JP2007205860A - Method for evaluating durability of existing sign pole and baseline setting method for executing durability evaluation of existing sign pole - Google Patents
Method for evaluating durability of existing sign pole and baseline setting method for executing durability evaluation of existing sign pole Download PDFInfo
- Publication number
- JP2007205860A JP2007205860A JP2006024729A JP2006024729A JP2007205860A JP 2007205860 A JP2007205860 A JP 2007205860A JP 2006024729 A JP2006024729 A JP 2006024729A JP 2006024729 A JP2006024729 A JP 2006024729A JP 2007205860 A JP2007205860 A JP 2007205860A
- Authority
- JP
- Japan
- Prior art keywords
- column
- bending stress
- dynamic
- existing
- static
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Force Measurement Appropriate To Specific Purposes (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Description
本発明は、既設標識柱の耐久性評価方法、及び既設標識柱の耐久性評価を行うための基準設定方法に関する。特には、所定場所に立設された支柱部材と、該支柱部材の上端部に延設され、標識が垂設された腕部材とを備えた片持ち式の既設標識柱の耐久性評価方法、及び片持ち式の既設標識柱の耐久性評価を行うための基準設定方法に関する。 The present invention relates to a method for evaluating the durability of an existing sign post and a standard setting method for evaluating the durability of an existing sign post. In particular, a durability evaluation method for a cantilever-type existing sign post provided with a strut member erected at a predetermined place and an arm member extended to the upper end portion of the strut member and suspended from the sign, Further, the present invention relates to a standard setting method for evaluating durability of cantilever-type existing signposts.
道路標識等の標識を設置するための標識柱として、図1に示す如く、所定場所に立設される支柱部材10と、該支柱部材10の上部(上端部)に延設され、標識Hが取り付けられた腕部材11とで逆L字型に構成された片持ち式の標識柱1がある。かかる片持ち式の標識柱1は、支柱部材10の長さと腕部材11の長さとの比(以下、単に長さ比という)が異なる複数のタイプのものが標準品として用意されている。これらの標準品として用意された標識柱1は、許容曲げ応力度法に基づく標準設計法により設計されたもので、標識Hを設置する場所や標識Hの大きさに応じて、それに対応した長さ比のものが選定された上で所定場所に設置される。
As a sign post for installing a sign such as a road sign, as shown in FIG. 1, a
ところで、片持ち式の標識柱1は、設置環境がそれぞれ異なる場所に設置されるものである。すなわち、標識柱1は平面道路や高架道路等の異なった環境下に設置されるものであり、例えば、平面道路では、周囲の振動や風の影響が標識柱に対する外的負荷として作用し、高架道路では、周囲の振動や風の影響に加え、高架道路自体の振動等が標識柱に対する外的負荷として作用する。
By the way, the cantilever-
ところが、各片持ち式の標識柱1は、標準品として用意されているため、設置される環境によっては設計条件から外れるような外的負荷が作用する場合がある。すなわち、標識柱1に振動が加わる環境(例えば、固有振動数が一致して標識柱1を共振させるような橋や高架道路)においては、設置された標識柱1が大きく振幅し、支柱部材10の基部に設定以上の曲げ応力が発生する場合がある。
However, since each cantilever-
ところが、設置された標識柱(既設標識柱)1の支柱部材10等の揺れを視認できたとしても、支柱部材10の基部で発生する曲げ応力を把握することができないため、従来においては、既設標識柱1の支柱部材10の基部に複数の歪みゲージを取り付けて歪みを測定し、その歪みから曲げ応力を算出したり、振幅計測器を支柱部材に取り付けて振幅量を測定し、その振幅量を基に有限要素解析によって曲げ応力を算出したりして、既設標識柱1の安全性を判断(例えば、曲げ応力が許容応力内にあるか否かの判断や、疲労破壊する可能性の有無の判断等)するようにしている。
However, since the bending stress generated at the base of the
上述のように歪みゲージで測定したデータ(歪み)を基に既設標識柱1の曲げ応力を算出する場合には、複数の歪みゲージを支柱部材に取り付けるといった煩雑な作業が必須であり、車両の通行量の多い非常に危険な場所であっても長時間に亘って作業を行わなければならないといった問題がある。また、歪みゲージを用いる場合には、支柱部材10の基部を部分的に削って歪みゲージを取り付けなければならず、測定後に削った部分に錆が発生するのを防止するのに塗装を行うなどの作業が必要である。また、歪みゲージを取り付けるのに既設標識柱1(支柱部材10)を削る(傷付ける)ことは、強度を低下させる原因となり、安全性を確保する上で問題である。
When calculating the bending stress of the existing
また、片持ち式の既設標識柱1は、腕部材11が支柱部材10の上部から延出して逆L字状の形態である上に振動といった動的な条件が加わるものであるため、振幅計測器で支柱部材の上端の撓みを測定したとしても、静的な状態を前提とした一般式(撓み式等)から現実に支柱部材10の基部に発生している曲げ応力を算出することができず、動的な条件(振動条件)等を加味した上で専門知識が必要な有限要素解析を行わなければならないといった問題があった。
In addition, the cantilever-type existing
そこで、本発明は、斯かる実情に鑑み、既設の標識柱を傷つけるような作業や煩雑な作業を行うことなく、静的な状態を対象とする一般式から既設標識柱の安全性を容易且つ確実に評価することのできる既設標識柱の耐久評価方法、及びこれに用いる基準設定方法を提供することを課題とする。 Therefore, in view of such circumstances, the present invention makes it easy to improve the safety of an existing sign post from a general formula for a static state without performing an operation that hurts an existing sign post or a complicated operation. It is an object of the present invention to provide an endurance evaluation method for an existing sign post that can be reliably evaluated, and a standard setting method used therefor.
本発明に係る既設標識柱の耐久性評価方法は、所定場所に立設された支柱部材と、該支柱部材の上部に直交方向に延設され、所定の標識が取り付けられた腕部材とで構成された既設標識柱の耐久性評価方法であって、既設標識柱の支柱部材の上端における水平方向の実振幅量を測定する実振幅量測定工程と、実振幅量から支柱部材の基部に発生する曲げ応力を算出する応力算出工程と、算出した曲げ応力を基に既設標識柱の耐久性の可否を判断する評価工程とを備え、前記応力算出工程は、支柱部材と腕部材との長さ比を異にする複数の標準標識柱のぞれぞれに対し、振動環境下に設置した状態での支柱部材の上端における水平方向の動的振幅量と支柱部材の基部の動的曲げ応力を求めると共に、静的環境下に設置した状態での複数の標準標識柱のそれぞれに対し、支柱部材の上端の水平方向の静的撓み量及び支柱部材の基部の静的曲げ応力が対応する標準標識柱の動的振幅量及び動的曲げ応力と一致することになる腕部材の先端に対する引張力と腕部材に対する引張角度を求めることによって予め設定された前記長さ比と引張角度との相関関係から、実振幅量測定工程の対象とした既設標識柱の支柱部材と腕部材との長さ比を基に対応する引張角度を求め、その引張角度と実振幅量とを基に一般撓み式から腕部材の先端に作用する水平力と垂直力とを算出し、水平力及び垂直力を基に一般モーメント算出式を用いて算出した支柱部材の基部に作用する曲げモーメントから支柱部材の基部に作用する曲げ応力を算出することを特徴とする。ここで「振動環境」とは、標準標識柱に振動を与える環境をいい、標準標識柱に所定の加速度を所定周期(例えば、固有振動数)で与える環境である。その一方で「静的環境」とは、標準標識柱が振動することのない環境をいう。また、「振幅量」とは、振動の中心位置から変位量を意味する。 The durability evaluation method for an existing sign post according to the present invention includes a support member standing at a predetermined location and an arm member extending in an orthogonal direction on the support member and attached with a predetermined sign A method for evaluating the durability of the existing sign post, which is generated at the base of the post member from the actual amplitude amount measuring step of measuring the actual amplitude amount in the horizontal direction at the upper end of the post member of the existing post. A stress calculation step for calculating a bending stress, and an evaluation step for determining whether or not the existing marker column is durable based on the calculated bending stress, wherein the stress calculation step includes a length ratio between the support member and the arm member. For each of a plurality of standard sign pillars with different diameters, obtain the horizontal dynamic amplitude at the upper end of the column member and the dynamic bending stress at the base of the column member when installed in a vibration environment. In addition, a number of standard standards installed in a static environment For each column, the horizontal static deflection at the top end of the column member and the static bending stress at the base of the column member will match the dynamic amplitude and dynamic bending stress of the corresponding standard marker column. From the correlation between the length ratio and the tension angle set in advance by obtaining the tensile force with respect to the tip of the arm member and the tension angle with respect to the arm member, The corresponding tensile angle is obtained based on the length ratio with the arm member, and the horizontal force and vertical force acting on the tip of the arm member are calculated from the general deflection equation based on the tensile angle and the actual amplitude, and the horizontal force is calculated. The bending stress acting on the base of the support member is calculated from the bending moment acting on the base of the support member calculated using the general moment calculation formula based on the force and the normal force. Here, the “vibration environment” refers to an environment in which vibration is applied to the standard marker column, and is an environment in which a predetermined acceleration is applied to the standard marker column at a predetermined period (eg, natural frequency). On the other hand, the “static environment” means an environment in which the standard sign post does not vibrate. The “amplitude amount” means a displacement amount from the center position of vibration.
かかる既設標識柱の耐久性評価方法によれば、既設標識柱に対する作業として、実振幅量測定工程で既設標識柱の支柱部材の上端における水平方向の実振幅量を測定するだけでよく、現場での作業が非常に簡単である。 According to such a method for evaluating the durability of the existing marker pillar, as an operation for the existing marker pillar, it is only necessary to measure the actual amplitude amount in the horizontal direction at the upper end of the pillar member of the existing marker pillar in the actual amplitude amount measuring step. The work is very easy.
さらに、取得した実振幅量を基に支柱部材の基部に作用する曲げ応力を算出する応力算出工程において、支柱部材及び腕部材との長さ比を異にする複数の標準標識柱のぞれぞれに対し、振動環境下に設置した状態での支柱部材の上端における水平方向の動的振幅量と支柱部材の基部の動的曲げ応力を求めると共に、静的環境下に設置した状態での複数の標準標識柱のそれぞれに対し、支柱部材の上端の水平方向の静的撓み量及び支柱部材の基部の静的曲げ応力が対応する標準標識柱の動的振幅量及び動的曲げ応力と一致することになる腕部材の先端に対する引張力と腕部材に対する引張角度を求めることによって予め設定された前記長さ比と引張角度との相関関係から、実振幅量測定工程の対象とした既設標識柱の支柱部材と腕部材との長さ比を基に対応する引張角度を求め、その引張角度と実振幅量とを基に一般撓み式から腕部材の先端に作用する水平力と垂直力とを算出し、水平力及び垂直力を基に一般モーメント算出式から算出した支柱部材の基部に作用する曲げモーメントから支柱部材の基部に作用する曲げ応力を算出するため、現場で取得するデータが実振幅量だけであっても、既設標識柱に実際に作用している曲げ応力を簡単に算出することができる。 Further, in the stress calculation step of calculating the bending stress acting on the base of the column member based on the acquired actual amplitude, each of the plurality of standard marker columns having different length ratios between the column member and the arm member. On the other hand, the horizontal dynamic amplitude at the upper end of the strut member when installed in a vibration environment and the dynamic bending stress at the base of the strut member are obtained, and a plurality of components are installed in a static environment. For each of the standard marker columns, the horizontal static deflection at the upper end of the column member and the static bending stress at the base of the column member match the dynamic amplitude and dynamic bending stress of the corresponding standard column. From the correlation between the length ratio and the tension angle set in advance by obtaining the tensile force with respect to the tip of the arm member to be determined and the tension angle with respect to the arm member, Length of support member and arm member Based on the horizontal angle and the vertical force, the horizontal and vertical forces acting on the tip of the arm member are calculated from the general deflection formula based on the tensile angle and the actual amplitude. In order to calculate the bending stress acting on the base of the strut member from the bending moment acting on the base of the strut member calculated from the general moment calculation formula, even if the data acquired at the site is only the actual amplitude amount, The bending stress actually acting can be easily calculated.
具体的に説明すると、静的な環境に設置した標準標識柱の腕部材の先端に対して引張力を作用させたとき、その標準標識柱の支柱部材の上端の水平方向における撓み量(静的撓み量)と振動環境(動的な環境)での振幅量(動的振幅量)とが一致し、且つ、その標準標識柱の支柱部材の基部に発生する曲げ応力(静的曲げ応力)と、動的な環境での曲げ応力(動的曲げ応力)とが一致することになる引張力と引張角度(腕部材に対する作用角度)との組合せが、支柱部材と腕部材の長さ比(以下、単に長さ比という)毎に一組だけ存在する。 Specifically, when a tensile force is applied to the tip of the arm member of the standard sign post installed in a static environment, the amount of deflection in the horizontal direction of the upper end of the post member of the standard sign post (static Bending stress (static bending stress) generated at the base of the column member of the standard marker column, and the amplitude amount (dynamic amplitude amount) in the vibration environment (dynamic environment) coincides with each other. The combination of the tensile force and the tensile angle (the working angle with respect to the arm member) that matches the bending stress in the dynamic environment (dynamic bending stress) is the length ratio of the strut member to the arm member (below) There is only one set for each.
このことから、かかる引張角度は、静的な環境(条件)を前提にしたものに対し、動的な環境(条件)を前提としたものを適用可能とするパラメータ(係数)として取り扱うことができる。従って、引張角度を静的な条件(環境)を対象とする一般的な撓み式に反映させると、該撓み式は、振動環境下にある既設標識柱の支柱部材の上端の水平方向の実振幅量を撓みとして当てはめることのできる動的な係数を含んだものとなる。 For this reason, such a tensile angle can be treated as a parameter (coefficient) that makes it possible to apply a dynamic environment (condition) premised on a static environment (condition). . Therefore, when the tension angle is reflected in a general deflection equation for static conditions (environment), the deflection equation indicates that the actual amplitude in the horizontal direction at the upper end of the column member of the existing sign post in the vibration environment It includes a dynamic coefficient that can be applied as a deflection.
そして、長さ比を異にする複数の標準標識柱毎に引張角度を求めることによって予め設定した長さ比と引張角度との相関関係から、評価の対象となる既設標識柱の長さ比を基にその既設標識柱に対応する引張角度が判ることになる。 And from the correlation between the length ratio and the tension angle set in advance by determining the tension angle for each of the plurality of standard sign pillars having different length ratios, the length ratio of the existing sign pillars to be evaluated is calculated. Based on this, the tensile angle corresponding to the existing marker column can be determined.
従って、応力算出工程において、評価の対象となる既設標識柱の長さ比に対応する引張角度を反映させた撓み式(既設標識柱が片持ち式であるため、支柱部材の先端に集中荷重が作用した状態での撓み式と、支柱部材の上端に曲げモーメントが作用した状態での撓み式との組合せ式)に対し、当該既設標識柱の実振幅量を当てはめると、振動環境下にある既設標識柱と同じ状態(支柱部材の基部に発生する応力、及び振幅量(撓み量))になる引張力(腕部材の先端に作用する引張力)を求めることができる。そして、引張力の分力である水平力及び垂直力を算出する。すなわち、既設標識柱の形態を考慮して、一般的な撓み式を用いて腕部材に対して引張角度を有して作用する一成分の引張力から垂直方向及び水平方向の二成分の力を算出する。 Therefore, in the stress calculation process, a bending type reflecting the tension angle corresponding to the length ratio of the existing marker column to be evaluated (since the existing marker column is a cantilever type, a concentrated load is applied to the tip of the column member. If the actual amplitude of the existing marker column is applied to the bending type in the state of acting and the bending type in the state where the bending moment is applied to the upper end of the column member), the existing installation in the vibration environment The tensile force (the tensile force acting on the tip of the arm member) that becomes the same state as the marker column (stress generated at the base of the column member and amplitude amount (deflection amount)) can be obtained. Then, a horizontal force and a vertical force, which are component forces of the tensile force, are calculated. In other words, considering the form of the existing sign post, the vertical and horizontal two-component forces from the one-component tensile force acting on the arm member with a tensile angle using a general deflection formula. calculate.
そして、水平力及び垂直力を一般的なモーメント式に適用し、支柱部材の基部に発生する曲げモーメントを各力成分毎に算出し、この曲げモーメントの合計を支柱部材の基部に作用する曲げモーメントとして取り扱い、一般的な応力算出式から支柱部材の基部に発生する曲げ応力を算出することができる。 Then, the horizontal and vertical forces are applied to a general moment formula, the bending moment generated at the base of the strut member is calculated for each force component, and the sum of this bending moment is applied to the base of the strut member. The bending stress generated at the base portion of the support member can be calculated from a general stress calculation formula.
このように算出された曲げ応力は、静的な環境を前提とした一般公式を用いて得られたものではあるが、静的な環境(条件)を前提にしたものに対して動的な環境(条件)を前提としてものを適用可能とするパラメータとしての引張角度を反映させて導かれものであるので、動的環境(振動環境)において実際に支柱部材の基部に発生する曲げ応力と等しい或いは概ね等しいものとなる。従って、算出した曲げ応力から既設標識柱の耐久性を的確に評価することができる。 The bending stress calculated in this way is obtained using a general formula that assumes a static environment, but it is a dynamic environment compared to that that assumes a static environment (condition). Since it is derived by reflecting the tensile angle as a parameter that can be applied on the premise of (condition), it is equal to the bending stress actually generated in the base portion of the column member in the dynamic environment (vibration environment) or It becomes almost equal. Therefore, it is possible to accurately evaluate the durability of the existing marker column from the calculated bending stress.
なお、基準となる引張角度は、実際に標準標識柱を作製して動的及び静的な実験を実際に行って求めてもよいが、例えば、標準標識柱をモデル化し、有限要素解析等を用いて仮想的な実験(解析)を行って求めるようにしても勿論よい。すなわち、基準としての長さ比と引張角度との相関関係は、複数の標準標識柱に対して一度設定すれば、その相関関係を基に各既設標識柱の実振幅量を用いて曲げ応力まで算出することができるので、パラメータとしての引張角度を求めるとき(長さ比と引張角度との相関関係を設定するとき)にのみ有限要素解析を用いて信頼性のある基準を設定すれば、以後の作業で複雑な解析を行うことなく信頼性のある評価結果を得ることができる。 The standard pulling angle may be obtained by actually preparing a standard marking column and actually carrying out dynamic and static experiments. For example, the standard marking column is modeled and finite element analysis is performed. Of course, it may be obtained by performing a virtual experiment (analysis). In other words, once the correlation between the length ratio as a reference and the tensile angle is set for a plurality of standard marker columns, the actual amplitude of each marker column is used to determine the bending stress based on the correlation. Since it can be calculated, if a reliable standard is set using finite element analysis only when obtaining the tensile angle as a parameter (when setting the correlation between the length ratio and the tensile angle), A reliable evaluation result can be obtained without performing a complicated analysis in the above work.
以上のように、現場で既設標識柱の支柱部材の上端の動的振幅量を測定するだけでよい上に、長さ比と引張角度との相対関係を予め設定しておけば以後の作業で有限要素解析等の複雑な解析を一切行う必要がなく、解析等の専門的な知識が乏しい作業者であっても一般公式を用いて既設標識柱の安全性を容易且つ確実に評価することができる。 As described above, it is only necessary to measure the dynamic amplitude of the upper end of the pillar member of the existing sign post on site, and if the relative relationship between the length ratio and the tension angle is set in advance, the subsequent work can be performed. It is not necessary to perform any complicated analysis such as finite element analysis, and even a worker who lacks specialized knowledge such as analysis can easily and reliably evaluate the safety of existing signposts using a general formula. it can.
そして、前記実振幅量測定工程は、既設標識柱を撮影した動画又は静止画を基に支柱部材の上端における水平方向の実振幅量を算出するようにしてもよい。すなわち、ビデオカメラやデジタルカメラで撮影した画像データを基に実振幅量を把握するようにしてもよい。このようにすれば、既設標識柱における支柱部材の上端の実振幅量を求めるための現場での作業として、作業者が既設標識柱の設置された場所に全く近づくことなく遠隔から撮影するだけでよい。そして、撮影した動画又は静止画から実振幅量を求めるには、プログラムを用いて画像解析を行ったり、表示された画像を実測したりすることで、支柱部材の上端の水平方向の振幅量(振れ量)を求めることができる。 In the actual amplitude amount measuring step, the actual amplitude amount in the horizontal direction at the upper end of the column member may be calculated based on a moving image or a still image obtained by photographing the existing marker column. That is, the actual amplitude amount may be ascertained based on image data captured by a video camera or a digital camera. In this way, as an on-site work to determine the actual amplitude amount of the upper end of the pillar member in the existing sign post, the operator can only shoot remotely without approaching the place where the existing sign post is installed. Good. Then, in order to obtain the actual amplitude amount from the captured moving image or still image, the horizontal amplitude amount of the upper end of the support member (by analyzing the displayed image or actually measuring the displayed image) ( Shake amount).
本発明に係る既設標識柱の耐久性評価を行うための基準設定方法は、所定場所に立設された支柱部材と、該支柱部材の上部に直交方向に延設され、所定の標識が取り付けられた腕部材とで構成された既設標識柱の耐久性評価を行うための基準設定方法であって、支柱部材と腕部材との長さ比を異にする複数の標準標識柱のぞれぞれに対し、振動環境下に設置した状態での支柱部材の上端における水平方向の動的振幅量と支柱部材の基部の動的曲げ応力を求める動的データ取得工程と、静的環境下に設置した状態での複数の標準標識柱のそれぞれに対し、支柱部材の上端の水平方向の静的撓み量及び支柱部材の基部の静的曲げ応力が対応する標準標識柱の動的振幅量及び動的曲げ応力と一致することになる腕部材の先端に対する引張力と腕部材に対する引張角度を求める静的データ取得工程と、静的データ取得工程で得られた各引張角度と各標準標識柱に対する前記長さ比との相関関係を、評価の対象となる既設標識柱の実振幅量から支柱部材の基部の曲げ応力を算出するための引張角度を求める基準となる関数として設定する関数設定工程とを含んでいることを特徴とする。ここで「振動環境」とは、標準標識柱に振動を与える環境をいい、標準標識柱に所定の加速度を所定周期(例えば、固有振動数)で与える環境である。その一方で「静的環境」とは、標準標識柱が振動することのない環境をいう。また、「振幅量」とは、振動の中心位置から変位量を意味する。 The standard setting method for evaluating the durability of the existing sign pillar according to the present invention includes a support member standing at a predetermined location, and an upper part of the support member extending in an orthogonal direction and attached with a predetermined sign. A standard setting method for evaluating the durability of an existing signpost made up of arm members, each of a plurality of standard signposts having different length ratios between the support members and the arm members On the other hand, a dynamic data acquisition process for obtaining the horizontal dynamic amplitude amount at the upper end of the column member and the dynamic bending stress at the base of the column member when installed in a vibration environment, For each of a plurality of standard marker columns in the state, the amount of static deflection in the horizontal direction of the upper end of the column member and the static bending stress of the base of the column member correspond to the amount of dynamic amplitude and dynamic bending of the standard marker column. Tensile force and arm member against the tip of the arm member that will match the stress The static data acquisition process for determining the tension angle for the test object, and the correlation between each tension angle obtained in the static data acquisition process and the length ratio for each standard marker pillar, And a function setting step of setting as a reference function for obtaining a tensile angle for calculating the bending stress of the base portion of the support member from the amplitude amount. Here, the “vibration environment” refers to an environment in which vibration is applied to the standard marker column, and is an environment in which a predetermined acceleration is applied to the standard marker column at a predetermined period (eg, natural frequency). On the other hand, the “static environment” means an environment in which the standard sign post does not vibrate. The “amplitude amount” means a displacement amount from the center position of vibration.
かかる既設標識柱の耐久性評価を行うための基準設定方法によれば、関数設定工程において、動的データ取得工程で得た動的振幅量及び動的曲げ応力を基準にして静的データ取得工程で得られた各引張角度と各標準標識柱に対する前記長さ比との相関関係を、評価の対象となる既設標識柱の実振幅量から支柱部材の基部の曲げ応力を算出するための引張角度を導く基準となる関数として設定されるので、現場で取得するデータが実振幅量だけであっても、その関数(長さ比と引張角度との相関)から得られる引張角度と実振幅量を一般公式に適用することで、既設標識柱に実際に作用している曲げ応力を簡単に算出することができる。
According to the reference setting method for evaluating the durability of the existing marker pillar, in the function setting step, the static data acquisition step based on the dynamic amplitude amount and the dynamic bending stress obtained in the dynamic data acquisition step The tension angle for calculating the bending stress of the base of the column member from the actual amplitude amount of the existing marker column to be evaluated with respect to the correlation between each tensile angle obtained in
具体的に説明すると、静的な環境に設置した標準標識柱の腕部材の先端に対して引張力を作用させたとき、その標準標識柱の支柱部材の上端の水平方向における撓み量(静的撓み量)と振動環境(動的な環境)での振幅量(動的振幅量)とが一致し、且つ、その標準標識柱の支柱部材の基部に発生する曲げ応力(静的曲げ応力)と、動的な環境での曲げ応力(動的曲げ応力)とが一致することになる引張力と引張角度(腕部材に対する作用角度)との組合せが、支柱部材と腕部材の長さ比(以下、単に長さ比という)毎に一組だけ存在する。 Specifically, when a tensile force is applied to the tip of the arm member of the standard sign post installed in a static environment, the amount of deflection in the horizontal direction of the upper end of the post member of the standard sign post (static Bending stress (static bending stress) generated at the base of the column member of the standard marker column, and the amplitude amount (dynamic amplitude amount) in the vibration environment (dynamic environment) coincides with each other. The combination of the tensile force and the tensile angle (the working angle with respect to the arm member) that matches the bending stress in the dynamic environment (dynamic bending stress) is the length ratio of the strut member to the arm member (below) There is only one set for each.
このことから、かかる引張角度は、静的な環境(条件)を前提にしたものに対し、動的な環境(条件)を前提としたものを適用可能とするパラメータ(係数)として取り扱うことができる。従って、引張角度を静的な条件(環境)を対象とする一般的な撓み式に反映させると、該撓み式は、振動環境下にある既設標識柱の支柱部材の上端の水平方向の実振幅量を撓みとして当てはめることのできる動的な係数を含んだものとなる。 For this reason, such a tensile angle can be treated as a parameter (coefficient) that makes it possible to apply a dynamic environment (condition) premised on a static environment (condition). . Therefore, when the tension angle is reflected in a general deflection equation for static conditions (environment), the deflection equation indicates that the actual amplitude in the horizontal direction at the upper end of the column member of the existing sign post in the vibration environment It includes a dynamic coefficient that can be applied as a deflection.
そして、静的データ取得工程で長さ比を異にする複数の標準標識柱毎に引張角度を求め、関数設定工程で長さ比と引張角度との相関関係を基準となる関数として設定しておけば、その関数(支柱部材と腕部材との長さ比と引張角度との相関関係)から評価の対象となる既設標識柱の長さ比を基にして当該既設標識柱に対応する引張角度が判ることになる。 Then, the tension angle is obtained for each of the plurality of standard marker columns having different length ratios in the static data acquisition process, and the correlation between the length ratio and the tension angle is set as a reference function in the function setting process. If so, based on the function (correlation between the length ratio between the strut member and the arm member and the tension angle), the tension angle corresponding to the existing sign pillar based on the length ratio of the existing sign pillar to be evaluated Will be understood.
従って、評価の対象となる既設標識柱の長さ比に対応する引張角度を反映させた撓み式(既設標識柱が片持ち式であるため、支柱部材の先端に集中荷重が作用した状態での撓み式と、支柱部材の上端に曲げモーメントが作用した状態での撓み式との組合せ式)に対し、当該既設標識柱の実振幅量を当てはめると、振動環境下にある既設標識柱と同じ状態(支柱部材の基部に発生する応力、及び振幅量(撓み量))になる引張力(腕部材の先端に作用する引張力)を求めることができる。そして、引張力の分力である水平力及び垂直力を算出する。すなわち、既設標識柱の形態を考慮して、一般的な撓み式を用いて腕部材に対して引張角度を有して作用する一成分の引張力から垂直方向及び水平方向の二成分の力を算出する。 Therefore, a bending type reflecting the tension angle corresponding to the length ratio of the existing marker column to be evaluated (the existing marker column is a cantilever type, so that a concentrated load is applied to the tip of the column member. When the actual amplitude amount of the existing marker column is applied to the deflection equation and the deflection equation with the bending moment acting on the upper end of the column member), the same state as the existing marker column in the vibration environment The tensile force (the tensile force acting on the tip of the arm member) that becomes (the stress generated in the base portion of the support member and the amplitude amount (deflection amount)) can be obtained. Then, a horizontal force and a vertical force, which are component forces of the tensile force, are calculated. In other words, considering the form of the existing sign post, the vertical and horizontal two-component forces from the one-component tensile force acting on the arm member with a tensile angle using a general deflection formula. calculate.
そして、水平力及び垂直力を一般的なモーメント式に適用し、支柱部材の基部に発生する曲げモーメントを各力成分毎に算出し、この曲げモーメントの合計を支柱部材の基部に作用する曲げモーメントとして取り扱い、一般的な応力算出式から支柱部材の基部に発生する曲げ応力を算出することができる。 Then, the horizontal and vertical forces are applied to a general moment formula, the bending moment generated at the base of the strut member is calculated for each force component, and the sum of this bending moment is applied to the base of the strut member. The bending stress generated at the base portion of the support member can be calculated from a general stress calculation formula.
このように算出された曲げ応力は、静的な環境を前提とした一般公式を用いて得られたものではあるが、静的な環境(条件)を前提にしたものに対して動的な環境(条件)を前提としてものを適用可能とするパラメータとしての引張角度を反映させて導かれものであるので、動的環境(振動環境)において実際に支柱部材の基部に発生する曲げ応力と等しい或いは概ね等しいものとなる。従って、算出した曲げ応力から既設標識柱の耐久性を的確に評価することができる。 The bending stress calculated in this way is obtained using a general formula that assumes a static environment, but it is a dynamic environment compared to that that assumes a static environment (condition). Since it is derived by reflecting the tensile angle as a parameter that can be applied on the premise of (condition), it is equal to the bending stress actually generated in the base portion of the column member in the dynamic environment (vibration environment) or It becomes almost equal. Therefore, it is possible to accurately evaluate the durability of the existing marker column from the calculated bending stress.
なお、動的テータ取得工程、及び静的データ取得工程は、実際に標準標識柱を作製して動的及び静的な実験を実際に行うようにしてもよいが、例えば、標準標識柱をモデル化し、有限要素解析等を用いて仮想的な実験(解析)を行うようにしても勿論よい。すなわち、基準としての長さ比と引張角度との相関関係は、複数の標準標識柱に対して一度設定すれば、その相関関係を基に各既設標識柱の実振幅量を用いて曲げ応力まで算出することができるので、パラメータとしての引張角度を求めるとき(長さ比と引張角度との相関関係を設定するとき)にのみ有限要素解析を用いて信頼性のある基準を設定すれば、以後の作業で複雑な解析を行うことなく信頼性のある評価結果を得ることができる。 In the dynamic data acquisition step and the static data acquisition step, a standard marker column may be actually produced and a dynamic and static experiment may be actually performed. Of course, a virtual experiment (analysis) may be performed using finite element analysis or the like. In other words, once the correlation between the length ratio as a reference and the tensile angle is set for a plurality of standard marker columns, the actual amplitude of each marker column is used to determine the bending stress based on the correlation. Since it can be calculated, if a reliable standard is set using finite element analysis only when obtaining the tensile angle as a parameter (when setting the correlation between the length ratio and the tensile angle), A reliable evaluation result can be obtained without performing a complicated analysis in the above work.
従って、現場で既設標識柱の支柱部材の上端の動的振幅量を測定するだけでよい上に、長さ比と引張角度との相対関係を予め設定しておけば以後の作業で有限要素解析等の複雑な解析を一切行う必要がなく、解析等の専門的な知識が乏しい作業者であっても一般公式を用いて既設標識柱の安全性を容易且つ確実に評価することができる。 Therefore, it is only necessary to measure the dynamic amplitude of the upper end of the pillar member of the existing sign post on site, and if the relative relationship between the length ratio and the tension angle is set in advance, finite element analysis will be performed in the subsequent work. It is not necessary to perform any complicated analysis such as the above, and even a worker who lacks specialized knowledge such as analysis can easily and reliably evaluate the safety of the existing signpost using the general formula.
以上のように、本発明によれば、既設の標識柱を傷つけるような作業や煩雑な作業を行うことなく、既設標識柱の安全性を容易且つ確実に評価することができるという優れた効果を奏し得る。 As described above, according to the present invention, it is possible to easily and reliably evaluate the safety of an existing marker column without performing an operation that hurts an existing marker column or a complicated operation. Can play.
以下、本発明の一実施形態について、添付図面を参照して説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
本実施形態は、道路標識等の標識を設置するための既設標識柱の耐久性(耐久安全性)を判断する方法、及びその判断に用いる基準を設定する方法に関するものである。 The present embodiment relates to a method for determining the durability (durable safety) of an existing sign post for installing a sign such as a road sign, and a method for setting a standard used for the determination.
この耐久性を判断する対象となる既設標識柱は、図1に示す如く、所定場所に立設された支柱部材10と、該支柱部材10の上端部に延設され、標識Hが取り付けられた腕部材11とを備えて逆L型状に構築された、いわゆる片持ち式の標識柱である。かかる片持ち式の標識柱は、支柱部材10の長さを基準にして、該支柱部材10の長さと腕部材11の長さとの比が異なる複数のタイプものが標準品として用意されており、設置する道路標識Hの大きさや設置する場所の条件に応じて適宜選択された上で設置されている。これらの標準品は、設置される所定の環境(動的条件や静的条件)を仮定した上、許容曲げ応力度法に基づく標準設計法により設計されている。
As shown in FIG. 1, the existing marker column for which the durability is judged is a
本実施形態に係る既設標識柱1の耐久性評価方法は、既設標識柱1の支柱部材10の基部に発生する曲げ応力を導くための基準を決定する基準設定工程と、既設標識柱1の支柱部材10の上端における水平方向の実振幅量を測定する実振幅量測定工程と、実振幅量から支柱部材10の基部に発生する曲げ応力を算出する応力算出工程と、算出した曲げ応力を基に既設標識柱1の耐久性の可否を判断する評価工程とで構成される。
The durability evaluation method for the existing
基準設定工程は、支柱部材10及び腕部材11との長さ比を異にする複数の標準標識柱1’…のぞれぞれに対し、振動環境下に設置した状態での支柱部材の上端における水平方向の動的振幅量と支柱部材の基部の動的曲げ応力を求める動的データ取得工程と、静的環境下に設置した状態での複数の標準標識柱1’’…のそれぞれに対し、支柱部材10の上端(支柱部材の上端)の水平方向の静的撓み量及び支柱部材10の基部(支柱部材の基部)の静的曲げ応力が対応する標準標識柱1’の動的振幅量及び動的曲げ応力と一致することになる腕部材11の先端(腕部材の先端)に対する引張力と腕部材11に対する引張角度とを求める静的データ取得工程と、静的データ取得工程で得られた各引張角度と各標準標識柱1’…に対する前記長さ比との相関を、評価の対象となる既設標識柱1の実振幅量から支柱部材10の基部の曲げ応力を算出するための引張角度を導く基準となる関数として設定する関数設定工程とで構成される。
In the reference setting step, the upper end of the column member in a state where it is installed in a vibration environment with respect to each of the plurality of
前記動的データ取得工程は、実際の実験、又は解析による仮想的な実験により行う。
まず、実際の実験を行う場合について具体的に説明すると、図2に示す如く、標準品と同様に支柱部材10と、標識Hの取り付けられた腕部材11とを備えた片持ち式の標識柱を基準を設定するための標準標識柱(以下、第一標準標識柱という)1’として設定する。
The dynamic data acquisition step is performed by an actual experiment or a virtual experiment by analysis.
First, a case where an actual experiment is performed will be described in detail. As shown in FIG. 2, a cantilever-type marker column including a
そして、支柱部材10の長さが同一であるのに対して腕部材11の長さが異なったもの、すなわち、支柱部材10と腕部材11との長さ比(以下、支柱部材10と腕部材11との長さの比を単に長さ比という)の異なった複数の第一標準標識柱1’…を複数作製しておく。
The length of the
また、前記第一標識標準柱1’に加え、該第一標準標識柱1’…に対し振動を与える振動発生装置100を用意する。該振動発生装置100は、第一標準標識柱1’を設置するベース101と、該ベース101に振動を与える加振装置102とで構成され、加振装置102の駆動によってベース101を介して第一標準標識柱1’…に対して正弦波で加振できるようになっている。なお、かかる実験は、既設標識柱1の安全性を評価するための基準を設定するためのものであるため、第一標準標識柱1’にとって機械的に不利な状態(条件)を把握できるよう、第一標準標識柱1’の固有振動数と一致する周波数で振動、すなわち、第一標準標識柱1’が共振するように加振することが好ましい。
Further, in addition to the first labeling standard column 1 ', a
そして、ベース101上に第一標準標識柱1’を設置し、該第一標準標識柱1’の支柱部材10の上端に振幅測定器(図示しない)を取り付けると共に支柱部材10の基部に歪みゲージGを取り付ける。
Then, the first
そして、図2及び図3に示す如く、加振装置102で駆動して標準標識柱1’に対して加振し(S10)、振幅測定器で支柱部材10の上端の最大振幅量(動的振幅量)W’を測定すると共に支柱部材10の基部での歪み得を歪みゲージGで測定し(S20)、測定した歪み(データ)を基に、最大振幅時の支柱部材10の基部での曲げ応力(動的曲げ応力)を求める(S30)。
Then, as shown in FIGS. 2 and 3, the vibration is driven by the
支柱部材10と腕部材11との長さ比を異にする他の第一標準標識柱1’に対して実験を行っていない場合には(S40でNO)、上述の工程を同様に行って第一標準標識柱1’毎に動的振幅量W’及び動的曲げ応力を求める(S10〜S30)。そして、設定した(作製した)全ての第一標準標識柱1’に対して動的振幅量W’の測定と動的曲げ応力の算出が完了すると(S40でYES)、当該動的データ取得工程が完了する(END)。
When the experiment is not performed on another first
一方、仮想的な実験を行う場合、第一標準標識柱1’をモデル化すると共に、振動条件を動的なパラメータとして与え、そのモデル化した第一標準標識柱1’を仮想的に加振する(S10)。そして、有限要素解析によって支柱部材10の上端における水平方向の最大振幅量(動的振幅量)W’と最大振幅時の支柱部材10の基部の曲げ応力(動的曲げ応力)を求める(S20,S30)。前記パラメータは、実際の実験を行うのと同様に、第一標準標識柱1’に対して正弦波で加振させることを動的条件として設定する。そして、この場合においても、第一標準標識柱1’にとって最も不利な状態となるよう、パラメータは、第一標準標識柱1’の固有振動数と一致する周波数(共振周波数)で加振することを動的条件として設定することが好ましい。
On the other hand, when conducting a virtual experiment, the first
そして、支柱部材10と腕部材11との長さ比を異にする他の第一標準標識柱1’に対して実験を行っていない場合には(S40でNO)、上述の工程を同様に行ってモデル化した第一標準標識柱1’毎に動的振幅量W’及び動的曲げ応力を求める(S10〜S30)。そして、モデル化した全ての第一標準標識柱1’に対して動的振幅量W’と動的曲げ応力の算出が完了すると(S40でYES)、当該動的データ取得工程が完了する(END)。
And when it is not experimenting with other 1st standard label | marker pillar 1 'which makes the length ratio of the support |
前記静的データ取得工程は、動的データ取得工程と同様に、実際の実験、又は解析による仮想的な実験により行う。
まず、実際の実験を行う場合について具体的に説明すると、図4に示す如く、動的データ取得工程で用いる第一標準標識柱1’と同一形態をなす片持ち式の標識柱を該静的データ取得工程で用いる標準標識柱(以下、第二標準標識柱という)1’’として設定する。
The static data acquisition step is performed by an actual experiment or a virtual experiment by analysis, as in the dynamic data acquisition step.
First, the actual experiment will be described in detail. As shown in FIG. 4, a cantilever-type marker column having the same form as that of the first
そして、支柱部材10の長さが同一であるのに対して腕部材11の長さが異なったもの、すなわち長さ比の異なった複数の第二標準標識柱1’…を複数作製しておく。なお、動的データ取得工程で用いた複数の第一標準標識柱1’を静的データ取得工程で用いる第二標準標識柱1’’として活用するようにしても勿論よい。
A plurality of second
そして、第二標準標識柱1’’を静的環境(標準標識柱1’に振動が加わらない環境)下に設置し、第二標準標識柱1’’の支柱部材10の上端に振幅測定器を取り付けると共に支柱部材10の基部に歪みゲージGを取り付ける。
Then, the second
そして、図4及び図5に示す如く、腕部材11の先端にロープやチェーン等(図示しない)を接続し、そのロープ等が腕部材11及び支柱部材10の軸線に沿った状態(腕部材11及び支柱部材10の軸線が通る仮想面上)で該腕部材11(腕部材11の軸心)に対して角度を有するように引っ張る(例えば、ウインチで巻き上げる)ことで、第二標準標識柱1’’の腕部材11の先端において、その腕部材11の軸線に対して作用角(引張角度)θ°を有して静的な引張力P’を作用させる(S100)。そして、その引張力P’の作用によって生じる支柱部材10の先端の水平方向の撓み量(静的撓み量)δ’と、長さ比の対応する第一標準標識柱1’に対する動的データ取得工程で得られた動的振幅量W’とが一致し、且つ支柱部材10の基部に発生する曲げ応力(静的曲げ応力)と長さ比の対応する第一標準標識柱1’に対する動的データ取得工程で得られた動的曲げ応力とが一致するかを判断する(S110)。そして、静的撓み量δ’及び静的曲げ応力が動的振幅量W’及び動的曲げ応力と一致しない場合(S110でNO)、引張力P’及び引張角度θ°の少なくとも何れか一方を変化させ(120)、静的撓み量δ’及び静的曲げ応力が動的振幅量W’及び動的曲げ応力と一致する状態を見出す。そして、静的撓み量δ’及び静的曲げ応力が動的振幅量W’及び動的曲げ応力と一致した場合(S110でYES)、その状態での引張角度θ°がその長さ比の片持ち式の標識柱に対する基準として決定される(S130)。
4 and 5, a rope, a chain, or the like (not shown) is connected to the tip of the
そして、支柱部材10と腕部材11との長さ比を異にする他の第二標準標識柱1’’…に対して実験を行っていない場合には(S140でNO)、上述の工程を同様に行って第二標準標識柱1’’毎(長さ比毎)に引張角度θ°を求める(S100〜S130)。そして、設定した(作製した)全ての第二標準標識柱1’’に対して引張角度θ°が決定すると(S140でYES)、当該静的データ取得工程が完了する。
And when it is not experimenting with other 2nd standard label | marker pillar 1 '' ... which makes the length ratio of the support |
一方、仮想的な実験を行う場合、第二標準標識柱1’’をモデル化すると共に、腕部材に対する静的な負荷条件(引張力P、及び引張角度θ°)をパラメータとして与える(S100)。そして、有限要素解析によって第二標準標識柱1’’の支柱部材10の先端の水平方向の撓み量(静的撓み量)δ’と支柱部材10の基部に発生する曲げ応力(静的曲げ応力)とを算出し、支柱部材10の先端の静的撓み量δ’と長さ比の対応する第一標準標識柱1’に対する動的データ取得工程で得られた動的振幅量W’とが一致し、且つ支柱部材10の基部の静的曲げ応力と長さ比の対応する第一標準標識柱1’に対する動的データ取得工程で得られた動的曲げ応力とが一致するかを判断する(S110)。そして、静的撓み量δ’及び静的曲げ応力が動的振幅量W’及び動的曲げ応力と一致しない場合(S110でNO)、静的な負荷条件としての引張力P及び引張角度θ°の少なくとも何れか一方を変化させ(120)、静的撓み量δ’及び静的曲げ応力が動的振幅量W’及び動的曲げ応力と一致する状態を見出す。そして、静的撓み量δ’及び静的曲げ応力が動的振幅量W’及び動的曲げ応力と一致した場合(S110でYES)、その状態での引張角度θ°がその長さ比の片持ち式の標識柱に対する基準として決定される(S130)。
On the other hand, when performing a virtual experiment, the second
そして、支柱部材10と腕部材11との長さ比を異にする他の第二標準標識柱1’’…に対して解析(仮想の実験)を行っていない場合には(S140でNO)、上述の工程を同様に行って第二標準標識柱1’’毎(長さ比毎)に基準となる引張角度θ°を求める(S100〜S130)。そして、モデル化した全ての第二標準標識柱1’’に対して引張角度が決定すると(S140でYES)、当該静的データ取得工程が完了する。
And when analysis (virtual experiment) is not performed with respect to the other second
そして、関数設定工程は、各第二標準標識柱1’’に対する静的データ取得工程で得られた複数の引張角度θ°と、各引張角度θ°に対応する長さ比との相関関係を応力算出工程で基準として用いる関数として設定する(S150)。
In the function setting step, the correlation between the plurality of tensile angles θ ° obtained in the static data acquisition step for each second
本実施形態に係る関数設定工程においては、引張角度θ°と長さ比との相関関係を表す関数を近似線BLとして示したグラフA(図6参照)を作成することで(S150)、応力算出工程で用いる基準が決定する(END)。長さ比と引張角度θ°との相関関係を示す関数は一次式で表すことができ、前記近似線BLは、長さ比が大きくなるにつれて引張角度θ°が大きくなる比例的な直線として現れる。なお、応力算出工程で用いる基準としての関数は、このように近似線としてグラフ化してもよいが、数式として設定しても勿論よい。 In the function setting step according to the present embodiment, by creating a graph A (see FIG. 6) showing the function representing the correlation between the tensile angle θ ° and the length ratio as an approximate line BL (S150), the stress The standard used in the calculation process is determined (END). A function indicating the correlation between the length ratio and the tensile angle θ ° can be expressed by a linear expression, and the approximate line BL appears as a proportional straight line in which the tensile angle θ ° increases as the length ratio increases. . The function as a reference used in the stress calculation step may be graphed as an approximate line in this way, but may be set as an equation.
前記実振幅量測定工程は、図7に示す如く、作業者が現場に出向き、ビデオカメラ或いはデジタルカメラで、既設標識柱1を動画又は静止画として撮影する(S200)。この際、図8に示す如く、支柱部材10の軸線及び腕部材の軸線に沿った方向での振幅が把握できる画像を撮影すべく、支柱部材10及び腕部材11の両方と対向する定点SにカメラCを設置して撮影を行う。
In the actual amplitude measuring step, as shown in FIG. 7, the operator goes to the site and photographs the existing
そして、図9に示す如く、撮影領域E中に支柱部材10全体のうち少なくとも支柱部材10の上端部が写し込まれるよう撮影する。図7に戻り、撮影した動画を画像解析、或いは動画又は静止画から実測することで支柱部材10の上端の水平方向における最大の振幅量(実振幅量)Wを求める(S210)。具体的には、既設標識柱1を動画として撮影し、それを画像解析する場合、支柱部材10の先端部の画像に対するエッジ(輪郭)を検出し、静止した状態と最大に振れた状態とのエッジの水平方向での位置の相違(エッジの変位量)を画素数で割り出すと共に、既設標識柱1(支柱部材10)の上端(外径)に対応する画素数と実際寸法サイズとで画像の尺度(比率)を割り出し、前記尺度を基にエッジの変位量としての画素数から、支柱部材10の上端の水平方向における最大の実振幅量Wを求めることができる。
Then, as shown in FIG. 9, shooting is performed so that at least the upper end portion of the
また、動画又は静止画から実測する場合、特定できる位置(例えば、支柱部材10の上端の中央)を基準点として、静止状態と最大振れた状態の基準点間の距離をメジャー等で実測し、既設標識柱1(支柱部材10)の先端に対応する画像(例えば画像と映し出された支柱部材10の上端の外径)と実際の寸法との関係で尺度(縮尺)を割り出し、その尺度を実測した寸法に反映させることで支柱部材10の上端における水平方向の実振幅量Wを求めることができる。なお、静止画を実測する場合は、静止した状態と最大に振れた状態とを同一の定点Sから撮影し、二つの画像の対比することによって基準点間の距離を実測する必要がある。
In addition, when actually measuring from a moving image or a still image, using a measure or the like, the distance between the stationary state and the maximum swinging state is measured with a position that can be specified (for example, the center of the upper end of the support member 10) as a reference point, A scale (scale) is determined based on the relationship between the actual dimensions of the image corresponding to the tip of the existing sign post 1 (post member 10) (for example, the outer diameter of the upper end of the
前記応力算出工程では、まず実振幅量測定工程で実振幅量Wを測定する対象とした既設標識柱1における支柱部材10と腕部材11との長さ比を求め、その長さ比を基に関数設定工程で設定した近似線(グラフ)或いは一次式からその長さ比に対応した引張角度θ°を求める(S220)。
In the stress calculation step, first, a length ratio between the
そして、その引張角度θ°と実振幅量測定工程で得られた実振幅量Wとを基に、静的な環境を前提とする一般公式から既設標識柱1の支柱部材10の基部の曲げ応力(動的な環境で発生する曲げ応力)を算出する(S230)。
Then, based on the tensile angle θ ° and the actual amplitude amount W obtained in the actual amplitude amount measuring step, the bending stress of the base portion of the
ここで、静的な一般公式から動的な環境で発生する曲げ応力を算出する考え方について具体的に説明すると、静的な環境に設置した標準標識柱の腕部材の先端に対して引張力Pを作用させたとき、その片持ち式標準標識柱1’’の支柱部材10の上端の水平方向における静的撓み量と動的な環境での動的振幅量W’とが一致し、且つ、その標準標識柱1’’の支柱部材10の基部に発生する静的曲げ応力と、動的な環境での動的曲げ応力とが一致することになる引張力Pと引張角度(腕部材に対する作用角度)θ°との組合せが、支柱部材10と腕部材11の長さ比毎に一組だけ存在する。このことから、静的データ取得工程で求めた引張角度θ°は、静的な環境(条件)を前提にしたものに対し、動的な環境(条件)を前提としたものを適用可能とするパラメータ(係数)として取り扱うことができる。
Here, the concept of calculating the bending stress generated in a dynamic environment from a static general formula will be described in detail. A tensile force P is applied to the tip of an arm member of a standard marker column installed in a static environment. , The amount of static deflection in the horizontal direction of the upper end of the
そして、長さ比を異にする複数の標準標識柱1’’…毎に引張角度θ°を求めて予め長さ比と引張角度との相関を基準となる関数として予め設定しておけば、その関数を基に評価の対象となる既設標識柱1の長さ比から当該既設標識柱1に対応する引張角度θ°が判ることになる。
Then, if the tension angle θ ° is obtained for each of the plurality of
そして、振動環境下にある既設標識柱1(支柱部材10)の振幅(動的な条件)を、静的な環境を前提にした一般的な撓み式に当てはめることができる(撓みとして扱える)ように、評価の対象となる既設標識柱1の長さ比に対応する引張角度θ°を撓み式に反映させた上で、実振幅量Wを当てはめ、腕部材11の先端に作用する腕部材11の軸線方向の力(以下、水平力という)Pxと支柱部材10の軸線方向の力(以下、垂直力という)Pyとを算出する。すなわち、本実施形態に係る評価の対象は、逆L字状をなす片持ち式の既設標識柱1であるため、腕部材11の先端に引張力が作用して支柱部材10が撓んだ状態になると、支柱部材10の先端に集中荷重と曲げモーメントが作用していることになるので、支柱部材10の先端に集中荷重が作用した状態での撓み式と、支柱部材10の先端に曲げモーメントが作用した状態での撓み式との組合せ式(引張角度θ°を反映させた組合せ式)を基に、引張角度θ°を有して作用する引張力Pを算出した上で、引張力P及び引張角度θ°から腕部材11の先端に水平力Pxと垂直力Pyとを算出する。
Then, the amplitude (dynamic condition) of the existing marker column 1 (the column member 10) under the vibration environment can be applied to a general deflection formula assuming a static environment (can be treated as a deflection). In addition, after reflecting the tension angle θ ° corresponding to the length ratio of the existing
そして、この水平力Pxと垂直力Pyとから一般的なモーメント式を用いて上述した各成分の曲げモーメントを算出し、その曲げモーメントから一般的な応力算出式を用いて支柱部材10の基部の曲げ応力を算出する。
Then, the bending moment of each component described above is calculated from the horizontal force Px and the vertical force Py using a general moment formula, and the base portion of the
水平力Px及び垂直力Pyの算出過程を含めて応力の算出について具体的に説明すると、上述の如く、柱部材10の先端に集中荷重と曲げモーメントが作用していることに前提に、支柱部材10の上端における水平方向(腕部材11の軸線方向)の撓みは、腕部材11の軸線方向の力Pxの作用による撓みと支柱部材10の軸線方向の力Pyの作用による撓みの合計がである。従って、δ:支柱部材10の上端における水平方向の撓み(振幅)、δx:腕部材11の軸線方向の力Pxによる撓み(振幅)、δy:支柱部材10の軸線方向の力Pyによる撓み(振幅)、とすれば、
δ=δx+δy…(式1)
となる。そして、θ:引張角度、P:引張角度に沿って作用する力(引張力)、Px:水平力、Py:垂直力、とすれば、
引張力Pとこれの分力である水平力Pxとの関係は、
Px=Pcosθ…(式2)
と表すことができ、
引張力Pとこれの分力である垂直力Pyとの関係は、
Py=Psinθ…(式3)
と表すことができる。
The stress calculation including the calculation process of the horizontal force Px and the vertical force Py will be described in detail. As described above, on the premise that the concentrated load and the bending moment are applied to the tip of the
δ = δx + δy (Formula 1)
It becomes. And if θ is a tensile angle, P is a force acting along the tensile angle (tensile force), Px is a horizontal force, Py is a vertical force,
The relationship between the tensile force P and the horizontal force Px, which is the component force, is
Px = Pcosθ (Formula 2)
Can be expressed as
The relationship between the tensile force P and the normal force Py which is the component force is as follows:
Py = Psinθ (Formula 3)
It can be expressed as.
従って、δx:水平力Pxの作用による撓み、δy:垂直力Pyの作用による撓み、θ:引張角度、L:支柱部材10の長さ、L’:腕部材11の長さ、E:ヤング率、I:断面二次モーメント、とすれば、水平力Pxの作用による撓み(振幅)δxは、
δx=Pcosθ×L3/(3×E×I)…(式4)
となり、垂直力Pyの作用による撓み(振幅)δyは、
δy=(Psinθ×L’)×L2/(2×E×I)…(式5)
となる。従って、式1に対して式4と式5とを代入すれば、支柱部材10の上端における水平方向の撓みδは、
δ=Pcosθ×L3/(3×E×I)+(Psinθ×L’)×L2/(2×E×I)…(式1’)
となる。
Therefore, δx: Deflection due to the action of the horizontal force Px, δy: Deflection due to the action of the vertical force Py, θ: Tensile angle, L: Length of the
δx = Pcos θ × L 3 / (3 × E × I) (Formula 4)
The deflection (amplitude) δy due to the action of the normal force Py is
δy = (Psinθ × L ′) × L 2 / (2 × E × I) (Formula 5)
It becomes. Therefore, if Equation 4 and
δ = Pcos θ × L 3 / (3 × E × I) + (Psin θ × L ′) × L 2 / (2 × E × I) (
It becomes.
この式1’に対し、実振幅量測定工程で得た実振幅量Wを支柱部材10の上端における水平方向の撓み(振幅)δとして代入すると共に、引張角度θ°に対して、関数(近似線BL又は数式)から求めた引張角度θ°を代入すると、実振幅量Wに対応する引張力Pを求めることができ、この引張力P及び引張角度θ°を式2及び式3に代入すれば、その引張力Pの分力、すなわち、水平力Pxと垂直力Pyを求めることができる。
For this
そして、Mx:水平力Pxによって支柱部材10の基部に生じる曲げモーメント、My:垂直力Pyによって支柱部材10の基部に生じる曲げモーメント、Px:水平力、Py:垂直力、L:支柱部材10の長さ、L’:腕部材11の長さ、とすれば、
Mx=Px×L…(式6)
My=Py×L’…(式7)
として表すことができる。
Mx: bending moment generated at the base of the
Mx = Px × L (Expression 6)
My = Py × L ′ (Expression 7)
Can be expressed as
そして、支柱部材10の基部の曲げ応力に起因する曲げモーメントは、水平力Pxにより曲げモーメントと垂直力による曲げモーメントとの合成であるので、支柱部材10の基部に発生する曲げ応力を求める応力算出式は、
σ:支柱部材10の基部の曲げ応力、Mx:水平力Pxによって支柱部材10の基部に生じる曲げモーメント、My:垂直力Pyによって支柱部材10の基部に生じる曲げモーメント、M:支柱部材10の基部の曲げ応力に起因する曲げモーメント、k:支柱部材10の外径の1/2、I:断面二次モーメント、とすれば、
σ=(Mx+My)×k/I=M×k/I…(式8)
と表すことができる。
Since the bending moment resulting from the bending stress at the base of the
σ: Bending stress at the base of the
σ = (Mx + My) × k / I = M × k / I (Equation 8)
It can be expressed as.
従って、動的な環境の条件を静的な環境の条件として扱うための(静的な環境を前提にしたもの(式)に動的な環境から得られたもの(データ)を適用できるようにするための)パラメータとして、その既設標識柱1の長さ比に対応する引張角度θ°を適用することから、以上のような動的な環境にある既設標識柱1の実振幅量Wを静的な一般式(撓み式等)に適用することができ、結果的に支柱部材10の基部に発生する実際の曲げ応力(動的な環境下で発生する曲げ応力)σを求めることができる。
Therefore, to handle the dynamic environment conditions as the static environment conditions (so that the data obtained from the dynamic environment (data) can be applied to the one that assumes the static environment (expression)) As a parameter), the tension angle θ ° corresponding to the length ratio of the existing
このように曲げ応力が算出されると、その曲げ応力σを基に対象となる既設標識柱1の安全性が評価される(評価工程)。かかる既設標識柱1の評価は、応力算出工程で算出した曲げ応力σが許容曲げ応力内になるか否かを見て行うこともできるが、本実施形態においては、算出した曲げ応力σを基に既設標識柱1の破損の可能性を判断するまで行うようにしている。
When the bending stress is calculated in this way, the safety of the existing
具体的には、既設標識柱1が破損するか否かを判断するに当たり、図10に示すような接合方法毎に見い出された疲労設計曲線図(S−N曲線図)が用いられている。なお、図10に示す疲労設計曲線図は一例である。
Specifically, a fatigue design curve diagram (SN curve diagram) found for each joining method as shown in FIG. 10 is used to determine whether or not the existing
疲労設計曲線図は、縦軸に応力振幅値Sが設定され、横軸に繰り返し回数Nが設定されている。上記構成の既設標識柱1(片持ち式の標識柱)の耐用期間を20年と設定した場合、
繰り返し回数N(該疲労設計曲線の横軸のプロット値)=
共振時の振動数(Hz)×X(回/時間)×24(時間)×365 (日)×20(年)…式(9a)
又は、
繰り返し回数N=共振時の振動数(Hz)×X(回/日)×365 (日)×20(年)…式(9b)
又は、
繰り返し回数N=X(回/時間)×24(時間)×365 (日)×20(年)…式(9c)
又は、
繰り返し回数N=X(回/日)×365 (日)×20(年)…式(9d)
から求めることができる。なお、X(回/時間)又はX(回/日)は、高架道路、道路橋等に乗り入れする車両の統計的データ、又は高架道路、道路橋の実測データから求めることができる。例えば、高架道路、道路橋の加速度データを測定し、これをレインフロー法等の手法により加速度範囲頻度分布を作成して、線形累積被害則を適用させることにより、ある一定の加速度が一時間、又は一日当たり何回繰り返して発生するかを求めた値を採用することができる。
In the fatigue design curve diagram, the stress amplitude value S is set on the vertical axis, and the number of repetitions N is set on the horizontal axis. When the lifetime of the existing sign post 1 (cantilever-type sign post) configured as above is set to 20 years,
Number of repetitions N (the plotted value on the horizontal axis of the fatigue design curve) =
Resonance frequency (Hz) x X (times / hour) x 24 (hours) x 365 (days) x 20 (years) ... Formula (9a)
Or
Number of repetitions N = Frequency at resonance (Hz) x X (times / day) x 365 (days) x 20 (years) ... Formula (9b)
Or
Number of repetitions N = X (times / hour) x 24 (hours) x 365 (days) x 20 (years) ... Formula (9c)
Or
Number of repetitions N = X (times / day) x 365 (days) x 20 (years) ... Formula (9d)
Can be obtained from Note that X (times / time) or X (times / day) can be obtained from statistical data of vehicles entering an elevated road, a road bridge, or the like, or actually measured data of an elevated road or a road bridge. For example, by measuring acceleration data of elevated roads and road bridges, creating an acceleration range frequency distribution using a technique such as the rain flow method, and applying a linear cumulative damage law, a certain acceleration is achieved for one hour, Or the value which calculated | required how many times it generate | occur | produces per day can be employ | adopted.
そして、式(9a)、式(9b)、式(9c)、式(9d)の何れかにより得られた繰り返し回数Nを疲労設計曲線図の横軸にプロットするとともに、前記曲げ応力推定工程において算出した曲げ応力Sを疲労設計曲線図の縦軸にプロットし、そのプロット値が該疲労設計曲線図に記された疲労設計曲線の上側に位置する場合に、算出された曲げ応力が既設標識柱1の破壊域にあり、当該既設標識柱1が疲労によって破損(き裂、ひび割れ等)する虞があり、その既設標識柱1に対して補修が必要、或いは交換が必要である判断し、当該既設標識柱1の耐久性についての評価が完了する。その一方で、標識柱1が疲労によって破損する虞がないと判断した場合、該既設標識柱1は安全性が確保されているとして評価を完了する。
Then, the number of iterations N obtained by any one of formula (9a), formula (9b), formula (9c), and formula (9d) is plotted on the horizontal axis of the fatigue design curve diagram, and in the bending stress estimation step, When the calculated bending stress S is plotted on the vertical axis of the fatigue design curve diagram and the plotted value is located on the upper side of the fatigue design curve described in the fatigue design curve diagram, the calculated bending stress is indicated by the existing indicator column. 1 is in the destruction zone, the existing
以上のように、本実施形態に係る既設標識柱1の耐久性評価方法は、実振幅量測定工程において、既設標識柱1の支柱部材10の上端における水平方向の実振幅量Wを非接触で測定するようにしているので、既設標識柱1の耐久性を評価するに当たり、該既設標識柱1に関連する実データを取得するのに該既設標識柱1に近づく必要がない。また、非接触で既設標識柱1の実振幅量Wのみをデータを取得するだけであり、現場での作業が非常に簡単である。
As described above, in the durability evaluation method for the existing
さらに、取得した実振幅量Wから既設標識柱1基部に作用する曲げ応力を算出する応力算出工程において、支柱部材10と腕部材11との長さ比を異にする動的環境に置かれた複数の標準標識柱1’のそれぞれの支柱部材10の上端の水平方向の動的振幅量W’と支柱部材10の基部の動的曲げ応力を求めると共に、静的環境に置かれた複数の標準標識柱1’’のそれぞれの支柱部材10の上端の水平方向の静的撓み量δ’と支柱部材10の基部の静的曲げ応力が前記動的振幅量W’及び動的曲げ応力と一致するように、腕部材11の先端に静的な引張力を作用させ、腕部材11に対する引張力の引張角度を求めて予め設定された長さ比と引張角度との相関(相関関係を表す関数)から、実振幅量測定工程の対象とした既設標識柱1の支柱部材10と腕部材11との長さ比を基に対応する引張角度θ°を求め、その引張角度θ°と実振幅量Wとを基に一般撓み式から腕部材11の先端に作用する水平力Pxと垂直力Pyとを算出し、水平力Px及び垂直力Pyを基に一般的なモーメント算出式を用いて算出した支柱部材10の基部に作用する曲げモーメントから支柱部材10の基部に作用する曲げ応力を算出するため、現場で取得するデータが実振幅量Wだけであっても、既設標識柱1に実際に作用している曲げ応力を簡単に算出することができる。従って、有限要素解析等の複雑な解析を行う必要がなく、解析等の専門知識が少ない作業者であっても簡単に既設標識柱1の安全性を確認することができる。
Further, in the stress calculation step of calculating the bending stress acting on the base of the existing
そして、前記実振幅量測定工程は、既設標識柱1を撮影した動画又は静止画を基に支柱部材10の上端における水平方向の実振幅量を算出するようにしているので、現場でのデータ取得に当たり、作業者が既設標識柱1の設置された場所に全く近づくことなく遠隔から撮影するだけでよい。そして、撮影した既設標識柱1(少なくとも支柱部材10の先端)についての動画又は静止画を基に、画像解析又は画像に対する実測で、実測から該支柱部材10の上端の水平方向の振幅(振れ量)を割り出すことができる。
In the actual amplitude amount measuring step, since the actual amplitude amount in the horizontal direction at the upper end of the
尚、本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 In addition, this invention is not limited to the said embodiment, Of course, a various change can be added in the range which does not deviate from the summary of this invention.
上記実施形態において、曲げ応力推定工程において算出した曲げ応力σを基に疲労設計曲線図から既設標識柱1に対する安全性を評価するようにしたが、例えば、曲げ応力推定工程において算出した曲げ応力が許容曲げ応力以上であるか否かを見て既設標識柱1の安全性を評価するようにしてもよい。但し、曲げ応力のみによる判断は、破損する虞のある時期等を把握することができないため、疲労設計曲線図を用いて疲労破壊する虞のある時期等を把握し、既設標識柱1に対する補修や交換等のスケジュールを設定するようにすることが好ましい。
In the above embodiment, the safety for the existing
上記実施形態において、実振幅量測定工程でデジタルカメラC等で撮影した画像を基に、該既設標識柱1に対して非接触で実振幅量Wを測定するようにしたが、これに限定されるものではなく、例えば、振幅測定器を用いて測定するようにしてもよい。このようにしても、上記実施形態のように既設標識柱1に対応する引張角度θ°を求めることで、その測定結果(撓み)と引張角度θ°とで支柱部材10の基部における曲げ応力を算出することができる。従って、上記実施形態と同様に、曲げ応力を算出するに際し、動的な条件を設定するといった専門的且つ高度な作業を行う必要がない。但し、実振幅量Wを測定する際の作業性等を考慮すれば、上記実施形態のように非接触で実振幅量Wを測定することが好ましいことは言うまでもない。
In the above embodiment, the actual amplitude amount W is measured in a non-contact manner with respect to the existing
上記実施形態において、基準となる関数の設定方法、及び関数を用いて既設標識柱1する方法(手順)について、作業者が自ら計算等を行うことを前提に説明したが、例えば、長さ比と引張角度θ°との相関関係を表す関数を予め設定しておき、その関数や上述の一般的な撓み式(変型式)等の公式も含めて応力算出工程について作業フローをプログラムとして構築すれば、作業者が、既設標識柱1に対する実振幅量W、該既設標識柱1の長さ比、外径等の条件を入力するだけで、曲げ応力の算出、或いは疲労の判断に至るまで行うことができる。また、有限要素解析のように複雑な解析や計算等の処理を行わないので、上述のようにプログラム化した場合、演算処理装置にかかる負荷が小さく、短時間で一連の処理を行うことができる。そして、上述のプログラムに支柱部材10の実振幅量Wを求めるための画像解析を含めれば、大部分の処理が演算処理装置によって処理されることになり、対象となる既設標識柱1の図面だけで把握できる情報(長さ比や外径等)の入力を行うだけで既設標識柱1の評価を最終まで行うことができる。
In the above embodiment, the method for setting the reference function and the method (procedure) for setting the existing
1…既設標識柱、1’…標準標識柱(第一標準標識柱)、1’’…標準標識柱(第二標準標識柱)、10…支柱部材、11…腕部材、100…振動発生装置、101…ベース、102…加振装置、G…歪みゲージ
DESCRIPTION OF
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006024729A JP2007205860A (en) | 2006-02-01 | 2006-02-01 | Method for evaluating durability of existing sign pole and baseline setting method for executing durability evaluation of existing sign pole |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006024729A JP2007205860A (en) | 2006-02-01 | 2006-02-01 | Method for evaluating durability of existing sign pole and baseline setting method for executing durability evaluation of existing sign pole |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007205860A true JP2007205860A (en) | 2007-08-16 |
Family
ID=38485456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006024729A Withdrawn JP2007205860A (en) | 2006-02-01 | 2006-02-01 | Method for evaluating durability of existing sign pole and baseline setting method for executing durability evaluation of existing sign pole |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007205860A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101008666B1 (en) * | 2008-06-24 | 2011-01-17 | 한국전력공사 | Device For Moment Test |
KR101166139B1 (en) | 2011-09-01 | 2012-07-18 | 한국전력공사 | Apparatus and method for horizontal load test of strip foundation |
WO2019160043A1 (en) | 2018-02-16 | 2019-08-22 | 日本電気株式会社 | Facility state analyzing device, facility state analyzing method, and recording medium storing facility state analyzing program thereon |
JP2019178894A (en) * | 2018-03-30 | 2019-10-17 | 株式会社Nttドコモ | System for evaluating characteristics of structure |
JP2021021647A (en) * | 2019-07-29 | 2021-02-18 | 国立大学法人群馬大学 | Abnormality detection system for information board |
JP2021021649A (en) * | 2019-07-29 | 2021-02-18 | 国立大学法人群馬大学 | Method for calculating conversion coefficient |
CN114636496A (en) * | 2022-02-24 | 2022-06-17 | 华南理工大学 | Method for monitoring and early warning stress of buried pipeline in natural gas station under foundation settlement effect |
-
2006
- 2006-02-01 JP JP2006024729A patent/JP2007205860A/en not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101008666B1 (en) * | 2008-06-24 | 2011-01-17 | 한국전력공사 | Device For Moment Test |
KR101166139B1 (en) | 2011-09-01 | 2012-07-18 | 한국전력공사 | Apparatus and method for horizontal load test of strip foundation |
WO2019160043A1 (en) | 2018-02-16 | 2019-08-22 | 日本電気株式会社 | Facility state analyzing device, facility state analyzing method, and recording medium storing facility state analyzing program thereon |
US11946603B2 (en) | 2018-02-16 | 2024-04-02 | Nec Corporation | Facility state analyzing device, facility state analyzing method, and recording medium storing facility state analyzing program thereon |
JP2019178894A (en) * | 2018-03-30 | 2019-10-17 | 株式会社Nttドコモ | System for evaluating characteristics of structure |
JP2021021647A (en) * | 2019-07-29 | 2021-02-18 | 国立大学法人群馬大学 | Abnormality detection system for information board |
JP2021021649A (en) * | 2019-07-29 | 2021-02-18 | 国立大学法人群馬大学 | Method for calculating conversion coefficient |
JP7270189B2 (en) | 2019-07-29 | 2023-05-10 | 国立大学法人群馬大学 | Conversion factor calculation method |
JP7359378B2 (en) | 2019-07-29 | 2023-10-11 | 国立大学法人群馬大学 | Information board anomaly detection system |
CN114636496A (en) * | 2022-02-24 | 2022-06-17 | 华南理工大学 | Method for monitoring and early warning stress of buried pipeline in natural gas station under foundation settlement effect |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007205860A (en) | Method for evaluating durability of existing sign pole and baseline setting method for executing durability evaluation of existing sign pole | |
Mata-Falcón et al. | Combined application of distributed fibre optical and digital image correlation measurements to structural concrete experiments | |
JP6472894B2 (en) | Maintenance planning support system, method and program | |
Moreno-Gomez et al. | Sensors used in structural health monitoring | |
JP6205091B2 (en) | Protective fence support soundness evaluation method and soundness evaluation device | |
US6874370B1 (en) | Finite element analysis fatigue gage | |
JP6908411B2 (en) | Bending test equipment and method for metal pipe columns | |
CN103620338B (en) | Surface measurement system and method | |
JP2010223957A (en) | Fatigue limit identification system, fatigue breakdown area identifying method, and fatigue limit identifying method | |
Dong et al. | Bridges structural health monitoring and deterioration detection-synthesis of knowledge and technology | |
KR102218594B1 (en) | Device and Method for measuring material properties and stress state by digital image correlation(DIC) near micro-indentation mark | |
Jo et al. | Multi-metric model-based structural health monitoring | |
JP6794025B2 (en) | Crack diagnostic device and crack diagnostic method | |
CN114627121B (en) | Structural member stress detection method, device, equipment and medium | |
Rodriguez et al. | Shear crack pattern identification in concrete elements via distributed optical fibre grid | |
JP3312298B2 (en) | How to measure stress intensity factor | |
KR101954824B1 (en) | Apparatus for ultimate strength test of scaffold joint bracket and method thereof | |
JP2010071748A (en) | Method for detecting damage of concrete pole | |
Ozbek | Smart Maintenance and Health Monitoring of Buildings and Infrastructure Using High-Resolution Laser Scanners | |
JP3766602B2 (en) | Fatigue diagnostic method and diagnostic system for cantilever or portal structure and amplitude measuring instrument used for the diagnosis | |
Gamache et al. | Non-intrusive digital optical means to develop bridge performance information | |
JP2017110988A (en) | Sign pole soundness evaluation system | |
JP2017187327A (en) | Crack diagnostic method and device | |
JP2006053095A (en) | Method of measuring opening variation amount of surface crack in structure, method of measuring surface crack depth, and database used therefor | |
Chase | The role of sensing and measurement in achieving FHWA’s strategic vision for highway infrastructure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080624 |
|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20090407 |