[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007210197A - 樹脂基体およびその製造方法 - Google Patents

樹脂基体およびその製造方法 Download PDF

Info

Publication number
JP2007210197A
JP2007210197A JP2006032218A JP2006032218A JP2007210197A JP 2007210197 A JP2007210197 A JP 2007210197A JP 2006032218 A JP2006032218 A JP 2006032218A JP 2006032218 A JP2006032218 A JP 2006032218A JP 2007210197 A JP2007210197 A JP 2007210197A
Authority
JP
Japan
Prior art keywords
hydrolyzable
resin substrate
resin
silane compound
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006032218A
Other languages
English (en)
Inventor
Yukio Nomura
幸生 野村
Kunihiro Tsuruta
邦弘 鶴田
Norihisa Mino
規央 美濃
Shuzo Tokumitsu
修三 徳満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006032218A priority Critical patent/JP2007210197A/ja
Publication of JP2007210197A publication Critical patent/JP2007210197A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】耐久性の優れた撥水、撥油性樹脂基体を提供すること。
【解決手段】加水分解可能なシラン化合物SiX(Xは加水分解可能な官能基)層が、加水分解した(活性化した)樹脂分子と強固に化学結合することで、シラン化合物SiX層を介して樹脂分子同士を固定化し樹脂表面を安定化させる。また、この層は分子レベルの超薄膜のため、熱膨張の差による破壊も起こらない。このため表面が極めて安定化した加水分解可能なシラン化合物SiX層となる。さらに、この上にシラン化合物RSiY4−n(nは1〜3の整数 Rはアルキル基、もしくはフルオロアルキル基、Yは加水分解可能な官能基)層を設けることも可能で、これらにより、耐久性の優れた親水、撥水、撥油性樹脂基体を提供できる。
【選択図】図1

Description

本発明は、表面に加水分解可能な樹脂基板表面に加水分解可能なシラン化合物層を設けた樹脂基体およびその製造方法に関する。
従来、樹脂表面に例えば撥水性を持たすために、数々の手段が行われている。例えば樹脂にシリコーン樹脂を混合する方法や、樹脂にUVやコロナ放電を照射した後にシリコーンやフルオロアルキルアルキルシランを塗布する方法や、樹脂にUVやコロナ放電を照射した後にシリカコートを設け、アルキルシランやフルオロアルキルシランを設ける方法などがある。
特開2001−128891号公報
しかしながら、樹脂にシリコーン樹脂を混合する方法では、樹脂の力学的強度が低下する課題があった。また、樹脂にUVやコロナ放電を照射した後にシリコーンやフルオロアルキルアルキルシランを塗布する方法では、樹脂表面が柔らかいためにと膜の耐久性とくに耐摩耗性に課題があった。これを解決するため、樹脂にUVやコロナ放電を照射した後にシリカコートを設け、アルキルシランやフルオロアルキルシランを設ける方法では、樹脂とシリカコートの熱膨張の差が大きいため、シリカコートが熱破壊(密着強度低下)する課題があった。また、樹脂表面がきわめて安定なために、UVやコロナ放電を行ったとしても、表面を活性化できない場合や、仮に活性化できたとしても、時間をかけて樹脂の高分子鎖の熱運動により、活性化した表面が内部に潜り込んだり、表面が再びもとに戻るため、この表面と膜の間の密着強度、安定性に課題があった。
本発明はこの課題を解決するものであり、加水分解可能な樹脂基板表面と化学結合し、加水分解可能なSiX(Xは加水分解可能な官能基)層を設けた、機能性樹脂基体およびその製造方法を発明するに至った。
本発明により、加水分解可能なシラン化合物SiX(Xは加水分解可能な官能基)層が、加水分解した(活性化した)樹脂分子と強固に化学結合することで、シラン化合物SiX層を介して樹脂分子同士を固定化し樹脂表面を安定化させる。また、この層は分子レベルの超薄膜のため、熱膨張の差による破壊も起こらない。このため表面が極めて安定化した加水分解可能なシラン化合物SiX層となる。さらに、この上にシラン化合物RSiY4−n(nは1〜3の整数、Rはアルキル基もしくはフルオロアルキル基、Yは加水分解可能な官能基)層を設けることも可能で、これらにより、耐久性の優れた親水、撥水、撥油性樹脂基体を提供でき、工業的な利用価値大である。
請求項1に記載の発明は、加水分解可能な樹脂基板表面と化学結合した加水分解可能なシラン化合物SiX(Xは加水分解可能な官能基)層を設けた樹脂基体である。
この構成によると加水分解可能なシラン化合物SiX(Xは加水分解可能な官能基)層が、加水分解した(活性化した)樹脂分子と強固に化学結合することで、シラン化合物SiX層を介して樹脂分子同士を固定化し樹脂表面を安定化させる。また、この層は分
子レベルの超薄膜のため、熱膨張の差による破壊も起こらない。このため表面が極めて安定化した加水分解可能なシラン化合物SiX層を有する基体となり、耐久性にすぐれた親水性樹脂基体を提供できる。
請求項2に記載の発明は、加水分解可能な樹脂基板表面と化学結合した加水分解可能なシラン化合物SiX(Xは加水分解基)層と、加水分解可能なシラン化合物SiX層と化学結合した加水分解可能なシラン化合物RSiY4−n(nは1〜3の整数、Rはアルキル基もしくはフルオロアルキル基、Yは加水分解可能な官能基)層を設けた樹脂基体である。
この構成によると、加水分解可能なシラン化合物SiX(Xは加水分解可能な官能基)層が、加水分解した(活性化した)樹脂分子と強固に化学結合することで、シラン化合物SiX層を介して樹脂分子同士を固定化し樹脂表面を安定化させる。また、この層は分子レベルの超薄膜のため、熱膨張の差による破壊も起こらない。このため表面が極めて安定化した加水分解可能なシラン化合物SiX層となる。そして、この上にシラン化合物RSiY4−n(nは1〜3の整数 Rはアルキル基、もしくはフルオロアルキル基、Yは加水分解可能な官能基)層を設けているので、耐久性の優れた撥水、撥油性樹脂基体を提供できる。
請求項3に記載の発明は、加水分解可能なシラン化合物RSiY4−n(nは1〜3の整数、Rはアルキル基もしくはフルオロアルキル基、Yは加水分解可能な官能基)層が加水分解可能なシラン化合物RSiYであることを特徴とする。
この構成にすると、アルキル基もしくはフルオロアルキル基が表面に露出しやすくなり、
表面を撥水、撥油、非粘着性を向上できる。
請求項4に記載の発明は、加水分解可能なシラン化合物RSiY(Rはアルキル基もしくはフルオロアルキル基、Yは加水分解可能な官能基)層が単分子膜であることを特徴とする。
この構成にすると、アルキル基もしくはフルオロアルキル基の末端基CH基もしくはCFが表面に露出するため、表面を撥水、撥油、非粘着性をいっそう向上できる。また無色透明の超薄膜となり、樹脂の色感を維持できる。
請求項5に記載の発明は、加水分解可能な樹脂が熱硬化性樹脂であることを特徴とする。
この構成によって、樹脂表面の加水分解が容易になりので、化学結合したシラン化合物SiX層が形成可能である。
請求項6に記載の発明は、加水分解可能な樹脂の表面の鉛筆硬度がH以上であることを特徴とする。
この構成によって、シラン化合物SiX層が結合する樹脂が硬い樹脂となるため、耐久性特に耐摩耗性が向上する。
請求項7に記載の発明は、加水分解可能な樹脂がアクリル、シリコーン、およびこれらの共重合体、もしくはポリイミド、ポリアミド、およびこれらの共重合体であることを特徴とする。
この構成によって、樹脂表面の加水分解が容易で、かつシラン化合物SiX層が化学結合する樹脂が硬い樹脂となるため、耐久性特に耐摩耗性が大幅に向上する。
請求項8に記載の発明は、樹脂基板表面を加水分解する工程と、加水分解した樹脂基板表面に少なくともシラン化合物SiX(Xは加水分解可能な官能基)を接触させる工程と、形成されたシラン化合物SiXを加水分解する工程を有する樹脂基体の製造方法である。
この製造方法によると加水分解可能なシラン化合物SiX(Xは加水分解可能な官能基)層が、加水分解した(活性化した)樹脂分子と強固に化学結合することで、シラン化合物SiX層を介して樹脂分子同士を固定化し樹脂表面を安定化させる。また、この層は分子レベルの超薄膜のため、熱膨張の差による破壊も起こらない。このため表面が極めて安定化した加水分解可能なシラン化合物SiX層を有する基体となり、耐久性にすぐれた親水性樹脂基体を製造できる。
請求項9に記載の発明は、樹脂基板表面を加水分解する工程と、加水分解した樹脂基板表面に少なくともシラン化合物SiX(Xは加水分解可能な官能基)を接触させる工程と、形成されたシラン化合物SiX層を加水分解する工程と、加水分解したなシラン化合物SiX層にシラン化合物RSiY4−n(nは1〜3の整数、Rはアルキル基もしくはフルオロアルキル基、Yは加水分解可能な官能基)を接触する工程と、形成されたシラン化合物RSiY4−n層を加水分解する工程を有する樹脂基体の製造方法である。
この製造方法によると、加水分解可能なシラン化合物SiX(Xは加水分解可能な官能基)層が、加水分解した(活性化した)樹脂分子と強固に化学結合することで、シラン化合物SiX層を介して樹脂分子同士を固定化し樹脂表面を安定化させる。また、この層は分子レベルの超薄膜のため、熱膨張の差による破壊も起こらない。このため表面が極めて安定化した加水分解可能なシラン化合物SiX層となる。そして、この上にシラン化合物RSiY4−n(nは1〜3の整数、Rはアルキル基もしくはフルオロアルキル基、Yは加水分解可能な官能基)層を設けているので、耐久性の優れた撥水、撥油性樹脂基体を製造できる。
請求項10の発明は、加水分解可能な樹脂層の表面の加水分解を行う工程が少なくともUV照射もしくはコロナ放線照射であることを特徴とする樹脂基体の製造方法である。
この方法によると、DRYな条件で加水分解可能な樹脂層表面のみにUV照射もしくはコロナ放線照射できるので、樹脂の他の部分に影響を及ぼすことなく、加水分解可能な樹脂表面を簡便に加水分解できる。
請求項11記載の発明は、加水分解可能な樹脂表面の加水分解を行う工程が少なくともオゾンもしくは酸素プラズマの接触であることを特徴とする製造方法である。
この方法によると、DRYな条件で形状に関係なく加水分解可能な樹脂表面のみにオゾンもしくは酸素プラズマを接触できるので、樹脂の他の部分に影響を及ぼすことなく、加水分解可能な樹脂表面を簡便に加水分解できる。
請求項12に記載の発明は、加水分解可能な樹脂の加水分解を行う雰囲気が湿度10%以上であることを特徴とする。
この方法によると、上記UV照射、コロナ放電照射、オゾンもしくは酸素プラズマ接触による樹脂表面の加水分解を加速できる。
請求項13に記載の発明は加水分解可能な官能基XもしくはYがハロゲン基、アルコキシ基、イソシアネート基であることを特徴とする。
この方法によると、加水分解可能な樹脂と加水分解可能なシラン化合物SiX層および加水分解可能なシラン化合物SiX層と加水分解可能なシラン化合物RSiY4−nとの間で強固に共有結合するため、耐久性の優れた樹脂基体を製造できる。
請求項14に記載の発明は、ハロゲン基がクロロ基であることを特徴とする。
この方法によると、クロロシランの反応性が高いので、加水分解可能な樹脂とシラン化合物SiCl層がいっそう強固にかつすばやく共有結合できる。特に本発明の場合、高温で熱処理が困難な樹脂基板であることを考慮すると特に有効で、耐久性かつ量産性に優れた樹脂基体を製造できる。
請求項15に記載の発明は、シラン化合物SiX(Xは加水分解可能な官能基)もしくはシラン化合物RSiY4−n(nは1〜3の整数、Rはアルキル基もしくはフルオロアルキル基、Yは加水分解可能な官能基)を接触させる工程が湿度35%以下の無水雰囲気であることを特徴とする。
この方法によると、これらのシラン化合物を空気中の水蒸気と反応させることなく、加水分解可能な樹脂とて強固に共有結合できるので、耐久性に優れた樹脂基体を製造できる。
以下、本発明の実施形態について説明する。
図1は本発明の第1、2の実施形態における樹脂基体と本発明の第8、9の実施形態における樹脂基体の製造プロセスを示す。
アクリル樹脂(ポリメタクリル酸メチル、表面硬度3H)基板1表面に、湿度50%雰囲気下で172nmの波長を有するエキシマUV光2を照射することで雰囲気中の水蒸気により表面が加水分解され、水酸基が形成された樹脂基板3が製造される。窒素雰囲気(無水)下でこの樹脂基板3にテトラクロロシラン4を含むフロリナート(3M社製)溶液に浸漬し、通常雰囲気で乾燥することで、樹脂表面の水酸基とクロロシリル基が脱塩酸反応をおこして、シロキサン結合を介して樹脂とテトラクロロシランが化学結合し、さらにこのテトラクロロシランを介して、樹脂同士が固定化する。その結果、樹脂表面に強固に固定化したテトラクロロシランの加水分解層が形成され、本発明の耐久性に優れた親水樹脂基板5が製造される。
この樹脂基板5にへプタデカフルオロデシルトリクロロシラン6を含むフロリナート(3M社製)溶液に浸漬し、通常雰囲気で乾燥することで、テトラクロロシラン加水分解層の水酸基とクロロシリル基が脱塩酸反応をおこして、シロキサン結合を介してプタデカフルオロデシル基がテトラクロロシラン加水分解層の化学結合で固定化され、本発明の耐久性に優れた撥水樹脂基体7が作製される。
なお本発明に供されるシラン化合物SiX(Xは加水分解可能な官能基)とシラン化合物RSiY4−n(nは1〜3の整数 Rはアルキル基、もしくはフルオロアルキル基、Yは加水分解可能な官能基)の加水分解可能な官能基X、Yとしてはクロロシリル基
を始めとするハロゲン化シリル基、アルコキシシリル基、イソシアネートシリル基が有効であるが、クロロシリル基は加水分解可能な樹脂層表面にある水酸基等との反応性の高く、特に本発明の場合、高温で熱処理が困難な樹脂基板であることを考慮すると特に有効である。 また、シロキサン結合を介することにより、従来の共有結合を介したもの(例えば、スルフィド結合−S−)よりも、より強固に基板に結合するので、耐熱性、耐水性、耐電気特性等が優れる。また、撥水性を付与するRとしては、アルキル基が良く、さらに撥油性を付与し、防汚性を高める場合には、フルオロアルキル基が優れている。さらにこれらの官能基は固定化される化合物の割合(被覆率)を高めるためにも、直鎖状のものや、n=1の構造のものがよい。この結果、シラン化合物RSiY4−n(nは1〜3の整数 Rはアルキル基、もしくはフルオロアルキル基、Yは加水分解可能な官能基)は単分子膜になり、CHやCF基が表面に露出し、さらに撥水、撥油、防汚性が高まる。
以上のことから、本発明に供される化合物の具体例として、シラン化合物SiX(Xは加水分解可能な官能基)場合は、以下のものが例示できる。
(1) SiCl
(2) Si(OC
(3) Si(NCO)
なお、一般式、XSiO−(SiXO)−X(ただし、nは1以上の自然数、m、lは自然数、kは0もしくは1でXはハロゲン基、アルコキシ基、イソシアネート基)に対応する以下の化合物も適用可能である。
(4) SiCl−O−SiCl
(5) SiCl−O−SiCl−O−SiCl
(6) Si(OCH−O−Si(OCH
(7) Si(OC−O−Si(OCH
(8) Si(OC−O−Si(OC
(9) Si(NCO)−O−Si(NCO)
撥水、撥油、防汚を付与するシラン化合物RSiY4−n(nは1〜3の整数 Rはアルキル基、もしくはフルオロアルキル基、Yは加水分解可能な官能基)場合は、以下のものが例示できる。
(10) CH(CHO(CHSiZqCl3−q
(11) CH(CH−Si(CH(CH−SiZCl3−q
(12) CFCOO(CHSiZCl3−q
ただし、pは1〜3の整数、qは0〜2の整数、rは1〜25の整数、sは0〜12の整数、tは1〜20の整数、uは0〜12の整数、vは1〜20の整数、wは1〜25の整数を示す。また、Yは、水素、アルキル基、アルコキシル基、含フッ素アルキル基または含フッ素アルコキシ基である。
さらに、具体的なシラン系化合物として下記に示す(15)−(21)が挙げられる。
(13) CHCHO(CH15SiCl
(14) CH(CHSi(CH(CH15SiCl
(15) CH(CHSi(CH(CHSiCl
(16) CHCOO(CH15SiCl
(17) CF(CF−(CH−SiCl
(18) CF(CF−(CH−SiCl
(19) CF(CF−C−SiCl
(20) (CF−SiCl
(21) (CF−SiCl
また、上記クロロシラン系化合物の代わりに、全てのクロロシリル基をイソシアネート基に置き扱えたイソシアネート系化合物、例えば下記に示す(22)−(26)を用いてもよい。
(22) CH−(CHSiZ(NCO)3−p
(23) CH(CHO(CHSiZ(NCO)q−P
(24) CH(CH−Si(CH(CH−SiZ(NCO)3−q
(25) CFCOO(CHSiZ(NCO)3−q
但し、p、q、r、s、t、u、v、wおよびXは、前記と同様である。
前記のシラン系化合物に変えて、下記(27)−(33)に具体的に例示するシラン系化合物を用いてもよい。
(26) CHCHO(CH15Si(NCO)
(27) CH(CHSi(CH(CH2)15Si(NCO)
(28) CH(CHSi(CH(CH2)Si(NCO)
(29) CHCOO(CH15Si(NCO)
(30) CF(CF−(CH−Si(NCO)
(31) CF(CF−(CH−Si(NCO)
(32) CF(CF−C−Si(NCO)
(33) (CF−Si(NCO)
(34) (CF−SiNCO
また、シラン系化合物として、一般に、SiZ(OA)4−k(Zは、前記と同様、Aはアルキル基、kは0、1、2または3)で表される物質を用いることが可能である。中でも、CF−(CF−(R)−SiY(OA)3−q(nは1以上の整数、好ましくは1〜22の整数、Rはアルキル基、ビニル基、エチニル基、アリール基、シリコンもしくは酸素原子を含む置換基、lは0または1、Z、Aおよびqは前記と同様)で表される物質を用いると、よりすぐれた防汚性の被膜を形成できるが、これに限定されるものではなく、これ以外にも、 CH−(CH−SiZ(OA)3−qおよびCH−(CH−0−(CH−SiZ(OA)3−q、CH−(CH2)−Si(CH−(CH−SiZ(OA)3−q、CFCOO−(CH−SiZ(OA)3−q(但し、q、r、s、t、u、v、w、YおよびAは、前記と同様)などが使用可能である。
さらに、より具体的なシラン系化合物としては、下記に示す(34)−(57)を挙げることができる。
(35) CHCHO(CH15Si(OCH
(36) CFCHO(CH15Si(OCH
(37) CH(CHSi(CH(CH15Si(OCH
(38) CH(CHSi(CH(CHSi(OCH3)
(39) CHCOO(CH15Si(OCH
(40) CF(CF(CHSi(OCH
(41) CF(CF−C−Si(OCH
(42) CHCHO(CH15Si(OC
(43) CH(CHSi(CH(CH15Si(OC
(44) CH(CHSi(CH(CHSi(OC
(45) CF(CHSi(CH(CHSi(OC
(46) CHCOO(CH15Si(OC
(47) CFCOO(CH15Si(OC
(48) CFCOO(CH15Si(OCH
(49) CF(CF(CHSi(OC
(50) CF(CF2)(CH2)Si(OC
(51) CF(CF2)(CH2)Si(OC
(52) CF(CFSi(OC
(53) CF(CF(CH)2Si(OCH
(54) CF(CF(CHSi(OCH
(55) CF(CF(CHSiCH(OC
(56) CF(CF(CHSiCH(OCH
(57) CF(CF(CHSi(CHOC
(58) CF(CF(CHSi(CHOCH
なお、(2)−(3)、(6)−(9)、(22)−(58)の化合物を用いた場合には、塩酸が発生しないため、装置保全および作業上のメリットもある。
なお、図1のシラン化合物を浸漬する工程に示す最初の反応ステップ(脱塩化水素反応)は、一般に化学吸着反応と呼ばれている。
またシラン化合物を接触させる雰囲気として、シラン化合物と雰囲気中の水蒸気との反応を抑えるためにも、雰囲気湿度が35%以下、さらに望ましくは不活性ガス雰囲気下、無水雰囲気下等が望ましい。
次に溶媒としては、水を含まない非水系溶媒を用いるのが好ましく、水を含まない炭化水素系溶媒、フッ化炭素系溶媒、シリコーン系、アルコール系溶媒などを用いることが可能である。なお、石油系の溶剤の他に具体的に使用可能なものは、石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、灯油、リグロイン、ジメチルミリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエステルシリコーンなどを挙げることができる。ただしこれらの溶媒は樹脂を侵す可能性があるので、フッ化炭素系溶媒が最も好ましい。フッ化炭素系溶媒には、フロン系溶媒や、フロリナート(3M社製品)、アフルード(旭ガラス社製品)などがある。なお、これらは1種単独で用いてもよいし、よく混合するものなら2種以上を組み合わせてもよい。
また、加水分解可能な樹脂として、一般にポリエチレンテレフタレート樹脂(PET)やポリブチレンテレフタレート(PBT)、エポキシ樹脂など熱硬化性樹脂と類される樹脂およびこれらの変性樹脂が適用できるが、これらに限定されることはない。特にシロキサン結合を有する膜が結合する表面樹脂層が硬い樹脂ほど、耐久性特に耐摩耗性が大幅に向上するので、アクリル樹脂(例えば、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸プロピル、ポリメタクリル酸ブチルなど)シリコーン樹脂、およびこれらの共重合体、もしくはポリイミド樹脂、ポリアミド樹脂、およびこれらの共重合体が好ましい。また樹脂としては、ポリエチレン樹脂(PE)、ポリプロピレン樹脂(PP)、ポリスチレン樹脂(PP)、アクリロニトリルブタジエンスチレン共重合体(ABS)、ポリアセタール樹脂(POM)、ポリ塩化ビニル樹脂などの熱可塑性樹脂や上記熱硬化性樹脂およびこれらの変性樹脂などが適用できるがこれらに限定されることはない。特に本発明では従来の方法ではきわめて困難であったポリオレフィン系樹脂上へのシロキサン結合を有する膜を形成するのが可能である。またこれらの形態だが、特に平面形状に限定されることはなく、処理可能であれば、樹脂成型品などの曲面形態でもかまわない。
また、樹脂表面の加水分解の手段としては、酸、アルカリによるWETプロセスでもか
まわないが、樹脂の吸水による変形等を考えると、DRYプロセスがよい。樹脂表面が平板の場合は、UV処理やコロナ放電処理などが優れる。このUV処理では波長としては400nm以下のUV光が有効であるが、特に200nm以下の真空紫外域では、強力なオゾンが発生すること、樹脂内部までUVが到達しないので樹脂を光劣化させることがない。また樹脂が形状品の場合、オゾン処理や酸素プラズマ処理が有効である。
(実施例1)
アクリル樹脂(ポリメタクリル酸メチル、表面鉛筆硬度3H)基板表面に、湿度50%雰囲気下で172nmの波長を有するエキシマUV光を照射することで雰囲気中の水蒸気により表面が加水分解され、水酸基が形成された樹脂基板が製造される。窒素雰囲気(無水)下でこの樹脂基板にテトラクロロシランを含むフロリナート(3M社製)溶液に浸漬し、通常雰囲気で乾燥することで、樹脂表面の水酸基とクロロシリル基が脱塩酸反応をおこして、シロキサン結合を介して樹脂とテトラクロロシランが化学結合し、さらにこのテトラクロロシランを介して、樹脂同士が固定化する。その結果、樹脂表面に強固に固定化したテトラクロロシランの加水分解層が形成され、本発明の耐久性に優れた親水樹脂基板が製造される。
この樹脂基板にへプタデカフルオロデシルトリクロロシランを含むフロリナート(3M社製)溶液に浸漬し、通常雰囲気で乾燥することで、テトラクロロシラン加水分解層の水酸基とクロロシリル基が脱塩酸反応をおこして、シロキサン結合を介してプタデカフルオロデシル基がテトラクロロシラン加水分解層の化学結合で固定化され、本発明の耐久性に優れた撥水樹脂基体Aが作製される。
(比較例1)
実施例1の、テトラクロロシランを含むフロリナート(3M社製)溶液の代わりに、市販のシリカゾル溶液を用い、実施例1と同様に樹脂基体RAを作製した。
(比較例2)
実施例1の、テトラクロロシランを含むフロリナート(3M社製)溶液に浸漬しないこと以外は、実施例1と同様に樹脂基体RBを作製した。
(撥水、撥油性とその耐久性能の比較)
樹脂基体A、RA、RBの水の接触角はそれぞれ、107°、103°、93°であった。RBの水の接触角が低いのは、樹脂表面の少ない水酸基にへプタデカフルオロデシルトリクロロシランが固定化されているためである。
これらの樹脂基体を80℃雰囲気下で10時間放置後、表面を観察したところ、樹脂基体AおよびRBには異常が見られなかったものの、樹脂基体RAにはシリカ膜にクラックが見られた。この状態で油性マジックを用いて文字を書き、ワイパーでこすったところ、Aは消えたものの、RA、RBは消えず、RAは形成したシリカ膜が剥離していた。これは、Aは樹脂表面の水酸基を介してテトラクロロシランと樹脂表面が強固に架橋(化学結合)し樹脂表面が安定化するとともに、加水分解して多くの水酸基を持つこのテトラクロロシランがへプタデカフルオロデシルトリクロロシランとも強固に化学結合しているためである。これに対し、RAは樹脂表面とシリカ膜は強固に結合せず、熱膨張係数に起因するシリカ膜の内部応力によりシリカ膜が剥離するためである。またRBは樹脂表面が熱により分子運動をおこして表面が不安定化し、表面に固定化したへプタデカフルオロデシルトリクロロシランが破壊されたためと考えられる。したがって、本発明の樹脂基板は撥水、撥油性とその耐久性に極めて優れていることがわかる。
(実施例2)
実施例1のへプタデカフルオロデシルトリクロロシランに代わり、デシルトリクロロシランを用いたことを除いて、実施例1と同様に樹脂基体Bを作製した。
(撥水、撥油性の比較)
樹脂基体A,Bの接触角は107°105°でほとんど変わらないにもかかわらず、油性マジックで文字を書き、ワイパーでこすったところ、Aは消え、Bはまったく消えなかった。これはA表面は撥水撥油性が付与されたのに対し、Bは、撥水親油性が付与されたためである。
(実施例3)
実施例1のへプタデカフルオロデシルトリクロロシランに代わり、ジ(へプタデカフルオロデシル)ジクロロシランを用いたことを除いて、実施例1と同様に樹脂基体Cを作製した。
(撥水、撥油性の比較)
樹脂基体A,Cの接触角は107°90°であった。油性マジックで文字を書いたところ、Aははじいて書けないのに対し、Cははじかず書けた。一方ワイパーでこすったところ、Aは消えやすいのに対し、Cは消えにくかった。これはジ(へプタデカフルオロデシル)ジクロロシランが、かさ高な分子のため表面を被覆しないためと考えられ、実施例3の手段により撥水撥油性をコントロールできるとともに、より撥水撥油性を付与したい場合は、本発明の実施例1の手段が優れることがわかる。
(実施例4)
実施例1のへプタデカフルオロデシルトリクロロシランを含むフロリナート(3M社製)溶液に浸漬後に、基板をフロリナートで洗浄し、過剰なへプタデカフルオロデシルトリクロロシランを取り除いたこと以外は、実施例1と同様に樹脂基体Dを作製した。
(撥水、撥油性の比較)
樹脂基体A,Dの接触角は107°112°であった。油性マジックで文字を書いたところ、Aははじいて書けないのに対し、Dはまったくかけなかった。これはDのへプタデカフルオロデシルトリクロロシランが単分子膜になっており、表面にCF3基が露出しているためと考えられる。
(実施例5)
実施例1の表面鉛筆硬度3Hアクリル樹脂に代わり、表面鉛筆硬度Hのアクリル樹脂を用いたこと以外は実施例1と同様に樹脂基体Eを作製した。
(比較例3)
実施例1の表面鉛筆硬度3Hアクリル樹脂に代わり、表面鉛筆硬度Bのアクリル樹脂を用いたこと以外は実施例1と同様に樹脂基体RCを作製した。
(撥水、撥油性と耐久性)
樹脂基体A、E、RCの水の接触角は107°、105°、105°であった。この後、10g/cm2の荷重をかけ、水をしみこませたふきんで1000往復こすると、樹脂基体A,E、RCの水の接触角は105°103°、52°であった。表面を観察したところ、RCには表面に削り傷がみられた。このことより、樹脂表面の硬度が硬いほど、表面が削られにくいので、その上の膜の耐久性が優れることがわかり、鉛筆硬度でH以上では実用的であるといえる。
(実施例6)
実施例1のアクリル樹脂に変わりPET(ポリエチレンテレフタレート)樹脂を用いたこと以外は実施例1と同様に樹脂基体Fを作製した。
(比較例4)
実施例1のアクリル樹脂に変わりポリプロピレン樹脂を用いたこと以外は実施例1と同様に樹脂基体RDを作製した。
(撥水、撥油性と耐久性)
樹脂基体A、F、RDの水の接触角は107°、111、90°であった。この状態で油性マジックを用いて文字を書き、ワイパーでこすったところ、A、Fは消えたものの、RDは消えなかった。また、樹脂基体を50℃雰囲気下で100時間放置後、A、F,RDの水の接触角を測定したところ、102°、111°、75°であった。これはアクリル、PET樹脂に比べ、ポリプロピレン樹脂は、加水分解しないために水酸基の生成がほとんどなく、そのためテトラクロロシランによる架橋(化学結合)せず、表面安定化しない。また、へプタデカフルオロデシルトリクロロシランも化学結合しないためと考えられる。また、AがFに比べて耐熱性が優れるのは、Fが熱硬化性樹脂であるためと考えら得る。
発明者は他の種々の樹脂について調べたところ、加水分解が困難なポリエチレンなどのポリオレフィン系樹脂やポリスチレン樹脂がポリプロピレンと同様、撥水撥油性維持の性能がよくないことがわかった。一方、加水分解可能な樹脂でも、シリコーン、アクリルシリコン共重合体、ポリイミド、ポリアミド、ポリスチレンではアクリル樹脂と極めて優れた撥水撥油維持の性能を示すことがわかった。また、熱硬化性樹脂を用いると耐熱性が優れることがわかった。これ以外の加水分解可能な樹脂、例えばPC(ポリカーボーネート)などは、アクリルとポリプロピレンの間の撥水撥油維持性能を示した。
(実施例7)
実施例1のテトラクロロシランに代わり、テトラエトキシシランを用いたことをのぞいて、実施例1と同様に樹脂基板Gを作製した。
(実施例8)
実施例1のへプタデカフルオロデシルトリクロロシランに代わり、へプタデカフルオロデシルトリエトキシシランを用いたことを除いて、実施例1と同様に樹脂基板Hを作製した。
(撥水、撥油性とその耐久性能の比較)
樹脂基体A、F、Gの水の接触角は107°、102°、95°であった。この後、10g/cm2の荷重をかけ、水をしみこませたふきんで1000往復こすると、樹脂基体A,E、RCの水の接触角は105°93°、82°であった。このことより、クロロシランのほうが、アルコキシシランよりも強固に表面に化学結合を形成し、本発明の樹脂基板の耐久性を向上させえることがわかる。
(比較例5)
実施例1の172nmの波長を有するエキシマUV光を照射しなかったことを除いて、実施例1と同様に樹脂基板REを作製した。
(撥水、撥油性の比較)
樹脂基体A、REの接触角はそれぞれ、107°、62°であり、また、油性マジックで文字を書き、ワイパーでこすったところ、Aは消え、Bはまったく消えず、Aはヘプタ
デカフルオロデシル基を含むシロキサン結合を有する膜が形成されたのに対し、R3はこの膜が形成されなかったことがわかる。これは、RE樹脂表面に水酸基が形成されなかったことに起因するヘプタデカフルオロデシル基を含むシロキサン結合を有する膜が形成されなかったためである。
なお、本発明はエキシマUV以外のUVや、コロナ放電照射の場合にも樹脂基体Aのような効果が認められた。
(比較例6)
実施例1の樹脂基板を窒素雰囲気(無水)下でテトラクロロシランおよびヘプタデカフルオロデシルトリクロロシランを含むフロリナート(3M社製)溶液に浸漬するかわりに、湿度20、35、40%で行い、実施例1と同様に樹脂基板R4(20)、R4(35)、R4(40)を作製した。
(撥水、撥油性の比較)
樹脂基体A、RF(20)、RF(35)、RF(40)の接触角は107°、106°105°、92°であった。また、油性マジックで文字を書き、ワイパーでこすったところ、A、R4(20)、R4(35)は消え、R(40)はまったく消えなかったことから、A、R4(20)、R4(35)はヘプタデカフルオロデシル基を含むシロキサン結合を有する膜が形成されたのに対し、R4(40)はこの膜が形成されなかったことがわかる。これは、R4(40)は雰囲気の水蒸気とへプタデカフルオロデシルトリクロロシランが反応し、ヘプタデカフルオロデシル基を含むシロキサン結合を有する膜が形成されなかったためである。
本発明により、加水分解可能なシラン化合物SiX(Xは加水分解可能な官能基)層が、加水分解した(活性化した)樹脂分子と強固に化学結合することで、シラン化合物SiX層を介して樹脂分子同士を固定化し樹脂表面を安定化させる。また、この層は分子レベルの超薄膜のため、熱膨張の差による破壊も起こらない。このため表面が極めて安定化した加水分解可能なシラン化合物SiX層となる。さらに、この上にシラン化合物RSiY4−n(nは1〜3の整数 Rはアルキル基、もしくはフルオロアルキル基、Yは加水分解可能な官能基)層を設けることも可能で、これらにより、耐久性の優れた親水、撥水、撥油性樹脂基体を提供でき、工業的な利用価値大である。
本発明の樹脂基体の製造プロセスを示す工程図
符号の説明
1 アクリル樹脂
4 テトラクロロシラン
5 親水性樹脂基体
6 ヘプタデカフロオロデシルトリクロロシラン
7 撥水、撥油樹脂基体

Claims (15)

  1. 加水分解可能な樹脂基板表面と化学結合した加水分解可能なシラン化合物SiX(Xは加水分解可能な官能基)層を設けた樹脂基体。
  2. 加水分解可能な樹脂基板表面と化学結合した加水分解可能なシラン化合物SiX(Xは加水分解基)層と、加水分解可能なシラン化合物SiX層と化学結合した加水分解可能なシラン化合物RSiY4−n(nは1〜3の整数、Rはアルキル基もしくはフルオロアルキル基、Yは加水分解可能な官能基)層を設けた樹脂基体。
  3. 加水分解可能なシラン化合物RSiY4−n(nは1〜3の整数、Rはアルキル基もしくはフルオロアルキル基、Yは加水分解可能な官能基)層が加水分解可能なシラン化合物RSiYであることを特徴とする請求項2記載の樹脂基体。
  4. 加水分解可能なシラン化合物RSiY(Rはアルキル基もしくはフルオロアルキル基、Yは加水分解可能な官能基)層が単分子膜であることを特徴とする請求項3記載の樹脂基体。
  5. 加水分解可能な樹脂が熱硬化性樹脂であることを特徴とする請求項1〜4いずれか1項に記載の樹脂基体。
  6. 加水分解可能な樹脂の表面の鉛筆硬度がH以上であることを特徴とする請求項1〜4いずれか1項に記載の樹脂基体。
  7. 加水分解可能な樹脂がアクリル、シリコーン、およびこれらの共重合体、もしくはポリイミド、ポリアミド、およびこれらの共重合体であることを特徴とする請求項1〜4いずれか1項に記載の樹脂基体。
  8. 樹脂基板表面を加水分解する工程と、加水分解した樹脂基板表面に少なくともシラン化合物SiX(Xは加水分解可能な官能基)を接触させる工程と、形成されたシラン化合物SiX層を加水分解する工程を有する樹脂基体の製造方法。
  9. 樹脂基板表面を加水分解する工程と、加水分解した樹脂基板表面に少なくともシラン化合物SiX(Xは加水分解可能な官能基)を接触させる工程と、形成されたシラン化合物SiX層を加水分解する工程と、加水分解したシラン化合物SiX層にシラン化合物RSiY4−n(nは1〜3の整数、Rはアルキル基、もしくはフルオロアルキル基、Yは加水分解可能な官能基)を接触する工程と、形成されたシラン化合物RSiY4−n層を加水分解する工程を有する樹脂基体の製造方法。
  10. 加水分解可能な樹脂基板表面の加水分解を行う工程が少なくともUV照射もしくはコロナ放電照射であることを特徴とする請求項8もしくは9記載の樹脂基体の製造方法
  11. 加水分解可能な樹脂基板表面の加水分解を行う工程が少なくともオゾンもしくは酸素プラズマの接触であることを特徴とする請求項8もしくは9記載の樹脂基体の製造方法。
  12. 加水分解可能な樹脂基板表面の加水分解を行う雰囲気が湿度10%以上であることを特徴とする請求項10もしくは11記載の樹脂基体の製造方法。
  13. 加水分解可能な官能基XもしくはYがハロゲン基、アルコキシ基、イソシアネート基であることを特徴とする請求項8もしくは9に記載の樹脂基体の製造方法。
  14. ハロゲン基がクロロ基であることを特徴とする請求項12記載の樹脂基体の製造方法。
  15. 少なくともSiX(Xは加水分解可能な官能基)もしくは少なくともRSiY4−n(nは1〜3の整数、Rはアルキル基もしくはフルオロアルキル基、Yは加水分解可能な官能基)を接触させる工程が湿度35%以下の無水雰囲気であることを特徴とする請求項10〜13いずれか1項に記載の樹脂基体の製造方法。
JP2006032218A 2006-02-09 2006-02-09 樹脂基体およびその製造方法 Pending JP2007210197A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006032218A JP2007210197A (ja) 2006-02-09 2006-02-09 樹脂基体およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006032218A JP2007210197A (ja) 2006-02-09 2006-02-09 樹脂基体およびその製造方法

Publications (1)

Publication Number Publication Date
JP2007210197A true JP2007210197A (ja) 2007-08-23

Family

ID=38489036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006032218A Pending JP2007210197A (ja) 2006-02-09 2006-02-09 樹脂基体およびその製造方法

Country Status (1)

Country Link
JP (1) JP2007210197A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274158A (ja) * 2009-05-26 2010-12-09 Toshin:Kk 樹脂成形品の表面処理方法、及びその表面処理後に形成される表面層を有する樹脂成形品の製造方法
JP2015510445A (ja) * 2011-12-29 2015-04-09 スリーエム イノベイティブ プロパティズ カンパニー 清浄可能な物品、並びにその製造方法及び使用方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586353A (ja) * 1990-10-25 1993-04-06 Matsushita Electric Ind Co Ltd 化学吸着単分子累積膜及びその製造方法
JPH05161844A (ja) * 1991-12-16 1993-06-29 Matsushita Electric Ind Co Ltd 化学吸着膜の製造方法
JP2002166506A (ja) * 2000-11-30 2002-06-11 Asahi Glass Co Ltd 疎水性基材およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586353A (ja) * 1990-10-25 1993-04-06 Matsushita Electric Ind Co Ltd 化学吸着単分子累積膜及びその製造方法
JPH05161844A (ja) * 1991-12-16 1993-06-29 Matsushita Electric Ind Co Ltd 化学吸着膜の製造方法
JP2002166506A (ja) * 2000-11-30 2002-06-11 Asahi Glass Co Ltd 疎水性基材およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274158A (ja) * 2009-05-26 2010-12-09 Toshin:Kk 樹脂成形品の表面処理方法、及びその表面処理後に形成される表面層を有する樹脂成形品の製造方法
JP2015510445A (ja) * 2011-12-29 2015-04-09 スリーエム イノベイティブ プロパティズ カンパニー 清浄可能な物品、並びにその製造方法及び使用方法

Similar Documents

Publication Publication Date Title
JP2809889B2 (ja) 撥水撥油性被膜及びその製造方法
EP0511548B1 (en) Chemically adsorbed film and method of manufacturing the same
JP3588364B2 (ja) 表面処理された基材および基材の表面処理方法
JP5347124B2 (ja) 撥水撥油防汚性反射防止膜とその製造方法およびそれを形成したレンズやガラス板、ガラス、およびそれらを用いた光学装置および太陽エネルギー利用装置、ディスプレイ
JP2506234B2 (ja) 透光性基体の製造方法
KR100231162B1 (ko) 화학흡착막 및 그 제조방법과 또한 그것에 이용하는 화학흡착액
KR920014909A (ko) 발수발유성피막 및 그 제조방법
KR20070095454A (ko) 티탄 산화물 입자의 분산액, 티탄 산화물 박막, 유기기능막 형성용 용액, 유기 기능막 형성 기체 및 그 제조방법
EP1484105B1 (en) Method for preparing chemical adsorption film and solution for preparing chemical adsorption film for use therein
US5466523A (en) Hydrophilic chemically adsorbed film
JP5347125B2 (ja) 撥水撥油防汚性反射防止膜およびその製造方法ならびにレンズ、ガラス板、ガラス、光学装置、太陽エネルギー利用装置およびディスプレイ
US5397597A (en) Optical recording medium and method of manufacturing the same
JP2007210197A (ja) 樹脂基体およびその製造方法
JP2008068469A (ja) 機能性樹脂基体およびその製造方法
JP5326086B2 (ja) 太陽エネルギー利用装置及びその製造方法
KR20120100696A (ko) 불소 개질 폴리메틸하이드로실록산, 이를 적용한 하이브리드, 방오성 하이브리드 코팅 막 및 그 제조방법
JP2007106819A (ja) 機能性樹脂基体およびその製造方法
JP2008073915A (ja) 樹脂基体およびその製造方法
JP2005350502A (ja) 超撥水性被膜被覆物品、その製造方法及び超撥水性被膜形成用塗工材料
JP2008024759A (ja) 機能性樹脂基体およびその製造方法
JP4967361B2 (ja) 樹脂基体およびその製造方法
JP2007137767A (ja) 撥水撥油性ガラス基体
JP2004002187A (ja) 撥水撥油性被膜
JP2008068468A (ja) 機能性樹脂基体およびその製造方法
JPH04328136A (ja) 化学吸着膜の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080901

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308