JP2007203319A - Resistance spot welding method - Google Patents
Resistance spot welding method Download PDFInfo
- Publication number
- JP2007203319A JP2007203319A JP2006023141A JP2006023141A JP2007203319A JP 2007203319 A JP2007203319 A JP 2007203319A JP 2006023141 A JP2006023141 A JP 2006023141A JP 2006023141 A JP2006023141 A JP 2006023141A JP 2007203319 A JP2007203319 A JP 2007203319A
- Authority
- JP
- Japan
- Prior art keywords
- plate
- welding
- nugget
- thick
- thin plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003466 welding Methods 0.000 title claims abstract description 76
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000003825 pressing Methods 0.000 claims description 18
- 229910000831 Steel Inorganic materials 0.000 abstract description 37
- 239000010959 steel Substances 0.000 abstract description 37
- 230000000052 comparative effect Effects 0.000 description 12
- 230000002787 reinforcement Effects 0.000 description 3
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
Images
Landscapes
- Resistance Welding (AREA)
Abstract
Description
本発明は、重ね合わせられた鋼板を抵抗スポット溶接する方法に関するものである。 The present invention relates to a method of resistance spot welding of stacked steel plates.
一般に、重ね合わせられた鋼板同士の接合には、重ね抵抗溶接法の一種である抵抗スポット溶接法が用いられている。例えば、自動車の製造にあたっては1台あたり数千点ものスポット溶接がなされている。この溶接法は、2枚以上の鋼板を重ね合わせ、その表面を直接、上下の電極で挟み加圧力を加えながら、上下電極間に大電流の溶接電流を短時間通電して接合する方法である。大電流の溶接電流を流すことで発生する抵抗発熱を利用して、点状の溶接部が得られる。この点状の溶接部は、ナゲットと呼ばれ、両鋼板に電流を流した際に両鋼板の接触箇所で両鋼板が溶融し、凝固した部分であり、これにより両鋼板が点状に接合される。 In general, a resistance spot welding method, which is a kind of a lap resistance welding method, is used for joining stacked steel plates. For example, in the manufacture of automobiles, several thousand spots are welded per vehicle. This welding method is a method in which two or more steel plates are overlapped, and the surface is directly sandwiched between the upper and lower electrodes and a large welding current is applied between the upper and lower electrodes for a short time to join them. . A spot-like weld is obtained by utilizing resistance heat generated by passing a large welding current. This point-like weld is called a nugget and is a part where both steel plates melt and solidify at the contact points of both steel plates when current is passed through both steel plates. The
抵抗スポット溶接部の接合強度は、ナゲット径により左右されるため、自動車部品等の高い接合強度を必要とする場合にはとくに、所定の径以上のナゲット径を確保することが重要となってくる。一般に、加圧力、通電時間を一定とした場合には、ナゲット径は、溶接電流の増加にしたがって徐々に増加するが、ある値以上になると鋼板間に溶融金属が飛散する散りという現象が生じる。散りの発生は、危険である上に、溶接部周辺に散りが付着し外観を悪化させ、ナゲット径や継手引張強度にばらつきを生じさせ、継手部の品質が不安定になる。 Since the joint strength of resistance spot welds depends on the nugget diameter, it is important to ensure a nugget diameter of a predetermined diameter or greater, especially when high joint strength is required for automobile parts and the like. . In general, when the applied pressure and energization time are constant, the nugget diameter gradually increases as the welding current increases. However, when the value exceeds a certain value, a phenomenon occurs in which the molten metal scatters between the steel plates. The occurrence of scatter is dangerous and scatters around the weld and deteriorates the appearance, causing variations in the nugget diameter and joint tensile strength, resulting in unstable joint quality.
また、自動車の部品構造をみると、例えばセンターピラーでは、アウターとインナーとの間にリインフォースメントを挟み込んだ構造が採用されている。この構造では、単純な二枚重ねの鋼板をスポット溶接する場合と異なり、3枚以上の鋼板を重ね合わせてスポット溶接することが要求される。 Looking at the parts structure of an automobile, for example, a center pillar employs a structure in which a reinforcement is sandwiched between an outer and an inner. In this structure, unlike the case of spot welding of a simple two-ply steel plate, it is required to superimpose three or more steel plates for spot welding.
さらに、最近では、車体の衝突安全性の更なる向上要求にともない、リインフォースメントなどの高強度化、厚肉化が進み、外側に板厚の薄いアウター(薄板)を配置し、内側に板厚の厚いインナー、リインフォースメント(厚板)を組み合わせた板組みをスポット溶接することが必要となる場合が多い。なお、ここでは、薄板とは板組みされた鋼板のうち、板厚が相対的に小さい鋼板を薄板と記載し、板厚の相対的に大きい鋼板を厚板と記載することとし、以下も同様の記載とする。 Furthermore, recently, with the demand for further improvement in collision safety of the car body, reinforcement and other strength has been increased, and a thin outer (thin plate) has been placed on the outside, and the thickness has been increased on the inside. Often, it is necessary to spot weld a plate assembly that combines thick inners and reinforcements (thick plates). Here, among thin steel plates, a thin steel plate is referred to as a thin plate, a relatively large steel plate is referred to as a thick plate, and so on. It is said that.
このような板厚比(=板組みの全体厚/一番薄い板の板厚)の大きな板組みにおいて、従来のような、加圧力、溶接電流を一定の値としたままにするスポット溶接を行った場合には一番外側(電極チップと接触する側)の薄板と厚板の間に必要なサイズのナゲットが形成されにくいことが知られている。とくに板厚比が5を超えるような板組みでは、この傾向が強い。 In such a plate assembly with a large plate thickness ratio (= total thickness of the plate assembly / thickness of the thinnest plate), spot welding that keeps the applied pressure and welding current at a constant value as in the past. It is known that a nugget of a necessary size is difficult to be formed between the thin plate and the thick plate on the outermost side (the side in contact with the electrode tip). This tendency is particularly strong when the plate thickness ratio exceeds 5.
これは、電極チップによる冷却によって一番外側の薄板と厚板の間では温度が上がりにくいことが原因である。ナゲットは、電極間の中央付近から鋼板の固有抵抗により体積抵抗発熱にて形成されるが、ナゲットが薄板にまで成長するまでに、電極間中央部に近い部分に位置する厚板と厚板間でのナゲットの成長が大きく、電極による加圧では抑えきれずに散りが発生するため、散り発生なく必要なサイズのナゲットを薄板・厚板間に得ることが困難となる。 This is because the temperature hardly rises between the outermost thin plate and the thick plate due to cooling by the electrode tip. The nugget is formed by volume resistance heat generation due to the specific resistance of the steel plate from the center between the electrodes, but before the nugget grows to a thin plate, between the thick plate and the thick plate located near the center between the electrodes The nugget grows at a large distance, and it is difficult to obtain a nugget of a necessary size between the thin plate and the thick plate without the occurrence of scattering, because the nugget grows greatly and cannot be suppressed by pressing with an electrode.
また、一番外側に配置される薄板がアウターの場合には、強度よりも成形性が重要となるため、使用される鋼板は軟鋼となることが多い。一方、厚板は強度補強部材であり高張力鋼板が使用される場合が多い。このような板組みでは、発熱する位置は、固有抵抗の高い高張力鋼板側に偏るため、厚板−薄板(軟鋼)間にはさらにナゲットが形成されにくくなる。また、使用される鋼板がめっき鋼板となると、低温で溶融しためっき層が鋼板間の通電経路を拡大するため電流密度が減少し、薄板側でのナゲットの形成がさらに困難となる。 Further, when the outermost thin plate is the outer, formability is more important than strength, so the steel plate used is often mild steel. On the other hand, the thick plate is a strength reinforcing member, and a high-tensile steel plate is often used. In such a plate assembly, the position where heat is generated is biased toward the high-tensile steel plate having a high specific resistance, so that nuggets are more difficult to be formed between the thick plate and the thin plate (mild steel). Moreover, when the steel plate used becomes a plated steel plate, the plating layer melted at a low temperature expands the current-carrying path between the steel plates, thereby reducing the current density and making it more difficult to form a nugget on the thin plate side.
このような問題に対し、例えば、特許文献1では、重ねあわされた2枚の厚板にさらに薄板が重ねあわされた板厚比の大きな板組みにおいて、薄板の溶接すべき位置に部分的に一般部より一段高い座面を形成するとともに、薄板に対抗する電極は、先端を球面に形成し、溶接初期は低加圧力で、薄板の座面を押しつぶすようにして、薄板とこれと隣り合う厚板とを溶接し、その後、高加圧力で2枚の厚板同士を溶接することにより、薄板−厚板間にも必要なナゲットを得る技術が提案されている。
With respect to such a problem, for example, in
また、特許文献2では、剛性の高い2枚の厚板の上に剛性の低い薄板を重ね合わせたワークを、一対の電極チップにより挟んでスポット溶接する方法において、剛性が最も小さい薄板に当接する電極チップの先端径を、厚板と当接する電極チップの先端径よりも小さくすることによって、薄板と電極チップとの接触面積が、厚板と電極の接触面積よりも小さくなるようにすることにより,薄板−厚板間にもナゲットを得る技術が提案されている。
Further, in
また、特許文献3では、板厚比の大きな被溶接体をスポット溶接する方法において、被溶接体に第1の加圧力を負荷して溶接電流を流した後、一旦通電を停止し、被溶接体を挟んだまま、上記第1の加圧力よりも大きな第2の加圧力を負荷して再び溶接電流を流すことにより、そして望ましくは、上記第1の工程における溶接電流の電流値を、第1段階〜第3段階の3段階に変化させるとともに、第2段階の電流値を第1段階および第3段階の電流値よりも小さくすることにより、板厚比の大きい被溶接体の接合強度を向上させるというスポット溶接方法が提案されている。
しかしながら、特許文献1に記載の抵抗スポット溶接方法では、この場合ナゲットは形成されるが、薄板の溶接する部分に予め一般部より一段高い座面をプレスなどで形成する工程が必要となるという問題がある。
However, in the resistance spot welding method described in
また、特許文献2に記載の抵抗スポット溶接方法では、剛性が最も小さい薄板に当接する電極チップの先端径を、厚板と当接する電極チップの先端径よりも小さくすることによって、薄板と電極チップとの接触面積が、厚板と電極の接触面積よりも小さくなるようにすることにより、薄板−厚板間にもナゲットを得ているが、薄板と電極チップとの接触面積が小さいことは電極により加圧される範囲が狭いことになり、厚板−厚板間に大きなナゲットを形成しようとすると散りが発生するという問題がある。
Moreover, in the resistance spot welding method described in
また、特許文献3に記載の抵抗スポット溶接方法では、加圧力や電流を多段に変更する必要があり、これを可能とするためには制御装置が複雑で高価なものが必要となると考えられる。また、制御する項目が多いために適正な溶接条件の決定が困難になると考えられ、管理も困難になる。 Further, in the resistance spot welding method described in Patent Document 3, it is necessary to change the pressurizing force and current in multiple stages, and in order to make this possible, it is considered that a complicated and expensive control device is required. In addition, since there are many items to be controlled, it is considered difficult to determine appropriate welding conditions, and management becomes difficult.
本発明は、上記のような事情に鑑みてなされたものであり、重ね合わせた2枚以上の厚板の少なくとも一方に薄板を重ね合わせた板厚比の大きな板組みを抵抗スポット溶接する場合に、適正電流範囲(散りを発生させることなく必要な径を有するナゲットをすべての鋼板間に形成できる電流の範囲)が広い抵抗スポット溶接を簡易に行うことが可能な抵抗スポット溶接方法を提供することを目的とするものである。 The present invention has been made in view of the circumstances as described above, and in the case of resistance spot welding a plate assembly having a large plate thickness ratio in which a thin plate is overlapped on at least one of two or more stacked thick plates. To provide a resistance spot welding method capable of easily performing resistance spot welding with a wide appropriate current range (a current range in which a nugget having a necessary diameter can be formed between all steel plates without causing scattering). It is intended.
本発明者らは、上記課題を達成するため、抵抗スポット溶接におけるナゲット形成に及ぼす各種要因について鋭意検討した。重ね合わせた2枚以上の厚板の一方に薄板を重ね合わせた板厚比の大きな場合のスポット溶接において、薄板とそれと隣り合う厚板との間および厚板と厚板の間ともに必要なサイズのナゲットを形成するにあたり問題となるのは、薄板−厚板間にナゲットを形成することであり、そのためには溶接初期の加圧力は小さくし、溶接中に加圧力を増加させることが有効であることを知見した。そして、その手段として、溶接中の電極チップの位置を固定することが有効であることを見出した。 In order to achieve the above-mentioned problems, the present inventors diligently studied various factors affecting nugget formation in resistance spot welding. A nugget of the required size between the thin plate and the adjacent thick plate and between the thick plate and the thick plate in spot welding in the case of a large plate thickness ratio where the thin plate is overlapped with one of the two or more stacked thick plates The problem of forming a nugget is that a nugget is formed between a thin plate and a thick plate. For this purpose, it is effective to reduce the applied pressure at the initial stage of welding and increase the applied pressure during welding. I found out. And it discovered that it was effective as the means to fix the position of the electrode tip under welding.
すなわち、溶接初期から高加圧力で加圧した場合、薄板−厚板間、厚板−厚板間の通電面積が広くなり、電流密度が低くなるため、発熱し難く、さらに板厚比が大きな板組みの場合、薄板−厚板間は電極に近いために冷却され、より発熱し難い状態となる。このため、厚板−厚板間には必要なサイズのナゲットが形成されても、薄板−厚板間にはナゲットが形成されない。薄板−厚板間にナゲットが形成されるまで電流をあげると、厚板−厚板間で散りが発生する。したがって、板厚比が大きな場合は散り発生なく、薄板−厚板間、厚板−厚板間両方に必要なナゲットを散り発生なく形成できる適正電流範囲は狭くなる。 That is, when high pressure is applied from the beginning of welding, the current-carrying area between the thin plate and the thick plate and between the thick plate and the thick plate is widened, and the current density is low, so it is difficult to generate heat, and the plate thickness ratio is large. In the case of a plate assembly, the space between the thin plate and the thick plate is close to the electrode, so that it is cooled and becomes less likely to generate heat. For this reason, even if a nugget of a necessary size is formed between the thick plate and the thick plate, no nugget is formed between the thin plate and the thick plate. When the current is increased until the nugget is formed between the thin plate and the thick plate, scattering occurs between the thick plate and the thick plate. Therefore, when the plate thickness ratio is large, no scattering occurs, and the appropriate current range in which the nuggets necessary between the thin plate and the thick plate and between the thick plate and the thick plate can be formed without scattering is narrowed.
一方、溶接初期に低い加圧力で溶接した場合は、薄板−厚板間、厚板−厚板間の通電面積が小さくなり、低い電流でも電流密度が高く発熱しやすくなり、薄板−厚板間も高温に加熱されるが、低加圧力のままでは加圧範囲が狭くなるため、ナゲットが小さい状態で散りが発生する。よって、散り発生なく必要なサイズのナゲットが得られる適正電流範囲が狭くなる。 On the other hand, when welding with a low pressure at the initial stage of welding, the current-carrying area between the thin plate and thick plate and between the thick plate and thick plate becomes small, the current density is high and heat is easily generated even at a low current, and between the thin plate and thick plate. Although it is heated to a high temperature, since the pressurizing range becomes narrow if the pressure is kept low, scattering occurs with a small nugget. Therefore, the appropriate current range in which a nugget of a necessary size can be obtained without occurrence of scattering is narrowed.
そこで、低加圧力で溶接を開始し、溶接中に加圧力を増加させることで、上記の問題を解決し、板厚比が大きい板組みでも広い適正電流範囲を持つ溶接が可能となる。溶接初期に低加圧力で通電することにより、薄板−厚板間、厚板−厚板間の両方が高温に加熱される。その後加圧力を増加させることにより通電面積が拡大し、薄板−厚板間での電流密度は減少するが、高温に加熱されていたことで鋼板の固有抵抗が大きく増加しているため、発熱しやすく、薄板−厚板間にまでナゲットが成長しやすくなっている。加えて、加圧力が大きいことにより、電極による加圧面積も広がり、ナゲットが大きく成長しても散りが発生しにくい。 Therefore, by starting welding with a low applied pressure and increasing the applied pressure during welding, the above problems can be solved, and welding with a wide appropriate current range can be achieved even with a plate assembly having a large thickness ratio. By energizing with low pressure at the initial stage of welding, both the thin plate and the thick plate and between the thick plate and the thick plate are heated to a high temperature. After that, the energized area is increased by increasing the pressing force, and the current density between the thin plate and the thick plate decreases.However, because the specific resistance of the steel plate is greatly increased by being heated to a high temperature, it generates heat. The nugget is easy to grow between the thin plate and the thick plate. In addition, since the pressing force is large, the pressurization area by the electrode is widened, and even if the nugget grows greatly, it is difficult for scattering to occur.
以上により、板厚比が大きな板組みにおいても、薄板−厚板間、厚板−厚板間のそれぞれに必要なサイズのナゲットを散りの発生がなく得ることができる適正電流範囲の広い抵抗スポット溶接が可能となるが、更に検討を重ねて、溶接中の加圧力の増加を複雑な制御システムを用いずとも簡易に上記の考え方を実施することが可能な方法を見出した。具体的には、二つの電極で試験片を挟み、通電を開始する時点での可動電極の位置を固定し、電極間距離の変化を抑制する手法を用いる。これは、通電を開始し鋼板が加熱されるときには熱膨張が生じるが、この熱膨張を電極間距離を固定することにより抑制することで、板組みにかかる真の加圧力が増加することを利用するものである。 As described above, even in a plate assembly with a large plate thickness ratio, a resistance spot with a wide appropriate current range that can obtain a nugget of a necessary size between the thin plate and the thick plate and between the thick plate and the thick plate without occurrence of scattering. Welding is possible, but further investigations have been made, and a method has been found that allows the above-mentioned idea to be easily implemented without using a complicated control system for increasing the welding pressure during welding. Specifically, a method is used in which a test piece is sandwiched between two electrodes, the position of the movable electrode is fixed when energization is started, and the change in the interelectrode distance is suppressed. This is because the thermal expansion occurs when energization is started and the steel sheet is heated, but the fact that this thermal expansion is suppressed by fixing the distance between the electrodes increases the true pressure applied to the plate assembly. To do.
本発明は、上記の考え方に基づいて想到されたものであり、以下のような特徴を有している。 The present invention has been conceived based on the above concept and has the following characteristics.
[1]重ね合わせた2枚以上の厚板の少なくとも一方に薄板を重ね合わせた板組みを一対の電極によって挟み加圧力を加えながら抵抗スポット溶接をするにあたり、加圧力が設定した値Pまで達した時点で前記一対の電極の位置を固定し、その電極位置の固定によって通電開始後の板組みの熱膨張を抑制することで加圧力を増加させ、その始めの設定加圧力Pおよび加圧力の最大値Pmが、
Pm≧1.5×P
P≦4kN
となるようにすることを特徴とする抵抗スポット溶接方法。
[1] When resistance spot welding is performed while applying a pressing force by sandwiching a plate assembly in which a thin plate is overlapped with at least one of two or more stacked thick plates with a pair of electrodes, the pressing force reaches a set value P At that time, the position of the pair of electrodes is fixed, and the pressing force is increased by suppressing the thermal expansion of the plate assembly after the start of energization by fixing the electrode position. The maximum value Pm is
Pm ≧ 1.5 × P
P ≦ 4kN
A resistance spot welding method characterized by:
本発明によると、重ね合わせた2枚以上の厚板の少なくとも一方に薄板を重ね合わせた板厚比の大きな板組みを抵抗スポット溶接する場合でも、適正電流範囲(散りを発生させることなく必要な径を有するナゲットをすべての鋼板間に形成できる電流の範囲)が広い抵抗スポット溶接を簡易に行うことが可能となる。 According to the present invention, even when resistance plate welding is performed on a plate assembly having a large thickness ratio in which a thin plate is superimposed on at least one of two or more thick plates that are overlapped, an appropriate current range (necessary without causing scattering) It is possible to easily perform resistance spot welding with a wide current range) in which a nugget having a diameter can be formed between all the steel plates.
本発明の実施の形態を以下に述べる。 Embodiments of the present invention will be described below.
本発明においては、例えば、図1、図2に示すように、重ね合わせた2枚の厚板12、13の上面に薄板11を重ね合わせた板厚比の大きな板組みを、一対の電極(電極チップ)16、17で挟んで加圧力を加えながら抵抗スポット溶接する場合に、加圧力が設定した値Pまで達した時点で電極チップ16、17の位置を固定するものであり、その電極チップ16、17の位置の固定によって通電開始後の板組みの熱膨張を抑制することで加圧力を増加させ、その加圧力の最大値Pmが、Pm≧1.5×Pとなるようにしている。
In the present invention, for example, as shown in FIGS. 1 and 2, a plate assembly having a large plate thickness ratio in which the
このようにして、低加圧力で溶接を開始し、溶接中に加圧力を増加させることで、板厚比が大きい板組みでも適正電流範囲(散りを発生させることなく、薄板11−厚板12間、厚板12−厚板13間のそれぞれに必要なナゲット径14、15を確保できる電流の範囲)の広い溶接が可能になるとともに、複雑な制御システムを用いる必要がなく簡易に実施することができる。
In this way, welding is started at a low pressure, and the pressure is increased during welding, so that even in a plate assembly having a large thickness ratio, an appropriate current range (thin plate 11-
なお、この電極の位置を固定する手法としては、可動側の電極(例えば、電極16)を固定する位置に機械的なストッパーを設けて行えばよいが、電極加圧機構がサーボモータ加圧式であれば、サーボモータにおける電極16先端の位置情報をフィードバックする手法も考えられる。電極位置の固定も電極16が全く動かないようにする必要はなく、電極間距離の増加を抑制できればよい。また、可動側の電極16の位置を固定しても、電極間距離はガンのアーム部等の剛性により変化するため、ガンのアーム部等の剛性により加圧力の増加量も変化する。高い剛性をもつガンであることが望ましいが、実際に溶接を行い、始めの設定加圧力Pに対して溶接中の加圧力増加による加圧力の最大値Pmが、Pm≧1.5×Pを満足し、かつP≦4kNを満足していればよい。P>4kNにおいては初期の加圧力が大きいために薄板‐厚板間の通電面積が広くなり、かつ、電極との接触径が広がることにより電極による冷却の影響が大きくなるために、溶接電流を増加させても、薄板−厚板間を十分に加熱することが困難になる。また、Pm<1.5×Pでは加圧力増加による散り発生の抑制効果が小さい。
As a method for fixing the position of the electrode, a mechanical stopper may be provided at a position for fixing the movable electrode (for example, the electrode 16). However, the electrode pressing mechanism is a servo motor pressing type. If there is, a method of feeding back the position information of the tip of the
さらに、薄板11側の電極チップ16の先端を曲面とし、厚板13側の電極チップ17の先端を厚板12−厚板13間に必要なナゲット径程度の径を持つ平面あるいは薄板11側の電極チップ16よりも大きな曲率半径をもつ曲面とすることがより好ましい。薄板11側の電極チップ16の先端を曲面とし、厚板13側の電極チップ17の先端をより平坦にすることにより、低加圧力では薄板11の変形が小さく抑制でき、通電面積が狭くなることから、薄板11−厚板12間の電流密度が高くなり、薄板11−厚板12間までナゲット15が成長しやすくなる。また、薄板11側の電極16の先端を曲面とすることにより、溶接途中で加圧力を増大させることで、薄板11側の電極チップ16が加圧力を加えられる範囲が増大し、散り発生が抑制され、厚板12−厚板13間に必要な径を持つナゲット15を形成することが可能になる。
Furthermore, the tip of the
ちなみに、本発明において用いる溶接装置は、通電中の電極間距離の変動を抑制する加圧機構を有していることを必要とするが、一対の上下の電極チップで溶接する部分を挟み、加圧、通電するものであれば、加圧機構の種類(エアシリンダによるもの、サーボモータによるもの)や形状(定置式、ロボットガン)、電源の種類(単相交流、交流インバータ、直流インバータ)など特に限定されるものではない。 Incidentally, the welding apparatus used in the present invention needs to have a pressurizing mechanism that suppresses fluctuations in the distance between the electrodes during energization, but sandwiches the portion to be welded by a pair of upper and lower electrode tips. If pressure or current is applied, type of pressurization mechanism (by air cylinder, servomotor), shape (stationary, robot gun), power supply type (single-phase AC, AC inverter, DC inverter), etc. It is not particularly limited.
また、溶接される鋼板は、強度レベル(軟鋼、強張力鋼板)や表面処理の有無(表面処理なし、めっき鋼板)にかかわらず適用可能であり、その板組みも、単純な3枚重ねはもちろん、板厚比が5を超えるような場合においても適用可能である。 In addition, the steel plates to be welded can be applied regardless of the strength level (soft steel, high-strength steel plate) or with or without surface treatment (no surface treatment, plated steel plate). The present invention can be applied even when the plate thickness ratio exceeds 5.
本発明の実施例1として、本発明の効果を確認するために、定置式のサーボモータ加圧式スポット溶接装置を用いて、本発明を実施した(本発明例)。また、比較のために、定置式のエア加圧式スポット溶接装置を用いて、電極間距離の制御を行わない溶接を行った(比較例)。対象とした板組みは、図3(a)および表1に示す板組みA(薄板11+厚板12+厚板13)である。そして、本発明例と比較例における適正電流範囲の違いを調査した。ここで、適正電流範囲は、溶接時に散りが発生せず、かつ、ナゲットの断面を観察し、隣り合う2枚の鋼板のうち薄い方の鋼板の板厚をtとして、ナゲット径が4√t以上であることを満足するナゲットが得られる溶接電流範囲とした。板厚比は7.6となる。通電時間は20cycles(50Hz)とした。電極はDR型(先端径10mm、R40)を用いた。本発明例では、加圧力は溶接開始時における設定加圧力Pを3.4kNとし、溶接中の加圧力増加による最大加圧力Pmを6.3kNとした。比較例では、本発明例の最大加圧力Pm(6.3kN)を設定加圧力とした。
As Example 1 of the present invention, in order to confirm the effect of the present invention, the present invention was carried out using a stationary servo motor pressurizing spot welding apparatus (Example of the present invention). For comparison, welding was performed using a stationary air pressurization type spot welding apparatus without controlling the distance between the electrodes (Comparative Example). The target plate assembly is the plate assembly A (
図4に本発明例における電極変位の時間的変化を、図5に本発明例における溶接電流7kAでの溶接中の加圧力の時間的変化を、図6に本発明例における溶接電流とナゲット径の関係をそれぞれ示す。一方、図7に比較例における電極変位の時間的変化を、図8に比較例における溶接電流8kAでの溶接中の加圧力の時間的変化を、図9に比較例における溶接電流とナゲット径の関係をそれぞれ示す。 FIG. 4 shows the change over time of the electrode displacement in the example of the present invention, FIG. 5 shows the change over time in welding force at a welding current of 7 kA in the example of the present invention, and FIG. 6 shows the welding current and nugget diameter in the example of the present invention. Each relationship is shown. On the other hand, FIG. 7 shows the temporal change of the electrode displacement in the comparative example, FIG. 8 shows the temporal change of the welding pressure at the welding current 8 kA in the comparative example, and FIG. 9 shows the welding current and the nugget diameter in the comparative example. Each relationship is shown.
比較例では、薄板11と厚板12の間にナゲットを形成するために高い電流を必要とし、4√t以上のサイズのナゲットを散り発生せずに得ることはできない。一方、本発明例では薄板11と厚板12の間にも低い電流でナゲットが形成され、1kA以上の広い適正電流範囲を持つことがわかる。
In the comparative example, a high current is required to form a nugget between the
さらに、本発明の実施例2として、対象とする板組みを拡大して本発明例と比較例を実施した。その板組みは、図3(a)〜(d)および表1に示す板組みである。すなわち、板組みA、B、Cは(薄板11+厚板12+厚板13)の3枚重ねであり、それぞれ厚板12、13が異なっている。また、板組みDは、(薄板11+厚板12+厚板13+薄板14)の4枚重ねである。なお、それぞれの場合における、上下の電極チップの形状、通電時間、溶接開始時の加圧力P、最大加圧力Pmは表2に示すものであった。
Furthermore, as Example 2 of the present invention, the present invention example and a comparative example were implemented by enlarging the target plate assembly. The plate assembly is the plate assembly shown in FIGS. 3A to 3D and Table 1. That is, the plate assemblies A, B, and C are three layers of (
そして、それぞれの場合における適正電流範囲ΔIを調査し評価した結果を表2に示す。ちなみに、その評価は、溶接時に散りが発生せず、かつ、ナゲットの断面を観察し、隣り合う2枚の鋼板のうち薄い方の鋼板の板厚をtとして、ナゲット径が4√t以上であることを満足するナゲットが得られる溶接電流範囲を適正電流範囲ΔIとし、この適正電流範囲ΔIが1kA以上存在するものを良好(○)とし、適正電流範囲ΔIが1kA未満のものを不良(×)とした。 Table 2 shows the results of investigation and evaluation of the appropriate current range ΔI in each case. By the way, the evaluation is that no scattering occurs at the time of welding, the cross section of the nugget is observed, and the thickness of the thinner steel plate of two adjacent steel plates is t, and the nugget diameter is 4√t or more. A welding current range in which a nugget satisfying certain conditions is obtained is defined as an appropriate current range ΔI, a case where the proper current range ΔI is 1 kA or more is good (◯), and a case where the proper current range ΔI is less than 1 kA is defective (× ).
その結果、本発明例では、適正電流範囲ΔIが1kA以上で、良好な溶接となっているが、比較例では、適正電流範囲ΔIが1kA未満となり、実用に適さない。これにより、本発明の有効性が確認できる。 As a result, in the example of the present invention, the appropriate current range ΔI is 1 kA or more and good welding is achieved, but in the comparative example, the appropriate current range ΔI is less than 1 kA, which is not suitable for practical use. Thereby, the effectiveness of the present invention can be confirmed.
なお、ここでは適正電流範囲ΔIを4√t以上のサイズのナゲットが散り発生がなく得られる範囲と定義したが、これに限るものではなく、基準となるナゲット径は使用者の基準に合わせて3√tでも5√tでもよい。また、本発明は板厚比の大きな板組みの抵抗スポット溶接において薄板−厚板間にもナゲットを容易に形成する手法を提案するものであり、散りを発生させながら溶接しても本発明を外れるものではない。 Here, the proper current range ΔI is defined as a range in which nuggets having a size of 4√t or more can be obtained without being scattered, but the present invention is not limited to this, and the reference nugget diameter matches the user's standard. It may be 3√t or 5√t. In addition, the present invention proposes a method for easily forming a nugget between a thin plate and a thick plate in resistance spot welding of a plate assembly having a large plate thickness ratio. It does not come off.
11 一枚目の鋼板(薄板)
12 二枚目の鋼板(厚板)
13 三枚目の鋼板(厚板)
14 四枚目の鋼板(薄板)
15 ナゲット
16 ナゲット
17 上電極チップ
18 下電極チップ
11 First steel plate (thin plate)
12 Second steel plate (thick plate)
13 Third steel plate (thick plate)
14 Fourth steel plate (thin plate)
15
Claims (1)
Pm≧1.5×P
P≦4kN
となるようにすることを特徴とする抵抗スポット溶接方法。 When resistance spot welding is performed while applying a pressing force by sandwiching a plate assembly in which a thin plate is overlapped with at least one of two or more stacked thick plates between a pair of electrodes, when the pressing force reaches a set value P The position of the pair of electrodes is fixed, and the applied pressure is increased by suppressing the thermal expansion of the plate assembly after the start of energization by fixing the position of the electrodes, and the initial set pressure P and the maximum pressure Pm But,
Pm ≧ 1.5 × P
P ≦ 4kN
A resistance spot welding method characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006023141A JP5082249B2 (en) | 2006-01-31 | 2006-01-31 | Resistance spot welding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006023141A JP5082249B2 (en) | 2006-01-31 | 2006-01-31 | Resistance spot welding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007203319A true JP2007203319A (en) | 2007-08-16 |
JP5082249B2 JP5082249B2 (en) | 2012-11-28 |
Family
ID=38483237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006023141A Active JP5082249B2 (en) | 2006-01-31 | 2006-01-31 | Resistance spot welding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5082249B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107931811A (en) * | 2017-11-23 | 2018-04-20 | 西北工业大学 | Nugget formation in resistance spot welding method for predicting diameter |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112017003331A2 (en) * | 2014-08-29 | 2017-11-28 | Nippon Steel & Sumitomo Metal Corp | binding structure |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10128552A (en) * | 1996-10-24 | 1998-05-19 | Nissan Motor Co Ltd | Optimum position controlling method of spot welding electrode |
JPH11768A (en) * | 1997-06-09 | 1999-01-06 | Nissan Motor Co Ltd | Spot welding controller |
JP2003251468A (en) * | 2002-03-05 | 2003-09-09 | Honda Motor Co Ltd | Spot welding method |
JP2004358500A (en) * | 2003-06-04 | 2004-12-24 | Daihatsu Motor Co Ltd | Spot welding method and spot welding device |
-
2006
- 2006-01-31 JP JP2006023141A patent/JP5082249B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10128552A (en) * | 1996-10-24 | 1998-05-19 | Nissan Motor Co Ltd | Optimum position controlling method of spot welding electrode |
JPH11768A (en) * | 1997-06-09 | 1999-01-06 | Nissan Motor Co Ltd | Spot welding controller |
JP2003251468A (en) * | 2002-03-05 | 2003-09-09 | Honda Motor Co Ltd | Spot welding method |
JP2004358500A (en) * | 2003-06-04 | 2004-12-24 | Daihatsu Motor Co Ltd | Spot welding method and spot welding device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107931811A (en) * | 2017-11-23 | 2018-04-20 | 西北工业大学 | Nugget formation in resistance spot welding method for predicting diameter |
CN107931811B (en) * | 2017-11-23 | 2019-10-22 | 西北工业大学 | Nugget formation in resistance spot welding method for predicting diameter |
Also Published As
Publication number | Publication date |
---|---|
JP5082249B2 (en) | 2012-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6108030B2 (en) | Resistance spot welding method | |
JP5999293B1 (en) | Resistance spot welding method and resistance spot welding joint manufacturing method | |
JP5599553B2 (en) | Resistance spot welding method | |
JP5293227B2 (en) | Resistance spot welding method for high strength thin steel sheet | |
JP2007268604A (en) | Resistance spot welding method | |
JP4543823B2 (en) | Resistance spot welding method | |
JP5960655B2 (en) | Spot laser combined weld joint | |
JP3922263B2 (en) | Method of manufacturing resistance spot welded joint | |
JP5045238B2 (en) | Resistance spot welding method | |
JP5261984B2 (en) | Resistance spot welding method | |
EP3342524B1 (en) | Resistance spot welding method and method for manufacturing welded member | |
KR20200086730A (en) | Manufacturing method of resistance spot welding joint | |
KR20160075830A (en) | Resistance spot welding method | |
JP5609966B2 (en) | Resistance spot welding method | |
JP6094079B2 (en) | Resistance spot welding method | |
JP6160581B2 (en) | Resistance spot welding method | |
JP5082249B2 (en) | Resistance spot welding method | |
WO2018181232A1 (en) | Production method for resistance spot welded joint | |
JP5906618B2 (en) | Resistance spot welding method | |
JP6060579B2 (en) | Resistance spot welding method | |
CN115335176A (en) | Method for joining metallic materials | |
KR20240006445A (en) | Spot welding method and welding joint for aluminum or aluminum alloy material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080925 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110215 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110418 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111129 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120126 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120807 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120820 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5082249 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150914 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |