[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007297338A - N-acyl compound, and method and device for producing the same - Google Patents

N-acyl compound, and method and device for producing the same Download PDF

Info

Publication number
JP2007297338A
JP2007297338A JP2006127111A JP2006127111A JP2007297338A JP 2007297338 A JP2007297338 A JP 2007297338A JP 2006127111 A JP2006127111 A JP 2006127111A JP 2006127111 A JP2006127111 A JP 2006127111A JP 2007297338 A JP2007297338 A JP 2007297338A
Authority
JP
Japan
Prior art keywords
reaction
temperature
water
solvent
acyl compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006127111A
Other languages
Japanese (ja)
Inventor
Yutaka Ikushima
豊 生島
Masahiro Sato
正大 佐藤
Hajime Kawanami
肇 川波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006127111A priority Critical patent/JP2007297338A/en
Publication of JP2007297338A publication Critical patent/JP2007297338A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for synthesizing N-acyl compound from a carboxylic anhydride and a heterohydride, in the absence of a catalyst, in a short time, continuously, at a high yield/high selectivity, and to provide reaction products thereby. <P>SOLUTION: The production method of N-acyl compound comprises synthesizing N-acyl compound from a carboxylic anhydride and a heterohydride, at a high yield, with high selectivity, rapidly/continuously, by using, as the reaction solvent, a normal temperature fluid in the case of exothermic reaction, or a 100-400°C 0.1-40 MPa subcritical fluid or critical fluid in the case of endothermic reaction, introducing, in the absence of catalyst, a substrate and the reaction solvent to a normal-temperature high-pressure flow reactor in the case of exothermic reaction, or a high temperature high pressure flow reactor in the case of endothermic reaction, and changing several conditions of temperature and carboxylic anhydride amount. And reaction products thereby and devices therefor are provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、N−アシル化合物、その製造方法及び装置に関するものであり、更に詳しくは、常温水、高温高圧状態の水あるいは酢酸それらの混合溶媒を反応溶媒とし、無触媒かつ一段階でN−アシル化合物を製造する方法に関するものである。本発明は、発熱反応の場合には、常温水あるいは酢酸、それらの混合溶媒を反応溶媒とし、吸熱反応の場合には、温度100〜400℃、圧力0.1〜40MPaの水あるいは酢酸、それらの混合溶媒を反応溶媒として、触媒無添加で、無水カルボン酸とヘテロ水素化物からN−アシル化合物を一段階かつ短時間、連続的に合成する方法及びその反応組成物を提供するものである。ここで、ヘテロ水素化物におけるヘテロ原子としては、窒素が挙げられ、アミン又はアニリン誘導体に対応する。   The present invention relates to an N-acyl compound, a process for producing the same, and an apparatus thereof. More specifically, N-acyl compound is a non-catalytic and one-step process using water at normal temperature, high temperature and high pressure, or a mixed solvent thereof as a reaction solvent. The present invention relates to a method for producing an acyl compound. In the case of an exothermic reaction, normal temperature water or acetic acid and a mixed solvent thereof are used as a reaction solvent, and in the case of an endothermic reaction, water or acetic acid at a temperature of 100 to 400 ° C. and a pressure of 0.1 to 40 MPa, The present invention provides a method for continuously synthesizing an N-acyl compound from a carboxylic anhydride and a heterohydride in a single step and in a short time without adding a catalyst, using the mixed solvent as a reaction solvent, and a reaction composition thereof. Here, the hetero atom in the hetero hydride includes nitrogen and corresponds to an amine or aniline derivative.

N−アシル化合物は、原料、基質の機能性を改質向上し、更に、付加価値を付与するため、香料、医薬品、食品分野等において有用である。通常、N−アシル化合物を合成する場合、従来法では、非プロトン性有機溶媒に加えて、酸・塩基触媒が必要であり、食品、医薬品に利用される場合、残存する有機溶媒、触媒の除去は、大きな労力を必要とし、環境に影響を与えるのみならず、生体に有害である等の問題点を有していた。本発明は、無水カルボン酸とアミン又はアニリン誘導体のヘテロ水素化物から、無触媒で、水を用いるプロセスのみでN−アシル化合物を合成する方法とその反応組成物を提供するものであり、香料、医薬品や食品のみならず、化成品合成にも応用可能であり、N−アシル化合物を効率良く、短時間で、連続的に生産し、提供することを可能にするものである。   The N-acyl compound is useful in the field of fragrances, pharmaceuticals, foods and the like because it improves and improves the functionality of raw materials and substrates, and further adds added value. Normally, when synthesizing N-acyl compounds, the conventional method requires an acid / base catalyst in addition to the aprotic organic solvent. When used in foods and pharmaceuticals, the remaining organic solvent and catalyst are removed. Requires a lot of labor and has problems such as being harmful to the living body as well as affecting the environment. The present invention provides a method of synthesizing an N-acyl compound from a heterohydride of a carboxylic anhydride and an amine or aniline derivative without using a catalyst and using only water, and a reaction composition thereof. The present invention can be applied not only to pharmaceuticals and foods but also to chemical synthesis, and it is possible to produce and provide N-acyl compounds efficiently and in a short time.

従来、無水カルボン酸とヘテロ水素化物、アミン又はアニリン誘導体から、N−アシル化合物を合成する方法が種々報告されている(例えば、非特許文献1参照)。N―アシル化の場合、アルコールのO−アシル化に適用可能な方法であれば、N−アシル化に適用可能とされることが多いため、O−アシル化と比べて、文献は少ない。先行技術文献によれば、無溶媒あるいは非プロトン性有機溶媒中、触媒として、強酸である硫酸、TsOH(非特許文献2)、金属塩化物であるZnCl(非特許文献3)、CoCl(非特許文献4)、MeSiCl(非特許文献5)、塩基であるBuP(非特許文献6)、NaOAc(非特許文献7)、ピリジン(非特許文献8)等が使用されてきた。また、安定なアシル中間体形成を経由することで、アシル基を活性化するDMAPの発見は、革新的な技術とされた(特許文献9)。 Conventionally, various methods for synthesizing N-acyl compounds from carboxylic anhydrides and heterohydrides, amines or aniline derivatives have been reported (for example, see Non-Patent Document 1). In the case of N-acylation, a method applicable to O-acylation of alcohol is often applicable to N-acylation, and therefore there are few documents compared to O-acylation. According to prior art documents, sulfuric acid as a strong acid, TsOH (Non-patent Document 2), metal chlorides ZnCl 2 (Non-patent Document 3), CoCl 3 (Non-patent Document 3) as a catalyst in a solvent-free or aprotic organic solvent. Non-patent document 4), Me 3 SiCl (non-patent document 5), bases Bu 3 P (non-patent document 6), NaOAc (non-patent document 7), pyridine (non-patent document 8) and the like have been used. . In addition, the discovery of DMAP that activates an acyl group through the formation of a stable acyl intermediate was regarded as an innovative technique (Patent Document 9).

ところが、DMAPは、1等量以上のアミンを利用することから、ルイス酸である金属トリフラートが提案され、MeSiOTf(非特許文献10)、Sc(OTf)(特許文献1、2及び非特許文献11)、In(OTf)(非特許文献12)、Bi(OTf)(非特許文献13)、Sc(NTf)(非特許文献14)、HNTf(特許文献1及び2)が高収率でN−アシル化合物を与えることが示された。更に、V(OTf)が触媒活性を示さないが、そのオキソ化合物であるV(O)(OTf)が触媒活性があることが見出され、V=Oの触媒活性化が注目された(特許文献3、非特許文献15)。これらの触媒により、1、2級アミン又はアニリン誘導体から90%以上の収率で、N−アシル化合物が得られると報告されている(図1)。 However, since DMAP uses one or more equivalents of amine, metal triflate, which is a Lewis acid, has been proposed. Me 3 SiOTf (Non-patent Document 10), Sc (OTf) 3 (Patent Documents 1, 2 and Non-Patent Documents) Patent Document 11), In (OTf) 3 (Non-Patent Document 12), Bi (OTf) 3 (Non-Patent Document 13), Sc (NTf) 3 (Non-Patent Document 14), HNTf 2 (Patent Documents 1 and 2) Was shown to give the N-acyl compound in high yield. Furthermore, V (OTf) 3 did not show catalytic activity, but its oxo compound V (O) (OTf) 2 was found to have catalytic activity, and attention was paid to catalytic activation of V = O. (Patent Literature 3, Non-Patent Literature 15). These catalysts are reported to yield N-acyl compounds in yields of 90% or more from primary, secondary amines or aniline derivatives (FIG. 1).

ここで、上記の先行技術文献では、有機塩基、ルイス酸、固体酸のような触媒に加えて有機溶媒がN−アシル化にとって必要不可欠である。また、高温条件では不純物が生成し、選択率を低下させるという理由から、N−アシル化は常温で行うのが最適であり、高温条件は不適であるとされている(特許文献1、2)。一方、N−アシル化における溶媒としての水の可能性に関しては、通常、粗生成物にアシル化剤を添加し、無水条件でアシル化する方法が一般的であって、水はN−アシル化を阻害するとされ(特許文献4)、ある特許文献では、溶媒として水を列挙しているが、実際には使用されていない(特許文献1、2参照)。   Here, in the above prior art documents, an organic solvent is indispensable for N-acylation in addition to a catalyst such as an organic base, a Lewis acid, and a solid acid. In addition, N-acylation is optimally performed at room temperature because impurities are generated under high temperature conditions and the selectivity is lowered, and high temperature conditions are not suitable (Patent Documents 1 and 2). . On the other hand, regarding the possibility of water as a solvent in N-acylation, a method of adding an acylating agent to a crude product and acylating under anhydrous conditions is common, and water is N-acylated. (Patent Document 4). In a certain patent document, water is listed as a solvent, but it is not actually used (see Patent Documents 1 and 2).

ところが、アルドール反応に対する触媒活性と水中でのルイス酸の安定性との相関を、元素ごとに系統的に比較検討し、他の反応への適用可能性を示唆した例も存在する(非特許文献16)。更に、Bi(OTf)が触媒の場合には、脱水処理をしていない水を含有する、湿った有機溶媒が反応を促進し、収率向上が観察された文献も存在する(非特許文献13)。したがって、上記先行文献からは、N−アシル化に対する溶媒としての水の有効性は、これまで明確ではなく、実施もされていなかった。 However, the correlation between the catalytic activity for the aldol reaction and the stability of Lewis acid in water is systematically compared for each element, and there is an example that suggests the applicability to other reactions (Non-Patent Document). 16). Furthermore, when Bi (OTf) 3 is a catalyst, there is a document in which a wet organic solvent containing water that has not been dehydrated promotes the reaction and an improvement in yield is observed (non-patent document). 13). Therefore, from the above prior literature, the effectiveness of water as a solvent for N-acylation has not been clear or implemented so far.

他方、Bi(OTf)を触媒とする場合の無溶媒条件では、収率が低下し、有機溶媒が必要であると報告されている(非特許文献13)。ところが、N−メトキシアセトアミドを触媒として、アミン・アニリン誘導体から有機溶媒又は常温水中、66%以上の収率でN−アシル化する方法が報告され、非ルイス酸触媒を用いた場合には、水が溶媒として利用可能なことが初めて示された。しかし、アシル化剤であるN−メトキシアセトアミドは、無水カルボン酸と比較して、非常に高価であるという問題がある(非特許文献17)。 On the other hand, under the solvent-free conditions when Bi (OTf) 3 is used as a catalyst, it is reported that the yield decreases and an organic solvent is necessary (Non-patent Document 13). However, a method of N-acylation from an amine / aniline derivative in an organic solvent or room temperature water at a yield of 66% or more using N-methoxyacetamide as a catalyst has been reported. When a non-Lewis acid catalyst is used, Was first shown to be usable as a solvent. However, N-methoxyacetamide as an acylating agent has a problem that it is very expensive compared to carboxylic anhydride (Non-patent Document 17).

反応後における後処理は、通常の触媒・有機溶媒中N−アシル化では、反応混合物に中和剤を添加して中和後、抽出溶媒と水あるいは飽和食塩水を加え、分液し、溶媒層は、その後、乾燥、溶媒除去、蒸留あるいは精留のプロセスを得て、目的物を得るが、水層には、水の他に、触媒、有機溶媒、酢酸、基質、生成物、副生成物、無機物の複雑な混合物が含有される。ここで、水層からの触媒の分離が容易である場合には、回収再生され、再使用されるが、分離が困難である場合には、そのまま廃棄・処分される(図2)。無触媒・高温高圧水中でのアシル化の場合のように、水層に、触媒、有機溶媒が含有されず、水、酢酸、生成物のみが含有されるならば、生成物をデカンテーションにより分離後、水層に対して、共沸混合物を形成する物質を添加した共沸蒸留を行うことで、水と氷酢酸とに分離することが可能である(特許文献5)。このことは、水の再生を可能にし、通常法に比べて、環境低減型のプロセスであることを意味する(図3)。   The post-treatment after the reaction is performed by adding a neutralizing agent to the reaction mixture for neutralization in a normal catalyst / organic solvent after N-acylation, adding an extraction solvent and water or a saturated saline solution, and separating the solution. The layer is then subjected to a process of drying, solvent removal, distillation or rectification to obtain the desired product, while in the water layer, in addition to water, catalyst, organic solvent, acetic acid, substrate, product, by-product Complex mixtures of materials and minerals. Here, when the separation of the catalyst from the aqueous layer is easy, it is recovered and regenerated and reused, but when the separation is difficult, it is discarded and disposed as it is (FIG. 2). As in the case of acylation in non-catalyzed high-temperature and high-pressure water, if the water layer does not contain catalyst or organic solvent but contains only water, acetic acid and product, the product is separated by decantation. Then, it can be separated into water and glacial acetic acid by performing azeotropic distillation to which a substance that forms an azeotropic mixture is added to the aqueous layer (Patent Document 5). This means that the water can be regenerated and is a process of reducing the environment as compared with the normal method (FIG. 3).

特開平9−169690号公報JP 9-169690 A 特開平9−176081号公報Japanese Patent Laid-Open No. 9-176081 米国特許第6,541,659号明細書US Pat. No. 6,541,659 米国特許第6,005,122号明細書US Pat. No. 6,005,122 米国特許第5,980,696号明細書US Pat. No. 5,980,696 W.Green,P.G.Wuts,Protective Groups in Organic Synthesis,3rd ed.,Wiley,New York,1999,p150W. Green, P.M. G. Wuts, Protective Groups in Organic Synthesis, 3rd ed. , Wiley, New York, 1999, p150 A.C.Cope,E.C.Herrick,Org.Syn.Coll.,Vol.4,1963,304A. C. Cope, E .; C. Herrick, Org. Syn. Coll. , Vol. 4,1963,304 R.H.Baker,E.C.Herrick,Org.Syn. Coll.,Vol.3,1955,141R. H. Baker, E .; C. Herrick, Org. Syn. Coll. , Vol. 3,1955,141 S.Ahmad,J.Iqbal,Chem.Commun.,1987,114S. Ahmad, J. et al. Iqbal, Chem. Commun. , 1987, 114. N.C.Braus,R.P.Sharma,J.N.Baruah,Tetrahedron Lett.,1983,24,1189;J.Org. Chem.,1987,52,5034N. C. Braus, R.M. P. Sharma, J .; N. Baruah, Tetrahedron Lett. , 1983, 24, 1189; Org. Chem. , 1987, 52, 5034 E.Vedejs,N.S.Bannet,L.M.Conn, S.T.Diver,J.Org.Chem.,1993,58,7286E. Vedejs, N.M. S. Bannet, L.M. M.M. Conn, S.M. T. T. et al. Diver, J .; Org. Chem. 1993, 58, 7286 The Miner Laboratories,Org.Syn.Coll.Vol.1,1941,285The Miner Laboratories, Org. Syn. Coll. Vol. 1,1941,285 Joseph B.Lambert,Gen Tai Wang, Rodney B.Finzel,and Douglas H.Teramura, J.Am.Chem.Soc.,1987,109,7838Joseph B. Lambert, Gen Tai Wang, Rodney B .; Finzel, and Douglas H.M. Teramura, J.M. Am. Chem. Soc. , 1987, 109, 7838. G.Hofle,W.Steglich,H.Vorbruggen., Angrew.Chem.Int.Ed.,1978,17,569.b)A.Hassner,L.R.Krepski,V.Alexanian,Tetrahedron,1978,34,2069G. Hofle, W.M. Steglich, H.M. Vorbruggen. , Angrew. Chem. Int. Ed. 1978, 17, 569. b) A. Hassner, L .; R. Krepski, V.M. Alexian, Tetrahedron, 1978, 34, 2069 P.A.Procopiu,S.P.D.Baugh,S.S. Flack,G.G.A.Inglis,J.Org.,Chem.,1998,63, 2342P. A. Procopiu, S.M. P. D. Baugh, S.M. S. Flack, G.M. G. A. Inglis, J. et al. Org. , Chem. 1998, 63, 2342 a)K.Ishihara,M.Kubota,H.Kurihara,H.Yamamoto,J.Org.Chem.,1996,61,4560. b)K.Ishihara,M.Kubota,H.Kurihara,H.Yamamoto,J.Am.Chem.Soc.,1995,117,4413a) K.K. Ishihara, M .; Kubota, H .; Kurihara, H .; Yamamoto, J. et al. Org. Chem. , 1996, 61, 4560. b) K.K. Ishihara, M .; Kubota, H .; Kurihara, H .; Yamamoto, J. et al. Am. Chem. Soc. 1995, 117, 4413. K.K.Chauhan,C.G.Frost,I.Love, D.Waite,Synlett,1999,1743K. K. Chauhan, C.I. G. Frost, I.D. Love, D.D. Waite, Synlett, 1999, 1743 J.Otera,A.Orita,C.Tanahashi, A.Kakuta,Angrew.Chem.Int.Ed.,2000,39,2877J. et al. Otera, A .; Orita, C.I. Tanahashi, A.A. Kakuta, Angrew. Chem. Int. Ed. 2000, 39, 2877 K.Ishihara,M.Kubota,Synlett, 1996,265K. Ishihara, M .; Kubota, Synlett, 1996, 265 C−T.Chen,J−H.Kuo,C−H.Li,N.B. Barhate,S−W.Hon,T−W.Li,S−D.Chao,C−C.Liu, Y−C.Li,I−H.Chang,J−S.Lin,C−J.Liu and Y−C.Chou,Org.Lett.,2001,3,3729CT Chen, JH. Kuo, C-H. Li, N .; B. Barhate, SW. Hon, TW. Li, SD. Chao, CC. Liu, YC. Li, I-H. Chang, JS. Lin, CJ. Liu and YC. Chou, Org. Lett. , 2001, 3, 3729 S.Kobayashi,S.Nagayama,T.Busujima,J.Am.Chem.Soc.,1998,120,8287S. Kobayashi, S .; Nagayama, T .; Busimama, J .; Am. Chem. Soc. 1998, 120, 8287 Y.Kikugawa,K.Mitsui,T.Sakamoto,M.Kawase,and H.Tamiya,Tetrahedron Lett,1990,31,2,243Y. Kikugawa, K. et al. Mitsui, T .; Sakamoto, M .; Kawase, and H.K. Tamiya, Tetrahedron Lett, 1990, 31, 2, 243

このように、従来法では、N−アシル化の場合、触媒及び有機溶媒が必要であるため、製品の品質上、反応後の分離操作において、触媒、有機溶媒やカルボン酸の除去が必要であり、分離操作後の水層は、廃棄物となりやすく、廃液の問題を生じる。更に、環境に対する影響や生体への有害性への配慮から、また、ヒトが経口する食品・医薬品の安全性から、触媒・有機溶媒のより高度分離が要求される。高度分離に必要なコストは、合成操作と同程度であり、望ましくは触媒と有機溶媒を使用しない方が良い。以上のことから、当該技術分野においては、簡単、低コスト、環境低減型の合成プロセスで、分離操作が容易かつ高度分離が可能で、触媒や有機溶媒の残存しないN−アシル化合物の連続的合成を可能とする合成手法が強く要請されていた。   Thus, in the conventional method, in the case of N-acylation, a catalyst and an organic solvent are necessary. Therefore, in the separation operation after the reaction, removal of the catalyst, the organic solvent and the carboxylic acid is necessary in terms of product quality. The water layer after the separation operation tends to be waste, and causes a problem of waste liquid. Furthermore, in consideration of the influence on the environment and harmfulness to living organisms, and the safety of foods and pharmaceuticals that are orally administered by humans, higher separation of catalysts and organic solvents is required. The cost required for advanced separation is comparable to that of the synthesis operation, and preferably no catalyst and organic solvent are used. In view of the above, in this technical field, a continuous synthesis of N-acyl compounds that can be easily separated and easily separated by a simple, low-cost, environmentally-reduced synthesis process and that does not have any catalyst or organic solvent remaining. There has been a strong demand for a synthesis method that enables this.

このような状況のなかで、本発明者らは、上記従来技術に鑑みて、低コストで、環境に優しい簡単な高速合成プロセスで、上記N−アシル化合物を連続的に合成することができる新しい合成方法を開発することを目標として鋭意研究を積み重ねた結果、高温高圧水、又は亜臨界水又は超臨界水を反応溶媒とすることで、無触媒で、無水カルボン酸とヘテロ水素化物からN−アシル化合物を合成できることを見出し、本発明を完成するに至った。本発明は、無水カルボン酸とヘテロ水素化物から、N−アシル化合物を無触媒で、短時間の反応条件下で連続的に合成する方法及びその反応組成物を提供することを目的とするものである。   Under such circumstances, in view of the prior art, the present inventors are able to continuously synthesize the N-acyl compound by a simple high-speed synthesis process that is low in cost and friendly to the environment. As a result of intensive research with the goal of developing a synthesis method, as a reaction solvent using high-temperature and high-pressure water, subcritical water or supercritical water, N- The inventors have found that acyl compounds can be synthesized, and have completed the present invention. An object of the present invention is to provide a method of continuously synthesizing an N-acyl compound from a carboxylic anhydride and a heterohydride under a reaction condition in a short time without using a catalyst, and a reaction composition thereof. is there.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)無水カルボン酸とヘテロ水素化物との反応組成物であって、触媒及び有機溶媒の残存がないことを特徴とするN−アシル化合物組成物。
(2)無水カルボン酸とヘテロ水素化物からN−アシル化合物を合成する方法であって、発熱反応の場合には、常温流体、吸熱反応の場合には、高温高圧状態の亜臨界流体ないし超臨界流体を反応溶媒として使用し、触媒を用いることなく、無水カルボン酸とヘテロ水素化物から一段階の合成反応でN−アシル化合物を選択的に合成することを特徴とするN−アシル化合物の製造方法。
(3)高温高圧状態の亜臨界ないし超臨界水を反応溶媒として使用する、前記(2)記載のN−アシル化合物の製造方法。
(4)ヘテロ水素化物におけるヘテロ原子又は置換ヘテロ原子が、窒化水素(NH)、又はアルキル置換窒素(NR’)である、前記(2)記載の方法。
(5)基質の反応点に隣接する1級、2級、3級の骨格に対して、温度又は無水カルボン酸の量を調整することにより、N−アシル化合物を選択的に合成する、前記(2)記載の方法。
(6)温度100〜400℃、圧力0.1〜40MPaの亜臨界流体ないし超臨界流体を反応溶媒として使用する、前記(2)記載の方法。
(7)常温流体、亜臨界流体ないし超臨界流体として、水、酢酸、それ以外の無機溶媒、もしくは有機溶媒もしくは無機溶媒と有機溶媒の混合溶媒を用いる、前記(2)記載の方法。
(8)流通式高温高圧装置に、基質及び反応溶媒を導入し、反応時間を3〜60秒の範囲で変化させることで合成反応を実施する、前記(2)記載の方法。
(9)発熱反応の場合に、流通式常温高圧装置に、基質及び反応溶媒を導入し、反応時間を1〜60秒の範囲で変化させることで合成反応を実施する、前記(2)記載の方法。
(10)水を送液する水送液ポンプ、高温高圧フローセル、基質を送液する反応物送液ポンプ、炉体、反応物を炉体に導入する反応物導入管、反応溶液を排出する排出液ライン、冷却フランジ及び圧力を設定する背圧弁を具備していることを特徴とするN−アシル化合物合成装置。
(11)吸熱反応の場合において、水加熱用コイルが配設されている、前記(10)記載のN−アシル化合物合成装置。
(12)前記(2)記載の方法において、N−アシル化後、回収水溶液に水を注入してデカンテーションし、油/水二層溶液に分離後、N−アシル化合物を含む油層を分液回収する一方、水層からは酢酸と水を共沸蒸留によって分離し回収する簡易な連続分離法。
The present invention for solving the above-described problems comprises the following technical means.
(1) A N-acyl compound composition, which is a reaction composition of a carboxylic anhydride and a heterohydride, and has no catalyst and organic solvent remaining.
(2) A method for synthesizing an N-acyl compound from a carboxylic anhydride and a heterohydride, in the case of an exothermic reaction, a normal temperature fluid, and in the case of an endothermic reaction, a subcritical fluid or supercritical fluid in a high temperature and high pressure state. A method for producing an N-acyl compound, wherein a fluid is used as a reaction solvent, and an N-acyl compound is selectively synthesized from a carboxylic anhydride and a heterohydride by a one-step synthesis reaction without using a catalyst. .
(3) The method for producing an N-acyl compound according to (2), wherein subcritical or supercritical water in a high temperature and high pressure state is used as a reaction solvent.
(4) The method according to (2) above, wherein the heteroatom or substituted heteroatom in the heterohydride is hydrogen nitride (NH) or alkyl-substituted nitrogen (NR ′).
(5) The N-acyl compound is selectively synthesized by adjusting the temperature or the amount of carboxylic anhydride with respect to the primary, secondary, or tertiary skeleton adjacent to the reaction point of the substrate, 2) The method described.
(6) The method according to (2) above, wherein a subcritical fluid or supercritical fluid having a temperature of 100 to 400 ° C. and a pressure of 0.1 to 40 MPa is used as a reaction solvent.
(7) The method according to (2) above, wherein water, acetic acid, another inorganic solvent, an organic solvent, or a mixed solvent of an inorganic solvent and an organic solvent is used as the normal temperature fluid, subcritical fluid or supercritical fluid.
(8) The method according to (2) above, wherein the synthesis reaction is carried out by introducing a substrate and a reaction solvent into a flow-type high-temperature and high-pressure apparatus and changing the reaction time in the range of 3 to 60 seconds.
(9) In the case of an exothermic reaction, a substrate and a reaction solvent are introduced into a flow-type room temperature high pressure apparatus, and the reaction time is changed in the range of 1 to 60 seconds, and the synthesis reaction is performed. Method.
(10) A water feed pump for feeding water, a high-temperature high-pressure flow cell, a reactant feed pump for feeding a substrate, a furnace body, a reactant introduction pipe for introducing the reactant into the furnace body, and a discharge for discharging the reaction solution An N-acyl compound synthesizing apparatus comprising a liquid line, a cooling flange, and a back pressure valve for setting a pressure.
(11) In the case of an endothermic reaction, the N-acyl compound synthesis device according to (10) above, wherein a water heating coil is provided.
(12) In the method described in (2) above, after N-acylation, water is poured into the recovered aqueous solution and decanted, and after separation into an oil / water bilayer solution, the oil layer containing the N-acyl compound is separated. A simple continuous separation method that separates and recovers acetic acid and water from the aqueous layer by azeotropic distillation.

次に、本発明について更に詳細に説明する。
本発明は、化1のカルボン酸無水物と化2のヘテロ水素化物から、化3に示すように、N−アシル化合物を、一段階の反応プロセスで、触媒無添加、短時間の反応条件下で、選択的かつ連続的に合成することを特徴とするものである。本発明では、上記反応溶媒として、発熱反応の場合、常温流体が用いられ、吸熱反応の場合、温度100〜400℃、圧力0.1〜40MPaの亜臨界流体、超臨界流体が用いられ、好適には発熱反応の場合水、吸熱反応の場合、亜臨界水が用いられる。
Next, the present invention will be described in more detail.
According to the present invention, an N-acyl compound is converted from a carboxylic acid anhydride of Chemical Formula 1 and a heterohydride of Chemical Formula 2 as shown in Chemical Formula 3 into a one-step reaction process without adding a catalyst and under short reaction conditions. Thus, the synthesis is performed selectively and continuously. In the present invention, a normal temperature fluid is used as the reaction solvent in the case of an exothermic reaction, and a subcritical fluid or a supercritical fluid at a temperature of 100 to 400 ° C. and a pressure of 0.1 to 40 MPa is used in the case of an endothermic reaction. In the case of exothermic reaction, water is used, and in the case of endothermic reaction, subcritical water is used.

また、反応条件として、好適には、発熱反応の場合、常温常圧、反応時間が1秒程度に調整され、吸熱反応の場合、温度200〜250℃、圧力5MPa、反応時間が3〜60秒の範囲、好適には10秒程度に調整される。化1の式中、Rはアルキル基及びアルキル基以外のヘテロ原子を含む置換基であり、化2の式中、R1、R2、R3はアルキル基及びアルキル基以外のヘテロ原子を含む置換基であり、Qは炭素及び炭素以外のヘテロ原子、置換ヘテロ原子である。Qはヘテロ原子又は置換ヘテロ原子であり、具体的には、窒化水素(NH)、アルキル置換窒素(NR’)、である。 As the reaction conditions, preferably, in the case of an exothermic reaction, normal temperature and pressure and the reaction time are adjusted to about 1 second, and in the case of an endothermic reaction, the temperature is 200 to 250 ° C., the pressure is 5 MPa, and the reaction time is 3 to 60 seconds. The range is preferably adjusted to about 10 seconds. In the formula (1), R is an alkyl group and a substituent containing a hetero atom other than an alkyl group. In the formula (2), R 1, R 2 and R 3 are substituents containing a hetero atom other than an alkyl group and an alkyl group. And Q is carbon, a heteroatom other than carbon, or a substituted heteroatom. Q 1 is a heteroatom or a substituted heteroatom, specifically, hydrogen nitride (NH) or alkyl-substituted nitrogen (NR ′).

Figure 2007297338
Figure 2007297338

Figure 2007297338
Figure 2007297338

Figure 2007297338
Figure 2007297338

本発明においては、上記基質及び反応溶媒を反応容器に導入して、所定の反応時間で合成反応を実施するものである。したがって、上記反応器としては、例えば、バッチ式の常温高圧装置又は高温高圧反応容器、及び連続型の流通式常温高圧装置又は流通式高温高圧反応装置を使用することができるが、本発明は、これら反応装置の型式に、特に制限されるものでない。   In the present invention, the substrate and the reaction solvent are introduced into a reaction vessel, and a synthesis reaction is performed in a predetermined reaction time. Therefore, as the reactor, for example, a batch type room temperature high pressure apparatus or a high temperature high pressure reaction vessel, and a continuous flow type room temperature high pressure apparatus or a flow type high temperature high pressure reaction apparatus can be used. There are no particular restrictions on the type of these reactors.

本発明の方法では、反応溶媒として、常温流体又は高温高圧状態にある亜臨界流体、超臨界流体が用いられるが、具体的には、亜臨界二酸化炭素(常温以上、0.1MPa以上)、亜臨界水(100℃以上、0.1MPa以上)、亜臨界メタノール(100℃以上、0.1MPa以上)、亜臨界エタノール(100℃以上、0.1MPa以上)、超臨界二酸化炭素(34℃以上、7.38MPa以上)、超臨界水(375℃以上、22MPa以上)、超臨界メタノール(239℃以上、8.1MPa以上)、超臨界エタノール(241℃以上、6.1MPa以上)、同じ状態のこれらの混合溶媒が例示され、好適には、常温水又は亜臨界水(200−250℃、5MPa以上)が用いられる。反応溶媒としては、上記以外の有機溶媒や無機溶媒を任意の割合で含むことができ、具体的には、有機溶媒として、アセトン、アセトニトリル、テトラヒドロフラン等、無機溶媒として、酢酸、アンモニア等を含む反応溶液に代替することも可能である。   In the method of the present invention, a normal temperature fluid, a subcritical fluid in a high temperature and high pressure state, or a supercritical fluid is used as a reaction solvent. Specifically, subcritical carbon dioxide (normal temperature or higher, 0.1 MPa or higher), Critical water (100 ° C. or higher, 0.1 MPa or higher), subcritical methanol (100 ° C. or higher, 0.1 MPa or higher), subcritical ethanol (100 ° C. or higher, 0.1 MPa or higher), supercritical carbon dioxide (34 ° C. or higher, 7.38 MPa or more), supercritical water (375 ° C. or more, 22 MPa or more), supercritical methanol (239 ° C. or more, 8.1 MPa or more), supercritical ethanol (241 ° C. or more, 6.1 MPa or more), these in the same state And a normal temperature water or subcritical water (200-250 ° C., 5 MPa or more) is preferably used. As a reaction solvent, an organic solvent or an inorganic solvent other than the above can be contained in any proportion, and specifically, a reaction that includes acetone, acetonitrile, tetrahydrofuran, or the like as an organic solvent, and acetic acid, ammonia, or the like as an inorganic solvent. A solution can be substituted.

本発明では、上記常温流体、亜臨界流体、超臨界流体の反応溶媒の組成、温度及び圧力条件、基質の種類及びその使用量、反応時間を調整することにより、短時間で、効率良く、反応生成物を合成することができる。また、本発明では、例えば、基質及び反応溶媒を流通式常温高圧装置に導入し、それらの反応時間を1〜60秒の範囲で変えることにより、あるいは流通式高温高圧装置に導入し、それらの反応時間を3〜60秒の範囲で変えることにより、所定の反応生成物を合成することができる。上記反応条件は、使用する出発原料、目的とする反応生成物の種類等により適宜設定することができる。   In the present invention, by adjusting the composition of the reaction solvent of the normal temperature fluid, subcritical fluid, and supercritical fluid, temperature and pressure conditions, the type and amount of the substrate used, and the reaction time, the reaction can be efficiently performed in a short time. The product can be synthesized. In the present invention, for example, a substrate and a reaction solvent are introduced into a flow-type room temperature high-pressure apparatus, and their reaction time is changed within a range of 1 to 60 seconds, or they are introduced into a flow-type high-temperature high-pressure apparatus. By changing the reaction time in the range of 3 to 60 seconds, a predetermined reaction product can be synthesized. The reaction conditions can be appropriately set depending on the starting material used, the type of the desired reaction product, and the like.

本発明の方法では、従来、触媒存在下で行われていた、カルボン酸無水物とヘテロ水素化物からのN−アシル化合物の合成を、高速で連続的に、しかも、無触媒で実施できるため、長時間を要するプロセスを効率化することができる。また、本発明の方法では、従来用いられた触媒を全く使用しないので、反応後の溶液の中和処理、無害化処理等の後処理・処分の必要がなく、環境負荷低減を達成可能である。更に、反応後は、デカンテーションのような静置分離操作のみであるため、触媒や有機溶媒の分離回収の必要性はなく、生成物分離が容易になる。   In the method of the present invention, synthesis of an N-acyl compound from a carboxylic acid anhydride and a heterohydride, which has been conventionally performed in the presence of a catalyst, can be carried out continuously at high speed and without a catalyst. Processes that require a long time can be made more efficient. Further, in the method of the present invention, since a conventionally used catalyst is not used at all, there is no need for post-treatment / disposal such as neutralization treatment and detoxification treatment of the solution after the reaction, and environmental load reduction can be achieved. . Further, after the reaction, only a stationary separation operation such as decantation is performed, so that there is no need to separate and recover the catalyst and the organic solvent, and the product separation becomes easy.

本発明によれば、触媒無添加で、10秒程度の短時間で、基質が一級アミン・アニリン誘導体の場合、選択率100%、収率99%で、二級アミン・アニリン誘導体の場合、選択率100%、収率87%以上で、三級アミン・アニリン誘導体の場合、選択率100%以上、収率85%以上で、アニリン誘導体の場合、選択率100%以上、収率85%以上で、対応するN−アシル化合物を合成することができる。本発明の合成方法は、香料、医薬品、食品に利用可能な、N−アシル化合物を効率良く、大量に、高速で、連続的に生産することを可能にするものとして有用である。   According to the present invention, no catalyst is added, and in a short time of about 10 seconds, when the substrate is a primary amine / aniline derivative, the selectivity is 100%, the yield is 99%, and the secondary amine / aniline derivative is selected. In the case of a tertiary amine / aniline derivative, the selectivity is 100% or more and the yield is 85% or more. In the case of the aniline derivative, the selectivity is 100% or more and the yield is 85% or more. The corresponding N-acyl compound can be synthesized. The synthesis method of the present invention is useful as one that enables efficient, large-scale, high-speed, continuous production of N-acyl compounds that can be used in fragrances, pharmaceuticals, and foods.

従来、二酸化炭素等の亜臨界流体、超臨界流体を利用して、リパーゼや触媒を用いたアシル化を実施した例が報告されている。しかし、カルボン酸無水物とヘテロ水素化物から、無触媒条件の常温水又は亜臨界水プロセスで、N−アシル化合物を高収率で合成できることを実証した例はなく、本発明の対象とするN−アシル化合物の合成反応法は、本発明者らによって初めてその有効性が実証されたものである。しかも、従来法でカルボン酸無水物とヘテロ水素化物から合成されるN−アシル化合物は、触媒及び有機溶媒の残存が問題とされていたが、本発明でカルボン酸無水物とヘテロ水素化物から合成される反応組成物は、触媒及び有機溶媒の残存がなく、本発明のN−アシル化合物組成物は、従来製品にない利点を有している。   Conventionally, an example of carrying out acylation using a lipase or a catalyst using a subcritical fluid such as carbon dioxide or a supercritical fluid has been reported. However, there is no example demonstrating that an N-acyl compound can be synthesized in a high yield from a carboxylic acid anhydride and a heterohydride in a non-catalytic room temperature water or subcritical water process. -The method for synthesizing acyl compounds has been demonstrated for the first time by the present inventors. Moreover, the N-acyl compounds synthesized from carboxylic acid anhydrides and heterohydrides by conventional methods have been problematic in terms of remaining catalyst and organic solvent. However, in the present invention, they are synthesized from carboxylic acid anhydrides and heterohydrides. The reaction composition thus obtained has no remaining catalyst and organic solvent, and the N-acyl compound composition of the present invention has advantages not found in conventional products.

本発明では、無触媒条件で、無水カルボン酸とヘテロ水素化物の合成反応を実現するために、例えば、基質をあらかじめ溶媒に溶解した溶液を送液し、常温流体、亜臨界流体、超臨界流体中の反応経過を高温高圧赤外フローセル(図4)により赤外分光分析によって観察する流通型高温高圧赤外分光その場測定装置(図5)を用いることも可能である。しかしながら、高温高圧赤外フローセルを窓なし高温高圧フローセル(図6)に交換し、超臨界流体の流れに対して直接反応物の流れを接触反応するように配管配置した方が、高温高圧赤外フローセルにおけるセル窓付近におけるリーク等の問題が発生せず、より高流量で短時間に合成を実施することが可能である。これらのことから、この窓なし高温高圧フローセルを装着した装置を、後述する実施例で用いた。   In the present invention, in order to realize the synthesis reaction of carboxylic anhydride and heterohydride under non-catalytic conditions, for example, a solution in which a substrate is previously dissolved in a solvent is fed, and a room temperature fluid, a subcritical fluid, a supercritical fluid It is also possible to use a flow-type high-temperature high-pressure infrared spectroscopic in-situ measuring device (FIG. 5) for observing the progress of the reaction by infrared spectroscopic analysis with a high-temperature high-pressure infrared flow cell (FIG. 4). However, it is better to replace the high-temperature and high-pressure infrared flow cell with a windowless high-temperature and high-pressure flow cell (FIG. 6) and arrange the piping so that the reactant flow directly contacts the supercritical fluid flow. There is no problem such as leakage near the cell window in the flow cell, and the synthesis can be performed in a short time at a higher flow rate. For these reasons, an apparatus equipped with this windowless high-temperature and high-pressure flow cell was used in Examples described later.

ここで、窓なし高温高圧フローセル本体(図6)とは、例えば、市販のSUS316製のクロス1にネジを切り、次に説明する温度センサーシース(図7の12)に固定できるようにする。炉体雰囲気の温度を測定せずに、セル温度を示すように温度センサを調節し、シース固定ネジとオネジ3でネジ止めする。SUS316の配管4は、クロス1にワンリングフェラル付きのテーパーネジ2で接続される。もちろん、クロス1は、エンドネジで一つの流路を塞ぐことによって、ティーとしても使用可能である。   Here, the windowless high-temperature and high-pressure flow cell main body (FIG. 6) is made so that, for example, a commercially available SUS316 cloth 1 is threaded and fixed to a temperature sensor sheath (12 in FIG. 7) described below. The temperature sensor is adjusted so as to indicate the cell temperature without measuring the temperature of the furnace atmosphere, and is fixed with the sheath fixing screw and the male screw 3. The pipe 4 of SUS316 is connected to the cross 1 with a taper screw 2 with a one-ring ferrule. Of course, the cloth 1 can also be used as a tee by closing one flow path with an end screw.

図7は、窓なし高温高圧フローセルを装着した流通式高温高圧反応装置の炉体部分であり、反応装置本体である。これを、図5の流通型高温高圧流体その場赤外分光測定装置の斜線位置に設置すれば、赤外分光は測定できないものの、温度、圧力、流量が可変な亜臨界・超臨界流体接触合成反応装置として利用可能となる。また、図8は、発熱反応の場合の流通式常温高圧反応装置であり、反応装置本体である。この場合も、常温付近の温度、圧力、流量が可変な常温流体接触合成反応装置として利用可能となる。なお、これらの場合における反応観察は、排出後の水溶液を採取し、GC−FIDにより、生成物の純品を用いた検量線から定量を実施し、GC/MSにより定性分析を実施した。   FIG. 7 is a reactor body portion of a flow-type high temperature / high pressure reactor equipped with a windowless high temperature / high pressure flow cell, which is a main body of the reactor. If this is installed in the shaded position of the flow-type high-temperature and high-pressure fluid in-situ infrared spectrometer shown in Fig. 5, the infrared spectroscopy cannot be measured, but subcritical / supercritical fluid contact synthesis with variable temperature, pressure and flow rate. It can be used as a reactor. FIG. 8 shows a flow-type room temperature and high pressure reaction apparatus in the case of an exothermic reaction, which is a reaction apparatus main body. Also in this case, it can be used as a room temperature fluid contact synthesis reaction apparatus in which the temperature, pressure and flow rate around room temperature are variable. In these cases, the reaction was observed by collecting the aqueous solution after discharge, quantifying it from a calibration curve using a pure product by GC-FID, and performing qualitative analysis by GC / MS.

以下、図7について説明すると、水送液ポンプ5から水が送液され、冷却フランジ8を通過後、炉体13へ送液される。管コイル9を通過後、高温高圧状態で温度センサ11が挿入された温度センサーシース12に支持固定された高温高圧フローセル14に導入される。一方、反応物が、反応物送液ポンプ6から送液され、冷却フランジ8を通過後、炉体13へ送液され、コイル状反応物導入管10を通過後、温度センサーシース12に固定された高温高圧フローセル14に導入される。また、洗浄水が、ポンプ7により送液され、配管16を通過後、ティー18に導入され、洗浄用に用いられる。高温高圧フローセルを通過した溶液は、配管17を通過後、冷却フランジ8を通過して、炉体外を空冷されながら通過する。その後、圧力を設定している背圧弁19からの排出液を採取し、サンプルとする。ここで、反応物や生成物を含む排出液の加熱による影響を排除する場合には、急速昇温を実施し、反応物導入ライン10と排出液ライン17の配管を、できるだけ短く、水加熱用コイル9を、できるだけ長くすることが望ましい。本発明は、これらに限らず、これらと同効の反応装置であれば同様に使用することができる。   Hereinafter, with reference to FIG. 7, water is fed from the water feed pump 5, and after passing through the cooling flange 8, is sent to the furnace body 13. After passing through the tube coil 9, it is introduced into a high temperature / high pressure flow cell 14 supported and fixed to a temperature sensor sheath 12 in which a temperature sensor 11 is inserted in a high temperature / high pressure state. On the other hand, the reactant is fed from the reactant feed pump 6, passes through the cooling flange 8, is sent to the furnace body 13, passes through the coiled reactant introduction pipe 10, and is fixed to the temperature sensor sheath 12. Introduced into the high-temperature and high-pressure flow cell 14. Further, the washing water is fed by the pump 7, passes through the pipe 16, is introduced into the tee 18, and is used for washing. The solution that has passed through the high-temperature and high-pressure flow cell passes through the piping 17, then passes through the cooling flange 8, and passes outside the furnace body while being air-cooled. Thereafter, the discharged liquid from the back pressure valve 19 for which the pressure is set is collected and used as a sample. Here, in order to eliminate the influence of heating of the effluent containing the reactants and products, rapid heating is performed, and the piping of the reactant introduction line 10 and the effluent line 17 is made as short as possible for water heating. It is desirable to make the coil 9 as long as possible. The present invention is not limited to these, and any reaction apparatus having the same effect as these can be used in the same manner.

他方、常温反応装置である図8について説明すると、反応物送液ポンプ40と基質送液ポンプ41から、それぞれカルボン酸無水物とアミン又はアニリン誘導体が送液され、温度センサ50が装着された反応ティー43で混合され、反応し、配管44を反応溶液が通過する。その後、反応溶液は、発生する反応熱を抑制するため、温度センサ51が装着された混合ティー45で水送液ポンプ42から送液した水と混合、冷却され、排出配管46、背圧弁48を通過後、回収容器49に回収される。この場合、発生する反応熱を抑制するために、反応ティー43、配管44、混合ティー45、排出配管46を冷却器に浸漬することもできる。また、水総液ポンプ42から水を送液せずに、発生する反応熱を抑制するために、反応ティー43、配管44、混合ティー45、排出配管46を冷却器に浸漬し、無溶媒条件で反応させることも可能である。本発明は、これらに限らず、これらと同効の反応装置であれば同様に使用することができる。   On the other hand, referring to FIG. 8, which is a room temperature reaction apparatus, a reaction in which a carboxylic acid anhydride and an amine or aniline derivative are fed from a reactant feed pump 40 and a substrate feed pump 41, respectively, and a temperature sensor 50 is mounted. The tee 43 mixes and reacts, and the reaction solution passes through the pipe 44. Thereafter, the reaction solution is mixed and cooled with the water fed from the water feed pump 42 by the mixing tee 45 equipped with the temperature sensor 51 in order to suppress the generated reaction heat, and the discharge pipe 46 and the back pressure valve 48 are set. After passing, it is recovered in the recovery container 49. In this case, the reaction tee 43, the pipe 44, the mixing tee 45, and the discharge pipe 46 can be immersed in a cooler in order to suppress the generated reaction heat. In addition, in order to suppress reaction heat generated without sending water from the total water pump 42, the reaction tee 43, the pipe 44, the mixing tee 45, and the discharge pipe 46 are immersed in a cooler, and solvent-free conditions are satisfied. It is also possible to make it react. The present invention is not limited to these, and any reaction apparatus having the same effect as these can be used in the same manner.

本発明により、次のような効果が奏される。
(1)カルボン酸無水物とヘテロ水素化物から、一段階かつ高速で、連続的に、N−アシル化合物を合成することができる。
(2)触媒及び有機溶媒を用いない合成プロセスを実現できる。
(3)そのため、触媒及び有機溶媒の残存がなく、生体に対して有害性のない安全性の高いN−アシル化合物組成物を提供できる。
(4)生成物が水に溶解しない場合には、排出された油水分散水溶液に対して、更に水を注入することで、洗浄しつつ油水二層に分液し、高純度の生成物を容易に回収できる。
(5)本発明により、香料、医薬品、食品分野において有用なN−アシル化合物の新しい大量生産プロセスとして、既存の生産プロセスに代替し得る新しい生産技術を提供できる。
The following effects are exhibited by the present invention.
(1) An N-acyl compound can be synthesized continuously from a carboxylic acid anhydride and a heterohydride in one step at a high speed.
(2) A synthesis process without using a catalyst and an organic solvent can be realized.
(3) Therefore, it is possible to provide a highly safe N-acyl compound composition that is free from residual catalyst and organic solvent and is not harmful to the living body.
(4) When the product does not dissolve in water, water is injected into the discharged oil-water dispersion aqueous solution to separate the oil and water into two layers while washing, making it easy to produce a high-purity product. Can be recovered.
(5) According to the present invention, as a new mass production process of N-acyl compounds useful in the fields of fragrances, pharmaceuticals and foods, it is possible to provide a new production technique that can replace the existing production process.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

まず、実施方法を示した後、具体的な実施例を示す。
(1)流通式高温高圧反応装置を用いる方法(表1〜3の方法SF)
本実施例では、図7の流通式高温高圧反応装置を用いて、合成条件を、無触媒、温度50〜200℃、圧力5MPa、滞留時間9.9秒で実施した。図7の流通式高温高圧反応装置の本体(主要部分)を図5の流通型高温高圧流体その場赤外分光測定装置に設置した装置に、まず、温度200℃、圧力5MPaに設定し、窓なしセル(ティー1)の配管コイル9との接続穴をエンドで塞ぎ、ポンプ5により配管コイル9への流路を塞ぎ、純水は流量5.0ml/minで、炉体外のティー18へ送液した。その後、トルエンを内標準として添加した(基質の5mol%)、カルボン酸無水物/アミン又はアニリン誘導体(モル比:1.1/1)混合溶液0.5ml/minをポンプで送液した(混合後の水溶液濃度:0.53mol/kg)。
First, after showing an implementation method, a concrete Example is shown.
(1) Method using a flow-type high-temperature and high-pressure reactor (method SF in Tables 1 to 3)
In this example, using the flow-type high-temperature and high-pressure reactor shown in FIG. 7, the synthesis conditions were as follows: no catalyst, temperature 50 to 200 ° C., pressure 5 MPa, residence time 9.9 seconds. The main body (main part) of the flow-type high-temperature and high-pressure reactor shown in FIG. 7 is set in the flow-type high-temperature and high-pressure fluid in situ infrared spectrometer shown in FIG. None The connection hole of the cell (tee 1) with the piping coil 9 is closed at the end, the flow path to the piping coil 9 is closed by the pump 5, and pure water is sent to the tee 18 outside the furnace body at a flow rate of 5.0 ml / min. Liquid. Thereafter, toluene was added as an internal standard (5 mol% of the substrate), and a carboxylic acid anhydride / amine or aniline derivative (molar ratio: 1.1 / 1) mixed solution 0.5 ml / min was pumped (mixed) Later aqueous solution concentration: 0.53 mol / kg).

基質送液後、40分後の背圧弁からの排出水溶液を1ml採取した。加熱炉から背圧弁出口までの配管内容積を反応体積とした場合、反応時間は9.9秒であった。回収された1mlの水溶液に1mlのアセトンを加え振とうし、組成をGC/MS分析計(Hewlett Packard社製HP6890、カラムHP−5、注入口温度150℃、初期カラム温度60℃(保持時間2分)、昇温速度10℃/分、最終カラム温度250℃(保持時間2分))で実施し、得られたマススペクトルはWilleyデータベースで一致度90%以上で確認した。また、定量分析及び市販試薬がある場合の定性分析は、トルエンを内標準としてGC−FID(Agilent社製GC6890、カラムDB−WAX、注入口温度230℃、スプリット比5.61、初期カラム温度50℃(保持時間0.5分)、昇温速度20℃/分、最終カラム温度230℃(保持時間3分))で実施した。   1 ml of the aqueous solution discharged from the back pressure valve 40 minutes after the substrate feeding was collected. When the internal volume of the pipe from the heating furnace to the back pressure valve outlet was the reaction volume, the reaction time was 9.9 seconds. 1 ml of acetone was added to 1 ml of the collected aqueous solution and shaken, and the composition was determined by GC / MS analyzer (HP 6890, Hewlett Packard, column HP-5, inlet temperature 150 ° C., initial column temperature 60 ° C. (retention time 2 Min), a heating rate of 10 ° C./min, and a final column temperature of 250 ° C. (holding time of 2 minutes)). In addition, quantitative analysis and qualitative analysis in the case where there is a commercially available reagent are GC-FID (GC6890 manufactured by Agilent, column DB-WAX, inlet temperature 230 ° C., split ratio 5.61, initial column temperature 50 using toluene as an internal standard. C. (retention time 0.5 minutes), temperature increase rate 20 ° C./minute, final column temperature 230 ° C. (retention time 3 minutes)).

(2)流通式常温高圧反応装置を用いる方法(表1〜3の方法AF1、AF2)
一方、反応が発熱反応であり、流通型高温高圧反応装置で合成困難な場合、すなわち、図7の流通式高温高圧反応装置では合成が困難な場合、図8の流通式常温高圧反応装置を用いてN−アシル化を実施した。合成条件を、無触媒、圧力0.1MPa、滞留時間1.1秒一定として行った。図8の流通式常温高圧反応装置の本体に、カルボン酸無水物及びトルエンを内標準として添加した(基質の5mol%)アミン又はアニリン誘導体をそれぞれ送液し、更に、純水を流量5.0ml/minで送液した。基質送液後、40分後の背圧弁からの排出水溶液を1ml採取した。反応ティーから背圧弁出口までの配管内容積を反応体積とした場合、反応時間は1.1秒であった。
(2) Method using a flow-type room temperature high pressure reactor (methods AF1 and AF2 in Tables 1 to 3)
On the other hand, when the reaction is an exothermic reaction and it is difficult to synthesize with a flow-type high-temperature and high-pressure reactor, that is, when synthesis is difficult with the flow-type high-temperature and high-pressure reactor shown in FIG. N-acylation was performed. The synthesis conditions were as follows: no catalyst, pressure 0.1 MPa, residence time 1.1 seconds constant. The amine or aniline derivative added with carboxylic acid anhydride and toluene as internal standards (5 mol% of the substrate) is fed to the main body of the flow-type room temperature high pressure reactor shown in FIG. 8 respectively, and pure water is supplied at a flow rate of 5.0 ml. The solution was fed at / min. 1 ml of the aqueous solution discharged from the back pressure valve 40 minutes after the substrate feeding was collected. When the internal volume of the pipe from the reaction tee to the back pressure valve outlet was the reaction volume, the reaction time was 1.1 seconds.

回収された1mlの水溶液に1mlのアセトンを加え、振とうし、組成をGC/MS分析計(Hewlett Packard社製HP6890、カラムHP−5、注入口温度150℃、初期カラム温度60℃(保持時間2分)、昇温速度10℃/分、最終カラム温度250℃(保持時間2分))で実施し、得られたマススペクトルはWilleyデータベースで一致度90%以上で確認した。また、定量分析及び市販試薬がある場合の定性分析は、トルエンを内標準としてGC−FID(Agilent社製GC6890、カラムDB−WAX、注入口温度230℃、スプリット比5.61、初期カラム温度50℃(保持時間0.5分)、昇温速度20℃/分、最終カラム温度230℃(保持時間3分))で実施した。なお、反応が終了して背圧弁から排出時、固体が析出して閉塞する場合には、カルボン酸無水物に酢酸を添加した場合を、方法AF1、アミン・アニリン誘導体に酢酸を添加した場合を、方法AF2とした。   1 ml of acetone was added to 1 ml of the collected aqueous solution, shaken, and the composition was determined by GC / MS analyzer (HP 6890, Hewlett Packard, column HP-5, inlet temperature 150 ° C., initial column temperature 60 ° C. (retention time) 2 minutes), a temperature rising rate of 10 ° C./min, and a final column temperature of 250 ° C. (holding time of 2 minutes)), and the obtained mass spectrum was confirmed with a Willy database with a coincidence of 90% or more. In addition, quantitative analysis and qualitative analysis in the case where there is a commercially available reagent are GC-FID (GC6890 manufactured by Agilent, column DB-WAX, inlet temperature 230 ° C., split ratio 5.61, initial column temperature 50 using toluene as an internal standard. C. (retention time 0.5 minutes), temperature increase rate 20 ° C./minute, final column temperature 230 ° C. (retention time 3 minutes)). When the reaction is completed and the solid is deposited and clogged when discharged from the back pressure valve, the case where acetic acid is added to the carboxylic acid anhydride, the case where acetic acid is added to the method AF1, the amine / aniline derivative, Method AF2.

(3)簡易型バッチ方法(表1〜3の方法B)
更に、溶解度及び反応を確認するため、30mlのバイヤル瓶にカルボン酸無水物及びアミン又はアニリン誘導体を滴下後、トルエンを内標準(基質の5mol%)として加えた。ここで、高粘性もしくは固体で溶解しにくい場合には、適量の酢酸を加え、温水で加温振とうし、酢酸に対する溶解度を確認した。更に、この混合溶液から採取された1mlの水溶液に1mlのアセトンを加え振とうし、組成をGC/MS分析計(Hewlett Packard社製HP6890、カラムHP−5、注入口温度150℃、初期カラム温度60℃(保持時間2分)、昇温速度10℃/分、最終カラム温度250℃(保持時間2分))で実施し、得られたマススペクトルはWilleyデータベースで一致度90%以上で確認した。また、定量分析及び市販試薬がある場合の定性分析はトルエンを内標準としてGC−FID(Agilent社製GC6890、カラムDB−WAX、注入口温度230℃、スプリット比5.61、初期カラム温度50℃(保持時間0.5分)、昇温速度20℃/分、最終カラム温度230℃(保持時間3分))で実施した。
(3) Simplified batch method (Method B in Tables 1 to 3)
Further, in order to confirm the solubility and the reaction, carboxylic anhydride and an amine or aniline derivative were added dropwise to a 30 ml vial, and then toluene was added as an internal standard (5 mol% of the substrate). Here, when it was highly viscous or solid and difficult to dissolve, an appropriate amount of acetic acid was added, and the mixture was shaken with warm water to confirm the solubility in acetic acid. Furthermore, 1 ml of acetone was added to 1 ml of the aqueous solution collected from this mixed solution and shaken, and the composition was determined by GC / MS analyzer (HP 6890, Hewlett Packard, column HP-5, inlet temperature 150 ° C., initial column temperature). 60 ° C. (holding time 2 minutes), heating rate 10 ° C./min, final column temperature 250 ° C. (holding time 2 minutes)), and the obtained mass spectrum was confirmed by the Willy database with a concordance of 90% or higher. . In addition, quantitative analysis and qualitative analysis in the case where there are commercially available reagents are GC-FID (GC 6890, Agilent DB DB-WAX, inlet temperature 230 ° C., split ratio 5.61, initial column temperature 50 ° C. with toluene as an internal standard. (Holding time 0.5 minutes), temperature rising rate 20 ° C./min, final column temperature 230 ° C. (holding time 3 minutes)).

また、得られた生成物水溶液が油水分散状態で白濁している場合には、水を20ml/minで3分注入し、デカンテーションすると油水2層溶液となり、下(上)層の油層に酢酸を含まないN−アシル化合物を、上(下)層の水相に酢酸水溶液を得た(GCにより確認)。このことは、生成物が水に溶解しない場合、反応終了後の油水分散水溶液に、水を更に注入することで、油水二層に変化してN−アシル化合物と酢酸水溶液を分液することができる。酢酸水溶液は、触媒や有機溶媒を含まないため、酢酸と共沸化合物を作る化合物(例えば、酢酸ターシャリーブチル等)を添加することにより、共沸蒸留により水と氷酢酸に分留することができるため、膨大なエネルギーを必要とする精留を実施しなくても良い。   In addition, when the obtained aqueous product solution is clouded in an oil-water dispersion state, water is injected at 20 ml / min for 3 minutes and decanted to form an oil-water two-layer solution. Acetic acid is added to the lower (upper) oil layer. An acetic acid aqueous solution was obtained from the upper (lower) aqueous phase of the N-acyl compound containing no N2 (confirmed by GC). This means that when the product does not dissolve in water, it is possible to separate the N-acyl compound and the aqueous acetic acid solution by changing water into two layers by further injecting water into the aqueous oil-dispersed aqueous solution after completion of the reaction. it can. Since an acetic acid aqueous solution does not contain a catalyst or organic solvent, it can be fractionated into water and glacial acetic acid by azeotropic distillation by adding a compound that forms an azeotropic compound with acetic acid (for example, tertiary butyl acetate). Therefore, it is not necessary to perform rectification that requires enormous energy.

表1に、アミン、アニリン誘導体のN−アシル化の結果を示す。表2に、アミン、アニリン誘導体のN−アシル化の結果を示す。表3に、OH基含有アミン、アニリン誘導体におけるN−アシル化の結果を示す。   Table 1 shows the results of N-acylation of amines and aniline derivatives. Table 2 shows the results of N-acylation of amines and aniline derivatives. Table 3 shows the results of N-acylation in OH group-containing amines and aniline derivatives.

Figure 2007297338
Figure 2007297338

Figure 2007297338
Figure 2007297338

Figure 2007297338
Figure 2007297338

(実施例1、2)
ピペリジン1及び1.1モル等量の無水酢酸を基質とし、方法AF1でN−アシル化を実施した場合、転化率99.8%、選択率100%でN−アセチル体1aが得られた。ところが、方法SFで200℃、5MPaで実施したところ、転化率が18%と極端に低下した。
(Examples 1 and 2)
When piperidine 1 and 1.1 molar equivalent of acetic anhydride were used as a substrate and N-acylation was carried out by Method AF1, N-acetyl isomer 1a was obtained with a conversion of 99.8% and a selectivity of 100%. However, when the method SF was carried out at 200 ° C. and 5 MPa, the conversion rate was extremely reduced to 18%.

(実施例3)
メチルピペリジン2及び1.1モル等量の無水酢酸を基質とし、方法AF1でN−アシル化を行った場合、転化率100%、選択率100%でN−アセチル体2aが得られた。
(Example 3)
When N-acylation was performed by Method AF1 using methylpiperidine 2 and 1.1 molar equivalent of acetic anhydride as a substrate, N-acetyl isomer 2a was obtained with a conversion rate of 100% and a selectivity of 100%.

(実施例4、5、6)
2,6−ジメチルピペリジン3及び1.1モル等量の無水酢酸を基質とし、方法AF1でN−アシル化を行った場合、N−アセチル体3aが転化率3%と低下した。そこで、方法SFで、温度50℃、圧力5MPa、滞留時間9.9秒で実施したところ、転化率47%が得られ、更に、100℃、圧力5MPa、滞留時間9.9秒でを実施したところ、転化率85%が得られた。いずれの場合も選択率100%であった。
(Examples 4, 5, and 6)
When 2,6-dimethylpiperidine 3 and 1.1 molar equivalent of acetic anhydride was used as a substrate and N-acylation was performed by Method AF1, the N-acetyl form 3a was reduced to a conversion rate of 3%. Therefore, when the method SF was carried out at a temperature of 50 ° C., a pressure of 5 MPa, and a residence time of 9.9 seconds, a conversion rate of 47% was obtained, and further, 100 ° C., a pressure of 5 MPa, and a residence time of 9.9 seconds were carried out. However, a conversion rate of 85% was obtained. In all cases, the selectivity was 100%.

(実施例7、8)
アニリン4及び1.1モル等量の無水酢酸を基質とし、方法AF1でN−アシル化を行った場合、転化率98%、選択率100%でN−アセチル体4aが得られた。また、アニリン4に酢酸を加えた溶液を用いる方法AF2で実施した場合には、転化率97%、選択率100%でN−アセチル体4aが得られ、方法AF1の場合とほぼ同じ結果を得た。
(Examples 7 and 8)
When N-acylation was performed by Method AF1 using aniline 4 and 1.1 molar equivalent of acetic anhydride as a substrate, N-acetyl derivative 4a was obtained with a conversion of 98% and a selectivity of 100%. Further, when the method AF2 using a solution obtained by adding acetic acid to aniline 4 was used, the N-acetyl derivative 4a was obtained with a conversion rate of 97% and a selectivity of 100%, and almost the same result as in the method AF1 was obtained. It was.

(実施例9、10)
2,6−ジメチルアニリン5及び1.1モル等量の無水酢酸を基質とし、方法AF1でN−アシル化を行った場合、転化率98%、選択率100%でN−アセチル体5aが得られた。また、2,6−ジメチルアニリン5に酢酸を加えた溶液を用いる方法AF2で実施した場合には、転化率84%、選択率96%と、N−アセチル体5aが得られたが、AF1よりも転化率、選択率とも幾分低下した。
(Examples 9 and 10)
When 2,6-dimethylaniline 5 and 1.1 molar equivalents of acetic anhydride are used as a substrate and N-acylation is carried out by Method AF1, N-acetyl compound 5a is obtained with a conversion of 98% and a selectivity of 100%. It was. Further, when the method AF2 using a solution obtained by adding acetic acid to 2,6-dimethylaniline 5 was carried out, an N-acetyl form 5a was obtained with a conversion rate of 84% and a selectivity of 96%. However, both the conversion rate and the selectivity decreased somewhat.

(実施例11)
sec−ブチルアミン6及び1.1モル等量の無水酢酸を基質とし、方法AF1でN−アシル化を行った場合、転化率100%、選択率99%でN−アセチル体6aが得られた。
(Example 11)
When sec-butylamine 6 and 1.1 molar equivalent of acetic anhydride were used as a substrate and N-acylation was performed by Method AF1, N-acetyl compound 6a was obtained with a conversion rate of 100% and a selectivity of 99%.

(実施例12)
tert−ブチルアミン7及び1.1モル等量の無水酢酸を基質とし、方法AF1でN−アシル化を行った場合、sec−ブチルアミン6の場合よりも転化率が低下し、転化率88%、選択率100%でN−アセチル体7aが得られた。
(Example 12)
When N-acylation was performed with Method AF1 using tert-butylamine 7 and 1.1 molar equivalent of acetic anhydride as a substrate, the conversion was lower than that of sec-butylamine 6 and the conversion was 88%. N-acetyl 7a was obtained at a rate of 100%.

(実施例13−18)
アントラニル酸8及び1.1モル等量の無水酢酸を基質とし、方法AF1でN−アシル化を行った場合、反応しなかった。そこで、方法SFで、温度150℃、圧力5MPa、滞留時間9.9秒で実施したところ、転化率1%、選択率71%でN−アセチル体8aが得られ、温度50℃、圧力5MPa、滞留時間9.9秒で実施したところ、転化率82%、選択率91%で、更に、温度75℃、圧力5MPa、滞留時間9.9秒で実施したところ、転化率96%、選択率99%でN−アセチル体8aが得られた。なお、方法Bで、無水酢酸/酢酸=1.1/15モル等量で行ったところ、転化率53%と低かったが、無水酢酸のみで実施したところ、転化率91%、選択率80%の結果を得た。
(Examples 13-18)
When N-acylation was carried out by Method AF1 using anthranilic acid 8 and 1.1 molar equivalent of acetic anhydride as a substrate, there was no reaction. Therefore, when the method SF was carried out at a temperature of 150 ° C., a pressure of 5 MPa, and a residence time of 9.9 seconds, an N-acetyl compound 8a was obtained with a conversion rate of 1% and a selectivity of 71%, a temperature of 50 ° C., a pressure of 5 MPa, When carried out at a residence time of 9.9 seconds, the conversion was 82% and the selectivity was 91%, and further at a temperature of 75 ° C., a pressure of 5 MPa and a residence time of 9.9 seconds, the conversion was 96% and the selectivity was 99. % N-acetyl compound 8a was obtained. In addition, when the method B was carried out with acetic anhydride / acetic acid = 1.1 / 15 molar equivalent, the conversion was as low as 53%, but when carried out with only acetic anhydride, the conversion was 91% and the selectivity was 80%. The result was obtained.

(実施例19、20)
カプロラクタム9及び1.1モル等量の無水酢酸を基質とし、方法SFで、温度200℃、圧力5MPa、滞留時間9.9秒でN−アシル化を実施したところ、転化率87%、選択率100%でN−アセチル体9aが得られ、温度225℃、圧力5MPa、滞留時間9.9秒で実施したところ、転化率85%、選択率100%でN−アセチル体9aが得られた。
(Examples 19 and 20)
When caprolactam 9 and 1.1 molar equivalent of acetic anhydride were used as substrates, N-acylation was carried out by method SF at a temperature of 200 ° C., a pressure of 5 MPa, and a residence time of 9.9 seconds. The N-acetyl compound 9a was obtained at 100%, and the N-acetyl compound 9a was obtained at a conversion rate of 85% and a selectivity of 100% when carried out at a temperature of 225 ° C., a pressure of 5 MPa, and a residence time of 9.9 seconds.

(実施例21)
エチレンジアミン10及び2.2モル等量の無水酢酸を基質とし、方法AF1でN−アシル化を実施したところ、転化率99%、選択率100%でN,N−ジアセチル体10aが得られた。
(Example 21)
When N-acylation was carried out by Method AF1 using ethylenediamine 10 and 2.2 molar equivalents of acetic anhydride as a substrate, N, N-diacetyl compound 10a was obtained with a conversion of 99% and a selectivity of 100%.

(実施例22、23)
2−アミノエタノール11及び1.1モル等量の無水酢酸を基質とし、方法AF1でN−アシル化を行った場合、転化率100%、選択率100%でN−アセチル体11aが得られた。ここで、方法SFで、温度200℃、圧力5MPa、滞留時間9.9秒で実施したところ、転化率100%、選択率35%でN−アセチル体11aが得られた。
(Examples 22 and 23)
When N-acylation was performed by Method AF1 using 2-aminoethanol 11 and 1.1 molar equivalent of acetic anhydride as a substrate, N-acetyl compound 11a was obtained at a conversion rate of 100% and a selectivity of 100%. . Here, when the method SF was carried out at a temperature of 200 ° C., a pressure of 5 MPa, and a residence time of 9.9 seconds, an N-acetyl compound 11a was obtained with a conversion rate of 100% and a selectivity of 35%.

(実施例24、25)
3−アミノエタノール12及び1.1モル等量の無水酢酸を基質とし、方法AF1で行った場合、転化率1%、選択率71%でN−アセチル体12aが得られた。ここで、方法SFで、温度200℃、圧力5MPa、滞留時間9.9秒で実施したところ、転化率100%、選択率35%でN−アセチル体12aが得られた。
(Examples 24 and 25)
When 3-aminoethanol 12 and 1.1 molar equivalent of acetic anhydride was used as a substrate and the method AF1 was used, N-acetyl compound 12a was obtained with a conversion rate of 1% and a selectivity of 71%. Here, when the method SF was carried out at a temperature of 200 ° C., a pressure of 5 MPa, and a residence time of 9.9 seconds, an N-acetyl compound 12a was obtained with a conversion rate of 100% and a selectivity of 35%.

(実施例26−30)
4−アミノフェノール13及び1.1モル等量の無水酢酸を基質とし、方法AF1で行った場合、転化率7%、選択率2%でN−アセチル体13aが得られた。ここで、方法SFで、温度100℃、圧力5MPa、滞留時間9.9秒で実施したところ、転化率9%、選択率14%でN−アセチル体13aが得られ、温度150℃、圧力5MPa、滞留時間9.9秒で実施したところ、転化率78%、選択率65%で13aが得られた。4−アミノフェノール13及び2.2モル等量の無水酢酸を基質として、方法SFで温度50℃、圧力5MPa、滞留時間9.9秒で実施したところ、転化率100%、選択率99.5%でN−アセチル体13aが得られた。
(Examples 26-30)
When 4-aminophenol 13 and 1.1 molar equivalent of acetic anhydride were used as a substrate and the method AF1 was used, N-acetyl compound 13a was obtained with a conversion of 7% and a selectivity of 2%. Here, when the method SF was carried out at a temperature of 100 ° C., a pressure of 5 MPa, and a residence time of 9.9 seconds, an N-acetyl compound 13a was obtained with a conversion rate of 9% and a selectivity of 14%, and a temperature of 150 ° C. and a pressure of 5 MPa. When the retention time was 9.9 seconds, 13a was obtained at a conversion rate of 78% and a selectivity of 65%. When 4-aminophenol 13 and 2.2 molar equivalents of acetic anhydride were used as a substrate, Method SF was carried out at a temperature of 50 ° C., a pressure of 5 MPa, and a residence time of 9.9 seconds. A conversion of 100% and a selectivity of 99.5 were obtained. % N-acetyl compound 13a was obtained.

上記の結果から、好適な反応条件は、基質の化学構造に強く依存しており、発熱反応か吸熱反応であることにも深く関与する。1級アミンの場合には、通常、発熱反応であり、基質に対して無水カルボン酸1.1モル等量、方法AF1又は方法AF2で実施することが好適であり、滞留時間1.1秒で選択率99%、収率99%以上で対応するN−アシル化合物が得られた(実施例11、21、22、24)。また、2級アミンの場合にも、通常、発熱反応であり、方法AF1により基質に対して、無水カルボン酸1.1モル等量、滞留時間1.1秒で、転化率99.8%、選択率99%以上で対応するN−アシル化物が得られる(実施例1、3)。ところが、立体効果や共鳴効果が強い場合には、窒素原子に無水カルボン酸が攻撃しにくくなるか、窒素原子上の不対電子が小さくなることで反応性が低下し、吸熱反応に転じ、方法AF1では、N−アシル化合物を良好な収率で得ることはできなくなる(実施例5)。その場合、方法SF1で、温度100℃〜200℃、圧力5MPa、滞留時間9.9秒でN−アシル化合物を得ることができる(実施例6、19)。   From the above results, suitable reaction conditions strongly depend on the chemical structure of the substrate, and are deeply involved in being exothermic or endothermic. In the case of primary amines, this is usually an exothermic reaction, preferably carried out with 1.1 molar equivalents of carboxylic anhydride, Method AF1 or Method AF2, relative to the substrate, with a residence time of 1.1 seconds. The corresponding N-acyl compounds were obtained with a selectivity of 99% and a yield of 99% or more (Examples 11, 21, 22, and 24). Also in the case of secondary amine, it is usually an exothermic reaction, and 1.1 mol equivalent of carboxylic anhydride and residence time of 1.1 seconds with respect to the substrate by Method AF1, a conversion rate of 99.8%, The corresponding N-acylated product is obtained with a selectivity of 99% or more (Examples 1 and 3). However, when the steric effect or the resonance effect is strong, the carboxylic anhydride is less likely to attack the nitrogen atom or the unpaired electron on the nitrogen atom is reduced, so that the reactivity is lowered and the reaction is changed to an endothermic reaction. With AF1, the N-acyl compound cannot be obtained in good yield (Example 5). In that case, an N-acyl compound can be obtained by Method SF1 at a temperature of 100 ° C. to 200 ° C., a pressure of 5 MPa, and a residence time of 9.9 seconds (Examples 6 and 19).

3級アミンの場合には、通常、発熱反応であり、方法AF1により、基質に対して無水カルボン酸1.1モル等量、滞留時間1.1秒程度であり、対応するN−アシル化物が転化率88%、選択率100%と立体効果によりやや転化率が低下する(実施例11、12)。また、アニリン誘導体の場合、芳香環の置換基の立体効果はほとんど影響ないものの(実施例7、9)、共鳴効果の影響があり、電子吸引性置換基は窒素上の不対電子を小さくし、反応性を低下させ、吸熱反応になる(実施例7vs.15、16)のに対して、電子供与性置換基は、反応性を幾分向上させるが、吸熱反応である(実施例7vs.30)。また、酢酸中でのアニリン誘導体は、酢酸塩を形成するため、窒素原子上の不対電子が小さくなり、N−アシル化が進行しにくくなり、立体効果が大きい場合には、顕著となってくる(実施例8、10)。   In the case of a tertiary amine, it is usually an exothermic reaction. According to Method AF1, the carboxylic anhydride is 1.1 molar equivalents with respect to the substrate and the residence time is about 1.1 seconds. The conversion rate slightly decreases due to the steric effect of 88% conversion and 100% selectivity (Examples 11 and 12). In the case of an aniline derivative, the steric effect of the substituent on the aromatic ring has little influence (Examples 7 and 9), but there is an influence of the resonance effect, and the electron withdrawing substituent reduces the unpaired electron on the nitrogen. , Reducing the reactivity and resulting in an endothermic reaction (Examples 7 vs. 15, 16), whereas the electron-donating substituents are somewhat endothermic (Example 7 vs. 15). 30). An aniline derivative in acetic acid forms an acetate salt, so that unpaired electrons on the nitrogen atom are reduced, N-acylation is difficult to proceed, and the steric effect is significant. Come (Examples 8 and 10).

また、生成物であるN−アシル化合物の熱安定性あるいは加水分解性も、収率に影響し、必ずしも温度が高い方が収率が良いとは限らない(実施例1vs.2、実施例15vs.14、実施例19vs.20、実施例22vs.23、実施例24vs.25)。そのため、無水カルボン酸を等モル以上添加し、より低温で実施した方が良い(実施例16vs.14、実施例30vs.29)が、それでも、バッチ式より流通式の方が良い結果を与える(実施例18vs.16)。   In addition, the thermal stability or hydrolyzability of the product N-acyl compound also affects the yield, and the higher the temperature, the better the yield is not necessarily (Example 1 vs. 2, Example 15 vs. Example 1). .14, Example 19 vs. 20, Example 22 vs. 23, Example 24 vs. 25). Therefore, it is better to add carboxylic anhydride in an equimolar amount or more and carry out at a lower temperature (Example 16 vs. 14, Example 30 vs. 29), but still, the flow type gives better results than the batch type ( Example 18 vs. 16).

以上の実施例から、高温高圧水を反応溶媒として、無触媒でN−アシル化合物が高収率で合成可能であることが明らかとなった。また、アシル化後、回収水溶液に水を注入してデカンテーションし、油/水二層溶液に分離後、N−アシル化合物を含む油層を分液回収する一方、水層からは酢酸と水を共沸蒸留によって分離し、回収する簡易な連続分離法を構築できることも明らかとなった。   From the above examples, it was revealed that N-acyl compounds can be synthesized in high yield without catalyst using high-temperature and high-pressure water as a reaction solvent. After acylation, water is poured into the recovered aqueous solution, followed by decantation. After separation into an oil / water bilayer solution, an oil layer containing an N-acyl compound is separated and recovered, while acetic acid and water are removed from the aqueous layer. It also became clear that a simple continuous separation method for separation and recovery by azeotropic distillation could be constructed.

以上詳述したように、本発明は、高温高圧流体を反応溶媒として、カルボン酸無水物及びヘテロ水素化物から有機溶媒を用いることなく、無触媒でN−アシル化合物を合成する方法及びその反応組成物に係るものであり、従来法では、ヘテロ水素化物とカルボン酸無水物からN−アシル化合物の合成は、有機溶媒に触媒を添加し、数時間の反応を実施する必要があったが、本発明で示した亜臨界流体・超臨界流体を用いることにより、触媒無添加で、有機溶媒を使用することなく、高速で、連続的にN−アシル化合物を合成することが可能となった。このことは、香料、医薬品、食品として有用なN−アシル化合物を、短時間で、大量に連続的に生産できるというメリットをもたらす。また、アシル化後、回収水溶液に水を注入してデカンテーションし、油/水二層溶液に分離後、N−アシル化合物を含む油層を分液回収する一方、水層からは酢酸と水を共沸蒸留によって分離し、回収する簡易な連続分離法により、氷酢酸と水を分離し、水をリサイクルすることが可能である。これらのことから、合成・分離プロセスを単純化させることで、プロセスの初期コスト及びランニングコストを圧縮することが可能である。更に、中和処理の後処理も不必要であり、環境調和型生産が可能となる。本発明は、香料、医薬品、食品として有用なN−アシル化合物の新しい大量生産プロセスとして、既存の生産プロセスに代替し得るものである。   As described above in detail, the present invention uses a high-temperature and high-pressure fluid as a reaction solvent, a method for synthesizing an N-acyl compound without using an organic solvent from a carboxylic acid anhydride and a heterohydride, and a reaction composition thereof. In the conventional method, synthesis of an N-acyl compound from a hetero hydride and a carboxylic acid anhydride required adding a catalyst to an organic solvent and carrying out a reaction for several hours. By using the subcritical fluid / supercritical fluid shown in the invention, it has become possible to synthesize N-acyl compounds continuously at high speed without using a catalyst and without using an organic solvent. This brings about the merit that N-acyl compounds useful as fragrances, pharmaceuticals, and foods can be continuously produced in large quantities in a short time. After acylation, water is poured into the recovered aqueous solution, followed by decantation. After separation into an oil / water bilayer solution, an oil layer containing an N-acyl compound is separated and recovered, while acetic acid and water are removed from the aqueous layer. It is possible to separate glacial acetic acid and water and to recycle water by a simple continuous separation method that separates and collects by azeotropic distillation. From these facts, it is possible to compress the initial cost and running cost of the process by simplifying the synthesis / separation process. Furthermore, post-treatment of the neutralization treatment is unnecessary, and environmentally conscious production becomes possible. The present invention can replace existing production processes as a new mass production process of N-acyl compounds useful as fragrances, pharmaceuticals, and foods.

触媒・有機溶媒用いるヘテロ水素化物のアシル化を示す。This shows acylation of heterohydride using a catalyst / organic solvent. 触媒・有機溶媒を用いるアシル化の後処理フローチャートを示す。The post-process flowchart of acylation using a catalyst and an organic solvent is shown. 無触媒・水溶媒を用いるアシル化の後処理フローチャートを示す。The post-process flowchart of acylation using a non-catalyst and a water solvent is shown. 高温高圧赤外フローセルを示す。1 shows a high temperature high pressure infrared flow cell. 実施例で用いた流通型高温高圧流体その場赤外分光測定装置を示す。1 shows a flow-type high-temperature and high-pressure fluid in-situ infrared spectrometer used in the examples. 窓なし高温高圧フローセルを示す。1 shows a high temperature and high pressure flow cell without a window. 実施例で用いた流通式高温高圧反応装置の主要部分を示す。The main part of the flow-type high temperature / high pressure reactor used in the examples is shown. 実施例で用いた流通式常温高圧反応装置を示す。The flow-type room temperature high pressure reactor used in the Example is shown.

符号の説明Explanation of symbols

1 ティー又はクロス(片側口φ4mmネジ切り)
2 φ4mm×5.0mmL六角ネジ
3 ワンリングフェラル付オネジ
4 SUS316チューブ
5 水送液ポンプ
6 反応物送液ポンプ
7 洗浄水送液ポンプ
8 冷却フランジ(冷却水が循環する)
9 水加熱コイル
10 反応物導入管
11 温度センサ
12 温度センサーシース
13 炉体
14 高温高圧フローセル(通常昇温ではティー型、急速昇温ではクロス型)
15 ZnSe窓
16 溶媒導入管
17 排出配管
18 ティー
19 背圧弁
21 水溶液
22 洗浄水
23 水溶液ポンプ
24 洗浄用純水送液ポンプ
25 炉体加熱システム
26 炉体
27 高温高圧赤外フローセル
28 冷却水(入口)
29 冷却水(出口)
30 背圧弁
31 排出水溶液受器
32 可動鏡
33 可動鏡
34 干渉計
35 光源
36 赤外レーザー
37 MCT受光器
38 TGS受光器
39 解析モニター
40 反応物送液ポンプ
41 基質送液ポンプ
42 水送液ポンプ
43 反応ティー
44 配管
45 混合ティー
46 排出配管
47 冷却器
48 背圧弁
49 回収容器
50 温度センサ
51 温度センサ
1 Tee or cloth (one side opening φ4mm threaded)
2 φ4mm × 5.0mmL hexagon screw 3 Male screw with one ring ferrule 4 SUS316 tube 5 Water feed pump 6 Reactant feed pump 7 Washing water feed pump 8 Cooling flange (cooling water circulates)
9 Water heating coil 10 Reactant introduction pipe 11 Temperature sensor 12 Temperature sensor sheath 13 Furnace body 14 High-temperature high-pressure flow cell (Tee type for normal temperature rise, cross-type for rapid temperature rise)
15 ZnSe window 16 Solvent introduction pipe 17 Discharge pipe 18 Tee 19 Back pressure valve 21 Aqueous solution 22 Washing water 23 Aqueous solution pump 24 Cleaning pure water feed pump 25 Furnace heating system 26 Furnace 27 High-temperature high-pressure infrared flow cell 28 Cooling water (inlet) )
29 Cooling water (exit)
30 Back pressure valve 31 Discharged aqueous solution receiver 32 Movable mirror 33 Movable mirror 34 Interferometer 35 Light source 36 Infrared laser 37 MCT light receiver 38 TGS light receiver 39 Analysis monitor 40 Reactant liquid feed pump 41 Substrate liquid feed pump 42 Water liquid feed pump 43 reaction tee 44 piping 45 mixing tee 46 discharge piping 47 cooler 48 back pressure valve 49 recovery container 50 temperature sensor 51 temperature sensor

Claims (12)

無水カルボン酸とヘテロ水素化物との反応組成物であって、触媒及び有機溶媒の残存がないことを特徴とするN−アシル化合物組成物。   An N-acyl compound composition, which is a reaction composition of a carboxylic anhydride and a heterohydride, and has no catalyst and no organic solvent remaining. 無水カルボン酸とヘテロ水素化物からN−アシル化合物を合成する方法であって、発熱反応の場合には、常温流体、吸熱反応の場合には、高温高圧状態の亜臨界流体ないし超臨界流体を反応溶媒として使用し、触媒を用いることなく、無水カルボン酸とヘテロ水素化物から一段階の合成反応でN−アシル化合物を選択的に合成することを特徴とするN−アシル化合物の製造方法。   A method for synthesizing an N-acyl compound from a carboxylic anhydride and a heterohydride. In the case of an exothermic reaction, a normal temperature fluid is reacted, and in the case of an endothermic reaction, a high temperature and high pressure subcritical fluid or supercritical fluid is reacted. A method for producing an N-acyl compound, which is used as a solvent and selectively synthesizes an N-acyl compound by a one-step synthesis reaction from a carboxylic anhydride and a heterohydride without using a catalyst. 高温高圧状態の亜臨界ないし超臨界水を反応溶媒として使用する、請求項2記載のN−アシル化合物の製造方法。   The method for producing an N-acyl compound according to claim 2, wherein subcritical or supercritical water in a high temperature and high pressure state is used as a reaction solvent. ヘテロ水素化物におけるヘテロ原子又は置換ヘテロ原子が、窒化水素(NH)、又はアルキル置換窒素(NR’)である、請求項2記載の方法。   The method according to claim 2, wherein the heteroatom or substituted heteroatom in the heterohydride is hydrogen nitride (NH) or alkyl-substituted nitrogen (NR ′). 基質の反応点に隣接する1級、2級、3級の骨格に対して、温度又は無水カルボン酸の量を調整することにより、N−アシル化合物を選択的に合成する、請求項2記載の方法。   The N-acyl compound is selectively synthesized by adjusting the temperature or the amount of carboxylic anhydride with respect to the primary, secondary, or tertiary skeleton adjacent to the reaction point of the substrate. Method. 温度100〜400℃、圧力0.1〜40MPaの亜臨界流体ないし超臨界流体を反応溶媒として使用する、請求項2記載の方法。   The method according to claim 2, wherein a subcritical fluid or supercritical fluid having a temperature of 100 to 400 ° C and a pressure of 0.1 to 40 MPa is used as a reaction solvent. 常温流体、亜臨界流体ないし超臨界流体として、水、酢酸、それ以外の無機溶媒、もしくは有機溶媒もしくは無機溶媒と有機溶媒の混合溶媒を用いる、請求項2記載の方法。   The method according to claim 2, wherein water, acetic acid, other inorganic solvent, or an organic solvent or a mixed solvent of an inorganic solvent and an organic solvent is used as the normal temperature fluid, subcritical fluid or supercritical fluid. 流通式高温高圧装置に、基質及び反応溶媒を導入し、反応時間を3〜60秒の範囲で変化させることで合成反応を実施する、請求項2記載の方法。   The method according to claim 2, wherein the synthesis reaction is carried out by introducing a substrate and a reaction solvent into a flow-type high-temperature and high-pressure apparatus and changing the reaction time in the range of 3 to 60 seconds. 発熱反応の場合に、流通式常温高圧装置に、基質及び反応溶媒を導入し、反応時間を1〜60秒の範囲で変化させることで合成反応を実施する、請求項2記載の方法。   The method according to claim 2, wherein in the case of an exothermic reaction, the synthesis reaction is carried out by introducing a substrate and a reaction solvent into a flow-type room temperature high pressure apparatus and changing the reaction time in the range of 1 to 60 seconds. 水を送液する水送液ポンプ、高温高圧フローセル、基質を送液する反応物送液ポンプ、炉体、反応物を炉体に導入する反応物導入管、反応溶液を排出する排出液ライン、冷却フランジ及び圧力を設定する背圧弁を具備していることを特徴とするN−アシル化合物合成装置。   A water feed pump for feeding water, a high-temperature and high-pressure flow cell, a reactant feed pump for feeding a substrate, a furnace body, a reactant introduction pipe for introducing the reactant into the furnace body, an exhaust liquid line for discharging the reaction solution, An N-acyl compound synthesizer comprising a cooling flange and a back pressure valve for setting pressure. 吸熱反応の場合において、水加熱用コイルが配設されている、請求項10記載のN−アシル化合物合成装置。   The apparatus for synthesizing an N-acyl compound according to claim 10, wherein a coil for water heating is provided in the case of an endothermic reaction. 請求項2記載の方法において、N−アシル化後、回収水溶液に水を注入してデカンテーションし、油/水二層溶液に分離後、N−アシル化合物を含む油層を分液回収する一方、水層からは酢酸と水を共沸蒸留によって分離し回収する簡易な連続分離法。   The method according to claim 2, wherein after N-acylation, water is injected into the recovered aqueous solution and decanted, and after separation into an oil / water bilayer solution, an oil layer containing the N-acyl compound is separated and recovered, A simple continuous separation method in which acetic acid and water are separated and recovered from the aqueous layer by azeotropic distillation.
JP2006127111A 2006-04-28 2006-04-28 N-acyl compound, and method and device for producing the same Pending JP2007297338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006127111A JP2007297338A (en) 2006-04-28 2006-04-28 N-acyl compound, and method and device for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006127111A JP2007297338A (en) 2006-04-28 2006-04-28 N-acyl compound, and method and device for producing the same

Publications (1)

Publication Number Publication Date
JP2007297338A true JP2007297338A (en) 2007-11-15

Family

ID=38767146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006127111A Pending JP2007297338A (en) 2006-04-28 2006-04-28 N-acyl compound, and method and device for producing the same

Country Status (1)

Country Link
JP (1) JP2007297338A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352851A (en) * 1989-07-20 1991-03-07 Lion Corp Production of n,n,n',n'-tetraacetylethylenediamine
JPH03246266A (en) * 1990-02-21 1991-11-01 Chugai Pharmaceut Co Ltd Production of 3-acetylamino-4-(3-methoxyphenoxy)-benzoic acid
JPH06316554A (en) * 1993-01-20 1994-11-15 Rhone Poulenc Chim Production of maleamic acid
JPH0762098A (en) * 1993-03-11 1995-03-07 Asahi Chem Ind Co Ltd New fluorine-containing polyimide
JPH1087604A (en) * 1996-08-27 1998-04-07 Haarmann & Reimer Gmbh Use of 3-acylthiohexyl as aromatic substance and fragrance generating substance
JPH10218847A (en) * 1997-02-14 1998-08-18 Daito Kagaku Kk Production of tartranilic acid
JP2000072732A (en) * 1998-08-26 2000-03-07 Nippon Polyurethane Ind Co Ltd Production of amide group-containing polyol
JP2002167313A (en) * 2000-07-24 2002-06-11 Asahi Kasei Corp Surface active agent
WO2004020394A1 (en) * 2002-08-27 2004-03-11 Asahi Kasei Chemicals Corporation Novel composition containing acyl group
JP2007291096A (en) * 2006-03-31 2007-11-08 National Institute Of Advanced Industrial & Technology Selective sequential polyacylation and device therefor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352851A (en) * 1989-07-20 1991-03-07 Lion Corp Production of n,n,n',n'-tetraacetylethylenediamine
JPH03246266A (en) * 1990-02-21 1991-11-01 Chugai Pharmaceut Co Ltd Production of 3-acetylamino-4-(3-methoxyphenoxy)-benzoic acid
JPH06316554A (en) * 1993-01-20 1994-11-15 Rhone Poulenc Chim Production of maleamic acid
JPH0762098A (en) * 1993-03-11 1995-03-07 Asahi Chem Ind Co Ltd New fluorine-containing polyimide
JPH1087604A (en) * 1996-08-27 1998-04-07 Haarmann & Reimer Gmbh Use of 3-acylthiohexyl as aromatic substance and fragrance generating substance
JPH10218847A (en) * 1997-02-14 1998-08-18 Daito Kagaku Kk Production of tartranilic acid
JP2000072732A (en) * 1998-08-26 2000-03-07 Nippon Polyurethane Ind Co Ltd Production of amide group-containing polyol
JP2002167313A (en) * 2000-07-24 2002-06-11 Asahi Kasei Corp Surface active agent
WO2004020394A1 (en) * 2002-08-27 2004-03-11 Asahi Kasei Chemicals Corporation Novel composition containing acyl group
JP2007291096A (en) * 2006-03-31 2007-11-08 National Institute Of Advanced Industrial & Technology Selective sequential polyacylation and device therefor

Similar Documents

Publication Publication Date Title
Elinson et al. Solvent-free cascade reaction: direct multicomponent assembling of 2-amino-4H-chromene scaffold from salicylaldehyde, malononitrile or cyanoacetate and nitroalkanes
Struempel et al. Making diazomethane accessible for R&D and industry: generation and direct conversion in a continuous micro-reactor set-up
JP4836181B2 (en) Acyl compound production method and apparatus
JP2009132663A (en) Method for producing acroleins and apparatus producing the same
CN107501196B (en) Intermediates for the preparation of diazepam-D5 and diazepam-D8 and processes for their preparation
JP5146928B2 (en) Method for producing Claisen rearrangement compound and synthesis apparatus thereof
JP2007291096A (en) Selective sequential polyacylation and device therefor
JP2007297338A (en) N-acyl compound, and method and device for producing the same
JP4953341B2 (en) Process for producing polyacyl compound and apparatus therefor
JP2007145800A (en) Method for producing nitro compound and apparatus for producing the same
Sobolev et al. p-Nitrotoluene bromination using barium fluorobromate Ba (BrF4) 2
Cao et al. An efficient method to synthesize TNAD by the nitration of 1, 4, 5, 8-tetraazabicyclo-[4, 4, 0]-decane with N2O5 and acidic ionic liquids
JP5077908B2 (en) Method for producing acylated tocopherol
JP5494904B2 (en) Mononitration method and production reactor
JP2010248113A (en) Method for producing 5-hydroxymethyl-2-furfuryl aldehyde and apparatus therefor
RU2461543C1 (en) Method for producing paracetamol
JP2929003B2 (en) Method for producing lactam in high-temperature hot water
JP5077911B2 (en) Method for producing saccharide acyl compounds
US7045622B2 (en) Process for producing lactam
Wolf et al. Continuous flow synthesis of the ionizable lipid ALC-0315
Sobolev et al. Electrophilic bromination of nitrobenzene using barium tetrafluorobromate (III)
RU2739325C1 (en) Method for producing 4-amino-1,2,4-triazole
CN114105857B (en) 3-azidoindoline compound and preparation method thereof
RU2495865C1 (en) METHOD OF PRODUCING n-ACETYLAMINOPHENOL
JP2006124348A (en) Method for synthesizing citral and apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130128