層
32 耐火セラミック層
33 断熱材層
40 保持部材
40a 開口端
42 平頭付ボルト
45 リップ(保持片)
45a 切り欠き
47 耐熱コーティング
50 カバー部材
52 透孔
53 袖部
53a 突起
K Combustor wall structure L1 Crevice BR Combustion chamber 10 Outer wall 11 Bolt insertion hole 12 Cooling hole 20 Inner wall 20A Inner wall segment 30 Heat resistant block 31 High temperature gas ceramic layer 32 Refractory ceramic layer 33 Heat insulating material layer 40 Holding member 40a Open end 42 With flat head Bolt 45 Lip (holding piece)
45a Notch 47 Heat resistant coating 50 Cover member 52 Through hole 53 Sleeve 53a Protrusion

Claims (4)

外壁と内壁との二重壁構造とされたガスタービンの燃焼器壁構造であって、
内壁は、内壁セグメントを外壁に密集配列にて装着してなり、
前記内壁セグメントは、耐熱ブロックと、該耐熱ブロックを保持する保持部材と、該保持部材をカバーするカバー部材を備えてなるものとされ、
前記保持部材は、保持片が内側に向けて形成されたリップ溝形鋼状とされ、
前記カバー部材は、前記リップ溝形鋼状とされた保持部材の開口端を塞ぐ袖部を有し、
前記袖部と前記保持部材に保持されている耐熱ブロック端部との間に隙間が設けられてなる
ことを特徴とするガスタービンの燃焼器壁構造。
A gas turbine combustor wall structure having a double wall structure of an outer wall and an inner wall,
The inner wall consists of inner wall segments mounted on the outer wall in a dense arrangement,
The inner wall segment includes a heat-resistant block, a holding member that holds the heat-resistant block, and a cover member that covers the holding member,
The holding member is a lip channel steel having a holding piece formed inward,
The cover member has a sleeve portion that closes an opening end of the holding member that is the lip groove steel shape,
A combustor wall structure of a gas turbine, wherein a gap is provided between the sleeve portion and an end portion of the heat-resistant block held by the holding member.
袖部内面に突起が設けられてなることを特徴とする請求項1記載のガスタービンの燃焼器壁構造。   The combustor wall structure of a gas turbine according to claim 1, wherein a projection is provided on an inner surface of the sleeve portion. 外壁に内壁セグメントを冷却する冷却孔が配設されてなることを特徴とする請求項1記載のガスタービンの燃焼器壁構造。   The combustor wall structure for a gas turbine according to claim 1, wherein cooling holes for cooling the inner wall segments are disposed on the outer wall. 請求項1ないし3のいずれか一項に記載のガスタービンの燃焼器壁構造を備えてなることを特徴とするガスタービンの燃焼器。   A combustor for a gas turbine, comprising the combustor wall structure for a gas turbine according to any one of claims 1 to 3.
JP2006046065A 2006-02-23 2006-02-23 Gas turbine combustor wall structure Expired - Fee Related JP4154511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006046065A JP4154511B2 (en) 2006-02-23 2006-02-23 Gas turbine combustor wall structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006046065A JP4154511B2 (en) 2006-02-23 2006-02-23 Gas turbine combustor wall structure

Publications (2)

Publication Number Publication Date
JP2007225180A true JP2007225180A (en) 2007-09-06
JP4154511B2 JP4154511B2 (en) 2008-09-24

Family

ID=38547158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006046065A Expired - Fee Related JP4154511B2 (en) 2006-02-23 2006-02-23 Gas turbine combustor wall structure

Country Status (1)

Country Link
JP (1) JP4154511B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102282668B1 (en) * 2020-03-02 2021-07-28 두산중공업 주식회사 Apparatus for cooling liner, combustor and gas turbine comprising the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200474934Y1 (en) 2013-11-29 2014-10-27 한전케이피에스 주식회사 Spring Holder for Gas Turbine tile

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102282668B1 (en) * 2020-03-02 2021-07-28 두산중공업 주식회사 Apparatus for cooling liner, combustor and gas turbine comprising the same
US11603768B2 (en) 2020-03-02 2023-03-14 Doosan Enerbility Co., Ltd. Liner cooling device, combustor including same, and gas turbine including same

Also Published As

Publication number Publication date
JP4154511B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
JP4172913B2 (en) Combustor wall segment and combustor
JP4008212B2 (en) Hollow structure with flange
PL203961B1 (en) Combustion chamber assembly incorporating a compound material ceramic insert
JP2009293915A (en) Gas turbine combustion chamber having inner and outer walls subdivided into sectors
JP5478867B2 (en) Fire wall device and heat exchanger
JP4154511B2 (en) Gas turbine combustor wall structure
US20030047878A1 (en) Thermally stressable wall and method for sealing a gap in a thermally stressed wall
JP2000512370A (en) In particular, the heat shielding structure of structural parts of gas turbine equipment
JP4129518B2 (en) Gas turbine combustor wall structure
JP4301674B2 (en) Hot air outlet pipe for blast furnace
JP6663749B2 (en) Boilers and refractory structures of boilers
KR101305560B1 (en) Exhaust pipe system for multicylinder gas and diesel engine
JP4846274B2 (en) Insulation box used for hot repair of coke oven carbonization chamber
JP2006097579A (en) Cylinder head for internal combustion engine
JPS5857657B2 (en) Inner cylinder of gas turbine combustor
JPH02203194A (en) Refractory construction of boiler water tube wall
JPS58175720A (en) Catalyst layer supporting device for catalytic combustion device
KR20230090630A (en) Furnace wall having excellent heat loss reduction effect and corrosion reduction effect
JPH06158130A (en) Stave cooler
JP2010222984A (en) Internal combustion engine
JP2004169060A (en) Seal structure at opening for furnace maintenance
JPH0343533B2 (en)
JP4026528B2 (en) Stave cooler
GB2531852A (en) A cylinder head
JPH04297721A (en) Burner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4154511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140718

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees