[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007212103A - Heat pump type hot water supply apparatus - Google Patents

Heat pump type hot water supply apparatus Download PDF

Info

Publication number
JP2007212103A
JP2007212103A JP2006034827A JP2006034827A JP2007212103A JP 2007212103 A JP2007212103 A JP 2007212103A JP 2006034827 A JP2006034827 A JP 2006034827A JP 2006034827 A JP2006034827 A JP 2006034827A JP 2007212103 A JP2007212103 A JP 2007212103A
Authority
JP
Japan
Prior art keywords
hot water
water supply
temperature
compressor
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006034827A
Other languages
Japanese (ja)
Inventor
Kenji Shirai
健二 白井
Hisao Kusuhara
尚夫 楠原
Bunji Hayashi
文次 林
Masayuki Hamada
真佐行 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006034827A priority Critical patent/JP2007212103A/en
Publication of JP2007212103A publication Critical patent/JP2007212103A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump type hot water supply apparatus capable of securing reliability of a compressor by preventing sudden change of a refrigerating cycle even when there is sudden change of a hot water supply capacity and sudden change of a water supply temperature, and preventing an abnormal temperature rise and an abnormal pressure rise of the compressor. <P>SOLUTION: The heat pump type hot water supply apparatus is provided with a heat pump cycle comprised by annularly connecting the compressor 11, a hot water supply heat exchanger 12, a pressure reducing device 13, and a heat source heat exchanger 14 in sequence by a coolant pipe arrangement 15, a hot water supply cycle comprised by annularly connecting a hot water storage tank 16 storing liquid for hot water supply, a transfer means 17 for circulating the liquid of the hot water storage tank 16, and the hot water supply heat exchanger 12 in sequence by a liquid pipe arrangement 18, a thermistor 31 detecting a temperature of a coolant delivered from the compressor 11, and a control means 30 from controlling a valve opening of the pressure reducing device 13 such that the temperature detected by the thermistor 31 becomes a predetermined temperature. It is characterized by that, when there is sudden change of an operation frequency of the compressor 11, the valve opening of the pressure reducing device 13 is changed to a preset opening. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、給湯能力や給水温度が急変しても冷凍サイクルの急変を防止し、圧縮機の異常温度上昇ならびに異常圧力上昇がない効率の良い給湯加熱運転を実現させることで圧縮機の信頼性を確保したヒートポンプ式給湯機に関するものである。   The present invention prevents the sudden change of the refrigeration cycle even if the hot water supply capacity or the supply water temperature changes suddenly, and realizes an efficient hot water supply heating operation without an abnormal temperature rise and abnormal pressure rise of the compressor, thereby improving the reliability of the compressor. It is related with the heat pump type hot water heater which secured.

従来、圧縮機の吐出冷媒温度が、外気温度に対して予め設定された目標吐出冷媒温度になるように減圧装置の開度を制御する構成とし、起動時に減圧装置の開度を一定にする不感帯時間を有していた(例えば、特許文献1参照)。
特開2000−346449号公報
Conventionally, the opening degree of the decompression device is controlled so that the discharge refrigerant temperature of the compressor becomes a target discharge refrigerant temperature that is set in advance with respect to the outside air temperature, and the dead zone in which the opening degree of the decompression device is made constant at startup It had time (for example, refer to Patent Document 1).
JP 2000-346449 A

しかしながら、ヒートポンプ式給湯機は、給湯能力が変化したり、給湯用熱交換器へ給水する水の温度が急変した場合には、圧縮機の異常温度上昇ならびに異常圧力上昇を招いたり、沸き上げ温度が所定の温度を維持できないという課題を有していた。   However, heat pump water heaters can cause abnormal compressor temperature rises and pressure rises when the hot water supply capacity changes or the temperature of the water supplied to the hot water heat exchanger changes suddenly. However, has a problem that the predetermined temperature cannot be maintained.

本発明は、前記従来の課題を解決するもので、給湯能力の急変および給水温度の急変時にも、冷凍サイクルの急変を防止し、圧縮機の異常温度上昇ならびに異常圧力上昇を防止することで圧縮機の信頼性を確保することができるヒートポンプ式給湯機を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and prevents a sudden change in the refrigeration cycle even during a sudden change in hot water supply capacity and a sudden change in feed water temperature, thereby preventing an abnormal temperature rise and abnormal pressure rise in the compressor. It aims at providing the heat pump type hot water heater which can ensure the reliability of a machine.

前記従来の課題を解決するために、本発明のヒートポンプ式給湯機は、圧縮機、給湯用熱交換器、減圧装置、熱源用熱交換器を冷媒配管により順次環状に接続してなるヒートポンプサイクルと、給湯用の液体を貯える貯湯槽、前記貯湯槽内の液体を流通させる搬送手段、前記給湯用熱交換器を液体配管により順次環状に接続してなる給湯サイクルと、前記圧縮機から吐出される冷媒の温度を検出する吐出冷媒温度検出手段と、前記吐出冷媒温度検出手段で検出される温度が所定の温度になるように前記減圧装置の弁開度を制御する制御手段とを備え、給湯能力が変化した時に、前記圧縮機の運転周波数および前記減圧装置の弁開度を予め設定された開度に変更することを特徴とするものである。   In order to solve the above-described conventional problems, the heat pump type hot water heater of the present invention includes a heat pump cycle in which a compressor, a hot water heat exchanger, a pressure reducing device, and a heat source heat exchanger are sequentially connected in an annular manner through a refrigerant pipe. A hot water storage tank for storing liquid for hot water supply, a conveying means for circulating the liquid in the hot water storage tank, a hot water supply cycle in which the heat exchanger for hot water supply is sequentially connected in an annular manner by a liquid pipe, and discharged from the compressor Discharge refrigerant temperature detection means for detecting the temperature of the refrigerant, and control means for controlling the valve opening of the decompression device so that the temperature detected by the discharge refrigerant temperature detection means becomes a predetermined temperature, When is changed, the operating frequency of the compressor and the valve opening of the pressure reducing device are changed to a preset opening.

これによって、給湯能力の変化による圧縮機の運転周波数が急変した場合でも、冷凍サイクルの急変を防止することができ、圧縮機の異常温度上昇ならびに異常圧力上昇を防止することができ、圧縮機の信頼性を確保するとともに、所定の沸き上げ温度を維持することができる。   As a result, even if the operating frequency of the compressor suddenly changes due to a change in hot water supply capacity, sudden changes in the refrigeration cycle can be prevented, abnormal temperature rise and abnormal pressure rise of the compressor can be prevented. While ensuring reliability, a predetermined boiling temperature can be maintained.

また、本発明のヒートポンプ式給湯機は、圧縮機、給湯用熱交換器、減圧装置、熱源用熱交換器を冷媒配管により順次環状に接続してなるヒートポンプサイクルと、給湯用の液体を貯える貯湯槽、前記貯湯槽内の液体を流通させる搬送手段、前記給湯用熱交換器を液体配管により順次環状に接続してなる給湯サイクルと、前記圧縮機から吐出される冷媒の温度を検出する吐出冷媒温度検出手段と、前記吐出冷媒温度検出手段で検出される温度が所定の温度になるように前記減圧装置の弁開度を制御する制御手段と、前記給湯用熱交換器に給水される水の温度を検出する給水温度検出手段とを備え、前記給水温度検出手段で検出される温度が所定時間内に所定温度以上変化した時、前記圧縮機の運転周波数および前記減圧装置の開度を予め設定された開度に変更することを特徴とするものである。   The heat pump type hot water heater of the present invention includes a heat pump cycle in which a compressor, a heat exchanger for hot water supply, a pressure reducing device, and a heat exchanger for heat source are sequentially connected in an annular manner by a refrigerant pipe, and a hot water storage for storing a liquid for hot water supply. A tank, a conveying means for circulating the liquid in the hot water tank, a hot water supply cycle in which the hot water heat exchanger is sequentially connected in an annular manner by a liquid pipe, and a discharge refrigerant for detecting the temperature of the refrigerant discharged from the compressor Temperature detection means, control means for controlling the valve opening of the pressure reducing device so that the temperature detected by the discharged refrigerant temperature detection means becomes a predetermined temperature, and water supplied to the hot water supply heat exchanger A feed water temperature detecting means for detecting the temperature, and when the temperature detected by the feed water temperature detecting means changes more than a predetermined temperature within a predetermined time, the operating frequency of the compressor and the opening of the pressure reducing device are preset. It is characterized in that the change in opening degree.

これによって、給湯用熱交換器への給水温度が急変した場合でも、冷凍サイクルの急変を防止することができ、圧縮機の異常温度上昇ならびに異常圧力上昇を防止することができ、圧縮機の信頼性を確保するとともに、所定の沸き上げ温度を維持することができる。   This makes it possible to prevent sudden changes in the refrigeration cycle even when the feed water temperature to the heat exchanger for hot water supply changes suddenly, to prevent abnormal temperature rises and abnormal pressure rises in the compressor, and the reliability of the compressor It is possible to maintain the predetermined boiling temperature while securing the property.

給湯能力の急変および給水温度の急変時にも、冷凍サイクルの急変を防止し、圧縮機の異常温度上昇ならびに異常圧力上昇を防止することで圧縮機の信頼性を確保することができるヒートポンプ式給湯機を提供することができる。   A heat pump water heater that prevents the sudden change of the refrigeration cycle and prevents the abnormal temperature rise and abnormal pressure rise of the compressor even when the hot water supply capacity suddenly changes and the water supply temperature suddenly changes. Can be provided.

第1の発明は、圧縮機、給湯用熱交換器、減圧装置、熱源用熱交換器を冷媒配管により順次環状に接続してなるヒートポンプサイクルと、給湯用の液体を貯える貯湯槽、前記貯湯槽内の液体を流通させる搬送手段、前記給湯用熱交換器を液体配管により順次環状に接続してなる給湯サイクルと、前記圧縮機から吐出される冷媒の温度を検出する吐出冷媒温度検出手段と、前記吐出冷媒温度検出手段で検出される温度が所定の温度になるように前記減圧装置の弁開度を制御する制御手段とを備え、給湯能力が変化した時に、前記圧縮機の運転周波数および前記減圧装置の弁開度を予め設定された開度に変更することにより、給湯能力の変化による圧縮機の運転周波数が急変した場合でも、冷凍サイクルの急変を防止することができ、圧縮機の異常温度上昇ならびに異常圧力上昇を防止することで、圧縮機の信頼性を確保できるとともに、所定の沸き上げ温度を維持することができる。   A first aspect of the present invention is a heat pump cycle in which a compressor, a hot water supply heat exchanger, a decompression device, and a heat source heat exchanger are sequentially connected in an annular manner through a refrigerant pipe, a hot water storage tank for storing hot water supply liquid, and the hot water storage tank Conveying means for circulating the liquid therein, a hot water supply cycle in which the hot water supply heat exchanger is sequentially connected in an annular manner by liquid piping, and a discharge refrigerant temperature detection means for detecting the temperature of the refrigerant discharged from the compressor, Control means for controlling the valve opening of the pressure reducing device so that the temperature detected by the discharged refrigerant temperature detecting means becomes a predetermined temperature, and when the hot water supply capacity changes, the operating frequency of the compressor and the By changing the valve opening of the decompression device to a preset opening, even if the operating frequency of the compressor suddenly changes due to a change in hot water supply capacity, sudden changes in the refrigeration cycle can be prevented. By preventing the temperature rise and abnormal pressure increase, it is possible to ensure the reliability of the compressor can be maintained a predetermined boiling temperature.

第2の発明は、圧縮機、給湯用熱交換器、減圧装置、熱源用熱交換器を冷媒配管により順次環状に接続してなるヒートポンプサイクルと、給湯用の液体を貯える貯湯槽、前記貯湯槽内の液体を流通させる搬送手段、前記給湯用熱交換器を液体配管により順次環状に接続してなる給湯サイクルと、前記圧縮機から吐出される冷媒の温度を検出する吐出冷媒温度検出手段と、前記吐出冷媒温度検出手段で検出される温度が所定の温度になるように前記減圧装置の弁開度を制御する制御手段と、前記給湯用熱交換器に給水される水の温度を検出する給水温度検出手段とを備え、前記給水温度検出手段で検出される温度が所定時間内に所定温度以上変化した時、前記圧縮機の運転周波数および前記減圧装置の開度を予め設定された開度に変更することにより、給湯用熱交換器への給水温度が急変した場合でも冷凍サイクルの急変を防止することができ、圧縮機の異常温度上昇ならびに異常圧力上昇を防止することで圧縮機の信頼性を確保できるとともに、所定の沸き上げ温度を維持することができる。   According to a second aspect of the present invention, there is provided a heat pump cycle in which a compressor, a hot water supply heat exchanger, a pressure reducing device, and a heat source heat exchanger are sequentially connected in an annular manner through a refrigerant pipe, a hot water storage tank for storing hot water supply liquid, and the hot water storage tank Conveying means for circulating the liquid therein, a hot water supply cycle in which the hot water supply heat exchanger is sequentially connected in an annular manner by liquid piping, and a discharge refrigerant temperature detection means for detecting the temperature of the refrigerant discharged from the compressor, Control means for controlling the valve opening of the decompression device so that the temperature detected by the discharged refrigerant temperature detection means becomes a predetermined temperature, and water supply for detecting the temperature of water supplied to the hot water supply heat exchanger A temperature detecting means, and when the temperature detected by the feed water temperature detecting means changes more than a predetermined temperature within a predetermined time, the operating frequency of the compressor and the opening of the pressure reducing device are set to a preset opening. To change Therefore, even if the feed water temperature to the hot water supply heat exchanger suddenly changes, it is possible to prevent a sudden change in the refrigeration cycle, and to ensure the reliability of the compressor by preventing the abnormal temperature rise and abnormal pressure rise of the compressor. At the same time, a predetermined boiling temperature can be maintained.

第3の発明は、特に第1または第2の発明において、減圧装置の弁開度を予め設定された開度に変更したあと、所定時間の間は、前記減圧装置の弁開度を一定に制御し、所定時間経過後は、圧縮機の吐出冷媒温度が予め設定された目標吐出冷媒温度になるように前記減圧装置の弁開度を制御することにより、減圧装置の弁開度に不感帯時間を設けているので、過渡状態での圧力に対する温度の上昇の遅れを待機することで圧縮機の吐出冷媒圧力のオーバーシュートを防止でき、冷凍サイクルの急変を防止することができ、圧縮機の以上温度上ならびに異常圧力上昇をより確実に防止することができ、圧縮機の信頼性を向上することができる。   In a third aspect of the invention, particularly in the first or second aspect of the invention, the valve opening of the pressure reducing device is kept constant for a predetermined time after the valve opening of the pressure reducing device is changed to a preset opening. And after the predetermined time has elapsed, the valve opening degree of the pressure reducing device is controlled so that the discharge refrigerant temperature of the compressor becomes a preset target discharge refrigerant temperature, so that the dead time of the valve opening degree of the pressure reducing device is reached. Therefore, it is possible to prevent overshoot of the refrigerant discharge pressure of the compressor by waiting for the delay of the temperature rise with respect to the pressure in the transient state, and to prevent the sudden change of the refrigeration cycle. An increase in temperature and abnormal pressure can be prevented more reliably, and the reliability of the compressor can be improved.

第4の発明は、特に第1〜3のいずれか1つの発明において、圧縮機はアキュームレータの無い構成であることにより、ヒートポンプ式給湯機の本体の小型化、軽量化が可能となる。   According to a fourth aspect of the present invention, in particular, in any one of the first to third aspects, since the compressor has a configuration without an accumulator, the main body of the heat pump type hot water heater can be reduced in size and weight.

第5の発明は、特に第1〜4のいずれか1つの発明において、ヒートポンプサイクルは、高圧側の冷媒圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであることにより、給湯用熱交換器内の冷媒は臨界圧力以上に加圧されているので、給湯用熱交換器の水に
より熱を奪われて温度低下しても凝縮することがなく、給湯用熱交換器の全域で冷媒と水との間の温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高くできる。
According to a fifth aspect of the invention, in any one of the first to fourth aspects of the invention, the heat pump cycle is a supercritical heat pump cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure. Since the refrigerant is pressurized to a critical pressure or higher, it does not condense even if the temperature is lowered due to heat deprived by the water in the hot water heat exchanger, and the refrigerant and water are not condensed in the entire area of the hot water heat exchanger. It is easy to form a temperature difference between them, high-temperature hot water can be obtained, and heat exchange efficiency can be increased.

第6の発明は、特に第1〜5のいずれか1つの発明において、冷媒が二酸化炭素であることにより、製品コストを抑えるとともに、信頼性を向上させることができ、オゾン破壊係数がゼロ、地球温暖化係数も代替冷媒HFC−407Cの約1700分の1と非常に小さいため、地球環境に優しい製品を提供できる。   According to a sixth invention, in particular, in any one of the first to fifth inventions, since the refrigerant is carbon dioxide, the product cost can be suppressed and the reliability can be improved, the ozone depletion coefficient is zero, the earth Since the global warming potential is very small, about 1700 of the alternative refrigerant HFC-407C, a product that is friendly to the global environment can be provided.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1および図2は、本発明の第1の実施の形態におけるヒートポンプ式給湯機の構成図および運転制御図である。図1において、本発明のヒートポンプ式給湯機は、圧縮機11、熱源機熱交換器14、減圧装置13、給湯用熱交換器12を冷媒配管15で順次環状に接続したヒートポンプサイクルと、搬送手段であるウォーターポンプ17、給湯用熱交換器12、貯湯槽16を液体配管18で順次環状に接続した給湯サイクルと、圧縮機11から吐出する冷媒の吐出冷媒温度を検出する吐出冷媒温度検出手段であるサーミスタ31と、サーミスタ31が所定の温度になるように減圧装置13の弁開度を制御する制御手段である減圧装置制御手段34と、給湯用熱交換器12に給水される水の温度を検出する給水温度検出手段であるサーミスタ33と、給湯能力指示検知手段であるマイクロコンピュータ32によって貯湯槽16から指示される所望の給湯能力になるように圧縮機11の運転周波数を制御する圧縮機運転周波数制御手段35により構成される。また減圧装置制御手段34と圧縮機運転周波数制御手段35はマイクロコンピュータ30で構成される。また減圧装置13には、電気式膨張弁を使用している。また給湯用熱交換器12において、冷媒と水とが対向流を成して熱交換を行っている。
(Embodiment 1)
FIG. 1 and FIG. 2 are a configuration diagram and an operation control diagram of the heat pump type hot water heater in the first embodiment of the present invention. In FIG. 1, the heat pump type hot water heater of the present invention includes a heat pump cycle in which a compressor 11, a heat source machine heat exchanger 14, a pressure reducing device 13, and a hot water supply heat exchanger 12 are sequentially connected in an annular manner by a refrigerant pipe 15, and a conveying means A hot water supply cycle in which the water pump 17, the hot water supply heat exchanger 12, and the hot water storage tank 16 are sequentially connected in an annular manner by a liquid pipe 18, and discharge refrigerant temperature detection means for detecting the discharge refrigerant temperature of the refrigerant discharged from the compressor 11. A certain thermistor 31, a pressure reducing device control means 34 that is a control means for controlling the valve opening degree of the pressure reducing device 13 so that the thermistor 31 reaches a predetermined temperature, and the temperature of water supplied to the hot water supply heat exchanger 12 are set. Desired hot water supply capacity instructed from the hot water storage tank 16 by the thermistor 33 that is the detected water temperature detection means and the microcomputer 32 that is the hot water supply capacity instruction detection means. It controls the operating frequency of the compressor 11 so as to constituted the compressor operation frequency control means 35. The decompression device control means 34 and the compressor operating frequency control means 35 are constituted by a microcomputer 30. The decompression device 13 uses an electric expansion valve. Moreover, in the hot water supply heat exchanger 12, the refrigerant and water exchange heat with each other.

マイクロコンピュータ32では、貯湯槽内の湯水の貯湯量、使用量、沸き上げ温度などから最適な給湯能力を検出し、ヒートポンプサイクルを制御するマイクロコンピュータ30に給湯能力を指示している。本実施の形態においては、給湯能力指示検知手段であるマイクロコンピュータ32は、ヒートポンプサイクルを構成する機器を制御するマイクロコンピュータ30と別体として記載しているが、これに限定されるものではなく、例えば、給湯サイクルとヒートポンプサイクルが一体的に構成されている一体型ヒートポンプサイクルなどでは、マイクロコンピュータ30とマイクロコンピュータ32とを同じマイクロコンピュータで構成してもよい。   The microcomputer 32 detects the optimum hot water supply capacity from the amount of hot water stored in the hot water tank, the amount used, the boiling temperature, and the like, and instructs the microcomputer 30 that controls the heat pump cycle of the hot water supply capacity. In the present embodiment, the microcomputer 32 that is the hot water supply capacity instruction detection means is described as a separate body from the microcomputer 30 that controls the equipment constituting the heat pump cycle, but is not limited thereto. For example, in an integrated heat pump cycle in which a hot water supply cycle and a heat pump cycle are integrally configured, the microcomputer 30 and the microcomputer 32 may be configured by the same microcomputer.

以上のように構成されたヒートポンプ式給湯機について、以下その動作、作用を説明する。   The operation and action of the heat pump type water heater configured as described above will be described below.

図3は、本実施の形態における動作を示すフローチャートである。図3において、貯湯槽16からの給湯能力変更指示をマイクロコンピュータ32によって検知し、その変更された給湯能力が得られるように圧縮機11の運転周波数を決定し、圧縮機運転周波数制御手段35によって運転周波数が変更される。また、給湯能力により予め設定された減圧装置13の弁開度を決定し、その弁開度にシフトさせる。そして、シフトさせたあと、さらに、所望の吐出冷媒温度になるように減圧装置13の弁開度を、減圧装置制御手段34で制御する。   FIG. 3 is a flowchart showing the operation in the present embodiment. In FIG. 3, the microcomputer 32 detects a hot water supply capacity change instruction from the hot water storage tank 16, determines the operating frequency of the compressor 11 so that the changed hot water supply capacity is obtained, and the compressor operating frequency control means 35 The operating frequency is changed. Moreover, the valve opening degree of the decompression device 13 preset by the hot water supply capability is determined, and the valve opening degree is shifted. Then, after the shift, the valve opening degree of the decompression device 13 is further controlled by the decompression device control means 34 so that the desired discharge refrigerant temperature is obtained.

図4は、本実施の形態と従来技術とを比較した図である。図4において、本実施の形態を実線、従来技術を点線で示す。これによると、給湯能力が変化した時に圧縮機の運転周波数を急変させていることが分かる。この運転周波数が急変するのと同じタイミングで、
減圧装置の弁開度を、予め給湯能力に合わせて設定されている弁開度にシフトし、その後、所望の吐出冷媒温度になるように弁開度を制御している。ここでいう所望の吐出冷媒温度とは、沸き上げ温度(給湯用熱交換器から出湯する温度)にあわせて適宜決定される吐出冷媒温度の目標値のことであり、沸き上げ温度よりも高温に設定するのが好ましい。その結果、従来技術では、吐出冷媒圧力、吐出冷媒温度、沸き上げ温度のオーバーシュートが発生していたが、本実施の形態のように制御することで、オーバーシュートが防止できているのが分かる。したがって、冷凍サイクルを安定させたまま給湯能力の移行が可能となり、給湯能力が変化し、圧縮機11の運転周波数が急変した場合でも、冷凍サイクルの急変を防止することができ、圧縮機11の異常温度上昇ならびに異常圧力上昇を防止することで、圧縮機11の信頼性を確保できるとともに、所定の沸き上げ温度を維持することができる。
FIG. 4 is a diagram comparing the present embodiment with the prior art. In FIG. 4, the present embodiment is indicated by a solid line, and the prior art is indicated by a dotted line. According to this, it can be seen that the operating frequency of the compressor is suddenly changed when the hot water supply capacity is changed. At the same timing that this operating frequency suddenly changes,
The valve opening degree of the pressure reducing device is shifted to a valve opening degree set in advance according to the hot water supply capacity, and then the valve opening degree is controlled so as to reach a desired discharge refrigerant temperature. The desired discharge refrigerant temperature here is a target value of the discharge refrigerant temperature that is appropriately determined according to the boiling temperature (temperature discharged from the hot water supply heat exchanger), and is higher than the boiling temperature. It is preferable to set. As a result, in the prior art, overshoot of discharge refrigerant pressure, discharge refrigerant temperature, and boiling temperature occurred, but it can be seen that overshoot can be prevented by controlling as in this embodiment. . Therefore, it is possible to shift the hot water supply capacity while keeping the refrigeration cycle stable, and even if the hot water supply capacity changes and the operating frequency of the compressor 11 changes suddenly, the sudden change of the refrigeration cycle can be prevented. By preventing the abnormal temperature rise and the abnormal pressure rise, the reliability of the compressor 11 can be ensured and a predetermined boiling temperature can be maintained.

また本実施の形態においては、圧縮機11はアキュームレータのない構成としているので、ヒートポンプ式給湯機本体の小型化、軽量化が可能となる。さらに、ヒートポンプサイクルの冷媒には二酸化炭素を用いており、給湯用熱交換器12内においては、冷媒は臨界圧力以上に加圧されているので、給湯用熱交換器12の水により熱を奪われて温度が低下しても凝縮することがなく、給湯用熱交換器の全域で冷媒と水との間の温度差を形成しやすくなるので、高温の湯が得られ、かつ熱交換効率を高くできる。さらに、二酸化炭素は比較的安価であり、かつ安定であるので、製品コストを抑えるとともに、信頼性を向上させることができる。またオゾン破壊係数がゼロであり、地球温暖化係数も代替冷媒HFC−407Cの約1700分の1と非常に小さいため、地球環境に優しい製品を提供できる。   Moreover, in this Embodiment, since the compressor 11 is set as the structure without an accumulator, size reduction and weight reduction of a heat pump type water heater main body are attained. Furthermore, carbon dioxide is used as the refrigerant of the heat pump cycle, and the refrigerant is pressurized to a critical pressure or higher in the hot water supply heat exchanger 12, so heat is taken away by the water in the hot water supply heat exchanger 12. Even if the temperature drops, it does not condense and it is easy to form a temperature difference between the refrigerant and water throughout the hot water supply heat exchanger, so that hot water is obtained and heat exchange efficiency is improved. Can be high. Furthermore, since carbon dioxide is relatively inexpensive and stable, it is possible to reduce product cost and improve reliability. In addition, since the ozone depletion coefficient is zero and the global warming coefficient is as low as about 1700 of the alternative refrigerant HFC-407C, a product that is friendly to the global environment can be provided.

(実施の形態2)
本発明の第2の実施の形態におけるヒートポンプ式給湯機の構成は、第1の実施の形態と同じであるので、説明を省略する。また、第1の実施の形態と同じものには、同じ符号を付してその説明は省略するものとする。
(Embodiment 2)
Since the configuration of the heat pump type hot water heater in the second embodiment of the present invention is the same as that of the first embodiment, description thereof is omitted. The same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

図5は、第2の実施の形態における運転制御図である。図5において、給湯用熱交換器へ流入する水の温度を検出する給水温度検出手段であるサーミスタ33の値が、所定時間内に所定温度以上変化した場合には、圧縮機11の運転周波数を変化させるとともに、弁開度を、給水温度により予め設定された開度にシフトさせ、その後、冷媒吐出温度検出手段31を所望の温度に制御するというものである。
図6は、本実施の形態と従来技術とを比較した図である。図6において、本実施の形態を実線、従来技術を点線で示す。これによると、給水温度が変化した時に圧縮機の運転周波数を急変させていることが分かる。この運転周波数が急変するのと同じタイミングで、減圧装置の弁開度を、予め給湯能力に合わせて設定されている弁開度にシフトし、その後、所望の吐出冷媒温度になるように弁開度を制御している。その結果、従来技術では、吐出冷媒圧力、吐出冷媒温度、沸き上げ温度のオーバーシュートが発生していたが、本実施の形態のように制御することで、オーバーシュートが防止できているのが分かる。したがって、冷凍サイクルを安定させたまま給湯能力の移行が可能となり、給湯能力が変化し、圧縮機11の運転周波数が急変した場合でも、冷凍サイクルの急変を防止することができ、圧縮機11の異常温度上昇ならびに異常圧力上昇を防止することで、圧縮機11の信頼性を確保できるとともに、所定の沸き上げ温度を維持することができる。
FIG. 5 is an operation control diagram according to the second embodiment. In FIG. 5, when the value of the thermistor 33 that is a feed water temperature detecting means for detecting the temperature of the water flowing into the hot water supply heat exchanger changes more than a predetermined temperature within a predetermined time, the operating frequency of the compressor 11 is changed. While changing the valve opening, the valve opening is shifted to a predetermined opening according to the feed water temperature, and then the refrigerant discharge temperature detecting means 31 is controlled to a desired temperature.
FIG. 6 is a diagram comparing the present embodiment with the prior art. In FIG. 6, this embodiment is indicated by a solid line, and the prior art is indicated by a dotted line. This shows that the operating frequency of the compressor is suddenly changed when the feed water temperature changes. At the same timing when the operating frequency suddenly changes, the valve opening of the pressure reducing device is shifted to a valve opening set in advance according to the hot water supply capacity, and then the valve is opened so that the desired discharge refrigerant temperature is reached. Control the degree. As a result, in the prior art, overshoot of discharge refrigerant pressure, discharge refrigerant temperature, and boiling temperature occurred, but it can be seen that overshoot can be prevented by controlling as in this embodiment. . Therefore, it is possible to shift the hot water supply capacity while stabilizing the refrigeration cycle, and even when the hot water supply capacity changes and the operating frequency of the compressor 11 changes suddenly, the sudden change of the refrigeration cycle can be prevented. By preventing the abnormal temperature rise and the abnormal pressure rise, the reliability of the compressor 11 can be ensured and a predetermined boiling temperature can be maintained.

また本実施の形態においては、圧縮機11はアキュームレータのない構成としているので、ヒートポンプ式給湯機本体の小型化、軽量化が可能となる。さらに、ヒートポンプサイクルの冷媒には二酸化炭素を用いており、給湯用熱交換器12内においては、冷媒は臨界圧力以上に加圧されているので、給湯用熱交換器12の水により熱を奪われて温度が低下しても凝縮することがなく、給湯用熱交換器の全域で冷媒と水との間の温度差を形成し
やすくなるので、高温の湯が得られ、かつ熱交換効率を高くできる。さらに、二酸化炭素は比較的安価であり、かつ安定であるので、製品コストを抑えるとともに、信頼性を向上させることができる。またオゾン破壊係数がゼロであり、地球温暖化係数も代替冷媒HFC−407Cの約1700分の1と非常に小さいため、地球環境に優しい製品を提供できる。
Moreover, in this Embodiment, since the compressor 11 is set as the structure without an accumulator, size reduction and weight reduction of a heat pump type water heater main body are attained. Furthermore, carbon dioxide is used as the refrigerant of the heat pump cycle, and the refrigerant is pressurized to a critical pressure or higher in the hot water supply heat exchanger 12, so heat is taken away by the water in the hot water supply heat exchanger 12. Even if the temperature drops, it does not condense and it is easy to form a temperature difference between the refrigerant and water throughout the hot water supply heat exchanger, so that hot water is obtained and heat exchange efficiency is improved. Can be high. Furthermore, since carbon dioxide is relatively inexpensive and stable, it is possible to reduce product cost and improve reliability. In addition, since the ozone depletion coefficient is zero and the global warming coefficient is as low as about 1700 of the alternative refrigerant HFC-407C, a product that is friendly to the global environment can be provided.

(実施の形態3)
本発明の第3の実施の形態におけるヒートポンプ式給湯機の構成は、第1の実施の形態と同じであるので、説明を省略する。また、第1の実施の形態と同じものには、同じ符号を付してその説明は省略するものとする。また、本実施の形態における動作を示すフローチャートも第1の実施の形態におけるヒートポンプ式給湯機と同じであり、図3に示すものである。
図3において、貯湯槽16からの給湯能力変更指示をマイクロコンピュータ32によって検知し、その変更された給湯能力が得られるように圧縮機11の運転周波数を決定し、圧縮機運転周波数制御手段35によって運転周波数が変更される。また、給湯能力により予め設定された減圧装置13の弁開度を決定し、その弁開度にシフトさせる。そして、シフトさせたあと、さらに、所望の吐出冷媒温度になるように減圧装置13の弁開度を、減圧装置制御手段34で制御する。
(Embodiment 3)
Since the configuration of the heat pump type hot water heater in the third embodiment of the present invention is the same as that of the first embodiment, the description thereof is omitted. The same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. Moreover, the flowchart which shows the operation | movement in this Embodiment is also the same as the heat pump type water heater in 1st Embodiment, and is shown in FIG.
In FIG. 3, the microcomputer 32 detects a hot water supply capacity change instruction from the hot water storage tank 16, determines the operating frequency of the compressor 11 so that the changed hot water supply capacity is obtained, and the compressor operating frequency control means 35 The operating frequency is changed. Moreover, the valve opening degree of the decompression device 13 preset by the hot water supply capability is determined, and the valve opening degree is shifted. Then, after the shift, the valve opening degree of the decompression device 13 is further controlled by the decompression device control means 34 so that the desired discharge refrigerant temperature is obtained.

図7は、本実施の形態と従来技術とを比較した図である。図7において、本実施の形態を実線、従来技術を点線で示す。これによると、給湯能力が変化した時に圧縮機の運転周波数を急変させていることが分かる。この運転周波数が急変するのと同じタイミングで、減圧装置の弁開度を、予め給湯能力に合わせて設定されている弁開度にシフトし、所定時間の間は、そのシフトした弁開度を一定に保つ不感帯時間を設け、そして所定時間経過後には、所望の吐出冷媒温度になるように弁開度を制御している。ここでいう所望の吐出冷媒温度とは、沸き上げ温度(給湯用熱交換器から出湯する温度)にあわせて適宜決定される吐出冷媒温度の目標値のことであり、沸き上げ温度よりも高温に設定するのが好ましい。その結果、従来技術では、吐出冷媒圧力、吐出冷媒温度、沸き上げ温度のオーバーシュートが発生していたが、本実施の形態のように制御することで、オーバーシュートが防止できているのが分かる。したがって、弁開度を一定に制御する不感帯時間を設け、その後目標吐出冷媒温度になるように減圧装置13の弁開度を制御するため、過渡状態での圧力に対する温度の上昇の遅れを待機するので、圧縮機11の吐出冷媒圧力のオーバーシュートを防止でき、冷凍サイクルの急変の防止が可能となり、圧縮機11の異常温度上昇ならびに異常圧力上昇をより確実に防止することで、圧縮機11の信頼性を向上することができる。   FIG. 7 is a diagram comparing the present embodiment with the prior art. In FIG. 7, the present embodiment is indicated by a solid line, and the prior art is indicated by a dotted line. According to this, it can be seen that the operating frequency of the compressor is suddenly changed when the hot water supply capacity is changed. At the same timing that the operating frequency suddenly changes, the valve opening of the pressure reducing device is shifted to a valve opening set in advance according to the hot water supply capacity, and the shifted valve opening is kept for a predetermined time. A dead-zone time that is kept constant is provided, and after a predetermined time has elapsed, the valve opening degree is controlled so as to reach a desired discharged refrigerant temperature. The desired discharge refrigerant temperature here is a target value of the discharge refrigerant temperature that is appropriately determined according to the boiling temperature (temperature discharged from the hot water supply heat exchanger), and is higher than the boiling temperature. It is preferable to set. As a result, in the prior art, overshoot of discharge refrigerant pressure, discharge refrigerant temperature, and boiling temperature occurred, but it can be seen that overshoot can be prevented by controlling as in the present embodiment. . Therefore, in order to control the valve opening degree of the pressure reducing device 13 so that the target discharge refrigerant temperature is reached after that, a dead zone time for controlling the valve opening degree to be constant is set, so that a delay in the temperature rise with respect to the pressure in the transient state is waited. Therefore, overshoot of the refrigerant pressure discharged from the compressor 11 can be prevented, and sudden change of the refrigeration cycle can be prevented. By preventing the abnormal temperature rise and abnormal pressure rise of the compressor 11 more reliably, the compressor 11 Reliability can be improved.

また本実施の形態においては、圧縮機11はアキュームレータのない構成としているので、ヒートポンプ式給湯機本体の小型化、軽量化が可能となる。さらに、ヒートポンプサイクルの冷媒には二酸化炭素を用いており、給湯用熱交換器12内においては、冷媒は臨界圧力以上に加圧されているので、給湯用熱交換器12の水により熱を奪われて温度が低下しても凝縮することがなく、給湯用熱交換器の全域で冷媒と水との間の温度差を形成しやすくなるので、高温の湯が得られ、かつ熱交換効率を高くできる。さらに、二酸化炭素は比較的安価であり、かつ安定であるので、製品コストを抑えるとともに、信頼性を向上させることができる。またオゾン破壊係数がゼロであり、地球温暖化係数も代替冷媒HFC−407Cの約1700分の1と非常に小さいため、地球環境に優しい製品を提供できる。   Moreover, in this Embodiment, since the compressor 11 is set as the structure without an accumulator, size reduction and weight reduction of a heat pump type water heater main body are attained. Furthermore, carbon dioxide is used as the refrigerant of the heat pump cycle, and the refrigerant is pressurized to a critical pressure or higher in the hot water supply heat exchanger 12, so heat is taken away by the water in the hot water supply heat exchanger 12. Even if the temperature drops, it does not condense and it is easy to form a temperature difference between the refrigerant and water throughout the hot water supply heat exchanger, so that hot water is obtained and heat exchange efficiency is improved. Can be high. Furthermore, since carbon dioxide is relatively inexpensive and stable, it is possible to reduce product cost and improve reliability. In addition, since the ozone depletion coefficient is zero and the global warming coefficient is as low as about 1700 of the alternative refrigerant HFC-407C, a product that is friendly to the global environment can be provided.

以上のように、本発明に係るヒートポンプ式給湯機は、ヒートポンプサイクルと給湯サイクルが一体に構成された一体型ヒートポンプ式給湯機、別体に構成された分離型ヒート
ポンプ式給湯機、給湯用熱交換器で加熱したお湯をそのまま出湯できる直接出湯型ヒートポンプ式給湯機にも適用でき、給湯機能の他に、浴槽給湯、暖房機能、乾燥機能を有するヒートポンプ装置にも適用できる。
As described above, the heat pump water heater according to the present invention includes an integrated heat pump water heater in which a heat pump cycle and a hot water cycle are integrally formed, a separate heat pump water heater configured separately, and heat exchange for hot water supply. The present invention can also be applied to a direct hot water heat pump type hot water heater that can discharge hot water heated by a bath as it is, and can also be applied to a heat pump device having a hot water bath function, a heating function, and a drying function in addition to a hot water supply function.

本発明の実施の形態1におけるヒートポンプ式給湯機の構成図The block diagram of the heat pump type water heater in Embodiment 1 of this invention 同実施の形態における運転制御図Operation control diagram in the same embodiment 同実施の形態におけるヒートポンプ式給湯機の制御フローチャートControl flow chart of heat pump type water heater in the same embodiment 同実施の形態におけるヒートポンプ式給湯機と従来技術の比較図Comparison diagram of heat pump type water heater and conventional technology in the same embodiment 本発明の実施の形態2における運転制御図Operation control diagram in Embodiment 2 of the present invention 同実施の形態におけるヒートポンプ式給湯機と従来技術の比較図Comparison diagram of heat pump type water heater and conventional technology in the same embodiment 本発明の実施の形態3におけるヒートポンプ式給湯機と従来技術の比較図Comparison diagram of heat pump type water heater and conventional technology in Embodiment 3 of the present invention

符号の説明Explanation of symbols

11 圧縮機
12 給湯用熱交換器
13 減圧装置(電気式膨張弁)
14 熱源用熱交換器
15 冷媒配管
16 貯湯槽
17 ポンプ(ウォーターポンプ)
18 液体配管
30 マイクロコンピュータ
31 吐出冷媒温度検出手段(サーミスタ)
32 マイクロコンピュータ
33 給水温度検出手段(サーミスタ)
34 減圧装置制御手段(マイクロコンピュータ30)
35 圧縮機運転周波数制御手段(マイクロコンピュータ30)
11 Compressor 12 Heat exchanger for hot water supply 13 Pressure reducing device (electric expansion valve)
14 Heat exchanger for heat source 15 Refrigerant piping 16 Hot water storage tank 17 Pump (water pump)
18 Liquid piping 30 Microcomputer 31 Discharge refrigerant temperature detection means (thermistor)
32 microcomputer 33 feed water temperature detection means (thermistor)
34 Pressure reducing device control means (microcomputer 30)
35 Compressor operating frequency control means (microcomputer 30)

Claims (6)

圧縮機、給湯用熱交換器、減圧装置、熱源用熱交換器を冷媒配管により順次環状に接続してなるヒートポンプサイクルと、給湯用の液体を貯える貯湯槽、前記貯湯槽内の液体を流通させる搬送手段、前記給湯用熱交換器を液体配管により順次環状に接続してなる給湯サイクルと、前記圧縮機から吐出される冷媒の温度を検出する吐出冷媒温度検出手段と、前記吐出冷媒温度検出手段で検出される温度が所定の温度になるように前記減圧装置の弁開度を制御する制御手段とを備え、給湯能力が変化した時に、前記圧縮機の運転周波数および前記減圧装置の弁開度を予め設定された開度に変更することを特徴とするヒートポンプ式給湯機。 A heat pump cycle in which a compressor, a hot water supply heat exchanger, a pressure reducing device, and a heat source heat exchanger are sequentially connected in an annular manner through a refrigerant pipe, a hot water storage tank for storing hot water supply liquid, and a liquid in the hot water storage tank are circulated Conveying means, a hot water supply cycle in which the hot water supply heat exchanger is sequentially connected in an annular manner by liquid piping, a discharge refrigerant temperature detection means for detecting the temperature of the refrigerant discharged from the compressor, and the discharge refrigerant temperature detection means Control means for controlling the valve opening of the pressure reducing device so that the temperature detected at the predetermined temperature becomes a predetermined temperature, and when the hot water supply capacity changes, the operating frequency of the compressor and the valve opening of the pressure reducing device Is changed to a preset opening, a heat pump type hot water heater. 圧縮機、給湯用熱交換器、減圧装置、熱源用熱交換器を冷媒配管により順次環状に接続してなるヒートポンプサイクルと、給湯用の液体を貯える貯湯槽、前記貯湯槽内の液体を流通させる搬送手段、前記給湯用熱交換器を液体配管により順次環状に接続してなる給湯サイクルと、前記圧縮機から吐出される冷媒の温度を検出する吐出冷媒温度検出手段と、前記吐出冷媒温度検出手段で検出される温度が所定の温度になるように前記減圧装置の弁開度を制御する制御手段と、前記給湯用熱交換器に給水される水の温度を検出する給水温度検出手段とを備え、前記給水温度検出手段で検出される温度が所定時間内に所定温度以上変化した時、前記圧縮機の運転周波数および前記減圧装置の開度を予め設定された開度に変更することを特徴とするヒートポンプ式給湯機。 A heat pump cycle in which a compressor, a hot water supply heat exchanger, a pressure reducing device, and a heat source heat exchanger are sequentially connected in an annular manner through a refrigerant pipe, a hot water storage tank for storing hot water supply liquid, and a liquid in the hot water storage tank are circulated Conveying means, a hot water supply cycle in which the hot water supply heat exchanger is sequentially connected in an annular manner by liquid piping, a discharge refrigerant temperature detection means for detecting the temperature of the refrigerant discharged from the compressor, and the discharge refrigerant temperature detection means Control means for controlling the valve opening degree of the pressure reducing device so that the temperature detected in step 1 becomes a predetermined temperature, and water supply temperature detection means for detecting the temperature of the water supplied to the hot water supply heat exchanger. When the temperature detected by the feed water temperature detecting means changes more than a predetermined temperature within a predetermined time, the operating frequency of the compressor and the opening of the pressure reducing device are changed to a preset opening. To do Toponpu water heater. 減圧装置の弁開度を予め設定された開度に変更したあと、所定時間の間は、前記減圧装置の弁開度を一定に制御し、所定時間経過後は、圧縮機の吐出冷媒温度が予め設定された目標吐出冷媒温度になるように前記減圧装置の弁開度を制御することを特徴とする請求項1または2に記載のヒートポンプ式給湯機。 After changing the valve opening of the decompression device to a preset opening, the valve opening of the decompression device is controlled to be constant for a predetermined time, and after the predetermined time has elapsed, the discharge refrigerant temperature of the compressor The heat pump type water heater according to claim 1 or 2, wherein the valve opening degree of the pressure reducing device is controlled so as to be a preset target discharge refrigerant temperature. 圧縮機はアキュームレータの無い構成であることを特徴とする請求項1〜3のいずれか1項に記載のヒートポンプ式給湯機。 The heat pump type hot water heater according to any one of claims 1 to 3, wherein the compressor has a configuration without an accumulator. ヒートポンプサイクルは、高圧側の冷媒圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであることを特徴とする請求項1〜4のいずれか1項に記載のヒートポンプ式給湯機。 The heat pump water heater according to any one of claims 1 to 4, wherein the heat pump cycle is a supercritical heat pump cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure. 冷媒が二酸化炭素であることを特徴とする請求項1〜5のいずれか1項に記載のヒートポンプ式給湯機。 The heat pump type hot water heater according to any one of claims 1 to 5, wherein the refrigerant is carbon dioxide.
JP2006034827A 2006-02-13 2006-02-13 Heat pump type hot water supply apparatus Pending JP2007212103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006034827A JP2007212103A (en) 2006-02-13 2006-02-13 Heat pump type hot water supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006034827A JP2007212103A (en) 2006-02-13 2006-02-13 Heat pump type hot water supply apparatus

Publications (1)

Publication Number Publication Date
JP2007212103A true JP2007212103A (en) 2007-08-23

Family

ID=38490712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006034827A Pending JP2007212103A (en) 2006-02-13 2006-02-13 Heat pump type hot water supply apparatus

Country Status (1)

Country Link
JP (1) JP2007212103A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071546A (en) * 2008-09-18 2010-04-02 Panasonic Corp Heat pump type water heater
JP2010175104A (en) * 2009-01-28 2010-08-12 Mitsubishi Electric Corp Heat pump type hot water supply device
WO2018163345A1 (en) * 2017-03-09 2018-09-13 三菱電機株式会社 Heat pump hot water supply device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188860A (en) * 2000-10-13 2002-07-05 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2003074970A (en) * 2001-09-04 2003-03-12 Sanyo Electric Co Ltd Heat pump type hot-water supplier
JP2003185308A (en) * 2001-12-13 2003-07-03 Sanyo Electric Co Ltd Heat pump type hot-water supplying apparatus
JP2003336897A (en) * 2002-05-22 2003-11-28 Matsushita Electric Ind Co Ltd Heat pump bath hot water supply system
JP2004361046A (en) * 2003-06-06 2004-12-24 Denso Corp Heat pump hot water supply apparatus
JP2005016947A (en) * 2000-06-21 2005-01-20 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2005147607A (en) * 2003-11-19 2005-06-09 Matsushita Electric Ind Co Ltd Operation control method of heat pump device
JP2005241088A (en) * 2004-02-25 2005-09-08 Corona Corp Hot water storage type water heater

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005016947A (en) * 2000-06-21 2005-01-20 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2002188860A (en) * 2000-10-13 2002-07-05 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2003074970A (en) * 2001-09-04 2003-03-12 Sanyo Electric Co Ltd Heat pump type hot-water supplier
JP2003185308A (en) * 2001-12-13 2003-07-03 Sanyo Electric Co Ltd Heat pump type hot-water supplying apparatus
JP2003336897A (en) * 2002-05-22 2003-11-28 Matsushita Electric Ind Co Ltd Heat pump bath hot water supply system
JP2004361046A (en) * 2003-06-06 2004-12-24 Denso Corp Heat pump hot water supply apparatus
JP2005147607A (en) * 2003-11-19 2005-06-09 Matsushita Electric Ind Co Ltd Operation control method of heat pump device
JP2005241088A (en) * 2004-02-25 2005-09-08 Corona Corp Hot water storage type water heater

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071546A (en) * 2008-09-18 2010-04-02 Panasonic Corp Heat pump type water heater
JP2010175104A (en) * 2009-01-28 2010-08-12 Mitsubishi Electric Corp Heat pump type hot water supply device
WO2018163345A1 (en) * 2017-03-09 2018-09-13 三菱電機株式会社 Heat pump hot water supply device

Similar Documents

Publication Publication Date Title
JP5171410B2 (en) Hot water supply system
JP5034367B2 (en) Heat pump water heater
JP2005134070A (en) Heat pump water heater
JP2006118820A (en) Heat pump type water heater
JP2005098546A (en) Heat pump type water heater
JP2007212103A (en) Heat pump type hot water supply apparatus
JP5401913B2 (en) Heat pump water heater
JP2010071546A (en) Heat pump type water heater
JP2005140439A (en) Heat pump water heater
JP2008039289A (en) Heat pump type water heater
JP2006132888A (en) Heat pump hot water supply apparatus
JP2009250461A (en) Heat pump hot water supply device
JP4910559B2 (en) Heat pump water heater
JP2008261557A (en) Heat pump water heater
JP2006258375A (en) Heat pump type water heater
JP4867517B2 (en) Heat pump water heater
JP2007139275A (en) Heat pump type water heater
JP2007113897A (en) Heat pump type water heater
JP3856025B2 (en) Heat pump water heater
JP2009121704A (en) Heat pump type water heater
JP5338758B2 (en) Hot water supply apparatus and hot water control method thereof
JP3900186B2 (en) Heat pump water heater
JP4811185B2 (en) Heat pump water heater
JP2008190840A (en) Heat pump type water heater
JP2006250367A (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081111

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110607