[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007220820A - Thin film transistor array and its manufacturing method - Google Patents

Thin film transistor array and its manufacturing method Download PDF

Info

Publication number
JP2007220820A
JP2007220820A JP2006038429A JP2006038429A JP2007220820A JP 2007220820 A JP2007220820 A JP 2007220820A JP 2006038429 A JP2006038429 A JP 2006038429A JP 2006038429 A JP2006038429 A JP 2006038429A JP 2007220820 A JP2007220820 A JP 2007220820A
Authority
JP
Japan
Prior art keywords
thin film
zinc oxide
oxide semiconductor
semiconductor thin
film layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006038429A
Other languages
Japanese (ja)
Other versions
JP5015473B2 (en
Inventor
Mamoru Furuta
守 古田
Takashi Hirao
孝 平尾
Hiroshi Furuta
寛 古田
Tokiyoshi Matsuda
時宜 松田
Takahiro Hiramatsu
孝浩 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Kochi Prefecture Sangyo Shinko Center
Original Assignee
Casio Computer Co Ltd
Kochi Prefecture Sangyo Shinko Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd, Kochi Prefecture Sangyo Shinko Center filed Critical Casio Computer Co Ltd
Priority to JP2006038429A priority Critical patent/JP5015473B2/en
Publication of JP2007220820A publication Critical patent/JP2007220820A/en
Application granted granted Critical
Publication of JP5015473B2 publication Critical patent/JP5015473B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thin Film Transistor (AREA)
  • Dram (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To change an orientation of zinc oxide whereby an oxide semiconductor thin film layer excels in a heat resistance and surface smoothness, it is intended to suppress a leakage current and enhance a current drive capability, and a pixel electrode excels in a micro processability, thereby highly micronizing pixels. <P>SOLUTION: A thin film transistor array has at least the oxide semiconductor thin film layer having zinc oxide as a main component, formed as a channel on a substrate, and the pixel electrode having zinc oxide as the main component. The orientation of zinc oxide of the oxide semiconductor thin film layer differs from that of the zinc oxide of the pixel electrode. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、画素の駆動装置として薄膜トランジスタが機能する薄膜トランジスタアレイに係り、より詳しくは、薄膜トランジスタの構成半導体(活性層)である酸化物半導体薄膜層と画素電極の主成分に酸化亜鉛を用いた薄膜トランジスタアレイに関する。   The present invention relates to a thin film transistor array in which a thin film transistor functions as a pixel driving device, and more specifically, an oxide semiconductor thin film layer that is a constituent semiconductor (active layer) of the thin film transistor and a thin film transistor that uses zinc oxide as a main component of a pixel electrode. For arrays.

酸化亜鉛は優れた半導体(活性層)の性質を示すことから、近年薄膜トランジスタ(以下TFTと略)の半導体薄膜層や画素電極に多く用いられている。
酸化亜鉛を主成分とする半導体薄膜層である酸化物半導体薄膜層を用いたTFT(酸化亜鉛TFT)としては、ボトムゲート型とトップゲート型の構造が考えられる。
Zinc oxide has been widely used in recent years for semiconductor thin film layers and pixel electrodes of thin film transistors (hereinafter abbreviated as TFTs) because it exhibits excellent semiconductor (active layer) properties.
As a TFT (zinc oxide TFT) using an oxide semiconductor thin film layer which is a semiconductor thin film layer containing zinc oxide as a main component, a bottom gate type structure and a top gate type structure are conceivable.

また、従来、酸化物半導体薄膜層の主成分である酸化亜鉛の結晶構造は、基板と垂直方向に結晶粒のC軸が揃うこと、換言すれば、C軸配向性が高いことが望ましいとされていた。その理由は、酸化物半導体薄膜層に用いた場合、電子移動度の優れた薄膜トランジスタ(TFT)を得ることが期待できるからである。
酸化亜鉛に関しては、スパッタリング法にて成膜すると、C軸配向性の高い膜が得られることはよく知られている。また、従来より、TFTにおいて半導体薄膜層のC軸配向性を向上させるための研究は種々なされており、例えば下記特許文献1の開示技術はその一例である。しかしながら、C軸以外の配向制御やアモルファス状態の形成に関する報告はほとんどされておらず、そのため画素電極もC軸配向性の高いものが用いられていた。
しかしながら、C軸配向性の高い酸化亜鉛を用いた酸化物半導体薄膜層と画素電極には夫々、以下のような問題がある。
Conventionally, the crystal structure of zinc oxide, which is the main component of the oxide semiconductor thin film layer, is desirably aligned with the C axis of crystal grains in the direction perpendicular to the substrate, in other words, having a high C axis orientation. It was. The reason is that when used for an oxide semiconductor thin film layer, a thin film transistor (TFT) having excellent electron mobility can be expected.
Regarding zinc oxide, it is well known that a film having a high C-axis orientation can be obtained by forming a film by sputtering. Conventionally, various studies have been made to improve the C-axis orientation of a semiconductor thin film layer in a TFT. For example, the technology disclosed in Patent Document 1 below is an example. However, there have been few reports on orientation control other than the C axis and formation of an amorphous state, and therefore, pixel electrodes having high C axis orientation have been used.
However, the oxide semiconductor thin film layer and the pixel electrode using zinc oxide having high C-axis orientation have the following problems.

酸化物半導体薄膜層に関しては、酸化亜鉛のC軸配向性が高いと、膜厚方向に対して特定の結晶粒径を有する柱状構造をとるため、多くの結晶粒界を有する。結晶粒界には格子欠陥や結晶の歪み、未結合手(ダングリングボンド)等を多く含むため、熱的に不安定な状態にある。そのため、酸化物半導体薄膜層の形成後、ゲート絶縁膜の被覆等のための加熱プロセスを経ることにより、酸化物半導体薄膜層結晶粒界における酸素や亜鉛が脱離し、格子欠陥を形成するという問題が生じる。当該格子欠陥は、電気的に浅い不純物準位を形成し、酸化物半導体薄膜層の低抵抗化を引き起こす。そのため、当該酸化物半導体薄膜層を薄膜トランジスタの活性層に用いた場合、ゲート電圧を印加しなくてもドレイン電流が流れるノーマリーオン型すなわちデプレッション型の動作となり、欠陥準位の増大とともに、しきい電圧が減少し、リーク電流が増大する。また、チャネルの電子に対して結晶粒界はエネルギー障壁として働くため、移動度の低下を引き起こす。
この問題は、ボトムゲート型の薄膜トランジスタより、酸化物半導体薄膜層の上にゲート絶縁膜を被覆するトップゲート型の薄膜トランジスタに顕著に現れる。
また、柱状構造を有することで、酸化物半導体薄膜層の表面の凹凸が大きくなり、ゲート絶縁膜の薄膜化を阻害する。そのため、耐圧不良や電界集中による電流駆動能力の低下といった問題も生じる。
With respect to the oxide semiconductor thin film layer, when the C-axis orientation of zinc oxide is high, the oxide semiconductor thin film layer has a columnar structure having a specific crystal grain size in the film thickness direction, and thus has many crystal grain boundaries. Since the crystal grain boundary contains many lattice defects, crystal distortion, dangling bonds, etc., it is in a thermally unstable state. For this reason, after forming the oxide semiconductor thin film layer, a heating process for covering the gate insulating film, etc. is performed, so that oxygen and zinc at the crystal grain boundary of the oxide semiconductor thin film layer are desorbed and lattice defects are formed. Occurs. The lattice defect forms an electrically shallow impurity level and causes a reduction in resistance of the oxide semiconductor thin film layer. Therefore, when the oxide semiconductor thin film layer is used as an active layer of a thin film transistor, the drain current flows without applying a gate voltage, that is, a normally-on operation, that is, a depletion type operation. The voltage decreases and the leakage current increases. In addition, the crystal grain boundary acts as an energy barrier with respect to the electrons in the channel, which causes a decrease in mobility.
This problem is more apparent in a top gate type thin film transistor in which a gate insulating film is coated on an oxide semiconductor thin film layer than in a bottom gate type thin film transistor.
In addition, by having a columnar structure, unevenness on the surface of the oxide semiconductor thin film layer is increased, which hinders thinning of the gate insulating film. Therefore, problems such as a breakdown voltage failure and a decrease in current driving capability due to electric field concentration also occur.

一方、画素電極に関しては、近年の液晶ディスプレイの画素の高精細化に伴い、高い微細加工性が求められている。しかしながら、酸化亜鉛のC軸配向性が高いと、柱状構造を有するため、微細加工時に柱状構造に沿ってエッチングされ、均一な加工形状が得にくいといった問題が生じる。
このように、酸化物半導体薄膜層と画素電極に求められる特性は同じわけではない。
On the other hand, with respect to the pixel electrode, high fine workability is required with the recent high definition of pixels of liquid crystal displays. However, if the C-axis orientation of zinc oxide is high, it has a columnar structure, so that it is difficult to obtain a uniform processed shape because it is etched along the columnar structure during microfabrication.
Thus, the characteristics required for the oxide semiconductor thin film layer and the pixel electrode are not the same.

特許第2787198号公報Japanese Patent No. 2787198

本発明は、酸化物半導体薄膜層と画素電極の夫々に適した酸化亜鉛を提供することを解決課題とする。具体的には、酸化亜鉛の配向を変化させることで、酸化物半導体薄膜層は、耐熱性、表面平滑性に優れたものとし、リーク電流の抑制、電流駆動能力の向上を図る。一方、画素電極は微細加工性に優れ、画素の高精細化の実現できるものが要求され、しかも、画素電極の抵抗を低いものにすることも要求されているので、これらの要求を解決することを課題とする。   An object of the present invention is to provide zinc oxide suitable for each of an oxide semiconductor thin film layer and a pixel electrode. Specifically, by changing the orientation of zinc oxide, the oxide semiconductor thin film layer has excellent heat resistance and surface smoothness, thereby suppressing leakage current and improving current driving capability. On the other hand, the pixel electrode is required to have excellent microfabrication and to realize high definition of the pixel, and further, it is required to reduce the resistance of the pixel electrode. Is an issue.

請求項1に係る発明は、基板上にチャネルとして形成される酸化亜鉛を主成分とする酸化物半導体薄膜層と、酸化亜鉛を主成分とする画素電極を少なくとも有し、前記酸化物半導体薄膜層の酸化亜鉛の配向と前記画素電極の酸化亜鉛の配向が異なることを特徴とする薄膜トランジスタアレイに関する。   The invention according to claim 1 includes at least an oxide semiconductor thin film layer mainly composed of zinc oxide formed as a channel on a substrate and a pixel electrode mainly composed of zinc oxide, and the oxide semiconductor thin film layer The present invention relates to a thin film transistor array in which the orientation of zinc oxide is different from the orientation of zinc oxide of the pixel electrode.

請求項2に係る発明は、前記画素電極の主成分である酸化亜鉛が(100)配向と(101)配向からなることを特徴とする請求項1記載の薄膜トランジスタアレイに関する。   The invention according to claim 2 relates to the thin film transistor array according to claim 1, wherein zinc oxide which is a main component of the pixel electrode is composed of (100) orientation and (101) orientation.

請求項3に係る発明は、前記画素電極が酸化亜鉛に対してドナーとなる不純物がドーピングされていることを特徴とする請求項1又は2記載の薄膜トランジスタアレイに関する。   A third aspect of the present invention relates to the thin film transistor array according to the first or second aspect, wherein the pixel electrode is doped with an impurity serving as a donor to zinc oxide.

請求項4に係る発明は、前記酸化物半導体薄膜層の主成分である酸化亜鉛が(002)配向からなることを特徴とする請求項1乃至3いずれか記載の薄膜トランジスタアレイに関する。   The invention according to claim 4 relates to the thin film transistor array according to any one of claims 1 to 3, wherein zinc oxide which is a main component of the oxide semiconductor thin film layer has a (002) orientation.

請求項5に係る発明は、前記酸化物半導体薄膜層の主成分である酸化亜鉛が(002)配向と(101)配向からなることを特徴とする請求項1乃至3いずれか記載の薄膜トランジスタアレイに関する。   The invention according to claim 5 relates to the thin film transistor array according to any one of claims 1 to 3, wherein zinc oxide which is a main component of the oxide semiconductor thin film layer has (002) orientation and (101) orientation. .

請求項6に係る発明は、基板上に酸化亜鉛を主成分とする酸化物ターゲットを用いて酸化物半導体薄膜層をチャネルとして形成する工程と、該酸化物半導体薄膜層の上表面及び側面を被覆してゲート絶縁膜を形成する工程と、該ゲート絶縁膜の上にゲート電極を積載する工程と、酸化亜鉛を主成分とする酸化物ターゲットを用いて画素電極を形成する工程を有する薄膜トランジスタアレイの製法であって、前記画素電極、或いは該画素電極と前記酸化物半導体薄膜層を成膜する際、前記基板に高周波電力を印加しながら行うことで、該画素電極と該酸化物半導体薄膜層の主成分である酸化亜鉛の配向を制御し、異なるものとすることを特徴とする薄膜トランジスタアレイの製法に関する。   According to a sixth aspect of the present invention, there is provided a step of forming an oxide semiconductor thin film layer as a channel on a substrate using an oxide target composed mainly of zinc oxide, and covering an upper surface and side surfaces of the oxide semiconductor thin film layer A thin film transistor array including a step of forming a gate insulating film, a step of loading a gate electrode on the gate insulating film, and a step of forming a pixel electrode using an oxide target mainly composed of zinc oxide In the manufacturing method, when forming the pixel electrode or the pixel electrode and the oxide semiconductor thin film layer while applying high frequency power to the substrate, the pixel electrode and the oxide semiconductor thin film layer are formed. The present invention relates to a method for manufacturing a thin film transistor array, wherein the orientation of zinc oxide as a main component is controlled to be different.

請求項7に係る発明は、前記画素電極の成膜、或いは該画素電極と前記酸化物半導体薄膜層の成膜をマグネトロンスパッタリング法を用いて行い、前記基板への高周波電力の印加を基板ステージを介して行うことを特徴とする請求項6記載の薄膜トランジスタアレイの製法に関する。   According to a seventh aspect of the present invention, film formation of the pixel electrode or film formation of the pixel electrode and the oxide semiconductor thin film layer is performed using a magnetron sputtering method, and application of high-frequency power to the substrate is performed on a substrate stage. 7. The method of manufacturing a thin film transistor array according to claim 6, wherein

請求項1に係る発明によれば、酸化物半導体薄膜層の主成分である酸化亜鉛の配向と画素電極の主成分である酸化亜鉛の配向が異なるため、夫々に適した酸化亜鉛を提供することができ、高性能の薄膜トランジスタを提供できる。   According to the first aspect of the present invention, since the orientation of zinc oxide, which is the main component of the oxide semiconductor thin film layer, is different from the orientation of zinc oxide, which is the main component of the pixel electrode, zinc oxide suitable for each is provided. And a high-performance thin film transistor can be provided.

請求項2に係る発明によれば、画素電極の主成分である酸化亜鉛が(100)配向と(101)配向を有することで、画素電極の微細加工性が向上し、画素の高精細化が図れる。   According to the invention of claim 2, since the zinc oxide which is the main component of the pixel electrode has the (100) orientation and the (101) orientation, the fine workability of the pixel electrode is improved and the high definition of the pixel is achieved. I can plan.

請求項3に係る発明によれば、画素電極が酸化亜鉛に対してドナーとなる不純物がドーピングされていることにより、画素電極が低抵抗化され、電圧降下を抑制することができる。   According to the third aspect of the present invention, the pixel electrode is doped with an impurity serving as a donor with respect to zinc oxide, so that the resistance of the pixel electrode is reduced and a voltage drop can be suppressed.

請求項4に係る発明によれば、酸化物半導体薄膜層の主成分である酸化亜鉛が(002)配向からなることで、C軸配向性が高い酸化亜鉛が得られ、電子移動度の優れた薄膜トランジスタを提供することができる。   According to the invention of claim 4, zinc oxide that is a main component of the oxide semiconductor thin film layer has (002) orientation, so that zinc oxide with high C-axis orientation is obtained, and electron mobility is excellent. A thin film transistor can be provided.

請求項5に係る発明は、酸化物半導体薄膜層の主成分である酸化亜鉛が(002)配向と(101)配向からなることにより、C軸配向性を崩すことによる電子移動度の低下といった影響が少ない状態で、酸化物半導体薄膜層の表面を平滑化することができるので、ゲート絶縁膜の薄膜化が実現でき、電流駆動能力の優れた薄膜トランジスタとなる。
また、酸化物半導体薄膜層の耐熱性も向上する。そのため、熱処理による酸化亜鉛の成分の脱離に起因する酸化物半導体薄膜層の低抵抗化を防ぐことができ、リーク電流が抑制された薄膜トランジスタとなる。
According to the fifth aspect of the present invention, the zinc oxide, which is the main component of the oxide semiconductor thin film layer, is composed of (002) and (101) orientations. Since the surface of the oxide semiconductor thin film layer can be smoothed in a small amount, the gate insulating film can be thinned and a thin film transistor having excellent current driving capability can be obtained.
In addition, the heat resistance of the oxide semiconductor thin film layer is improved. Therefore, resistance reduction of the oxide semiconductor thin film layer due to desorption of the zinc oxide component due to heat treatment can be prevented, and a thin film transistor in which leakage current is suppressed is obtained.

請求項6に係る発明によれば、高周波電力を印加しながら画素電極の成膜、或いは画素電極と酸化物半導体薄膜層の両方の成膜を行うことで、配向性の制御された、微結晶或いは非晶質の酸化亜鉛を主成分とする画素電極、或いは画素電極と酸化物半導体薄膜層を成膜することができる。そのため、夫々に適した酸化亜鉛を画素電極及び酸化物半導体薄膜層に用いた高性能の薄膜トランジスタアレイを提供できる。   According to the invention of claim 6, the orientation of the microcrystal is controlled by forming the pixel electrode while applying high-frequency power or by forming both the pixel electrode and the oxide semiconductor thin film layer. Alternatively, a pixel electrode containing amorphous zinc oxide as a main component, or a pixel electrode and an oxide semiconductor thin film layer can be formed. Therefore, a high-performance thin film transistor array using zinc oxide suitable for each of the pixel electrode and the oxide semiconductor thin film layer can be provided.

請求項7に係る発明によれば、画素電極、或いは画素電極と酸化物半導体薄膜層の成膜を、マグネトロンスパッタリング法を用いて行い、基板を設置した基板ステージに対して高周波電力を印加することで、配向性の制御された、微結晶或いは非晶質の酸化亜鉛を主成分とする酸化物半導体薄膜層を低電力で成膜することができ、成膜速度を向上させることができる。そのため、夫々に適した酸化亜鉛を主成分とする画素電極及び酸化物半導体薄膜層を、低電力で、且つ速い成膜速度で形成することができる。   According to the seventh aspect of the present invention, the pixel electrode or the pixel electrode and the oxide semiconductor thin film layer are formed using the magnetron sputtering method, and high frequency power is applied to the substrate stage on which the substrate is installed. Thus, the orientation-controlled oxide semiconductor thin film layer mainly composed of microcrystalline or amorphous zinc oxide can be deposited with low power, and the deposition rate can be improved. Therefore, a pixel electrode and an oxide semiconductor thin film layer mainly composed of zinc oxide, which are suitable for each, can be formed with low power and a high film formation rate.

本発明の一実施例に係る薄膜トランジスタについて、図1に基づいて以下に説明する。
なお、本発明に係る薄膜トランジスタアレイは該実施例の構造によって、何ら限定されるものではない。該実施例に係る薄膜トランジスタアレイは、TFTがトップゲート型構造であるが、ボトムゲート型構造のTFTも当然含まれるし、トップゲート型のその他の構造も当然含まれる。
また、明細書中では、酸化亜鉛の配向性を(002)配向、(100)配向、(101)配向というようにミラー指数で表している。なお、これを六方晶用指数で表すと以下のようになる。
A thin film transistor according to an embodiment of the present invention will be described below with reference to FIG.
The thin film transistor array according to the present invention is not limited by the structure of the embodiment. In the thin film transistor array according to the embodiment, the TFT has a top gate type structure, but a bottom gate type TFT is naturally included, and other top gate type structures are naturally included.
In the specification, the orientation of zinc oxide is expressed by the Miller index such as (002) orientation, (100) orientation, and (101) orientation. This can be expressed as the hexagonal index as follows.

Figure 2007220820
Figure 2007220820

本発明の一実施例に係る薄膜トランジスタ100は、基板1、一対のソース・ドレイン電極2、酸化物半導体薄膜層3、第一ゲート絶縁膜4、コンタクト部5a、第二ゲート絶縁膜6、ゲート電極7、一対のソース・ドレイン外部電極2a、画素電極8を有しており、図1に示すように、これら各構成を積層して形成されている。   A thin film transistor 100 according to an embodiment of the present invention includes a substrate 1, a pair of source / drain electrodes 2, an oxide semiconductor thin film layer 3, a first gate insulating film 4, a contact portion 5a, a second gate insulating film 6, and a gate electrode. 7, a pair of source / drain external electrodes 2a and a pixel electrode 8 are formed, and these components are laminated as shown in FIG.

薄膜トランジスタ100は、図1に示す通り、ガラス(SiO2とAl2O3を主成分とする無アルカリガラス)からなる基板1上に形成される。
基板1の材料は、ガラスに限定されず、プラスチックや金属箔に絶縁体をコーティングしたもの等、絶縁体であれば使用可能である。
As shown in FIG. 1, the thin film transistor 100 is formed on a substrate 1 made of glass (non-alkali glass containing SiO 2 and Al 2 O 3 as main components).
The material of the substrate 1 is not limited to glass, and any material can be used as long as it is an insulator such as a plastic or metal foil coated with an insulator.

基板1上には、一対のソース・ドレイン電極2が積層されている。この一対のソース・ドレイン電極2は、基板1上面に間隙を有して配置されている。
ソース・ドレイン電極2は、例えば、インジウムスズ酸化物(ITO)、n+ZnO等の導電性酸化物、金属、もしくは前記導電性酸化物により少なくとも一部を被覆された金属により形成される。
A pair of source / drain electrodes 2 are stacked on the substrate 1. The pair of source / drain electrodes 2 are disposed on the upper surface of the substrate 1 with a gap.
The source / drain electrode 2 is formed of, for example, a conductive oxide such as indium tin oxide (ITO) or n + ZnO, a metal, or a metal at least partially covered with the conductive oxide.

酸化物半導体薄膜層3は、基板1と一対のソース・ドレイン電極2上に積層されている。
酸化物半導体薄膜層3は、一対のソース・ドレイン電極2の電極間にチャネルを形成するように配置されており、酸化亜鉛を主成分とする酸化物半導体から形成されている。ここで、酸化亜鉛を主成分とする酸化物半導体とは、真性の酸化亜鉛の他、Li、Na、N、C等のp型ドーパントおよびB、Al、Ga、In等のn型ドーパントがドーピングされた酸化亜鉛およびMg、Be等がドーピングされた酸化亜鉛を含む。
酸化物半導体薄膜層3は、主成分である酸化亜鉛が(002)配向からなるもの、換言するとC軸配向性が高いものが考えられる。C軸配向性が高いことにより、電子移動度の優れた薄膜トランジスタを提供することができる。
また、主成分である酸化亜鉛が(002)配向と(101)配向からなるものも考えられる。この場合、(002)配向により生じるX線回折強度I(002)の(101)配向により生じるX線回折強度I(101)に対する比率I(002)/I(101)が2以下であるものが好ましい。このような酸化物半導体薄膜層を利用することで、C軸配向を崩すことによる電子移動度の低下などの影響が少ない状態で、表面の平滑化が図れ、ゲート絶縁膜の薄膜化が実現できるので電流駆動能力の優れた薄膜トランジスタとなる。また、耐熱性が向上し、酸化物半導体薄膜層の低抵抗化を抑制できるので、リーク電流を抑えることができる。
The oxide semiconductor thin film layer 3 is stacked on the substrate 1 and the pair of source / drain electrodes 2.
The oxide semiconductor thin film layer 3 is disposed so as to form a channel between the pair of source / drain electrodes 2, and is formed of an oxide semiconductor containing zinc oxide as a main component. Here, the oxide semiconductor containing zinc oxide as a main component is doped with intrinsic zinc oxide, p-type dopants such as Li, Na, N, and C, and n-type dopants such as B, Al, Ga, and In. And zinc oxide doped with Mg, Be and the like.
The oxide semiconductor thin film layer 3 may be one in which zinc oxide as a main component has a (002) orientation, in other words, one having a high C-axis orientation. Due to the high C-axis orientation, a thin film transistor with excellent electron mobility can be provided.
Moreover, the thing in which the main component zinc oxide consists of (002) orientation and (101) orientation is also considered. In this case, the ratio I (002) / I (101) of the X-ray diffraction intensity I (002) generated by the (002) orientation to the X-ray diffraction intensity I (101) generated by the (101) orientation is 2 or less. preferable. By using such an oxide semiconductor thin film layer, the surface can be smoothed and the thickness of the gate insulating film can be reduced in a state where there is little influence such as a decrease in electron mobility caused by breaking the C-axis orientation. Therefore, a thin film transistor having excellent current driving capability is obtained. In addition, since heat resistance is improved and resistance reduction of the oxide semiconductor thin film layer can be suppressed, leakage current can be suppressed.

第一ゲート絶縁膜4は、酸化物半導体薄膜層3の上側表面のみを被覆するように形成されている。この第一ゲート絶縁膜4は、ゲート絶縁膜の一部として設けられ、酸化物半導体薄膜層3を製造工程でのレジスト剥離液から保護する保護膜としての役割をも果たすものである。第一ゲート絶縁膜4の厚みは、特に限定されないが、例えば、20〜100nm、好ましくは約50nmに形成される。
第二ゲート絶縁膜6は、一対のソース・ドレイン電極2、酸化物半導体薄膜層3側面及び第一ゲート絶縁膜4の表面全面を被覆するように積層されている。このように、第二ゲート絶縁膜6が積層されることにより、酸化物半導体薄膜層3表面を第一ゲート絶縁膜4にて、側面を第二ゲート絶縁膜6にて完全に被覆することができる。
第二ゲート絶縁膜6の厚みは、例えば、200〜400nmに形成され、好ましくは、約300nmに形成される。
The first gate insulating film 4 is formed so as to cover only the upper surface of the oxide semiconductor thin film layer 3. The first gate insulating film 4 is provided as a part of the gate insulating film, and also serves as a protective film for protecting the oxide semiconductor thin film layer 3 from a resist stripping solution in the manufacturing process. The thickness of the first gate insulating film 4 is not particularly limited, but is, for example, 20 to 100 nm, preferably about 50 nm.
The second gate insulating film 6 is laminated so as to cover the pair of source / drain electrodes 2, the side surfaces of the oxide semiconductor thin film layer 3, and the entire surface of the first gate insulating film 4. Thus, by laminating the second gate insulating film 6, the surface of the oxide semiconductor thin film layer 3 can be completely covered with the first gate insulating film 4 and the side surface can be completely covered with the second gate insulating film 6. it can.
The thickness of the second gate insulating film 6 is formed, for example, to 200 to 400 nm, and preferably about 300 nm.

第一ゲート絶縁膜4及び第二ゲート絶縁膜6は、酸化珪素(SiOx)膜、酸窒化珪素(SiON)膜、窒化珪素(SiNx)膜あるいは窒化珪素(SiNx)に酸素もしくは酸素を構成元素に含む化合物を用いて酸素をドーピングした膜により形成される。この第一ゲート絶縁膜4及び第二ゲート絶縁膜6としては、酸化珪素化合物(SiOx)や酸窒化珪素(SiON)に比較して誘電率の大きい、SiNxに酸素あるいは酸素を構成元素として含む化合物、例えばN2O、を用いて酸素をドーピングした膜が好ましく用いられる。
第一ゲート絶縁膜4及び第二ゲート絶縁膜6は、例えばプラズマ化学気相成長(PCVD)法により形成される。このとき、プラズマ化学気相成長(PCVD)法による成膜は酸化物半導体薄膜層の還元もしくは酸化亜鉛の成分の脱離が生じない基板温度である200℃以上400℃以下で実施することが望ましい。
The first gate insulating film 4 and the second gate insulating film 6 are composed of silicon oxide (SiOx) film, silicon oxynitride (SiON) film, silicon nitride (SiNx) film or silicon nitride (SiNx) with oxygen or oxygen as a constituent element. It is formed by a film doped with oxygen using a compound containing it. As the first gate insulating film 4 and the second gate insulating film 6, a compound having a dielectric constant larger than that of a silicon oxide compound (SiOx) or silicon oxynitride (SiON) and containing oxygen or oxygen as a constituent element in SiNx For example, a film doped with oxygen using N 2 O is preferably used.
The first gate insulating film 4 and the second gate insulating film 6 are formed by plasma chemical vapor deposition (PCVD), for example. At this time, it is desirable that the film formation by plasma enhanced chemical vapor deposition (PCVD) is performed at a substrate temperature of 200 ° C. or more and 400 ° C. or less that does not cause reduction of the oxide semiconductor thin film layer or desorption of zinc oxide components. .

一対のソース・ドレイン外部電極2aはそれぞれに対応するソース・ドレイン電極2とコンタクト部5aを介して接続される。   The pair of source / drain external electrodes 2a are connected to the corresponding source / drain electrodes 2 via contact portions 5a.

ゲート電極7は、第二ゲート絶縁膜6上に形成されている。このゲート電極7は、薄膜トランジスタに印加するゲート電圧により酸化物半導体薄膜層3中の電子密度を制御する役割を果たすものである。
ゲート電極7はCr、Tiに例示される金属膜からなる。
The gate electrode 7 is formed on the second gate insulating film 6. The gate electrode 7 serves to control the electron density in the oxide semiconductor thin film layer 3 by a gate voltage applied to the thin film transistor.
The gate electrode 7 is made of a metal film exemplified by Cr and Ti.

画素電極8は、液晶ディスプレイに用いる液晶に薄膜トランジスタを介して電圧を印加するために形成される。なお、図1では、省略されているが、画素電極8は第二ゲート絶縁膜6上をゲート電極7と逆方向に延出されている。
画素電極8は、酸化亜鉛を主成分とする酸化物半導体から形成されている。ここで、酸化亜鉛を主成分とする酸化物半導体とは、真性の酸化亜鉛も含まれるが、酸化亜鉛に対してドナーとなる不純物をドーピングしたものである方が好ましい。これにより、画素電極を低抵抗化することができ、電圧降下を抑制できるからである。
ドナーとなる不純物としては、ガリウムやアルミニウムなどが例示できる。
本発明において、画素電極8の酸化亜鉛の配向は酸化物半導体薄膜層の酸化亜鉛の配向と異なるものを使用する。
画素電極8は、主成分である酸化亜鉛が(100)配向と(101)配向からなるものを使用してもよい。この場合、(101)配向により生じるX線回折強度I(101)の(100)配向により生じるX線回折強度I(100)に対する比率I(101)/I(100)が0.5以上5以下であるものが好ましい。このような酸化亜鉛を画素電極に用いることで、微細加工性が向上し、近年の液晶ディスプレイの画素の高精細化に対応したものとすることができる。
The pixel electrode 8 is formed in order to apply a voltage to the liquid crystal used in the liquid crystal display via a thin film transistor. Although omitted in FIG. 1, the pixel electrode 8 extends on the second gate insulating film 6 in the opposite direction to the gate electrode 7.
The pixel electrode 8 is formed from an oxide semiconductor whose main component is zinc oxide. Here, the oxide semiconductor containing zinc oxide as a main component includes intrinsic zinc oxide, but it is preferable that zinc oxide is doped with an impurity serving as a donor. This is because the resistance of the pixel electrode can be reduced and the voltage drop can be suppressed.
Examples of the impurity serving as a donor include gallium and aluminum.
In the present invention, the zinc oxide orientation of the pixel electrode 8 is different from the zinc oxide orientation of the oxide semiconductor thin film layer.
The pixel electrode 8 may be made of zinc oxide, which is a main component, having (100) orientation and (101) orientation. In this case, the ratio I (101) / I (100) of the X-ray diffraction intensity I (101) generated by the (101) orientation to the X-ray diffraction intensity I (100) generated by the (100) orientation is 0.5 or more and 5 or less. Are preferred. By using such zinc oxide for the pixel electrode, the fine workability is improved, and it can be adapted to the recent high definition of the pixel of the liquid crystal display.

本発明の一実施例に係る薄膜トランジスタ(TFT)の製造方法について、図2に基づいて以下に説明する。   A method of manufacturing a thin film transistor (TFT) according to an embodiment of the present invention will be described below with reference to FIG.

まず、図2(1)に示される如く、ガラス基板1上全面にマグネトロンスパッタリング法等により、Ti、Cr等の金属薄膜を例えば100nmの厚みで形成した後、この薄膜に、フォトリソグラフィー法を用いることにより一対のソース・ドレイン電極2を形成する。   First, as shown in FIG. 2A, after a metal thin film such as Ti or Cr is formed to a thickness of, for example, 100 nm on the entire surface of the glass substrate 1 by a magnetron sputtering method or the like, a photolithography method is used for this thin film. Thereby, a pair of source / drain electrodes 2 is formed.

図2(2)に示される如く、前記ガラス基板1および一対のソース・ドレイン電極2上の全面に酸化物半導体薄膜層3として酸化亜鉛を主成分とする半導体薄膜、好適には真性酸化亜鉛(ZnO)を、例えば30〜100nm程度の膜厚でマグネトロンスパッタリング法にて形成する。   As shown in FIG. 2 (2), a semiconductor thin film mainly composed of zinc oxide as an oxide semiconductor thin film layer 3 is formed on the entire surface of the glass substrate 1 and the pair of source / drain electrodes 2, preferably intrinsic zinc oxide ( ZnO) is formed by a magnetron sputtering method with a film thickness of about 30 to 100 nm, for example.

本発明では、酸化亜鉛を主成分とする酸化物半導体薄膜3を成膜する工程において、マグネトロンスパッタリング法を用いて(002)方向に優先配向した薄膜を成膜することが考えられる。これにより、電子移動度の優れた薄膜トランジスタとなる。
また、本発明は同工程において、マグネトロンスパッタリングの成膜時に基板に高周波電力を印加することで酸化亜鉛を主成分とする半導体薄膜層の配向性を制御し、(002)配向と(101)配向からなるよう成膜することも考えられる。具体的には、酸化物ターゲットに印加する高周波電力(本実施例では13.56MHzの高周波電力を180Wで印加)に対して、基板側に高周波電力(本実施例では13.56MHzの高周波電力)を印加する。なお、ターゲットに印加する高周波電力を投入電力、基板側に印加する高周波電力をバイアス電力とする。
バイアス電力を、約1〜10W、好ましくは約1〜5Wとすることで、I(002)/I(101)が2以下の酸化物半導体薄膜層となる。このような酸化物半導体薄膜層を利用することで、酸化物半導体薄膜層表面の平滑化が図れ、ゲート絶縁膜の薄膜化が実現できる。そのため、電流駆動能力の優れた薄膜トランジスタとなる。また、耐熱性も向上し、酸化物半導体薄膜層の低抵抗化を抑制し、リーク電流を抑えることができる。なお、バイアス電力の下限は1Wに限定されるわけではなく、上記効果を有する電力であれば、1W未満の電力も当然含まれる。
上記したようなバイアス電力の印加による配向性の制御については、後述する実験例で図3を参照しつつ、詳細に説明する。
なお、酸化亜鉛の配向を制御する方法は、バイアス電力を印加する方法に限られず、他の成膜条件で制御することも可能である。
In the present invention, in the step of forming the oxide semiconductor thin film 3 containing zinc oxide as a main component, it is conceivable to form a thin film preferentially oriented in the (002) direction by using a magnetron sputtering method. Thereby, a thin film transistor having excellent electron mobility is obtained.
Further, in the same process, the present invention controls the orientation of the semiconductor thin film layer mainly composed of zinc oxide by applying high-frequency power to the substrate at the time of magnetron sputtering film formation, and (002) orientation and (101) orientation. It is also conceivable to form the film so as to consist of Specifically, the high frequency power applied to the oxide target (in this embodiment, 13.56 MHz high frequency power is applied at 180 W) is applied to the substrate side (high frequency power of 13.56 MHz in this embodiment). Apply. The high frequency power applied to the target is input power, and the high frequency power applied to the substrate side is bias power.
By setting the bias power to about 1 to 10 W, preferably about 1 to 5 W, an oxide semiconductor thin film layer having I (002) / I (101) of 2 or less is obtained. By using such an oxide semiconductor thin film layer, the surface of the oxide semiconductor thin film layer can be smoothed, and a thin gate insulating film can be realized. Therefore, the thin film transistor has excellent current driving capability. In addition, heat resistance can be improved, resistance reduction of the oxide semiconductor thin film layer can be suppressed, and leakage current can be suppressed. Note that the lower limit of the bias power is not limited to 1 W, and naturally power of less than 1 W is included as long as the power has the above effects.
The orientation control by applying the bias power as described above will be described in detail in an experimental example described later with reference to FIG.
Note that the method of controlling the orientation of zinc oxide is not limited to the method of applying bias power, and can be controlled by other film forming conditions.

図2(3)に示される如く、酸化物半導体薄膜層3上に低抵抗化されない手法および条件で第一ゲート絶縁膜4を形成する。
第一ゲート絶縁膜4の形成方法の一例として、プラズマ化学気相成長(PCVD)法でSiNxを20〜50nm厚で形成する方法が挙げられる。条件例としては、基板温度250℃でNH3とSiH4の混合ガスをNH3がSiH4の4倍の流量となるように調整して行うことが例示される。
As shown in FIG. 2 (3), the first gate insulating film 4 is formed on the oxide semiconductor thin film layer 3 by a technique and conditions that do not reduce the resistance.
An example of a method for forming the first gate insulating film 4 is a method of forming SiNx with a thickness of 20 to 50 nm by plasma enhanced chemical vapor deposition (PCVD). An example of the condition is that the mixed gas of NH 3 and SiH 4 is adjusted at a substrate temperature of 250 ° C. so that NH 3 has a flow rate four times that of SiH 4 .

図2(4)に示される如く、前記第一ゲート絶縁膜4上にフォトレジストをコーティングし、パターニングされたフォトレジスト4aを形成し、このフォトレジスト4aをマスクとして、前記第一ゲート絶縁膜4をSF6等のガスを用いてドライエッチングし、次いで0.2%HNO3溶液にて酸化物半導体薄膜層3に対しウェットエッチングを行う。 As shown in FIG. 2 (4), a photoresist is coated on the first gate insulating film 4 to form a patterned photoresist 4a. Using the photoresist 4a as a mask, the first gate insulating film 4 is formed. Is dry-etched using a gas such as SF 6 and then wet etching is performed on the oxide semiconductor thin film layer 3 with a 0.2% HNO 3 solution.

図2(5)は前記酸化物半導体薄膜層3のウェットエッチング後にフォトレジスト4aを除去した断面図を示しており、酸化物半導体薄膜層3と同一形状の第一ゲート絶縁膜4を有するTFT活性層領域が形成されている。第一ゲート絶縁膜4は、酸化物半導体薄膜層3との界面形成に加えて、活性領域をパターン形成する時の酸化物半導体薄膜層を保護する役目も同時に果たしている。すなわち、活性層パターニング後のフォトレジスト4aを剥離する場合に使用するレジスト剥離液が酸化物半導体薄膜層3表面に接すると、薄膜表面や結晶粒界をエッチングで荒らしてしまうが、第一ゲート絶縁膜4が酸化物半導体薄膜層3表面に存在することで、フォトリソグラフィー工程におけるレジスト剥離液といった各種薬液に対する保護膜としての機能を果たし、酸化物半導体薄膜層3の表面あれを防ぐことができる。   FIG. 2 (5) shows a cross-sectional view in which the photoresist 4 a is removed after wet etching of the oxide semiconductor thin film layer 3, and the TFT active having the first gate insulating film 4 having the same shape as the oxide semiconductor thin film layer 3. A layer region is formed. In addition to forming an interface with the oxide semiconductor thin film layer 3, the first gate insulating film 4 also plays a role of protecting the oxide semiconductor thin film layer when patterning the active region. That is, if the resist stripping solution used for stripping the photoresist 4a after patterning the active layer contacts the surface of the oxide semiconductor thin film layer 3, the surface of the thin film and the crystal grain boundary are roughened by etching, but the first gate insulation The presence of the film 4 on the surface of the oxide semiconductor thin film layer 3 serves as a protective film against various chemicals such as a resist stripping solution in a photolithography process, and can prevent surface roughness of the oxide semiconductor thin film layer 3.

TFT活性層領域のパターン形成後、図2(6)に示す如く、前記第一ゲート絶縁膜4および一対のソース・ドレイン電極2を被覆するように、前記基板1、一対のソース・ドレイン電極2、酸化物半導体薄膜層3、および第一ゲート絶縁膜4上全面に第二ゲート絶縁膜6を形成し、その後フォトリソグラフィー法を用いてソース・ドレイン電極2上にコンタクトホール5を開口する。この場合、第二ゲート絶縁膜6は第一ゲート絶縁膜4(界面制御型絶縁膜)と同様な条件で、プラズマ化学気相成長(PCVD)法を用いて形成することが望ましい。   After the patterning of the TFT active layer region, as shown in FIG. 2 (6), the substrate 1, the pair of source / drain electrodes 2 so as to cover the first gate insulating film 4 and the pair of source / drain electrodes 2 are covered. Then, a second gate insulating film 6 is formed on the entire surface of the oxide semiconductor thin film layer 3 and the first gate insulating film 4, and then a contact hole 5 is opened on the source / drain electrode 2 by using a photolithography method. In this case, it is desirable that the second gate insulating film 6 be formed using a plasma enhanced chemical vapor deposition (PCVD) method under the same conditions as the first gate insulating film 4 (interface control type insulating film).

その後、図2(7)に示す如く、前記第二ゲート絶縁膜6上にCr、Tiといった金属膜からなるゲート電極7を形成し、ゲート電極7と同一材料にて一対のソース・ドレイン外部電極2aをコンタクト部5aを介してそれぞれに対応するソース・ドレイン電極2と接続するよう形成する。   Thereafter, as shown in FIG. 2 (7), a gate electrode 7 made of a metal film such as Cr or Ti is formed on the second gate insulating film 6, and a pair of source / drain external electrodes are made of the same material as the gate electrode 7. 2a is formed so as to be connected to the corresponding source / drain electrode 2 through the contact portion 5a.

最後に、図(8)に示す如く、酸化亜鉛を主成分とする画素電極8を形成する。このとき、マグネトロンスパッタリング法を用い、酸化物半導体薄膜層3の形成と同様に、投入電力(本実施例では13.56MHzの高周波電力を180Wで印加)に対して、バイアス電力(本実施例では13.56MHzの高周波電力)を基板に印加する。このとき、バイアス電力の値が10Wすなわち投入電力に対するバイアス電力の比率が5%を超えると酸化物半導体薄膜の配向状態が変化し、バイアス電力比率5%以下で見られた(002)と(101)配向から(100)と(101)配向に変化した。バイアス電力の投入電力に対する比率を5%以上に設定することで、I(100)/I(101)が0.5以上5以下である酸化物半導体薄膜層が得られる。それにより、微細加工性に優れた画素電極が得られ、画素の高精細化が実現できる。但し、前記した投入電力に対するバイアス電力の比率である5%という値は、後述する実験例の条件下での値であり、装置の構成やバイアス電力の周波数などによって変わるものである。
また、画素電極8に酸化亜鉛に対してドナーとなる不純物をドーピングしてもよい。これにより、画素電極を低抵抗化することができ、電圧降下を抑制できる。
ドナーとなる不純物としては、ガリウムやアルミニウムなどが例示できる。
Finally, as shown in FIG. 8 (8), the pixel electrode 8 mainly composed of zinc oxide is formed. At this time, using the magnetron sputtering method, as in the formation of the oxide semiconductor thin film layer 3, the bias power (in this example, 13.56 MHz high frequency power is applied at 180 W) with respect to the input power (in this example, 13. Apply 56MHz high frequency power) to the substrate. At this time, when the value of the bias power is 10 W, that is, when the ratio of the bias power to the input power exceeds 5%, the orientation state of the oxide semiconductor thin film changes, and (002) and (101) were observed when the bias power ratio was 5% or less. ) Orientation changed to (100) and (101) orientation. By setting the ratio of bias power to input power to 5% or more, an oxide semiconductor thin film layer having I (100) / I (101) of 0.5 to 5 can be obtained. Thereby, a pixel electrode excellent in fine workability can be obtained, and high definition of the pixel can be realized. However, the value of 5%, which is the ratio of the bias power to the input power described above, is a value under the conditions of an experimental example described later, and changes depending on the configuration of the apparatus, the frequency of the bias power, and the like.
Further, the pixel electrode 8 may be doped with an impurity serving as a donor with respect to zinc oxide. Thereby, the resistance of the pixel electrode can be reduced, and the voltage drop can be suppressed.
Examples of the impurity serving as a donor include gallium and aluminum.

試験例Test example

以下、本発明に係る薄膜トランジスタアレイの酸化物半導体薄膜層及び画素電極を評価するための実験例を示すことにより、本発明の効果をより明確なものとする。なお、当該実験で使用する酸化亜鉛を主成分とする薄膜層(以下、被験体と称す)は、マグネトロンスパッタリング法を用いて、ターゲットに印加する13.56MHzの投入電力(180W)に対して、基板側に印加する13.56MHzのバイアス電力を変化させて成膜した。   Hereinafter, the effect of the present invention will be made clearer by showing experimental examples for evaluating the oxide semiconductor thin film layer and the pixel electrode of the thin film transistor array according to the present invention. In addition, the thin film layer (henceforth a test subject) which has the zinc oxide used as the main component in the said experiment is 13.56 MHz input power (180 W) applied to a target using a magnetron sputtering method, The film was formed by changing the bias power of 13.56 MHz applied to the substrate side.

図3は被験体の主成分である酸化亜鉛の成膜時に印加するバイアス電力を変化させてX線回折強度を測定した図である。具体的には、バイアス電力を0W,1W,2W,5W,10W,20W,40W,80Wと変化させ、被験体を成膜した。   FIG. 3 is a diagram in which the X-ray diffraction intensity is measured by changing the bias power applied during the formation of zinc oxide, which is the main component of the subject. Specifically, the subject was deposited by changing the bias power to 0 W, 1 W, 2 W, 5 W, 10 W, 20 W, 40 W, and 80 W.

バイアス電力を印加しなかった場合、(002)配向以外は検出できなかった。
バイアス電力を1W印加した場合、(002)配向が減少し、(101)配向が生じることが示された。1W以下の状態はバイアス電力の印加に用いた高周波電源の設定精度の関係で確認できなかったが、1W以下の微小なバイアス電力の印加でも同様の効果が得られるものと考えられる。
バイアス電力が1W以上10W未満の領域では、I(002)/I(101)が2以下の被験体となることが示された。このような被験体は表面の平滑化し、耐熱性も向上するので、酸化物半導体薄膜層として好適に利用できる。
また、バイアス電力の値が10Wすなわち投入電力に対するバイアス電力の比率が5%を超えると被験体の配向状態が変化し、バイアス電力比率5%以下で見られた(002)配向と(101)配向からなる状態から(100)配向と(101)配向からなる状態に変化し、I(100)/I(101)が0.5以上5以下である被験体となることが示された。このような被験体は、微細加工性が向上したものとなり、画素電極に好適に利用できる。
When no bias power was applied, it was not possible to detect other than (002) orientation.
It was shown that when (1) bias power was applied, (002) orientation decreased and (101) orientation occurred. The state of 1 W or less could not be confirmed due to the setting accuracy of the high frequency power source used for applying the bias power, but it is considered that the same effect can be obtained by applying a minute bias power of 1 W or less.
In the region where the bias power is 1 W or more and less than 10 W, it was shown that I (002) / I (101) is a subject having 2 or less. Since such a subject smoothes the surface and improves heat resistance, it can be suitably used as an oxide semiconductor thin film layer.
In addition, when the bias power value is 10 W, that is, when the ratio of the bias power to the input power exceeds 5%, the orientation state of the subject changes, and the (002) orientation and the (101) orientation observed when the bias power ratio is 5% or less. The state was changed from the state consisting of (100) orientation to the state consisting of (101) orientation, indicating that I (100) / I (101) was a test subject having a ratio of 0.5 or more and 5 or less. Such a subject has improved microfabrication and can be suitably used for a pixel electrode.

次いで、本発明に係る酸化物半導体薄膜層の表面平滑性について検証する。
図4(a)及び(b)は順にバイアス電力を0W,5W印加したときの酸化亜鉛薄膜断面の透過電子顕微鏡(TEM)像を示した写真である。
バイアス電力を0W印加したとき、つまりバイアス電力を印加しないときにはC軸(002)配向に起因すると見られる柱状の結晶構造が観察でき、表面の凹凸が激しい。
一方、バイアス電力を5W印加した断面TEM像からは、被験体がC軸配向性を残してはいるものの微結晶化して、表面が平滑化されていることが確認できる。このような表面平滑性に優れた被験体を酸化物半導体薄膜層としてTFTに用いた場合、ゲート絶縁膜の薄膜化が実現でき、電流駆動能力の優れた薄膜トランジスタとなる。
Next, the surface smoothness of the oxide semiconductor thin film layer according to the present invention will be verified.
FIGS. 4A and 4B are photographs showing transmission electron microscope (TEM) images of zinc oxide thin film sections when bias powers of 0 W and 5 W were sequentially applied.
When a bias power of 0 W is applied, that is, when no bias power is applied, a columnar crystal structure that can be attributed to the C-axis (002) orientation can be observed, and the surface irregularities are severe.
On the other hand, from the cross-sectional TEM image to which 5 W of bias power was applied, it can be confirmed that the subject was microcrystallized although the C-axis orientation remained, and the surface was smoothed. When such a subject having excellent surface smoothness is used for a TFT as an oxide semiconductor thin film layer, a thin gate insulating film can be realized, and a thin film transistor having excellent current driving capability can be obtained.

次いで、本発明に係る酸化物半導体薄膜層の耐熱性について検証する。
図5(a)及び(b)はバイアス電力を0W印加したときの被験体を用い、昇温脱離法(TDS)により酸化亜鉛の成分であるZnの脱離量の測定を行った結果を示した図である。また、図6(a)及び(b)はバイアス電力を5W印加したときの被験体を用い、同様にZnの脱離量の測定を行った結果を示した図である。また、図5及び6の(a)は質量数(m/e)=64及び66のZnの脱離量を、(b)は質量数(m/e)=67及び68のZnの脱離量を示している。
バイアス電力を0W印加したとき、つまりバイアス電力を印加しないときは、約200℃より高温で熱処理した場合、酸化亜鉛の成分であるZnの脱離が始まり、熱処理温度が300℃を超えるとZnの脱離が急激に増加した。これは、被験体が柱状構造からなるため、多くの結晶粒界を有し、熱的に不安定な状態にあるからである。
一方、バイアス電力を5W印加したときは、柱状の結晶構造が崩れ、高温で処理しても酸化亜鉛の成分の脱離量が少ないまま維持された。そのため、このような被験体を酸化物半導体薄膜層としてTFTに用いた場合、ゲート絶縁膜被膜時等の熱処理による酸化亜鉛の成分の脱離に起因する酸化物半導体薄膜層の低抵抗化を防ぐことができ、リーク電流が抑制することができる。
Next, the heat resistance of the oxide semiconductor thin film layer according to the present invention will be verified.
FIGS. 5 (a) and 5 (b) show the results of measuring the amount of desorption of Zn, which is a component of zinc oxide, by the temperature programmed desorption method (TDS) using a subject when 0 W of bias power was applied. FIG. FIGS. 6A and 6B are diagrams showing the results of measuring the amount of Zn desorbed in the same manner using a subject when 5 W of bias power was applied. FIGS. 5 and 6 show (a) the desorption amount of Zn with mass numbers (m / e) = 64 and 66, and (b) the desorption of Zn with mass numbers (m / e) = 67 and 68. Indicates the amount.
When bias power of 0 W is applied, that is, when bias power is not applied, when heat treatment is performed at a temperature higher than about 200 ° C., desorption of Zn, which is a component of zinc oxide, begins, and when the heat treatment temperature exceeds 300 ° C., Zn Desorption increased rapidly. This is because the subject has a columnar structure and thus has many crystal grain boundaries and is in a thermally unstable state.
On the other hand, when 5 W of bias power was applied, the columnar crystal structure collapsed and was maintained with a small amount of zinc oxide desorbed even when treated at a high temperature. Therefore, when such a subject is used for a TFT as an oxide semiconductor thin film layer, the resistance of the oxide semiconductor thin film layer is prevented from being reduced due to the detachment of the zinc oxide component by heat treatment such as when the gate insulating film is coated. And leakage current can be suppressed.

最後に、本発明に係る画素電極の微細加工性の効果を検証する。
図7(a)及び(b)は順にバイアス電力を0W,40W印加して形成した被験体(酸化亜鉛)をドライエッチングしたときの側壁部分の走査型電子顕微鏡(SEM)像を示した写真である。なお、ドライエッチングはCH4ガスにより行った。
バイアス電力を0W印加したとき、つまりバイアス電力を印加しないときは、ドライエッチングを行うと酸化亜鉛のパターン側壁部分に凹凸が生じる。これは、被験体がC軸(002)配向からなる、換言すると被験体の主成分である酸化亜鉛が柱状の結晶構造をとるため、その結晶粒に沿ってエッチングが進むからである。
一方、バイアス電力を40W印加したときは、柱状の結晶構造が崩れ、凹凸が減少し、側壁部分が直線状に加工される。このように、バイアス電力を印加することによって、微細加工性が向上する。そのため、このような被験体を画素電極に用いると、画素の高精細化が図れる。
Finally, the effect of the fine workability of the pixel electrode according to the present invention will be verified.
FIGS. 7 (a) and 7 (b) are photographs showing scanning electron microscope (SEM) images of the side walls when a subject (zinc oxide) formed by applying bias power of 0 W and 40 W in order is dry-etched. is there. The dry etching was performed with CH 4 gas.
When a bias power of 0 W is applied, that is, when no bias power is applied, unevenness is generated on the side wall portion of the zinc oxide pattern when dry etching is performed. This is because the subject has a C-axis (002) orientation, in other words, zinc oxide, which is the main component of the subject, has a columnar crystal structure, so that etching proceeds along the crystal grains.
On the other hand, when a bias power of 40 W is applied, the columnar crystal structure collapses, the irregularities are reduced, and the side wall portion is processed into a straight line. Thus, the fine workability is improved by applying the bias power. Therefore, when such a subject is used for a pixel electrode, high definition of the pixel can be achieved.

以上説明した如く、本発明に係る薄膜トランジスタアレイは、優れた性能を有するものであり、液晶ディスプレイ等に好適に利用可能である。   As described above, the thin film transistor array according to the present invention has excellent performance and can be suitably used for a liquid crystal display or the like.

本発明における薄膜トランジスタ(TFT)の一実施例の形態を示す断面図である。It is sectional drawing which shows the form of one Example of the thin-film transistor (TFT) in this invention. 本発明における薄膜トランジスタ(TFT)の一実施例の製法の一形態を経時的に示す断面図であり、下記(1)乃至(7)よりなる。(1)基板上にソース・ドレインを成形した構造の断面図(2)酸化物半導体薄膜層を被膜した構造の断面図(3)第一ゲート絶縁膜を被覆した構造の断面図(4)フォトレジストをコーティングした構造の断面図(5)酸化物半導体薄膜及び第一ゲート絶縁膜をパターニングした構造の断面図(6)第二ゲート絶縁膜及びコンタクトホールを形成した構造の断面図(7)ゲート電極、コンタクト部、ソース・ドレイン外部電極を形成した構造の断面図(8)画素電極を形成した断面図It is sectional drawing which shows one form of the manufacturing method of one Example of the thin-film transistor (TFT) in this invention with time, and consists of following (1) thru | or (7). (1) Cross-sectional view of structure in which source / drain is formed on substrate (2) Cross-sectional view of structure in which oxide semiconductor thin film layer is coated (3) Cross-sectional view of structure in which first gate insulating film is covered (4) Photo Cross-sectional view of structure coated with resist (5) Cross-sectional view of structure patterned oxide semiconductor thin film and first gate insulating film (6) Cross-sectional view of structure formed with second gate insulating film and contact hole (7) Gate Sectional view of structure in which electrode, contact portion, source / drain external electrode are formed (8) Sectional view in which pixel electrode is formed バイアス電力を0W,1W,2W,5W,10W,20W,40W,80W印加したときのX線回折の結果を示した図である。It is the figure which showed the result of the X-ray diffraction when bias electric power is applied 0W, 1W, 2W, 5W, 10W, 20W, 40W, 80W. (a)バイアス電力を0W印加したときの被験体の断面TEM像を示した写真である。(b)バイアス電力を5W印加したときの被験体の断面TEM像を示した写真である。(A) A photograph showing a cross-sectional TEM image of a subject when 0 W of bias power was applied. (B) A photograph showing a cross-sectional TEM image of a subject when 5 W of bias power was applied. (a)バイアス電力を0W印加した被験体を用い、昇温脱離法(TDS)により質量数(m/e)=64及び66のZnの脱離量の測定結果を示した図である。(b)バイアス電力を0W印加した被験体を用い、昇温脱離法(TDS)により質量数(m/e)=67及び68のZnの脱離量の測定結果を示した図である。(A) It is the figure which showed the measurement result of the desorption amount of Zn of mass number (m / e) = 64 and 66 by the temperature-programmed desorption method (TDS) using the test object which applied 0 W of bias electric power. (B) It is the figure which showed the measurement result of the desorption amount of Zn of mass number (m / e) = 67 and 68 by the temperature-programmed desorption method (TDS) using the test subject to which 0 W of bias power was applied. (a)バイアス電力を5W印加した被験体を用い、昇温脱離法(TDS)により質量数(m/e)=64及び66のZnの脱離量の測定結果を示した図である。(b)バイアス電力を5W印加した被験体を用い、昇温脱離法(TDS)により質量数(m/e)=67及び68のZnの脱離量の測定結果を示した図である。(A) It is the figure which showed the measurement result of the desorption amount of Zn of mass number (m / e) = 64 and 66 by the temperature-programmed desorption method (TDS) using the test subject to which 5 W of bias power was applied. (B) It is the figure which showed the measurement result of the desorption amount of Zn of mass number (m / e) = 67 and 68 by the temperature-programmed desorption method (TDS) using the test subject to which 5 W of bias power was applied. (a)バイアス電力を0W印加した被験体をドライエッチングしたときの側壁部分の走査型電子顕微鏡(SEM)像を示した写真である。(b)バイアス電力を40W印加した被験体をドライエッチングしたときの側壁部分の走査型電子顕微鏡(SEM)像を示した写真である。(A) It is the photograph which showed the scanning electron microscope (SEM) image of the side wall part when the test subject to which 0 W of bias power was applied was dry-etched. (B) It is the photograph which showed the scanning electron microscope (SEM) image of the side wall part when the test subject to which 40 W of bias power was applied was dry-etched.

符号の説明Explanation of symbols

1 基板
2 ソース・ドレイン電極
3 酸化物半導体薄膜層
4 第一ゲート絶縁膜
6 第二ゲート絶縁膜
7 ゲート電極
100 薄膜トランジスタ



DESCRIPTION OF SYMBOLS 1 Substrate 2 Source / drain electrode 3 Oxide semiconductor thin film layer 4 First gate insulating film 6 Second gate insulating film 7 Gate electrode 100 Thin film transistor



Claims (7)

基板上にチャネルとして形成される酸化亜鉛を主成分とする酸化物半導体薄膜層と、酸化亜鉛を主成分とする画素電極を少なくとも有し、前記酸化物半導体薄膜層の酸化亜鉛の配向と前記画素電極の酸化亜鉛の配向が異なることを特徴とする薄膜トランジスタアレイ。 An oxide semiconductor thin film layer mainly composed of zinc oxide formed as a channel on a substrate and a pixel electrode mainly composed of zinc oxide, and an orientation of zinc oxide in the oxide semiconductor thin film layer and the pixel A thin film transistor array characterized in that the orientation of zinc oxide of electrodes is different. 前記画素電極の主成分である酸化亜鉛が(100)配向と(101)配向からなることを特徴とする請求項1記載の薄膜トランジスタアレイ。 2. The thin film transistor array according to claim 1, wherein zinc oxide which is a main component of the pixel electrode has (100) orientation and (101) orientation. 前記画素電極が酸化亜鉛に対してドナーとなる不純物がドーピングされていることを特徴とする請求項1又は2記載の薄膜トランジスタアレイ。 3. The thin film transistor array according to claim 1, wherein the pixel electrode is doped with an impurity serving as a donor for zinc oxide. 前記酸化物半導体薄膜層の主成分である酸化亜鉛が(002)配向からなることを特徴とする請求項1乃至3いずれか記載の薄膜トランジスタアレイ。 4. The thin film transistor array according to claim 1, wherein zinc oxide which is a main component of the oxide semiconductor thin film layer has a (002) orientation. 前記酸化物半導体薄膜層の主成分である酸化亜鉛が(002)配向と(101)配向からなることを特徴とする請求項1乃至3いずれか記載の薄膜トランジスタアレイ。 4. The thin film transistor array according to claim 1, wherein zinc oxide, which is a main component of the oxide semiconductor thin film layer, has a (002) orientation and a (101) orientation. 5. 基板上に酸化亜鉛を主成分とする酸化物ターゲットを用いて酸化物半導体薄膜層をチャネルとして形成する工程と、該酸化物半導体薄膜層の上表面及び側面を被覆してゲート絶縁膜を形成する工程と、該ゲート絶縁膜の上にゲート電極を積載する工程と、酸化亜鉛を主成分とする酸化物ターゲットを用いて画素電極を形成する工程を有する薄膜トランジスタアレイの製法であって、前記画素電極、或いは該画素電極と前記酸化物半導体薄膜層を成膜する際、前記基板に高周波電力を印加しながら行うことで、該画素電極と該酸化物半導体薄膜層の主成分である酸化亜鉛の配向を制御し、異なるものとすることを特徴とする薄膜トランジスタアレイの製法。 A step of forming an oxide semiconductor thin film layer as a channel using an oxide target containing zinc oxide as a main component on a substrate, and forming a gate insulating film covering the upper surface and side surfaces of the oxide semiconductor thin film layer A method of manufacturing a thin film transistor array, comprising: a step of stacking a gate electrode on the gate insulating film; and a step of forming a pixel electrode using an oxide target composed mainly of zinc oxide. Alternatively, when forming the pixel electrode and the oxide semiconductor thin film layer while applying high frequency power to the substrate, the orientation of zinc oxide that is a main component of the pixel electrode and the oxide semiconductor thin film layer is performed. A method of manufacturing a thin film transistor array, characterized in that the control is different. 前記画素電極の成膜、或いは該画素電極と前記酸化物半導体薄膜層の成膜をマグネトロンスパッタリング法を用いて行い、前記基板への高周波電力の印加を基板ステージを介して行うことを特徴とする請求項6記載の薄膜トランジスタアレイの製法。
The pixel electrode is formed, or the pixel electrode and the oxide semiconductor thin film layer are formed using a magnetron sputtering method, and high-frequency power is applied to the substrate through a substrate stage. A method for producing a thin film transistor array according to claim 6.
JP2006038429A 2006-02-15 2006-02-15 Thin film transistor array and manufacturing method thereof Expired - Fee Related JP5015473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006038429A JP5015473B2 (en) 2006-02-15 2006-02-15 Thin film transistor array and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006038429A JP5015473B2 (en) 2006-02-15 2006-02-15 Thin film transistor array and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007220820A true JP2007220820A (en) 2007-08-30
JP5015473B2 JP5015473B2 (en) 2012-08-29

Family

ID=38497785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006038429A Expired - Fee Related JP5015473B2 (en) 2006-02-15 2006-02-15 Thin film transistor array and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5015473B2 (en)

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123748A (en) * 2008-11-19 2010-06-03 Toshiba Corp Thin-film transistor, method for manufacturing the same, display device, and method for manufacturing the same
JP2011100997A (en) * 2009-10-08 2011-05-19 Semiconductor Energy Lab Co Ltd Semiconductor device, display device, and electronic appliance
JP2011124557A (en) * 2009-11-13 2011-06-23 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
JP2011124556A (en) * 2009-11-13 2011-06-23 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method thereof
JP2011135067A (en) * 2009-11-28 2011-07-07 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
JP2011142314A (en) * 2009-12-11 2011-07-21 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2011141543A (en) * 2009-12-11 2011-07-21 Semiconductor Energy Lab Co Ltd Semiconductor device and electronic equipment
JP2011146724A (en) * 2007-09-28 2011-07-28 Canon Inc Thin film transistor, method for manufacturing the same, and display apparatus using the thin film transistor
JP2012079399A (en) * 2010-09-10 2012-04-19 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2012084853A (en) * 2010-09-13 2012-04-26 Semiconductor Energy Lab Co Ltd Semiconductor device manufacturing method
CN102484139A (en) * 2009-10-08 2012-05-30 株式会社半导体能源研究所 Oxide semiconductor layer and semiconductor device
CN102498553A (en) * 2009-09-16 2012-06-13 株式会社半导体能源研究所 Transistor and display device
KR20120075412A (en) * 2010-12-28 2012-07-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
US8232551B2 (en) 2008-07-14 2012-07-31 Samsung Electronics Co., Ltd. Channel layers and semiconductor devices including the same
KR20120090781A (en) * 2011-01-12 2012-08-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
JP2012160718A (en) * 2011-01-14 2012-08-23 Semiconductor Energy Lab Co Ltd Semiconductor storage device
JP2012235107A (en) * 2011-04-22 2012-11-29 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method for the same
JP2012256814A (en) * 2010-08-04 2012-12-27 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2012256009A (en) * 2010-08-27 2012-12-27 Semiconductor Energy Lab Co Ltd Input-output device
JP2012256815A (en) * 2010-08-04 2012-12-27 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2013101404A (en) * 2010-07-01 2013-05-23 Semiconductor Energy Lab Co Ltd Liquid crystal display device
US8492758B2 (en) 2009-09-24 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
JP2013236089A (en) * 2013-06-11 2013-11-21 Toshiba Corp Display device and manufacturing method of the same
JP2013235277A (en) * 2013-06-11 2013-11-21 Toshiba Corp Display device
KR20130140663A (en) * 2010-12-28 2013-12-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
US8669556B2 (en) 2010-12-03 2014-03-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101396015B1 (en) 2009-11-28 2014-05-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR20140061341A (en) * 2011-01-12 2014-05-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing method of semiconductor device
US8845867B2 (en) 2008-12-09 2014-09-30 Tdk Corporation Method for manufacturing magnetoresistance effect element using simultaneous sputtering of Zn and ZnO
KR101470303B1 (en) * 2009-12-08 2014-12-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP2015046616A (en) * 2009-11-20 2015-03-12 株式会社半導体エネルギー研究所 Semiconductor device
JP2015064583A (en) * 2010-01-20 2015-04-09 株式会社半導体エネルギー研究所 Display device
US9054134B2 (en) 2009-12-28 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9093544B2 (en) 2009-11-06 2015-07-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2015146424A (en) * 2009-12-18 2015-08-13 株式会社半導体エネルギー研究所 semiconductor device
JP2015164198A (en) * 2009-11-06 2015-09-10 株式会社半導体エネルギー研究所 semiconductor device
US9218966B2 (en) 2011-10-14 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
JP2016042590A (en) * 2009-12-25 2016-03-31 株式会社半導体エネルギー研究所 Semiconductor device
JP2016042597A (en) * 2010-10-20 2016-03-31 株式会社半導体エネルギー研究所 Semiconductor device
US9349791B2 (en) 2009-10-09 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor channel
JP2016095520A (en) * 2011-05-05 2016-05-26 株式会社半導体エネルギー研究所 Display device
JP2016116230A (en) * 2010-01-20 2016-06-23 株式会社半導体エネルギー研究所 Signal processing circuit
JP2016129237A (en) * 2010-01-15 2016-07-14 株式会社半導体エネルギー研究所 Semiconductor device
JP2016167616A (en) * 2010-09-08 2016-09-15 株式会社半導体エネルギー研究所 Semiconductor device
JP2016181005A (en) * 2010-01-20 2016-10-13 株式会社半導体エネルギー研究所 Display device
JP2017034267A (en) * 2010-12-28 2017-02-09 株式会社半導体エネルギー研究所 Semiconductor device and semiconductor device manufacturing method
US9660095B2 (en) 2011-04-22 2017-05-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9680028B2 (en) 2011-10-14 2017-06-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9685447B2 (en) 2009-10-30 2017-06-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor including oxide semiconductor
US9735284B2 (en) 2009-12-04 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor
US9741860B2 (en) 2011-09-29 2017-08-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2017152737A (en) * 2011-01-26 2017-08-31 株式会社半導体エネルギー研究所 Signal processing circuit
KR101777624B1 (en) * 2009-12-25 2017-09-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP2017194688A (en) * 2010-07-02 2017-10-26 株式会社半導体エネルギー研究所 Liquid crystal display device
KR20180042832A (en) * 2010-11-05 2018-04-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
US9991288B2 (en) 2010-02-05 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10013087B2 (en) 2010-04-28 2018-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device and driving method the same
KR20180075453A (en) * 2010-03-19 2018-07-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP2018174344A (en) * 2009-12-04 2018-11-08 株式会社半導体エネルギー研究所 Display device
JP2018182337A (en) * 2010-02-05 2018-11-15 株式会社半導体エネルギー研究所 Semiconductor device
JP2018182332A (en) * 2009-12-11 2018-11-15 株式会社半導体エネルギー研究所 Semiconductor device
JP2018201047A (en) * 2012-05-10 2018-12-20 株式会社半導体エネルギー研究所 Semiconductor device
KR20190009841A (en) * 2009-12-04 2019-01-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
US10373983B2 (en) 2016-08-03 2019-08-06 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
JP2019153820A (en) * 2011-03-11 2019-09-12 株式会社半導体エネルギー研究所 Semiconductor device
KR20190133654A (en) * 2011-01-20 2019-12-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor element and semiconductor device
KR20200023347A (en) * 2011-08-05 2020-03-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP2020061581A (en) * 2010-08-27 2020-04-16 株式会社半導体エネルギー研究所 Semiconductor device
CN112242406A (en) * 2020-10-09 2021-01-19 Tcl华星光电技术有限公司 Array substrate, manufacturing method thereof and display device
JP2022024159A (en) * 2012-05-10 2022-02-08 株式会社半導体エネルギー研究所 Semiconductor device
JP7514340B2 (en) 2009-11-27 2024-07-10 株式会社半導体エネルギー研究所 Semiconductor Device
US12040042B2 (en) 2010-09-14 2024-07-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including transistor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000137342A (en) * 1998-10-30 2000-05-16 Tohoku Ricoh Co Ltd Photoreceptor, electrophotographic device and photoreceptor container
JP2000277534A (en) * 1999-03-25 2000-10-06 Japan Science & Technology Corp Semiconductor device
WO2003098699A1 (en) * 2002-05-22 2003-11-27 Sharp Kabushiki Kaisha Semiconductor device and display comprising same
JP2004319673A (en) * 2003-04-15 2004-11-11 Sharp Corp Semiconductor device and its manufacturing method
JP2005302808A (en) * 2004-04-07 2005-10-27 Sharp Corp Manufacturing method of thin film transistor array substrate
JP2006005116A (en) * 2004-06-17 2006-01-05 Casio Comput Co Ltd Film-forming method, semiconductor film, and multilayer insulation film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000137342A (en) * 1998-10-30 2000-05-16 Tohoku Ricoh Co Ltd Photoreceptor, electrophotographic device and photoreceptor container
JP2000277534A (en) * 1999-03-25 2000-10-06 Japan Science & Technology Corp Semiconductor device
WO2003098699A1 (en) * 2002-05-22 2003-11-27 Sharp Kabushiki Kaisha Semiconductor device and display comprising same
JP2004319673A (en) * 2003-04-15 2004-11-11 Sharp Corp Semiconductor device and its manufacturing method
JP2005302808A (en) * 2004-04-07 2005-10-27 Sharp Corp Manufacturing method of thin film transistor array substrate
JP2006005116A (en) * 2004-06-17 2006-01-05 Casio Comput Co Ltd Film-forming method, semiconductor film, and multilayer insulation film

Cited By (251)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146724A (en) * 2007-09-28 2011-07-28 Canon Inc Thin film transistor, method for manufacturing the same, and display apparatus using the thin film transistor
US8232551B2 (en) 2008-07-14 2012-07-31 Samsung Electronics Co., Ltd. Channel layers and semiconductor devices including the same
US8679904B2 (en) 2008-11-19 2014-03-25 Kabushiki Kaisha Toshiba Method for manufacturing a thin film transistor including a channel protecting layer
US8525182B2 (en) 2008-11-19 2013-09-03 Kabushiki Kaisha Toshiba Thin film transistor, method for manufacturing same, display device, and method for manufacturing same
US8895376B2 (en) 2008-11-19 2014-11-25 Kabushiki Kaisha Toshiba Thin film transistor, method for manufacturing same, display device, and method for manufacturing same
JP2010123748A (en) * 2008-11-19 2010-06-03 Toshiba Corp Thin-film transistor, method for manufacturing the same, display device, and method for manufacturing the same
US9087746B2 (en) 2008-11-19 2015-07-21 Kabushiki Kaisha Toshiba Thin film transistor, method for manufacturing same, display device, and method for manufacturing same
US8845867B2 (en) 2008-12-09 2014-09-30 Tdk Corporation Method for manufacturing magnetoresistance effect element using simultaneous sputtering of Zn and ZnO
KR20180133542A (en) * 2009-09-16 2018-12-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Transistor
KR102111264B1 (en) * 2009-09-16 2020-05-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Transistor
CN102498553A (en) * 2009-09-16 2012-06-13 株式会社半导体能源研究所 Transistor and display device
US9935202B2 (en) 2009-09-16 2018-04-03 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device comprising oxide semiconductor layer
KR101823852B1 (en) * 2009-09-16 2018-03-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Transistor and display device
KR101928721B1 (en) * 2009-09-16 2018-12-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP2012253372A (en) * 2009-09-16 2012-12-20 Semiconductor Energy Lab Co Ltd Oxide semiconductor layer
US8492758B2 (en) 2009-09-24 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US9214563B2 (en) 2009-09-24 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US10418491B2 (en) 2009-09-24 2019-09-17 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US9318617B2 (en) 2009-09-24 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US9853167B2 (en) 2009-09-24 2017-12-26 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US20130062601A1 (en) * 2009-10-08 2013-03-14 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor layer and semiconductor device
JP7329581B2 (en) 2009-10-08 2023-08-18 株式会社半導体エネルギー研究所 semiconductor equipment
JP2018037685A (en) * 2009-10-08 2018-03-08 株式会社半導体エネルギー研究所 Semiconductor device
US10115831B2 (en) 2009-10-08 2018-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide semiconductor layer comprising a nanocrystal
KR101980505B1 (en) 2009-10-08 2019-05-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor layer, semiconductor device and manufacturing method thereof
KR20180063355A (en) * 2009-10-08 2018-06-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor layer, semiconductor device and manufacturing method thereof
CN102484139A (en) * 2009-10-08 2012-05-30 株式会社半导体能源研究所 Oxide semiconductor layer and semiconductor device
US9306072B2 (en) * 2009-10-08 2016-04-05 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor layer and semiconductor device
US9406808B2 (en) 2009-10-08 2016-08-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and electronic appliance
KR101877149B1 (en) * 2009-10-08 2018-07-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor layer, semiconductor device and manufacturing method thereof
KR101376461B1 (en) * 2009-10-08 2014-03-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor layer and semiconductor device
JP2011100997A (en) * 2009-10-08 2011-05-19 Semiconductor Energy Lab Co Ltd Semiconductor device, display device, and electronic appliance
JP2022019923A (en) * 2009-10-08 2022-01-27 株式会社半導体エネルギー研究所 Semiconductor device
US9941413B2 (en) 2009-10-09 2018-04-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having different types of thin film transistors
US9349791B2 (en) 2009-10-09 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor channel
US10510757B2 (en) 2009-10-30 2019-12-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including storage element
US10811417B2 (en) 2009-10-30 2020-10-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11322498B2 (en) 2009-10-30 2022-05-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11963374B2 (en) 2009-10-30 2024-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9685447B2 (en) 2009-10-30 2017-06-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor including oxide semiconductor
KR101752518B1 (en) * 2009-10-30 2017-06-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101788521B1 (en) 2009-10-30 2017-10-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US20210288079A1 (en) 2009-11-06 2021-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2015164198A (en) * 2009-11-06 2015-09-10 株式会社半導体エネルギー研究所 semiconductor device
JP2018101788A (en) * 2009-11-06 2018-06-28 株式会社半導体エネルギー研究所 Semiconductor device
US10249647B2 (en) 2009-11-06 2019-04-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device comprising oxide semiconductor layer
US12080720B2 (en) 2009-11-06 2024-09-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US11107840B2 (en) 2009-11-06 2021-08-31 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device comprising an oxide semiconductor
US10868046B2 (en) 2009-11-06 2020-12-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device applying an oxide semiconductor
US11107838B2 (en) 2009-11-06 2021-08-31 Semiconductor Energy Laboratory Co., Ltd. Transistor comprising an oxide semiconductor
US9093544B2 (en) 2009-11-06 2015-07-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US11776968B2 (en) 2009-11-06 2023-10-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor layer
US10056494B2 (en) 2009-11-13 2018-08-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10516055B2 (en) 2009-11-13 2019-12-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10944010B2 (en) 2009-11-13 2021-03-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2011124557A (en) * 2009-11-13 2011-06-23 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
US11955557B2 (en) 2009-11-13 2024-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2013077858A (en) * 2009-11-13 2013-04-25 Semiconductor Energy Lab Co Ltd Semiconductor device
US9219162B2 (en) 2009-11-13 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9257449B2 (en) 2009-11-13 2016-02-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8742544B2 (en) 2009-11-13 2014-06-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US11456385B2 (en) 2009-11-13 2022-09-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2011124556A (en) * 2009-11-13 2011-06-23 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method thereof
US9741867B2 (en) 2009-11-20 2017-08-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10121904B2 (en) 2009-11-20 2018-11-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2016058750A (en) * 2009-11-20 2016-04-21 株式会社半導体エネルギー研究所 Semiconductor device
JP2015046616A (en) * 2009-11-20 2015-03-12 株式会社半導体エネルギー研究所 Semiconductor device
US9373643B2 (en) 2009-11-20 2016-06-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP7514340B2 (en) 2009-11-27 2024-07-10 株式会社半導体エネルギー研究所 Semiconductor Device
US8779420B2 (en) 2009-11-28 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US12080802B2 (en) 2009-11-28 2024-09-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising silicon and oxide semiconductor in channel formation region
US9368640B2 (en) 2009-11-28 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Transistor with stacked oxide semiconductor films
US10608118B2 (en) 2009-11-28 2020-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2011135067A (en) * 2009-11-28 2011-07-07 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
US11710795B2 (en) 2009-11-28 2023-07-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor with c-axis-aligned crystals
KR101396015B1 (en) 2009-11-28 2014-05-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US10263120B2 (en) 2009-11-28 2019-04-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device and method for manufacturing liquid crystal display panel
KR102089200B1 (en) * 2009-11-28 2020-03-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
KR20180099934A (en) * 2009-11-28 2018-09-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
KR101895080B1 (en) * 2009-11-28 2018-10-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
US11133419B2 (en) 2009-11-28 2021-09-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8748881B2 (en) 2009-11-28 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2019071493A (en) * 2009-11-28 2019-05-09 株式会社半導体エネルギー研究所 Transistor
US9887298B2 (en) 2009-11-28 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9214520B2 (en) 2009-11-28 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11456187B2 (en) 2009-12-04 2022-09-27 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor-device
US10861983B2 (en) 2009-12-04 2020-12-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor layer containing a c-axis aligned crystal
KR20190009841A (en) * 2009-12-04 2019-01-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
US10014415B2 (en) 2009-12-04 2018-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device has an oxide semiconductor layer containing a C-axis aligned crystal
JP2019186564A (en) * 2009-12-04 2019-10-24 株式会社半導体エネルギー研究所 Display device
US11342464B2 (en) 2009-12-04 2022-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising first and second insulating layer each has a tapered shape
US10490420B2 (en) 2009-12-04 2019-11-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9735284B2 (en) 2009-12-04 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor
JP7362811B2 (en) 2009-12-04 2023-10-17 株式会社半導体エネルギー研究所 display device
JP2018174344A (en) * 2009-12-04 2018-11-08 株式会社半導体エネルギー研究所 Display device
US11728437B2 (en) 2009-12-04 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor layer containing a c-axis aligned crystal
KR102117506B1 (en) * 2009-12-04 2020-06-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
US10714358B2 (en) 2009-12-04 2020-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10505049B2 (en) 2009-12-04 2019-12-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device has an oxide semiconductor layer containing a c-axis aligned crystal
US10840268B2 (en) 2009-12-04 2020-11-17 Semiconductor Energy Laboratories Co., Ltd. Display device and electronic device including the same
US11728349B2 (en) 2009-12-04 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the same
US11923204B2 (en) 2009-12-04 2024-03-05 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device comprising oxide semiconductor
KR101470303B1 (en) * 2009-12-08 2014-12-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9040989B2 (en) 2009-12-08 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10854641B2 (en) 2009-12-11 2020-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US9508742B2 (en) 2009-12-11 2016-11-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having switching transistor that includes oxide semiconductor material
US9893204B2 (en) 2009-12-11 2018-02-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having transistor including two oxide semiconductor layers having different lattice constants
US8890146B2 (en) 2009-12-11 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US8901559B2 (en) 2009-12-11 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having inverter circuit with terminal electrically connected to transistor that includes oxide semiconductor material
JP2018182332A (en) * 2009-12-11 2018-11-15 株式会社半導体エネルギー研究所 Semiconductor device
US10382016B2 (en) 2009-12-11 2019-08-13 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile latch circuit and logic circuit, and semiconductor device using the same
US11961843B2 (en) 2009-12-11 2024-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
JP2011141543A (en) * 2009-12-11 2011-07-21 Semiconductor Energy Lab Co Ltd Semiconductor device and electronic equipment
TWI578444B (en) * 2009-12-11 2017-04-11 半導體能源研究所股份有限公司 Semiconductor device
JP2011142314A (en) * 2009-12-11 2011-07-21 Semiconductor Energy Lab Co Ltd Semiconductor device
US9209251B2 (en) 2009-12-11 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having switching transistor that includes oxide semiconductor material
US10002888B2 (en) 2009-12-11 2018-06-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US9735180B2 (en) 2009-12-11 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US9349757B2 (en) 2009-12-11 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US10312267B2 (en) 2009-12-11 2019-06-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
JP2022040264A (en) * 2009-12-11 2022-03-10 株式会社半導体エネルギー研究所 Semiconductor device
US9171868B2 (en) 2009-12-11 2015-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US10600818B2 (en) 2009-12-11 2020-03-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
JP2015146424A (en) * 2009-12-18 2015-08-13 株式会社半導体エネルギー研究所 semiconductor device
US9692421B2 (en) 2009-12-18 2017-06-27 Semiconductor Energy Laboratory Co., Ltd. Non-volatile latch circuit and logic circuit, and semiconductor device using the same
US9991265B2 (en) 2009-12-25 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2016042590A (en) * 2009-12-25 2016-03-31 株式会社半導体エネルギー研究所 Semiconductor device
US11456296B2 (en) 2009-12-25 2022-09-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10553589B2 (en) 2009-12-25 2020-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10083996B2 (en) 2009-12-25 2018-09-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20170107097A (en) * 2009-12-25 2017-09-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101870119B1 (en) * 2009-12-25 2018-06-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101780218B1 (en) * 2009-12-25 2017-09-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101777624B1 (en) * 2009-12-25 2017-09-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101866734B1 (en) * 2009-12-25 2018-06-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US11825665B2 (en) 2009-12-25 2023-11-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11676975B2 (en) 2009-12-25 2023-06-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9859401B2 (en) 2009-12-28 2018-01-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9054134B2 (en) 2009-12-28 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10141425B2 (en) 2009-12-28 2018-11-27 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2016129237A (en) * 2010-01-15 2016-07-14 株式会社半導体エネルギー研究所 Semiconductor device
JP2016116230A (en) * 2010-01-20 2016-06-23 株式会社半導体エネルギー研究所 Signal processing circuit
US11081072B2 (en) 2010-01-20 2021-08-03 Semiconductor Energy Laboratory Co., Ltd. Display device
US10580373B2 (en) 2010-01-20 2020-03-03 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2016105182A (en) * 2010-01-20 2016-06-09 株式会社半導体エネルギー研究所 Display device
US11790866B1 (en) 2010-01-20 2023-10-17 Semiconductor Energy Laboratory Co., Ltd. Display device
US11462186B2 (en) 2010-01-20 2022-10-04 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2020003803A (en) * 2010-01-20 2020-01-09 株式会社半導体エネルギー研究所 Liquid crystal display
JP2016181005A (en) * 2010-01-20 2016-10-13 株式会社半導体エネルギー研究所 Display device
US9443482B2 (en) 2010-01-20 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Display device
US10089946B2 (en) 2010-01-20 2018-10-02 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2015064583A (en) * 2010-01-20 2015-04-09 株式会社半導体エネルギー研究所 Display device
JP2020115597A (en) * 2010-02-05 2020-07-30 株式会社半導体エネルギー研究所 Semiconductor device and method for manufacturing semiconductor device
US11469255B2 (en) 2010-02-05 2022-10-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11101295B2 (en) 2010-02-05 2021-08-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2018182337A (en) * 2010-02-05 2018-11-15 株式会社半導体エネルギー研究所 Semiconductor device
JP2022003707A (en) * 2010-02-05 2022-01-11 株式会社半導体エネルギー研究所 Manufacturing method for display device
US12113074B2 (en) 2010-02-05 2024-10-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11749686B2 (en) 2010-02-05 2023-09-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10615179B2 (en) 2010-02-05 2020-04-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9991288B2 (en) 2010-02-05 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR20180075453A (en) * 2010-03-19 2018-07-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101971863B1 (en) 2010-03-19 2019-04-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US11392232B2 (en) 2010-04-28 2022-07-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device and driving method the same
US11983342B2 (en) 2010-04-28 2024-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device and driving method the same
US10013087B2 (en) 2010-04-28 2018-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device and driving method the same
US10871841B2 (en) 2010-04-28 2020-12-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device and driving method the same
US9734780B2 (en) 2010-07-01 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Driving method of liquid crystal display device
US10008169B2 (en) 2010-07-01 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Driving method of liquid crystal display device
JP2013101404A (en) * 2010-07-01 2013-05-23 Semiconductor Energy Lab Co Ltd Liquid crystal display device
US10943547B2 (en) 2010-07-02 2021-03-09 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
JP2020046674A (en) * 2010-07-02 2020-03-26 株式会社半導体エネルギー研究所 Liquid crystal display device
JP2017194688A (en) * 2010-07-02 2017-10-26 株式会社半導体エネルギー研究所 Liquid crystal display device
US11289031B2 (en) 2010-07-02 2022-03-29 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
JP2012256814A (en) * 2010-08-04 2012-12-27 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2012256815A (en) * 2010-08-04 2012-12-27 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2020061581A (en) * 2010-08-27 2020-04-16 株式会社半導体エネルギー研究所 Semiconductor device
JP2017216453A (en) * 2010-08-27 2017-12-07 株式会社半導体エネルギー研究所 Photosensor
JP2012256009A (en) * 2010-08-27 2012-12-27 Semiconductor Energy Lab Co Ltd Input-output device
JP2016167616A (en) * 2010-09-08 2016-09-15 株式会社半導体エネルギー研究所 Semiconductor device
JP2012079399A (en) * 2010-09-10 2012-04-19 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2016042407A (en) * 2010-09-10 2016-03-31 株式会社半導体エネルギー研究所 Semiconductor device
JP2012084853A (en) * 2010-09-13 2012-04-26 Semiconductor Energy Lab Co Ltd Semiconductor device manufacturing method
JP7568804B2 (en) 2010-09-14 2024-10-16 株式会社半導体エネルギー研究所 Storage
US12040042B2 (en) 2010-09-14 2024-07-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including transistor
JP2016042597A (en) * 2010-10-20 2016-03-31 株式会社半導体エネルギー研究所 Semiconductor device
KR101924422B1 (en) * 2010-11-05 2018-12-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
KR20180042832A (en) * 2010-11-05 2018-04-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
KR101986280B1 (en) * 2010-11-05 2019-09-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
KR101457833B1 (en) * 2010-12-03 2014-11-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9711655B2 (en) 2010-12-03 2017-07-18 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
JP2018139333A (en) * 2010-12-03 2018-09-06 株式会社半導体エネルギー研究所 Transistor
US10103277B2 (en) 2010-12-03 2018-10-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor film
JP2018170515A (en) * 2010-12-03 2018-11-01 株式会社半導体エネルギー研究所 Transistor
US8994021B2 (en) 2010-12-03 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US8680522B2 (en) 2010-12-03 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US9331208B2 (en) 2010-12-03 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US8669556B2 (en) 2010-12-03 2014-03-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10916663B2 (en) 2010-12-03 2021-02-09 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
KR101981808B1 (en) * 2010-12-28 2019-08-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
JP2017034267A (en) * 2010-12-28 2017-02-09 株式会社半導体エネルギー研究所 Semiconductor device and semiconductor device manufacturing method
KR20120075412A (en) * 2010-12-28 2012-07-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
KR101958024B1 (en) * 2010-12-28 2019-07-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
KR20130140663A (en) * 2010-12-28 2013-12-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
KR20140061341A (en) * 2011-01-12 2014-05-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing method of semiconductor device
KR101944566B1 (en) * 2011-01-12 2019-01-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing method of semiconductor device
KR20120090781A (en) * 2011-01-12 2012-08-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
KR101940315B1 (en) * 2011-01-12 2019-01-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
US9786668B2 (en) 2011-01-14 2017-10-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including multilayer wiring layer
US10249626B2 (en) 2011-01-14 2019-04-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device including multilayer wiring layer
US11139301B2 (en) 2011-01-14 2021-10-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including side surface conductor contact
JP2012160718A (en) * 2011-01-14 2012-08-23 Semiconductor Energy Lab Co Ltd Semiconductor storage device
US11805637B2 (en) 2011-01-14 2023-10-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising first and second conductors
JP2018110267A (en) * 2011-01-14 2018-07-12 株式会社半導体エネルギー研究所 Semiconductor storage device
US10763261B2 (en) 2011-01-14 2020-09-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device comprising memory cell over driver
KR102194373B1 (en) * 2011-01-20 2020-12-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor element and semiconductor device
KR20200141975A (en) * 2011-01-20 2020-12-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor element and semiconductor device
KR102264976B1 (en) 2011-01-20 2021-06-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor element and semiconductor device
KR20190133654A (en) * 2011-01-20 2019-12-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor element and semiconductor device
JP2017152737A (en) * 2011-01-26 2017-08-31 株式会社半導体エネルギー研究所 Signal processing circuit
JP2019153820A (en) * 2011-03-11 2019-09-12 株式会社半導体エネルギー研究所 Semiconductor device
JP2012235107A (en) * 2011-04-22 2012-11-29 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method for the same
US9559193B2 (en) 2011-04-22 2017-01-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9660095B2 (en) 2011-04-22 2017-05-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10388799B2 (en) 2011-04-22 2019-08-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device
JP2016095520A (en) * 2011-05-05 2016-05-26 株式会社半導体エネルギー研究所 Display device
US10068926B2 (en) 2011-05-05 2018-09-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10283530B2 (en) 2011-05-05 2019-05-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2019179270A (en) * 2011-05-05 2019-10-17 株式会社半導体エネルギー研究所 Display device
US9508862B2 (en) 2011-05-05 2016-11-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11942483B2 (en) 2011-05-05 2024-03-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR20200023347A (en) * 2011-08-05 2020-03-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR102207379B1 (en) 2011-08-05 2021-01-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US11791415B2 (en) 2011-09-29 2023-10-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9741860B2 (en) 2011-09-29 2017-08-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10290744B2 (en) 2011-09-29 2019-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10622485B2 (en) 2011-09-29 2020-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11217701B2 (en) 2011-09-29 2022-01-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9218966B2 (en) 2011-10-14 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US9680028B2 (en) 2011-10-14 2017-06-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP7346530B2 (en) 2012-05-10 2023-09-19 株式会社半導体エネルギー研究所 semiconductor equipment
JP2022024159A (en) * 2012-05-10 2022-02-08 株式会社半導体エネルギー研究所 Semiconductor device
JP2018201047A (en) * 2012-05-10 2018-12-20 株式会社半導体エネルギー研究所 Semiconductor device
JP2013236089A (en) * 2013-06-11 2013-11-21 Toshiba Corp Display device and manufacturing method of the same
JP2013235277A (en) * 2013-06-11 2013-11-21 Toshiba Corp Display device
US12027528B2 (en) 2016-08-03 2024-07-02 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US10700098B2 (en) 2016-08-03 2020-06-30 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US11676971B2 (en) 2016-08-03 2023-06-13 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US10373983B2 (en) 2016-08-03 2019-08-06 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US11404447B2 (en) 2016-08-03 2022-08-02 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
CN112242406A (en) * 2020-10-09 2021-01-19 Tcl华星光电技术有限公司 Array substrate, manufacturing method thereof and display device

Also Published As

Publication number Publication date
JP5015473B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5015473B2 (en) Thin film transistor array and manufacturing method thereof
JP2008533693A (en) Semiconductor device and manufacturing method thereof
US7468304B2 (en) Method of fabricating oxide semiconductor device
JP5015472B2 (en) Thin film transistor and manufacturing method thereof
JP5400019B2 (en) THIN FILM TRANSISTOR, ITS MANUFACTURING METHOD, AND ORGANIC ELECTROLUMINESCENT DEVICE EQUIPPED WITH THIN FILM TRANSISTOR
JP4958253B2 (en) Thin film transistor
US8455310B2 (en) Methods of manufacturing thin film transistor devices
WO2015108110A1 (en) Thin-film transistor
WO2012063588A1 (en) Wiring structure
JP2007220818A (en) Thin-film transistor and manufacturing method thereof
JP2007220817A (en) Thin-film transistor and manufacturing method thereof
JP2009528670A (en) Semiconductor equipment and manufacturing method thereof
JP2009194351A (en) Thin film transistor and its manufacturing method
JP2007073558A (en) Method of manufacturing thin-film transistor
JP4873528B2 (en) Thin film transistor manufacturing method
JP2008108985A (en) Method of manufacturing semiconductor element
JP5437776B2 (en) Thin film transistor using oxide semiconductor and method of manufacturing the same
WO2020154876A1 (en) Thin-film transistor and manufacturing method therefor, array substrate and display apparatus
TWI416736B (en) Thin film transistor and method for fabricating the same
US9159746B2 (en) Thin film transistor, manufacturing method thereof, array substrate and display device
US20120286272A1 (en) Thin film transistor and method of manufacturing the same
TW201705299A (en) Method of fabricating thin film transistor
TWI508171B (en) Semiconductor device structure and manufacturing method for the same
WO2015188476A1 (en) Thin film transistor and manufacturing method therefor, oled back panel and display device
JP2007073561A (en) Thin-film transistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120530

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees