[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007209949A - Filtrate recovery device of solid-liquid mixed/processed liquid - Google Patents

Filtrate recovery device of solid-liquid mixed/processed liquid Download PDF

Info

Publication number
JP2007209949A
JP2007209949A JP2006035181A JP2006035181A JP2007209949A JP 2007209949 A JP2007209949 A JP 2007209949A JP 2006035181 A JP2006035181 A JP 2006035181A JP 2006035181 A JP2006035181 A JP 2006035181A JP 2007209949 A JP2007209949 A JP 2007209949A
Authority
JP
Japan
Prior art keywords
liquid
suction
filtrate
membrane
suction pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006035181A
Other languages
Japanese (ja)
Inventor
Sadahito Nakahara
禎仁 中原
Wataru Fujii
渉 藤井
Kenji Honjo
賢治 本城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Engineering Co Ltd
Original Assignee
Mitsubishi Rayon Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Engineering Co Ltd filed Critical Mitsubishi Rayon Engineering Co Ltd
Priority to JP2006035181A priority Critical patent/JP2007209949A/en
Publication of JP2007209949A publication Critical patent/JP2007209949A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a filtrate recovery device of a solid-liquid mixed/processed liquid capable of completely suspending the flow of a liquid concurrently with the shutdown of a suction pump, as if the suction pump were installed at a position below the liquid level of an aeration tank and obtaining a cleaning effect as expected by air scrubbing. <P>SOLUTION: A membrane filtering unit 5 having an air-diffusion device 15 is dipped downward of a membrane separation module 9 inside the aeration tank 4, the solid-liquid mixed/processed liquid is solid-liquid separated by the module concurrently with air-diffusion by the diffuser 15, a filtrate is suction-recovered from the membrane separation module 9 through a suction tube of the filtrate rising upward of the liquid level of a gas-liquid mixed/processed liquid in the tank 4. The suction pump Pv connected to the suction tube is disposed outside the tank 4 and downward of the liquid level, a waste liquid tube path 26 connected to a delivery outlet of the suction pump Pv is extended by rising upward and being bent downward and has a discharge outlet that is positioned downward of the liquid level. Further, a suction/discharge means 27 is disposed at the top section of the recovery tube path. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、通常の排水処理や浄水処理、膜分離活性汚泥処理などに適用されるばっ気槽内の処理液を膜分離してろ過液を吸引ポンプにより吸引回収するろ過液回収装置に関する。   The present invention relates to a filtrate recovery apparatus for membrane separation of a treatment liquid in an aeration tank applied to normal wastewater treatment, water purification treatment, membrane separation activated sludge treatment, and the like, and suctioning and collecting the filtrate with a suction pump.

本発明装置が適用される代表的な例である膜分離活性汚泥処理方法は、例えば工業用排水や生活用排水中に含まれる有機物、或いは微生物や細菌類を含む排水を生物学的に処理して、各種の分離膜を用いて固液分離を行い処理水を処理水槽に回収し、或いは放流している。従来の膜分離活性汚泥処理装置は、原水調整槽と脱窒槽とばっ気槽とを備えており、原水調整槽では、槽内の液面を液面計により測定し、送液ポンプを間欠駆動して槽内の液面高さを所定の範囲内となるように調整している。送液ポンプによって送られる原水は脱窒槽に導入されたのち、脱窒槽から溢流する原水を隣接するばっ気槽に流入させる。このばっ気槽には膜ろ過ユニットを浸漬して配している。この膜ろ過ユニットにて活性汚泥の汚染物質と処理水とに膜分離して、ろ過された処理水を吸引ポンプにより吸引して処理水槽に回収し或いは放流する。ばっ気槽内の余剰汚泥の大部分は汚泥貯蔵槽に送られて貯蔵されて、乾燥したのち焼却処分される。また、余剰汚泥の一部は送液ポンプによって上記脱窒槽へと返送されて、脱窒槽とばっ気槽との間を循環する。   A membrane separation activated sludge treatment method, which is a typical example to which the apparatus of the present invention is applied, biologically treats organic matter contained in industrial wastewater and domestic wastewater, or wastewater containing microorganisms and bacteria, for example. Thus, solid-liquid separation is performed using various types of separation membranes, and the treated water is recovered or discharged into the treated water tank. Conventional membrane separation activated sludge treatment equipment is equipped with a raw water adjustment tank, a denitrification tank and an aeration tank. In the raw water adjustment tank, the liquid level in the tank is measured by a liquid level gauge, and the liquid feed pump is driven intermittently. Thus, the liquid level in the tank is adjusted to be within a predetermined range. After the raw water sent by the liquid feed pump is introduced into the denitrification tank, the raw water overflowing from the denitrification tank is caused to flow into the adjacent aeration tank. A membrane filtration unit is immersed in this aeration tank. This membrane filtration unit separates the membrane into activated sludge contaminants and treated water, and the filtered treated water is sucked by a suction pump and collected or discharged into a treated water tank. Most of the excess sludge in the aeration tank is sent to the sludge storage tank where it is stored, dried and then incinerated. A part of the excess sludge is returned to the denitrification tank by a liquid feed pump and circulates between the denitrification tank and the aeration tank.

前記膜ろ過ユニットの代表的な例は、多数の多孔性中空糸を同一平面上に平行に並べたシート状の中空糸膜エレメントを所要の間隔をおいて複数枚並べて得られる中空糸膜モジュールと、同中空糸膜モジュールの下方に配された散気装置とを備えている。前記中空糸膜モジュールは、複数枚の中空糸膜エレメントからなる全体形状が略直方体をなしている。一方の散気装置は、例えば金属、樹脂などからなるパイプに孔やスリットを設けた複数本の散気管を平行に配設し、各散気管の一端をばっ気ブロアに接続させている。ばっ気ブロアから送られるエアを散気装置を介して気泡に変えて汚泥中に放出する。生活排水、工場排水などを処理する場合、好気性微生物の存在下でばっ気槽の汚泥中の有機物に、散気装置から発生した空気を接触させることにより、前記有機物を前記好気性微生物に吸着・代謝分解させて、生物学的に汚泥処理がなされる。   A typical example of the membrane filtration unit is a hollow fiber membrane module obtained by arranging a plurality of sheet-like hollow fiber membrane elements in which a large number of porous hollow fibers are arranged in parallel on the same plane at a predetermined interval. And an air diffuser disposed below the hollow fiber membrane module. As for the said hollow fiber membrane module, the whole shape which consists of a plurality of hollow fiber membrane element has comprised the substantially rectangular parallelepiped. On the other hand, in the diffuser, a plurality of diffuser tubes each having a hole or a slit are provided in a pipe made of, for example, metal or resin, and one end of each diffuser tube is connected to the aeration blower. The air sent from the aeration blower is changed to bubbles through a diffuser and discharged into sludge. When treating domestic wastewater, industrial wastewater, etc., the organic matter is adsorbed to the aerobic microorganisms by bringing the air generated from the diffuser into contact with the organic matter in the sludge of the aeration tank in the presence of aerobic microorganisms Metabolized and biologically treated with sludge.

前記中空糸膜モジュールと散気装置とは上下が開口する矩形筒状の遮閉板により囲まれている。この遮閉板は、散気装置から発生する気泡の上昇により気液混合流を生成し、その流れを上昇流から下降流へと導くための壁部となる。散気装置から放出される気泡により発生した気液混合流は、斜め方向に飛散せず、まっすぐに上昇して中空糸膜モジュールに効率よく接触する。このとき、中空糸膜モジュールの膜面に対する気液混合流の一様な分散により、中空糸膜を揺動させて各中空糸膜エレメントを均一に洗浄する。また、この気液混合流の発生時にエア中の酸素が溶解して上記生物学的処理を効率的に行うとともに、中空糸膜のろ過機能により汚泥を汚染物質と処理水とに固液分離する。前記膜ろ過ユニットの集水ヘッダー管の一端が吸引管路を介して吸引ポンプに接続されており、この吸引管路を通して、膜ろ過ユニットによりろ過された処理水(ろ過水)が吸引されて処理水槽へと回収され、或いは放流される。   The hollow fiber membrane module and the air diffuser are surrounded by a rectangular cylindrical blocking plate that opens upward and downward. This shielding plate becomes a wall part for generating a gas-liquid mixed flow by the rising of the bubbles generated from the air diffuser and guiding the flow from the upward flow to the downward flow. The gas-liquid mixed flow generated by the bubbles discharged from the diffuser does not scatter in an oblique direction, but rises straight and efficiently contacts the hollow fiber membrane module. At this time, the hollow fiber membrane is oscillated by the uniform dispersion of the gas-liquid mixed flow with respect to the membrane surface of the hollow fiber membrane module to uniformly wash the hollow fiber membrane elements. In addition, when the gas-liquid mixed flow is generated, oxygen in the air dissolves to efficiently perform the biological treatment, and the sludge is separated into pollutants and treated water by the filtration function of the hollow fiber membrane. . One end of the water collection header pipe of the membrane filtration unit is connected to a suction pump through a suction pipe, and treated water (filtered water) filtered by the membrane filtration unit is sucked through the suction pipe and processed. It is collected or released into the water tank.

膜モジュールとしては、多孔性中空糸を構成部材とするシート状の中空糸膜エレメントの他にも、複数の微細な孔を有するろ過膜を備えたものが使われており、例えば平膜タイプ、管状膜タイプ、袋状膜タイプなどの種々の公知の分離膜がある。また、その材質としては、セルロース、ポリオレフィン、ポリスルホン、PVDF(ポリビニリデンフロライド)、PTFE(ポリ四フッ化エチレン)、セラミックスなどが挙げられる。しかして、中空糸膜エレメントを使った中空糸膜モジュールは、ろ過面積が広くなることから多用されている。   As the membrane module, in addition to a sheet-like hollow fiber membrane element having a porous hollow fiber as a constituent member, one having a filtration membrane having a plurality of fine pores is used, for example, a flat membrane type, There are various known separation membranes such as a tubular membrane type and a bag-like membrane type. Examples of the material include cellulose, polyolefin, polysulfone, PVDF (polyvinylidene fluoride), PTFE (polytetrafluoroethylene), and ceramics. Thus, hollow fiber membrane modules using hollow fiber membrane elements are widely used because of a large filtration area.

上記多孔性中空糸に形成される微細孔の平均孔径は、一般に限外ろ過膜と呼ばれる膜で平均孔径0.001〜0.1μm、一般に精密ろ過膜と呼ばれる膜では平均孔径0.1〜1μmである。例えば、活性汚泥の固液分離に用いるときは、0.5μm以下の孔径であることが好ましく、浄水のろ過のように除菌が必要な場合は0.1μm以下の孔径であることが好ましい。   The average pore diameter of the micropores formed in the porous hollow fiber is generally an average pore diameter of 0.001 to 0.1 μm for a membrane called an ultrafiltration membrane, and an average pore size of 0.1 to 1 μm for a membrane generally called a microfiltration membrane. It is. For example, when used for solid-liquid separation of activated sludge, the pore diameter is preferably 0.5 μm or less, and when sterilization is required as in the case of filtration of purified water, the pore diameter is preferably 0.1 μm or less.

一方、上記中空糸膜モジュールの早期目詰まりを防止するために、例えば国際公開第2004/028672号パンフレット(特許文献1)に記載されているように、ばっ気用の散気装置から放出される比較的大きな気泡により生起される気液混合流を利用して、中空糸や中空糸膜エレメントを揺動させ、膜面に付着する汚泥物質を剥離洗浄する、いわゆるエアスクラビング洗浄が行なわれる。更には、中空糸膜の内部中空部から膜外にろ過水を逆通水する逆洗浄が行われることがあり、こうした洗浄によりろ過膜のろ過性能の回復がなされる。   On the other hand, in order to prevent early clogging of the hollow fiber membrane module, for example, as described in International Publication No. 2004/028672 pamphlet (Patent Document 1), it is discharged from an aeration diffuser. A so-called air scrubbing cleaning is performed in which a hollow fiber or a hollow fiber membrane element is swung by using a gas-liquid mixed flow generated by relatively large bubbles to separate and clean sludge substances adhering to the membrane surface. Furthermore, back washing in which filtered water is reversely passed from the hollow inside of the hollow fiber membrane to the outside of the membrane may be performed, and the filtration performance of the filtration membrane is recovered by such washing.

前記特許文献1によれば、上述のとおり膜ろ過ユニットは下部に散気装置を備えており、散気装置からエアが放出されると同時に吸引ポンプによりろ過水が吸引され、その際、ろ過水の一部は逆洗タンクに貯められる。一定時間ろ過した後、散気装置に接続したばっ気ブロアからのエアを用いてスクラビング洗浄を行うとともに、逆流ポンプにより逆洗タンク内のろ過水を使用して逆洗浄を行う。その際、薬液タンク内の薬液が、薬液ポンプにより逆洗水中に注入されて、逆洗浄と同時に薬液による洗浄も行われる。ここで、スクラビング洗浄と逆洗浄とを同時に行っても、スクラビング洗浄と逆洗浄とを別々に行ってもよい。また、例えばスクラビング洗浄、逆洗浄、スクラビング洗浄、逆洗浄のように、交互に行うこともできる。更に、スクラビング洗浄又は逆洗のいずれか一方を行うことも可能である。
国際公開第2004/028672号パンフレット
According to Patent Document 1, as described above, the membrane filtration unit includes a diffuser at the bottom, and at the same time as the air is discharged from the diffuser, the filtered water is sucked by the suction pump. Part of is stored in the backwash tank. After filtering for a certain period of time, scrubbing cleaning is performed using air from an aeration blower connected to a diffuser, and backwashing is performed using filtered water in a backwash tank by a backflow pump. At that time, the chemical solution in the chemical solution tank is injected into the backwash water by the chemical solution pump, and cleaning with the chemical solution is performed simultaneously with the reverse cleaning. Here, the scrubbing cleaning and the reverse cleaning may be performed simultaneously, or the scrubbing cleaning and the reverse cleaning may be performed separately. Also, for example, scrubbing cleaning, back cleaning, scrubbing cleaning, and back cleaning can be performed alternately. Furthermore, it is possible to perform either scrubbing washing or back washing.
International Publication No. 2004/028672 Pamphlet

ところで、特許文献1には具体的に説明はされていないが、前記ばっ気槽内に配設された各膜ろ過ユニットからろ過水を吸引ポンプにより吸引する吸引管路は、通常、吸引ポンプは地上に設置され、各膜ろ過ユニットの上端部に配された集水ヘッダー管から上方に向けて垂直に延びる分岐管の上端部に接続され、槽内の液面よりも上方にて水平に配されたのち、槽外の地上に設置された前記吸引ポンプに接続されている。吸引ポンプにより吸引されるろ過水は回収管路を通って処理水槽へと導かれる。   Incidentally, although not specifically described in Patent Document 1, a suction pipe for sucking filtrate water from each membrane filtration unit disposed in the aeration tank by a suction pump is usually a suction pump. It is installed on the ground and connected to the upper end of a branch pipe that extends vertically upward from the water collection header pipe arranged at the upper end of each membrane filtration unit, and is arranged horizontally above the liquid level in the tank. After that, it is connected to the suction pump installed on the ground outside the tank. The filtered water sucked by the suction pump is guided to the treated water tank through the recovery pipe line.

既述したとおり、この種の膜分離活性汚泥処理では、一般に汚染物質の付着により膜間差圧が上昇し目詰まりを起こす。そこで、この目詰まりを抑制するため、吸引ポンプを間欠的に駆動して、ろ過運転とエアスクラビング洗浄とを交互に行っている。前述のように吸引ポンプを液面よりも低い位置に設置すると、吸引ポンプの一時的な停止時にも、サイホンの原理に従ってろ過水の流れは維持され、完全に停止することがなくなる。その結果、膜面に対する汚染物質の新たな付着が続き、膜間差圧の上昇が期待どおりに抑えられず、エアスクラビングによる洗浄効果が期待できない。   As described above, in this type of membrane-separated activated sludge treatment, the transmembrane pressure difference generally increases due to the adhesion of pollutants, causing clogging. Therefore, in order to suppress this clogging, the suction pump is intermittently driven, and the filtration operation and the air scrubbing cleaning are alternately performed. If the suction pump is installed at a position lower than the liquid level as described above, the flow of filtered water is maintained according to the siphon principle even when the suction pump is temporarily stopped, and it does not stop completely. As a result, new contaminants continue to adhere to the membrane surface, and the increase in transmembrane pressure difference cannot be suppressed as expected, and the cleaning effect by air scrubbing cannot be expected.

本発明は、かかる課題を解消するため開発されたものであり、たとえ吸引ポンプをばっ気槽の液面よりも低い位置に設置した場合にも、吸引ポンプの停止と同時に液流を完全に停止でき、エアスクラビングによる期待通りの洗浄効果が得られる固液混合処理液のろ過液回収装置を提供することを目的としている。   The present invention has been developed to solve such a problem. Even when the suction pump is installed at a position lower than the liquid level of the aeration tank, the liquid flow is completely stopped simultaneously with the stop of the suction pump. An object of the present invention is to provide an apparatus for collecting a filtrate of a solid / liquid mixed treatment liquid that can obtain an expected cleaning effect by air scrubbing.

かかる課題は、本発明の基本的な構成である、膜分離モジュールの下方に散気装置が配された膜ろ過ユニットが処理槽内に浸漬され、散気装置による散気と同時に膜分離モジュールにより固液混合処理液を固液分離し、処理槽内の気液混合処理液の液面の上方に延出するろ過液の吸引管路を介して膜分離モジュールからろ過液を吸引回収する固液分離装置であって、前記吸引管路に接続された吸引ポンプが前記処理槽の槽外にあって液面より下方に配設され、前記吸引ポンプの吐液口に接続される回収管路が、前記液面の上方へと立ち上がったのち下方へと屈曲して延びて前記液面より下方に位置する排液口へと接続され、前記回収管路の頭頂部に吸排気手段が配されてなることを特徴とする固液混合処理液のろ過液回収装置により効果的に解決される。本発明の好適な態様によると、前記吸排気手段はシャトル弁、或いは急速排気弁が使われる。   Such a problem is a basic configuration of the present invention, in which a membrane filtration unit in which an air diffuser is disposed below the membrane separation module is immersed in a treatment tank, and simultaneously with the air diffused by the air diffuser, the membrane separation module Solid-liquid separation of the solid-liquid mixed treatment liquid, and suction and recovery of the filtrate from the membrane separation module via the filtrate suction line extending above the liquid level of the gas-liquid mixed treatment liquid in the treatment tank A separation device, wherein a suction pump connected to the suction pipe is outside the processing tank and disposed below the liquid surface, and a recovery pipe connected to the discharge port of the suction pump And rising upward from the liquid level and then bending and extending downward to be connected to a drainage port located below the liquid level, and an intake / exhaust means is disposed at the top of the recovery line. Effectively by the filtrate recovery device of the solid-liquid mixed processing liquid characterized by It is determined. According to a preferred aspect of the present invention, the intake / exhaust means is a shuttle valve or a quick exhaust valve.

作用効果Effect

上記構成から理解できるように、本発明の基本構成は膜ろ過ユニットから吸引ポンプに至る吸引管路がいわゆるサイホン構造である場合に、更に吸引ポンプの吐液口側の排液管路にサイホン構造を採用するとともに、その管路の頭頂部に吸排気手段を設けて、吸引ポンプの一時停止時に吸排気手段が作動して、大気を管路内に送り込み液切れを起こさせ、排液管路のサイホン機能を停止させる。その結果、吸引ポンプが停止すると同時に吸気がなされて管路内のろ過液の流れが完全に停止し、スクラビング洗浄の効果が高まり、膜間差圧の上昇によるろ過効率の低下をきたすことがなくなる。   As can be understood from the above configuration, the basic configuration of the present invention is that when the suction line from the membrane filtration unit to the suction pump has a so-called siphon structure, the siphon structure is further provided in the drain line on the discharge port side of the suction pump. The intake / exhaust means is provided at the top of the conduit, and the intake / exhaust means is activated when the suction pump is temporarily stopped to send the atmosphere into the conduit, causing the liquid to run out. Stop the siphon function. As a result, the suction pump is stopped and the intake air is made at the same time, the flow of the filtrate in the pipeline is completely stopped, the scrubbing cleaning effect is enhanced, and the filtration efficiency is not lowered due to the increase in transmembrane pressure difference. .

ろ過運転の再開時には、吸引ポンプを起動させると同時に吸排気手段が作動して管路内に溜まっていた空気を大気中に排出する。このときの吸排気手段による排気は吸引ポンプの駆動により、排液管路内の液圧が上昇するため、その上昇圧によって自動的に排気される。或いは、吸引ポンプの起動と同時に吸排気手段にパイロット信号が出力されて排気される。そのため、好適には吸排気手段としてシャトル弁又は急速排気弁が使われる。ただし、これらの弁以外にもポペット式逆止弁などを使うことも可能である。要は、吸排気手段として内圧変化により吸気と排気がなされる機構を備えていることが肝要である。   When the filtration operation is resumed, the suction pump is activated and the intake / exhaust means is activated to discharge the air accumulated in the pipe line to the atmosphere. The exhaust by the intake / exhaust means at this time is automatically exhausted by the increased pressure because the hydraulic pressure in the drainage pipe rises by driving the suction pump. Alternatively, a pilot signal is output to the intake / exhaust means at the same time as the suction pump is started, and the exhaust is performed. Therefore, a shuttle valve or a quick exhaust valve is preferably used as the intake / exhaust means. However, in addition to these valves, a poppet check valve or the like can be used. In short, it is important that the intake / exhaust means includes a mechanism for intake and exhaust by changes in internal pressure.

以下、本発明の好適な実施形態を図面に基づいて具体的に説明する。
図1は、本発明に係る固液混合処理液の固液分離装置の代表的な実施形態である膜分離活性汚泥処理装置におけるばっ気工程の概略構成を示している。
Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings.
FIG. 1 shows a schematic configuration of an aeration process in a membrane separation activated sludge treatment apparatus which is a typical embodiment of a solid-liquid separation apparatus for a solid-liquid mixed treatment liquid according to the present invention.

膜分離活性汚泥処理装置によれば、図示せぬ原水調整槽に導入される原水は所定の液面範囲内を維持するように、図示せぬ送液ポンプにより同じく図示せぬ脱窒槽へと間欠的に導入されたのち、脱窒槽から溢流する原水を隣接するばっ気槽4へと流入させる。このばっ気槽4の汚泥中には多数基の膜ろ過ユニット5を浸漬して配されている。この膜ろ過ユニット5にて活性汚泥と処理水とに膜分離された処理水は吸引ポンプPvにより処理水槽へと送液されて回収されるか、或いはそのまま放流される。一方、ばっ気槽4にてばっ気処理されて増殖した微生物などからなる濃縮汚泥の一部は図示せぬ汚泥貯蔵槽に貯蔵される。また、ばっ気槽4の内部の濃縮汚泥の一部は図示せぬ送液ポンプによって上記脱窒槽へと返送されて循環する。   According to the membrane separation activated sludge treatment apparatus, the raw water introduced into the raw water adjustment tank (not shown) is intermittently transferred to the denitrification tank (not shown) by a liquid feed pump (not shown) so as to maintain a predetermined liquid level range. Then, the raw water overflowing from the denitrification tank is introduced into the adjacent aeration tank 4. A large number of membrane filtration units 5 are immersed in the sludge of the aeration tank 4. The treated water membrane-separated into activated sludge and treated water by the membrane filtration unit 5 is sent to the treated water tank by the suction pump Pv and collected or discharged as it is. On the other hand, a part of the concentrated sludge composed of microorganisms which have been aerated in the aeration tank 4 and proliferated is stored in a sludge storage tank (not shown). A part of the concentrated sludge inside the aeration tank 4 is returned to the denitrification tank by a liquid feed pump (not shown) and circulated.

図2は、通常の膜ろ過ユニット5の代表的な例を示している。同図に示すように膜ろ過ユニット5は、糸長さ方向を垂直に配した複数枚の中空糸膜エレメント10を並列させて支持固定された膜分離モジュールである中空糸膜モジュール9と、同中空糸膜モジュール9の下方に所要の間隔をおいて配される散気装置15とを含んでいる。前記中空糸膜エレメント10は、多数本の多孔性中空糸10aを平行に並列させた膜シート11の上端開口端部をポッティング材11aを介してろ過水取出管12に連通支持させるとともに、下端を閉塞して同じくポッティング材11aを介して下枠13により固定支持させ、前記ろ過水取出管12及び下枠13の各両端を一対の縦杆14により支持して構成される。多数枚の中空糸膜エレメント10が、シート面を鉛直にして上下端面が開口した矩形筒状の上部壁材20のほぼ全容積内に収容されて並列支持される。ここで、上記中空糸膜エレメント10は、一般には図3に示すように多数本の多孔性中空糸10aが同じ間隙をもたせて同一平面上を並列して配されている。   FIG. 2 shows a typical example of a normal membrane filtration unit 5. As shown in the figure, the membrane filtration unit 5 includes a hollow fiber membrane module 9 which is a membrane separation module which is a membrane separation module in which a plurality of hollow fiber membrane elements 10 arranged vertically in the yarn length direction are supported and fixed in parallel. The air diffuser 15 is disposed below the hollow fiber membrane module 9 at a required interval. The hollow fiber membrane element 10 communicates and supports the upper end opening end of a membrane sheet 11 in which a large number of porous hollow fibers 10a are arranged in parallel to the filtered water discharge pipe 12 through a potting material 11a, and the lower end thereof. It is closed and fixed and supported by the lower frame 13 via the potting material 11a, and both ends of the filtered water outlet pipe 12 and the lower frame 13 are supported by a pair of vertical rods 14. A large number of hollow fiber membrane elements 10 are accommodated and supported in parallel in substantially the entire volume of a rectangular cylindrical upper wall member 20 whose upper and lower end surfaces are open with the sheet surface vertical. Here, in the hollow fiber membrane element 10, generally, as shown in FIG. 3, a large number of porous hollow fibers 10a are arranged in parallel on the same plane with the same gap.

本実施形態にあって、前記多孔性中空糸10aは中心部に沿って長さ方向に中空とされたPVDF(ポリフッ化ビニデン)の多孔質中空糸が使われており、そのろ過孔の孔径は0.4μmである。また、1枚あたりの有効膜面積は25m2 である。上記シート状の中空糸膜エレメント10は1膜ろ過ユニット5あたり20枚が使われ、その大きさは奥行きが30mm、幅が1250mm、ろ過水取出管12の上面から下枠13の下面までの長さが2000mmである。散気装置15をも含めた1膜ろ過ユニット5の大きさは、奥行きが1552.5mm、幅が1447mm、高さが3043.5mmである。上記ろ過水取出管12の長さが1280mm、その材質はABS樹脂であり、縦杆14の材質はSUS304が使われている。 In this embodiment, the porous hollow fiber 10a is made of PVDF (polyvinylidene fluoride) hollow hollow fiber that is hollow in the longitudinal direction along the center, and the pore diameter of the filtration hole is 0.4 μm. The effective membrane area per sheet is 25 m 2 . The sheet-like hollow fiber membrane element 10 is used in 20 pieces per membrane filtration unit 5 and has a depth of 30 mm, a width of 1250 mm, and a length from the upper surface of the filtrate extraction pipe 12 to the lower surface of the lower frame 13. Is 2000 mm. The size of the single membrane filtration unit 5 including the air diffuser 15 is 1552.5 mm in depth, 1447 mm in width, and 3043.5 mm in height. The filtered water extraction pipe 12 has a length of 1280 mm, its material is ABS resin, and the vertical rod 14 is made of SUS304.

ただし、多孔性中空糸10a、ろ過水取出管12及び縦杆14などの材質、中空糸膜エレメント10の大きさ、1膜ろ過ユニット5の大きさやユニット1基あたりの中空糸膜エレメント10の枚数などは、用途に応じて多様に変更が可能である。例えば、中空糸膜エレメント10の枚数で言えば処理量に合わせて20枚、40枚、60枚、…と任意に設定でき、或いは多孔性中空糸10aの材質には、セルロース系、ポリオレフィン系、ポリスルホン系、ポリビニルアルコール系、ポリメチルメタクリレート、ポリフッ化エチレンなど、従来公知のものを適用することができる。   However, the material such as the porous hollow fiber 10a, the filtrate extraction pipe 12, and the vertical rod 14, the size of the hollow fiber membrane element 10, the size of the membrane filtration unit 5, and the number of the hollow fiber membrane elements 10 per unit Etc. can be variously changed according to the application. For example, in terms of the number of the hollow fiber membrane elements 10, it can be arbitrarily set to 20, 40, 60,... According to the processing amount, or the material of the porous hollow fiber 10a can be cellulose, polyolefin, Conventionally known materials such as polysulfone-based, polyvinyl alcohol-based, polymethyl methacrylate, and polyfluorinated ethylene can be applied.

各中空糸膜エレメント10の上記ろ過水取出管12の一端には各多孔性中空糸10aによってろ過された良質のろ過水(処理水)の取出口12aが形成されている。本実施形態にあって、各取出口12aには、図2に示す膜ろ過ユニット5と同様に、それぞれL型継手12bがシール材を介して液密に取り付けられる。また、図3に示すように、上記上部壁材20の上端の前記取出口12aが形成されている側の端縁に沿って集水ヘッダー管21が横設されている。この集水ヘッダー管21は複数の前記取出口12aに対応する位置にはそれぞれに集水口21aが形成されており、各集水口21aに上記取出口12aと同様のL型継手21bがシール材を介して液密に取り付けられている。   At one end of the filtrate extraction pipe 12 of each hollow fiber membrane element 10, an outlet 12a for high-quality filtered water (treated water) filtered by each porous hollow fiber 10a is formed. In this embodiment, an L-shaped joint 12b is attached to each outlet 12a in a liquid-tight manner via a sealing material, similarly to the membrane filtration unit 5 shown in FIG. Moreover, as shown in FIG. 3, the water collection header pipe | tube 21 is installed horizontally along the edge by the side in which the said outlet 12a is formed in the upper end of the said upper wall material 20. As shown in FIG. The water collecting header pipe 21 is formed with water collecting ports 21a at positions corresponding to the plurality of outlets 12a, and an L-shaped joint 21b similar to the outlet 12a serves as a sealing material in each water collecting port 21a. It is liquid-tightly attached.

前記ろ過水取出管12の処理水取出口12aと前記集水ヘッダー管21の集水口21aとが、それぞれに取り付けられたL型継手12b,21b同士を接続することにより通水可能に連結される。集水ヘッダー管21の一端部には吸引ポンプPvとろ過水吸引管路22を介して接続される吸水口21cが形成されている。各集水ヘッダー管21ごとに形成された吸水口21cと前記ろ過水吸引管路22とは、図1に示すように、同ろ過水吸引管路22からそれぞれ分岐した分岐管路22a内に介装された流量調整バルブ23を介して連結されている。ここで、前記分岐管路22aは集水ヘッダー管21からばっ気槽4の液面より高い上方位置まで立ち上がり、それぞれが水平に配されたろ過水吸引管路22に接続されている。本実施形態にあっては、水平に配されて槽外に延びる前記ろ過水吸引管路22は、槽外にて下方に屈曲して地上に設置された吸引ポンプPvの吸引口に接続されている。   The treated water outlet 12a of the filtered water outlet 12 and the water outlet 21a of the water header 21 are connected to each other by connecting the L-shaped joints 12b and 21b attached to each other. . At one end of the water collection header pipe 21, a water suction port 21 c connected to the suction pump Pv via the filtered water suction pipe line 22 is formed. As shown in FIG. 1, the water inlet 21 c formed for each water collection header pipe 21 and the filtered water suction pipe 22 are inserted into branch pipes 22 a branched from the filtered water suction pipe 22. It is connected via a mounted flow rate adjusting valve 23. Here, the branch line 22a rises from the water collection header pipe 21 to an upper position higher than the liquid level of the aeration tank 4, and is connected to the filtered water suction lines 22 arranged horizontally. In the present embodiment, the filtered water suction pipe 22 that is arranged horizontally and extends outside the tank is connected to a suction port of a suction pump Pv that is bent downward outside the tank and installed on the ground. Yes.

この吸引ポンプPvの吐液口には排液管路26が接続され、ろ過水は図示せぬ処理水槽へと送られるか、そのまま放流される。この排液管路26は本発明の最も特徴部を構成しており、吸引ポンプPvに接続された排液管路26は、一旦、ばっ気槽4の液面よりも高い位置まで立ち上がったのち、逆U字形に屈曲して下方へと延び、その排水側端部を前記液面よりも低い位置に配して、サイホン構造を形成させている。また、前記排液管路26の水頭部(頭頂部)である屈曲部には吸排気手段27である逆止弁が設けられている。この逆止弁としてはシャトル弁や急速排気弁、パイロット操作逆止弁、ポペット弁などを使うことが好ましい。   A drain line 26 is connected to the discharge port of the suction pump Pv, and the filtered water is sent to a treated water tank (not shown) or discharged as it is. The drainage pipe 26 constitutes the most characteristic part of the present invention, and the drainage pipe 26 connected to the suction pump Pv once rises to a position higher than the liquid level of the aeration tank 4. The siphon structure is formed by bending in an inverted U shape and extending downward, and arranging the drain side end at a position lower than the liquid level. Further, a check valve which is an intake / exhaust means 27 is provided at a bent portion which is a water head (a top portion) of the drainage pipe 26. As this check valve, it is preferable to use a shuttle valve, a quick exhaust valve, a pilot operated check valve, a poppet valve or the like.

上記散気装置15は、図4に示すように、前記上部壁材20の下端に結合された同じく上下が開口する矩形筒体からなり、その4隅の下端から下方に延びる4本の支柱24aを備えた下部壁材24の底部に収容固設されている。前記散気装置15は、前記下部壁材24の正面側内壁面に沿って幅方向に水平に延設され、図1に示すように外部に配されたばっ気ブロアBとエア主管18を介して接続される分岐管路であるエア導入管16と、同エア導入管16の長さ方向に所定の間隔をおいて配され、一端が固設されるとともに、他端が背面側の内壁面に沿って水平に固設された複数本の散気管17とを有している。散気管17の前記エア導入管16との接続側端部は同エア導入管16の内部と連通しており、散気管17の他端は閉塞されている。本実施形態による散気装置15は複数基の膜ろ過ユニット5ごとに対応して配され、同じばっ気ブロアBから送られるエアを、それぞれの散気装置15に分流させるため、前記ばっ気ブロアBに直接接続されたエア主管18を有し、同エア主管18から分岐管路であるエア導入管16を介して各散気装置15に接続される。   As shown in FIG. 4, the air diffuser 15 is formed of a rectangular cylindrical body that is coupled to the lower end of the upper wall member 20 and is open at the top and bottom, and has four support columns 24 a that extend downward from the lower ends of the four corners. Is housed and fixed at the bottom of the lower wall member 24 provided with. The diffuser 15 extends horizontally in the width direction along the front-side inner wall surface of the lower wall member 24, and passes through an aeration blower B and an air main pipe 18 arranged outside as shown in FIG. The air introduction pipe 16 is a branch pipe connected to each other, and the air introduction pipe 16 is disposed at a predetermined interval in the length direction, and one end is fixed and the other end is an inner wall on the back side. And a plurality of air diffusers 17 fixed horizontally along the line. The end of the diffuser pipe 17 connected to the air inlet pipe 16 communicates with the inside of the air inlet pipe 16, and the other end of the diffuser pipe 17 is closed. The air diffuser 15 according to the present embodiment is arranged corresponding to each of the plurality of membrane filtration units 5, and the air sent from the same aeration blower B is diverted to the respective air diffusers 15. An air main pipe 18 directly connected to B is provided, and the air main pipe 18 is connected to each air diffuser 15 through an air introduction pipe 16 that is a branch pipe.

上述のとおり、同一ばっ気槽4に浸漬された複数基の膜ろ過ユニット5は各分岐管路22aと流量調整バルブ23とを介して同一のろ過水吸引管路22に接続されている。汚泥処理が長期間にわたって継続して行われると、膜ろ過ユニット5のろ過膜の表面に目詰まりが進行するため、ろ過流量の低下、或いは膜間差圧の上昇が生じる。このような膜間差圧の上昇を抑えるため、中空糸膜エレメント10の下方に配された上記散気装置15から噴出するエアと汚泥液との気液混合流体を利用して、いわゆるエアスクラビングを行うとともに、各多孔性中空糸10aを揺動させて膜面に付着した懸濁物質を剥がして離脱させ、物理的な洗浄を行う。このとき同時に微生物による硝化反応を活発化させて生物学的処理を行う。   As described above, the plurality of membrane filtration units 5 immersed in the same aeration tank 4 are connected to the same filtered water suction line 22 via each branch line 22 a and the flow rate adjusting valve 23. When the sludge treatment is continuously performed for a long period of time, clogging progresses on the surface of the membrane of the membrane filtration unit 5, so that the filtration flow rate decreases or the transmembrane pressure difference increases. In order to suppress such an increase in transmembrane pressure difference, so-called air scrubbing is performed using a gas-liquid mixed fluid of air and sludge discharged from the air diffuser 15 disposed below the hollow fiber membrane element 10. At the same time, each porous hollow fiber 10a is swung to peel off and remove the suspended substances adhering to the membrane surface, thereby performing physical cleaning. At the same time, biological treatment is performed by activating the nitrification reaction by microorganisms.

ここで、ばっ気槽4の活性汚泥は膜ろ過ユニット5の多孔性中空糸10aの中空部を通して固液分離を行い、ろ過水を外部の吸引ポンプPvにより積極的に吸引して図示せぬ処理水槽へと送り回収する。このときの運転は、吸引ポンプPvを6分間駆動したのち1分間停止させることを繰り返している。すなわち、吸引ポンプPvによるろ過水の吸引運転を間欠的に行っている。このろ過運転時及び停止時にもばっ気ブロアBの駆動は維持されており、常に散気装置15へとエアが送られている。そのため、ろ過運転時も散気装置15から放出される気泡により発生する活性汚泥との気液混合液の上昇流により、中空糸膜モジュール9の中空糸膜が揺動し、膜面に付着する汚泥付着物は膜面から剥離され、いわゆるエアスクラビング洗浄がなされている。また、ろ過運転の停止時には、中空糸膜モジュール9からのろ過水吸引は行われずに、エアスクラビングだけがなされるようになる。このときのエアスクラビングは、多孔性中空糸10aがろ過吸引を行っていないため、汚泥付着物の付着が少なくなるため、洗浄効果はろ過運転時と比較して極めて高くなり、膜間差圧の回復速度も高くなる。   Here, the activated sludge in the aeration tank 4 is subjected to solid-liquid separation through the hollow portion of the porous hollow fiber 10a of the membrane filtration unit 5, and the filtered water is actively sucked by an external suction pump Pv, which is not shown in the drawing. Send it to the water tank and collect it. In this operation, the suction pump Pv is driven for 6 minutes and then stopped for 1 minute. That is, the suction operation of filtered water by the suction pump Pv is intermittently performed. The driving of the aeration blower B is maintained even during the filtration operation and at the time of stopping, and air is always sent to the air diffuser 15. Therefore, the hollow fiber membrane of the hollow fiber membrane module 9 swings and adheres to the membrane surface due to the upward flow of the gas-liquid mixture with the activated sludge generated by the bubbles released from the air diffuser 15 even during the filtration operation. The sludge deposits are peeled off from the membrane surface, and so-called air scrubbing cleaning is performed. In addition, when the filtration operation is stopped, filtered water suction from the hollow fiber membrane module 9 is not performed, and only air scrubbing is performed. Since the air scrubbing at this time is not filtered and sucked by the porous hollow fiber 10a, the adhesion of sludge is reduced, so the cleaning effect is extremely high compared to the filtration operation, and the transmembrane pressure difference is reduced. Increases recovery speed.

ところで、このようにろ過運転を間欠的に行う場合、本実施形態のように吸引管路22がサイホン構造であり、且つ排液管路26を吸引ポンプPvと同じ高さとし、或いはそれよりも低くすると、吸引ポンプPvの駆動を停止させても、サイホンの原理に従ってろ過水が流れ続けて、エアスクラビング効果を阻害して膜間差圧の回復が極めて遅れ、果てには目詰まりのため、ろ過吸引が不能となる場合がある。   By the way, when the filtration operation is intermittently performed as described above, the suction line 22 has a siphon structure as in the present embodiment, and the drainage line 26 has the same height as the suction pump Pv or lower than that. Then, even if the drive of the suction pump Pv is stopped, the filtered water continues to flow according to the principle of the siphon, impairs the air scrubbing effect, and the recovery of the transmembrane pressure difference is extremely delayed. Suction may be impossible.

これに対して、本実施形態のように排液管路26を意図的にサイホン構造とするとともに、その頭頂部に吸排気手段27を設けて、ろ過運転の停止に合わせて頭頂部に大気中のエアを積極的に取り込み液切れを起こさせるようにしているため、吸引ポンプPvの駆動を停止するとろ過水の流れも確実に停止する。ここで、吸引ポンプPvを起動させると、吸引ポンプPvの駆動による圧力変化に基づき、前記吸排気手段27を吸気側から排気側へと流路を変え、排液管路26内に溜まっている空気を大気中に排出し、吸引ポンプPvの駆動が維持される。   On the other hand, as in the present embodiment, the drainage pipe 26 is intentionally made into a siphon structure, and an intake / exhaust means 27 is provided at the top of the drain, and the top of the head is in the atmosphere in accordance with the stop of the filtration operation. Therefore, when the suction pump Pv is stopped, the flow of the filtered water is surely stopped. Here, when the suction pump Pv is activated, the flow path of the intake / exhaust means 27 is changed from the intake side to the exhaust side based on the pressure change due to the drive of the suction pump Pv, and is accumulated in the drain line 26. Air is discharged into the atmosphere, and the drive of the suction pump Pv is maintained.

本発明の代表的な実施形態である膜分離活性汚泥処理に適用されるろ過水回収装置の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the filtered water collection | recovery apparatus applied to the membrane separation activated sludge process which is typical embodiment of this invention. 通常の膜ろ過ユニットの全体構成を一部破断して示す立体図である。FIG. 3 is a three-dimensional view showing the entire configuration of a normal membrane filtration unit with a part broken away. 中空糸膜モジュールの構成部材である膜エレメントの構成例を模式的に示す斜視図である。It is a perspective view which shows typically the structural example of the membrane element which is a structural member of a hollow fiber membrane module. 膜ろ過ユニットの構成部材の一つである散気装置の立体図である。It is a three-dimensional view of the diffuser which is one of the structural members of the membrane filtration unit.

符号の説明Explanation of symbols

4 ばっ気槽
5 膜ろ過ユニット
9 中空糸膜モジュール
10 中空糸膜エレメント
10a 多孔性中空糸
11 膜シート
11a ポッティング材
12 ろ過水取出管
12a ろ過水取出口
12b L型継手
13 下枠
14 縦杆
15 散気装置
16 エア導入管(分岐管路)
17 散気管
18 エア主管
20 上部壁材
21 集水ヘッダー管
21a 集水口
21b L型継手
21c 吸水口
22 吸引管路
22a 分岐管路
23 流量調整バルブ
24 下部壁材
24a 支柱
26 排液管路
27 吸排気手段
Pv 吸引ポンプ
B ばっ気ブロア
4 Aeration tank 5 Membrane filtration unit 9 Hollow fiber membrane module 10 Hollow fiber membrane element 10a Porous hollow fiber 11 Membrane sheet 11a Potting material 12 Filtrated water discharge pipe 12a Filtered water discharge port 12b L-shaped joint 13 Lower frame 14 Vertical rod 15 Air diffuser 16 Air introduction pipe (branch line)
17 Aeration pipe 18 Air main pipe 20 Upper wall material 21 Water collection header pipe 21a Water collection port 21b L-shaped joint 21c Water intake port 22 Suction pipe 22a Branch pipe 23 Flow rate adjusting valve 24 Lower wall material 24a Strut 26 Drainage pipe 27 Suction Exhaust means Pv Suction pump B Aeration blower

Claims (3)

処理槽内に膜分離モジュールの下方に散気装置を備えた膜ろ過ユニットが浸漬配置され、散気装置による散気と同時に膜分離モジュールにより固液混合処理液を固液分離し、処理槽内の気液混合処理液の液面の上方に立ち上がるろ過液の吸引管路を介して膜分離モジュールからろ過液を吸引回収する固液混合処理液のろ過液回収装置であって、
前記吸引管路に接続された吸引ポンプが前記処理槽の槽外にあって液面より下方に配設され、
前記吸引ポンプの吐液口に接続される排液管路が、前記液面の上方へと立ち上がったのち下方へと屈曲して延びて前記液面より下方に位置する排液口へと接続され、
前記排液管路の頭頂部に吸排気手段が配されてなる、
ことを特徴とする固液混合処理液のろ過液回収装置。
A membrane filtration unit equipped with a diffuser is placed under the membrane separation module in the treatment tank, and at the same time as the diffuser by the diffuser, the solid-liquid mixed treatment liquid is separated into solid and liquid by the membrane separation module. A solid-liquid mixed treatment liquid filtrate collecting device for sucking and collecting the filtrate from the membrane separation module via a filtrate suction line rising above the liquid level of the gas-liquid mixed treatment liquid;
A suction pump connected to the suction line is located outside the treatment tank and below the liquid level;
A drainage line connected to the liquid discharge port of the suction pump rises above the liquid level and then bends and extends downward to be connected to a liquid discharge port located below the liquid level. ,
Intake and exhaust means are arranged at the top of the drainage pipe line,
An apparatus for recovering a filtrate of a solid-liquid mixed processing solution.
前記吸排気手段が、シャトル弁である請求項1記載のろ過液回収装置。   The filtrate recovery apparatus according to claim 1, wherein the intake / exhaust means is a shuttle valve. 前記吸排気手段が、急速排気弁である請求項1記載のろ過液回収装置。   The filtrate recovery apparatus according to claim 1, wherein the intake / exhaust means is a quick exhaust valve.
JP2006035181A 2006-02-13 2006-02-13 Filtrate recovery device of solid-liquid mixed/processed liquid Pending JP2007209949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006035181A JP2007209949A (en) 2006-02-13 2006-02-13 Filtrate recovery device of solid-liquid mixed/processed liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006035181A JP2007209949A (en) 2006-02-13 2006-02-13 Filtrate recovery device of solid-liquid mixed/processed liquid

Publications (1)

Publication Number Publication Date
JP2007209949A true JP2007209949A (en) 2007-08-23

Family

ID=38488816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006035181A Pending JP2007209949A (en) 2006-02-13 2006-02-13 Filtrate recovery device of solid-liquid mixed/processed liquid

Country Status (1)

Country Link
JP (1) JP2007209949A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073442A1 (en) * 2008-12-25 2010-07-01 志摩環境事業協業組合 Immersion-type membrane separation apparatus
WO2010098089A1 (en) * 2009-02-24 2010-09-02 三菱レイヨン株式会社 Membrane module unit and assembly method, disassembly method, and maintenance method for same, and water-treatment apparatus
WO2011145689A1 (en) * 2010-05-19 2011-11-24 三菱レイヨン株式会社 Affixing member and membrane module unit
WO2014192433A1 (en) * 2013-05-30 2014-12-04 住友電気工業株式会社 Filtration device and immersed filtration method using same
WO2014192416A1 (en) * 2013-05-30 2014-12-04 住友電気工業株式会社 Filtration device and filtration method using same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102264459A (en) * 2008-12-25 2011-11-30 志摩环境事业协业组合 Immersion-type membrane separation apparatus
WO2010073442A1 (en) * 2008-12-25 2010-07-01 志摩環境事業協業組合 Immersion-type membrane separation apparatus
US9073012B2 (en) 2008-12-25 2015-07-07 Shimakankyoujigyou Kyougyoukumiai Immersion-type membrane separation apparatus
US9446970B2 (en) 2009-02-24 2016-09-20 Mitsubishi Rayon Co., Ltd. Membrane module unit and assembly method, disassembly method, and maintenance method for same, and water-treatment apparatus
WO2010098089A1 (en) * 2009-02-24 2010-09-02 三菱レイヨン株式会社 Membrane module unit and assembly method, disassembly method, and maintenance method for same, and water-treatment apparatus
CN102333581A (en) * 2009-02-24 2012-01-25 三菱丽阳株式会社 Membrane module unit and assembly method, disassembly method, and maintenance method for same, and water-treatment apparatus
JP5274552B2 (en) * 2009-02-24 2013-08-28 三菱レイヨン株式会社 Membrane module unit, its assembly method, disassembly method, maintenance method, and water treatment apparatus
WO2011145689A1 (en) * 2010-05-19 2011-11-24 三菱レイヨン株式会社 Affixing member and membrane module unit
CN103002974A (en) * 2010-05-19 2013-03-27 三菱丽阳株式会社 Affixing member and membrane module unit
CN103002974B (en) * 2010-05-19 2017-09-22 三菱化学株式会社 Fixed component and membrane module unit
US9522361B2 (en) 2010-05-19 2016-12-20 Mitsubishi Rayon Co., Ltd. Fixing member and membrane module unit
JP5807548B2 (en) * 2010-05-19 2015-11-10 三菱レイヨン株式会社 Fixing member and membrane module unit
WO2014192416A1 (en) * 2013-05-30 2014-12-04 住友電気工業株式会社 Filtration device and filtration method using same
CN105307982A (en) * 2013-05-30 2016-02-03 住友电气工业株式会社 Filtration device and filtration method using same
JP2015006654A (en) * 2013-05-30 2015-01-15 住友電気工業株式会社 Filter device and immersion type filtration method using the same
JPWO2014192416A1 (en) * 2013-05-30 2017-02-23 住友電気工業株式会社 Filtration device and filtration method using the same
WO2014192433A1 (en) * 2013-05-30 2014-12-04 住友電気工業株式会社 Filtration device and immersed filtration method using same

Similar Documents

Publication Publication Date Title
JP5308028B2 (en) Cleaning method for air diffuser
JP2008229628A (en) Water treatment apparatus and water treatment method
JP3815645B2 (en) Immersion type flat membrane separator and control method thereof
JPH0665371B2 (en) Organic wastewater biological treatment equipment
JP2000343095A (en) Activated sludge treating device
JPWO2007083723A1 (en) Membrane filtration apparatus and method for operating the same
JP2007209949A (en) Filtrate recovery device of solid-liquid mixed/processed liquid
JP5648387B2 (en) Aeration device and method of operating membrane separation device
JP2009247936A (en) Method of inline-cleaning immersion type membrane-separation device
JP5094022B2 (en) Aeration device and membrane filtration unit applied when collecting filtrate of solid-liquid mixed processing liquid
KR100999945B1 (en) Air relif device for membrane filter pipe
JP5238128B2 (en) Solid-liquid separation device for solid-liquid mixed processing liquid
KR100236921B1 (en) Immersion type hollow fiber membrane module and method for treating waste water by using the same
WO2018051630A1 (en) Membrane-separation activated sludge treatment system
JP3496115B2 (en) Filtration membrane cleaning method in membrane filtration type water purification equipment
KR100957047B1 (en) Immersed membrane ultra filter
JP2011078940A (en) Air diffuser in immersion type membrane separation apparatus and method of cleaning pipe line continuing to the same
JP5448285B2 (en) Membrane separation activated sludge treatment method
JP5251472B2 (en) Membrane module cleaning method
JP2007268415A (en) Immersion type membrane separation apparatus and water producing method
JPH10244262A (en) Filtration method for wastewater
JP7284545B1 (en) MEMBRANE FILTRATION DEVICE AND WATER PURIFICATION SYSTEM USING THE SAME
KR102151055B1 (en) Complex-type water treatment apparatus using submersed membrane modules
JP4731661B2 (en) Water treatment apparatus and operation method thereof
KR101263561B1 (en) 2-phase flow inducing type MBR system having submerged membrane module