JP2007289930A - Recovery method and recovery system of valuable substance from crushing residue - Google Patents
Recovery method and recovery system of valuable substance from crushing residue Download PDFInfo
- Publication number
- JP2007289930A JP2007289930A JP2007072735A JP2007072735A JP2007289930A JP 2007289930 A JP2007289930 A JP 2007289930A JP 2007072735 A JP2007072735 A JP 2007072735A JP 2007072735 A JP2007072735 A JP 2007072735A JP 2007289930 A JP2007289930 A JP 2007289930A
- Authority
- JP
- Japan
- Prior art keywords
- dust
- sorting
- ferrous metals
- heavy
- crushing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000011084 recovery Methods 0.000 title abstract description 19
- 239000000126 substance Substances 0.000 title 1
- 229910052751 metal Inorganic materials 0.000 claims abstract description 96
- 239000002184 metal Substances 0.000 claims abstract description 96
- -1 ferrous metals Chemical class 0.000 claims abstract description 72
- 239000000428 dust Substances 0.000 claims abstract description 66
- 239000000463 material Substances 0.000 claims abstract description 66
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims abstract description 25
- 238000007885 magnetic separation Methods 0.000 claims abstract 2
- 239000007788 liquid Substances 0.000 claims description 40
- 239000002245 particle Substances 0.000 claims description 25
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 22
- 238000003860 storage Methods 0.000 claims description 21
- 229910052742 iron Inorganic materials 0.000 claims description 11
- 230000005611 electricity Effects 0.000 abstract description 3
- 238000004064 recycling Methods 0.000 abstract description 2
- 238000011282 treatment Methods 0.000 abstract description 2
- 239000000843 powder Substances 0.000 abstract 4
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 230000005484 gravity Effects 0.000 description 11
- 150000002739 metals Chemical class 0.000 description 10
- 239000002699 waste material Substances 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000003562 lightweight material Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910001385 heavy metal Inorganic materials 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 238000007599 discharging Methods 0.000 description 2
- 239000006148 magnetic separator Substances 0.000 description 2
- 239000010813 municipal solid waste Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011221 initial treatment Methods 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/10—Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/52—Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
Landscapes
- Processing Of Solid Wastes (AREA)
- Combined Means For Separation Of Solids (AREA)
- Disintegrating Or Milling (AREA)
- Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
Abstract
Description
本発明は、粗大ゴミなどの大型廃棄物を破砕して発生した破砕残渣中に含まれる有用な鉄材・非鉄金属類その他を効率よく回収するための回収方法と、この回収方法を実現するためのシステムである。 The present invention provides a recovery method for efficiently recovering useful ferrous materials, non-ferrous metals, and the like contained in crushing residues generated by crushing large waste such as coarse garbage, and a method for realizing this recovery method System.
工業製品などの新規生産が活性化する一方で廃棄物も大量に発生しており、一般にこれらの廃棄物は、破砕して有用な金属分を回収し、破砕残渣とした後に残渣を焼却処理して、最後に埋め立て処分するものであった。
従来の回収方法や回収システムは、金属分の回収効率が悪く破砕残渣の中に金属分が多量に含まれたままであることから、焼却処理の段階では溶融しきれない含有金属物が炉内に溶着して炉壁を損傷する問題点がある。さらに埋立処分場の新規設置が極めて困難であることから既存の処分場の延命を図らざるを得ず、このことから効率的な廃棄物の減量システムの構築が期待されている。 Conventional recovery methods and recovery systems have poor metal recovery efficiency and contain a large amount of metal in the crushed residue. There is a problem that the furnace wall is damaged by welding. Furthermore, since it is extremely difficult to establish a new landfill site, it is necessary to extend the life of the existing landfill site, and this is expected to establish an efficient waste reduction system.
本発明は以上に述べたような実情に鑑み、破砕残渣からの有価物の選別処理工程を効率化し、資源の再利用と排出残渣量の低減に寄与できる回収方法と、この回収方法を実現するためのシステムを提供することにある。 In view of the circumstances as described above, the present invention realizes a recovery method that can contribute to the recycling of resources and the reduction of the amount of discharged residue, and the recovery method that makes it efficient to sort valuable materials from crushing residues. It is to provide a system for this purpose.
上記の課題を達成するために本発明による破砕残渣からの有価物の回収システムのうち請求項1記載の発明は、回収した破砕残渣を破砕部で解し、一次磁力選別部で鉄材と非鉄金属類その他に選別するステップと、該非鉄金属類その他類を風力選別部の風圧により軽量粉塵と重量粉塵とに選別するステップと、選別した軽量粉塵および重量粉塵のそれぞれに対して、導電部を有する二次磁力選別部より導電して非鉄金属その他と非導電性のダスト類とを分別するステップとを経て鉄材・非鉄金属類その他を得ることを特徴とする破砕残渣からの有価物の回収方法。 In order to achieve the above object, the invention according to claim 1 of the system for recovering valuable materials from the crushing residue according to the present invention, the recovered crushing residue is solved at the crushing part, and the iron material and the non-ferrous metal at the primary magnetic force sorting part A non-ferrous metal and the like, a step of sorting the non-ferrous metals and others into a light dust and a heavy dust by the wind pressure of the wind power sorting unit, and a conductive part for each of the sorted light dust and heavy dust A method for recovering valuable materials from crushing residues, comprising obtaining ferrous materials, non-ferrous metals and others through a step of separating non-ferrous metals and other and non-conductive dusts by conducting electricity from a secondary magnetic force sorting section.
請求項1の破砕残渣からの有価物の回収方法を実現するためのシステムは請求項2のように、破砕部と、風力選別部と、一次磁力選別部と、二次軽量物磁力選別部と、二次重量物磁力選別部とを備え、前記破砕部は、破砕残渣の受入部と解し部を有すると共に、該解し部で解した前記破砕残渣を一次磁力選別部に送る搬送部を有しており、一次磁力選別部は、鉄材と非鉄金属類その他含有粉塵とを選別し且つ該非鉄金属類その他含有粉塵を風力選別部に送る搬送路を有し、風力選別部は、前記非鉄金属類その他の含有粉塵を風圧により軽量粉塵と重量粉塵とに選別する一方、軽量粉塵を二次軽量物磁力選別部に送る軽量物搬送路を有すると共に、重量粉塵を二次重量物磁力選別部に送る重量物搬送路を有しており、二次軽量物磁力選別部と二次重量物磁力選別部は、軽量粉塵および重量粉塵のそれぞれに含有する非鉄金属類その他に導電して非導電性のダスト類と選別する導電部を有していることを特徴とする。 The system for realizing the method for recovering valuable materials from the crushing residue according to claim 1 includes a crushing unit, a wind power sorting unit, a primary magnetic sorting unit, and a secondary lightweight material magnetic sorting unit, as in claim 2. A crushing part having a receiving part for crushing residue and a cleaving part, and a conveying part for sending the crushing residue solved by the cleaving part to a primary magnetic force sorting part. The primary magnetic force sorting unit has a conveyance path for sorting ferrous material and non-ferrous metals and other contained dust and sending the non-ferrous metals and other contained dust to the wind sorting unit, While sorting dust containing metal and other materials into light dust and heavy dust by wind pressure, it has a light material transport path that sends light dust to the secondary light material magnetic force sorting unit, and heavy dust is separated from the secondary heavy material magnetic force sorting unit. A heavy-duty conveyance path to be sent to Heavy magnetic separator unit is characterized by having a conductive portion for sorting conductively nonferrous metals contain other to the respective lightweight dust and weight dust and non-conductive dust types.
破砕残渣の回収先としては、例えば地方公共団体や企業などが挙げられ、一方、回収する破砕残渣の種類としては、例えば埋め立て向けのものや焼却に回されるもの等が挙げられる。軽量粉塵とは、非鉄金属類その他に加えて、破砕後の廃プラスティック類などの樹脂粉塵や、あるいは糸クズおよびゴム等といったブロワからの風で吹き飛ばせる程度のものを意味し、重量粉塵はそれ以外の風力では吹き飛ばされない重量のあるものを意味している。搬送部は、破砕残渣の回収時から該破砕残渣に含まれる非鉄金属類その他の選別までの一連の処理工程において、破砕残渣を各工程に移行する毎に送り出せる手段であればよく、例えば搬送コンベアやフィーダ、シュートなどが挙げられる。 Examples of the collection destination of the crushing residue include local governments and companies. On the other hand, examples of the type of crushing residue to be collected include those for landfill and those that are sent to incineration. In addition to non-ferrous metals and other materials, lightweight dust means resin dust such as waste plastic after crushing, or dust that can be blown away by wind from blowers such as lint and rubber. It means that there is a weight that is not blown away by other wind power. The conveyance unit may be any means that can send out the crushing residue every time it moves to each step in a series of processing steps from the collection of the crushing residue to the selection of nonferrous metals and other contained in the crushing residue. Examples include conveyors, feeders and chutes.
本発明による請求項2記載の発明は、二次磁力選別部により分別した非鉄金属類その他を篩部に投入するステップと、篩部により粒径10mm〜110mmの範囲内の非鉄金属類その他のみを選別して重液選別部に投入するステップとを経て鉄材・非鉄金属類その他を得ることを特徴とする。 The invention described in claim 2 according to the present invention includes a step of feeding non-ferrous metals and the like separated by the secondary magnetic force sorting part into the sieve part, and a non-ferrous metal and the like having a particle diameter of 10 mm to 110 mm by the sieve part. It is characterized in that ferrous materials, non-ferrous metals and others are obtained through a step of sorting and feeding into a heavy liquid sorting unit.
請求項2の破砕残渣からの有価物の回収方法を実現するためのシステムは請求項4のように、二次軽量物磁力選別部および二次重量物磁力選別部で得た非鉄金属類その他は、重液選別部に搬送するものであり、前記重液選別部は、前記非鉄金属類その他の収容部を有し、且つ収容部の中には重液を格納してあり、前記収容部の取入側は、粒径10mm〜110mmの範囲内の非鉄金属類その他のみを選別して前記収容部に投入する篩部を備えていることを特徴とする。 The system for realizing the valuable material recovery method from the crushing residue according to claim 2 is a non-ferrous metal or the like obtained by the secondary light weight magnetic force sorting section and the secondary heavy weight magnetic force sorting section as in claim 4. , Transported to a heavy liquid sorting section, the heavy liquid sorting section includes the non-ferrous metals and other storage section, and the storage section stores heavy liquid, The intake side is provided with a sieve part for selecting only non-ferrous metals and others having a particle diameter of 10 mm to 110 mm and putting them in the housing part.
重液選別部は、収容部に投入した破砕残渣に含まれる成分のうち重液よりも比重の軽いものを浮かせて排出し、一方、重液の中に残留したものをコンベアなどの搬送手段で収容部の外に送り出すことにより有価な非鉄類その他を回収していくものである。篩部は、具体的にトロンメルや振動ホッパーなどを用いており、重液選別部で処理する破砕残渣の粒径の範囲については、粒径10mmよりも小さいものであれば重液の比重の相違程度では有価物(銅、アルミニウムなど)の取出しが難しく、一方、粒径110mmを越える場合には、重液選別部への負担(重液の収容部の内壁損傷、搬送手段への過剰な重量的負荷など)が大きくなるためである。収容部は、選別するものによって比重の違い重液を入れ替えてもよいし、あるいは複数の収容部を設け、それぞれに比重の違う重液を格納するものであってもよい。 The heavy liquid sorting unit floats and discharges the components contained in the crushing residue put into the storage unit with a specific gravity lower than that of the heavy liquid, while the remaining one in the heavy liquid is transferred by a conveyor or other transport means. Valuable non-ferrous metals and other materials are collected by sending them out of the housing. The sieving part specifically uses a trommel or a vibrating hopper, and the particle size range of the crushing residue processed in the heavy liquid sorting part is different in the specific gravity of the heavy liquid as long as the particle diameter is smaller than 10 mm. However, if the particle size exceeds 110 mm, the burden on the heavy liquid sorting section (damage of the inner wall of the heavy liquid storage section, excessive weight on the transport means) is difficult. This is because the load on the machine is large. The storage unit may replace heavy liquids having different specific gravities depending on what is selected, or may be provided with a plurality of storage units that store heavy liquids having different specific gravities.
本発明の破砕残渣からの有価物の回収方法および回収システム(いままでにない発明となる)によれば、例えば、埋め立て向けおよび焼却向けの破砕残渣から鉄材・非鉄金属類その他の回収がなされることにより、通常は廃棄処理される破砕残渣から再利用可能な有価物(鉄材・非鉄金属類)の回収を可能とし、しかも鉄材・非鉄金属類その他の回収によって埋め立て向けの破砕残渣であれば、有限な埋立処分場の省スペース化に寄与できる一方、焼却向けの破砕残渣であれば溶融した鉄材・非鉄金属類その他の付着による炉内の損傷を最小限にとどめることができる。また粗大ゴミなどの破砕処理後に残渣の含有率が非常に少なくって、精度の高い鉄材・非鉄金属類その他の選別が行えるので、より価値の高い有価物の取得が可能となり、このことから資源の再利用性が高まることになる。 According to the method and system for recovering valuable materials from crushed residues according to the present invention (which will be an unprecedented invention), for example, ferrous materials, non-ferrous metals and the like are collected from crushed residues for landfill and incineration. This makes it possible to recover valuable materials (ferrous materials and non-ferrous metals) that are normally disposed of by disposal, and if the crushing residue is for landfill by collecting ferrous materials and non-ferrous metals, While it can contribute to space saving at a finite landfill site, if it is a crushing residue for incineration, damage in the furnace due to adhesion of molten ferrous materials, non-ferrous metals and others can be minimized. In addition, the residue content is extremely low after crushing processing of bulky trash, etc., and it is possible to sort ferrous materials, non-ferrous metals, etc. with high accuracy, so it is possible to acquire valuable resources with higher value. Reusability will increase.
本発明のうち請求項3記載の破砕残渣からの有価物の回収システムによれば、一定の範囲内で粒径の整った非鉄金属類その他を含む破砕残渣を選別処理することで、有価物の取得効率が高まるとともに、本発明で使用する重液選別部の構成機器の保護を図ることができる。 According to the system for recovering valuable materials from the crushing residue according to claim 3 of the present invention, the crushing residue containing non-ferrous metals and the like having a uniform particle diameter within a certain range is subjected to a sorting process, whereby The acquisition efficiency is increased, and the components of the heavy liquid sorting unit used in the present invention can be protected.
図1は本実施形態による破砕残渣からの有価物の回収方法を実現するための回収システムの一次処理設備Aの全体を示す平面図であり、図2は、破砕部1の側面図であり、図3は、一次磁力選別部3aの側面図であり、図4は、風力選別部2の作動状態を示す側面図であり、図5(a)(b)は、二次軽量物磁力選別部3bおよび二次重量物磁力選別部3cの作動状態を示す側面図であり、図6は、二次処理設備Bの処理手順を示すブロック図であり、図7は、篩部16を示す側面図であり、図8は、重液選別部4の作動状態を示す側面図である。 FIG. 1 is a plan view showing the entire primary processing equipment A of a recovery system for realizing a method for recovering valuable materials from crushing residues according to this embodiment, and FIG. 2 is a side view of the crushing unit 1. 3 is a side view of the primary magnetic force sorting unit 3a, FIG. 4 is a side view showing the operating state of the wind force sorting unit 2, and FIGS. 5 (a) and 5 (b) are secondary light weight magnetic force sorting units. 3b is a side view showing the operating state of the secondary heavy material magnetic force sorting unit 3c, FIG. 6 is a block diagram showing a processing procedure of the secondary processing equipment B, and FIG. FIG. 8 is a side view showing the operating state of the heavy liquid sorting unit 4.
本実施による破砕残渣からの有価物の回収システムは図1に示すように、一次処理設備Aと二次処理設備Bとからなっており、一次処理設備Aではおもに、破砕部1による回収済みの破砕残渣あるいは未処理廃棄物38の解し工程、一次磁力選別部3aによる鉄材26と非鉄金属類その他含有粉塵30aとの選別処理する工程、風力選別部2による非鉄金属類その他含有粉塵30aを軽量粉塵27と重量粉塵28に選別処理する工程、二次軽量物磁力選別部3bによる軽量粉塵27と非鉄金属類その他30bとを選別処理する工程、および二次重量物磁力選別部3cによる重量粉塵28と非鉄金属類その他30bとを選別処理する工程を順次経るものであり、特に二次軽量物磁力選別部3bから回収した非鉄金属類その他30bは、一般に最終廃棄処分に回されるため、二次軽量物磁力選別部3bに搬送して非鉄金属類その他30bを回収することは、回収精度を高めて最終残渣の低減を図ることになる。一方、二次処理設備Bはおもに、篩部16で前記一次処理設備Aで得られた非鉄金属類その他30bのうち一定の範囲の粒径のものを選別し、次いで、粒径の大きさが一定の範囲内で整ったものに対して重液選別部4で、この非鉄金属類その他30b中の含有成分の比重の違いにより選別処理する工程を経るものである。 As shown in FIG. 1, the system for recovering valuable materials from crushing residues according to this embodiment is composed of a primary processing equipment A and a secondary processing equipment B, and the primary processing equipment A mainly has been recovered by the crushing unit 1. The process of unraveling the crushing residue or untreated waste 38, the process of sorting the ferrous material 26 and non-ferrous metals and other contained dust 30a by the primary magnetic sorting unit 3a, and the non-ferrous metals and other contained dust 30a by the wind sorting unit 2 are lightweight. A process of sorting the dust 27 and the heavy dust 28, a process of sorting the lightweight dust 27 and the non-ferrous metals 30b by the secondary light weight magnetic force sorting section 3b, and a weight dust 28 by the secondary heavy weight magnetic force sorting section 3c. And the non-ferrous metals and others 30b are sequentially processed. In particular, the non-ferrous metals and others 30b recovered from the secondary light-weight magnetic force sorting section 3b are generally the highest. Because referred for disposal, recovering the nonferrous metals other 30b and conveyed to the secondary light was magnetic separator unit 3b will be reduced in the final residue to enhance the recovery accuracy. On the other hand, the secondary processing equipment B mainly selects the non-ferrous metals and other 30b obtained by the primary processing equipment A at the sieve section 16 and having a particle size within a certain range. For the ones that are arranged within a certain range, the heavy liquid sorting unit 4 performs a sorting process by the difference in specific gravity of the components contained in the non-ferrous metals and other 30b.
一次処理設備Aは図1に示すように、処理の行われる手順に沿って順に、破砕部1と、風力選別部2および一次磁力選別部3aと、風力選別部2と、二次軽量物磁力選別部3bと、二次重量物磁力選別部3cとを備え、風力選別部2/一次磁力選別部3a/二次軽量物磁力選別部3b/二次重量物磁力選別部3cの各投入側には、破砕残渣Dの投入用ホッパーをそれぞれ配する一方、風力選別部2/一次磁力選別部3a/二次軽量物磁力選別部3b/二次重量物磁力選別部3cの各排出側には、当該風力選別部2/一次磁力選別部3a/二次軽量物磁力選別部3b/二次重量物磁力選別部3cのそれぞれで選別した非鉄金属類その他含有粉塵30aもしくは非鉄金属類その他30bの搬送コンベア5a,5bを備えている。投入ホッパーは、破砕部1もしくは他業者などから回収した破砕残渣Dの本回収システムへの取込口となり、搬送コンベア5a,5bは、風力選別部2/一次磁力選別部3a/二次軽量物磁力選別部3b/二次重量物磁力選別部3cのそれぞれで選別した破砕残渣Dを次の工程に移行する手段となる(図1参照)。 As shown in FIG. 1, the primary processing facility A sequentially includes a crushing unit 1, a wind sorting unit 2, a primary magnetic sorting unit 3 a, a wind sorting unit 2, and a secondary light weight magnetic force in accordance with a procedure in which processing is performed. A sorting unit 3b and a secondary heavy material magnetic force sorting unit 3c are provided, on each input side of the wind power sorting unit 2 / primary magnetic material sorting unit 3a / secondary light material magnetic force sorting unit 3b / secondary heavy material magnetic force sorting unit 3c. Are arranged with a hopper for charging crushing residue D, respectively, on the discharge side of wind power sorting unit 2 / primary magnetic force sorting unit 3a / secondary light weight magnetic force sorting unit 3b / secondary heavy weight magnetic force sorting unit 3c, Conveyor of non-ferrous metals and other contained dust 30a or non-ferrous metals and other 30b sorted by the wind sorting unit 2 / primary magnetic force sorting unit 3a / secondary light weight magnetic force sorting unit 3b / secondary heavy weight magnetic force sorting unit 3c 5a and 5b are provided. The input hopper serves as an inlet for the crushing residue D collected from the crushing unit 1 or another contractor to the main recovery system, and the conveyors 5a and 5b are the wind sorting unit 2 / primary magnetic force sorting unit 3a / secondary lightweight material. The crushing residue D sorted by each of the magnetic sorting unit 3b / secondary heavy article magnetic sorting unit 3c serves as a means for shifting to the next step (see FIG. 1).
前記破砕部1は図1と図2のように、受入部21および排出部22をそれぞれ設ける
破砕室23と、該破砕室23内を縦回転するローター(解し部)24を有しており、前記ローター24の外周面には複数のハンマー(解し部)25を配し、ローター24の高速回転により前記受入部21から搬入した回収破砕残渣もしくは未処理廃棄物38に対して各ハンマー25の衝撃で破砕処理を行い、前記排出部22から破砕した破砕残渣Dを搬送コンベア5aで一次磁力選別部3aに送り出すものである。
As shown in FIGS. 1 and 2, the crushing unit 1 has a crushing chamber 23 provided with a receiving unit 21 and a discharge unit 22 respectively, and a rotor (unrolling unit) 24 that rotates in the crushing chamber 23 longitudinally. A plurality of hammers (unrolling parts) 25 are arranged on the outer peripheral surface of the rotor 24, and each hammer 25 is applied to the recovered crushing residue or untreated waste 38 carried from the receiving part 21 by the high-speed rotation of the rotor 24. The crushed residue D crushed from the discharge unit 22 is sent to the primary magnetic force sorting unit 3a by the conveyor 5a.
一次磁力選別部3aは図1と図3に示すように、前記破砕部1から搬送路6aを経て送り込まれた破砕残渣Dを永久磁石15の磁力で鉄材26と非鉄金属類その他含有粉塵30aとに分けるものである。また一次磁力選別部3aは、破砕部1から連続する搬送コンベア5aの終端側に、駆動プーリー12aと従動プーリー13とを間隔をあけて水平な位置関係となるように配置してあると共に、駆動プーリー12aと従動プーリー13との間にベルト14aを掛け渡してあると共に、ベルト14aの下方に永久磁石15を配置しており、当該ベルト14a上で搬送する非鉄金属類その他含有粉塵30aに含まれていた鉄材26を吸着しながら流れるように形成したものである。このベルト14aに前記永久磁石15の磁力で吸着した鉄材26は、鉄材搬送シュート6bを通り搬送コンベア5bで鉄材回収部11に運ばれる。そして永久磁石15の直下位置には、非鉄用の搬送路6aが風力選別部2まで続いており、この搬送路6aは、前記永久磁石15に吸着しない鉄材26以外の非鉄金属類その他含有粉塵30aが通ることになる。 As shown in FIG. 1 and FIG. 3, the primary magnetic force sorting unit 3 a uses a ferrous material 26, non-ferrous metals, and other contained dust 30 a to remove the crushing residue D sent from the crushing unit 1 through the conveyance path 6 a by the magnetic force of the permanent magnet 15. It is divided into. In addition, the primary magnetic force sorting unit 3a has a driving pulley 12a and a driven pulley 13 arranged on the terminal side of the conveyor 5a continuous from the crushing unit 1 so as to be in a horizontal positional relationship with a space therebetween, and driven. A belt 14a is stretched between the pulley 12a and the driven pulley 13, and a permanent magnet 15 is disposed below the belt 14a, and is contained in non-ferrous metals and other contained dust 30a conveyed on the belt 14a. The iron material 26 was formed to flow while adsorbing. The iron material 26 adsorbed on the belt 14a by the magnetic force of the permanent magnet 15 passes through the iron material conveying chute 6b and is conveyed to the iron material collecting unit 11 by the conveying conveyor 5b. A non-ferrous conveyance path 6a continues to the wind power sorting unit 2 immediately below the permanent magnet 15, and the conveyance path 6a is non-ferrous metals other than the iron material 26 that is not adsorbed to the permanent magnet 15 and other contained dust 30a. Will pass.
風力選別部2は図4に示すように、前記搬送路6aを通って送り込まれた非鉄金属類その他含有粉塵30aに対し、風力によって軽量粉塵27と重量粉塵28に分けるものである。また当該風力選別部2は、分岐室7とブロワ8と軽量物搬送路9aと重量物搬送路9bとを有している。前記分岐室7は、前記搬送路6aとの連通口を有し(図1もあわせて参照)、この分岐室7では、搬送路6aから送られた非鉄金属類その他含有粉塵30aに対し、ブロワ8からの送風で比重が季節などの要因で若干前後するが約0.9以下の軽量粉塵27を軽量物搬送路9aに通して二次軽量物磁力選別部3bに送る。一方、ブロワ8からの送風で飛ばされなかった重量粉塵28は、重量物搬送路9bを通して二次重量物磁力選別部3cに送る処理を行うものである。 As shown in FIG. 4, the wind power sorting unit 2 divides the non-ferrous metals and other contained dust 30a sent through the transport path 6a into light dust 27 and heavy dust 28 by wind power. Moreover, the said wind force selection part 2 has the branch chamber 7, the blower 8, the lightweight article conveyance path 9a, and the heavy article conveyance path 9b. The branch chamber 7 has a communication port with the transfer path 6a (see also FIG. 1). In the branch chamber 7, a non-ferrous metal and other contained dust 30a sent from the transfer path 6a is blowered. Although the specific gravity is slightly changed by factors such as the season due to the blowing from 8, light weight dust 27 of about 0.9 or less is sent to the secondary light material magnetic force sorting unit 3b through the light material conveyance path 9a. On the other hand, the heavy dust 28 that has not been blown off by the blower from the blower 8 performs processing to be sent to the secondary heavy material magnetic force sorting unit 3c through the heavy material conveyance path 9b.
二次軽量物磁力選別部3bと二次重量物磁力選別部3cは略同一の構成であるため、二次軽量物磁力選別部3bのみについて説明するが(二次軽量物磁力選別部3bと二次重量物磁力選別部3cは以下、二次磁力選別部3b,3cと総称する)、前記風力選別部2と一次磁力選別部3aを経て得た大部分の鉄材26が除かれた非鉄金属類その他含有粉塵30a(軽量粉塵27と重量粉塵28を含む)の取込みを行うための手段として、取入側に材料投入用フィーダ10を有しており、この材料投入用フィーダ10は、前記搬送コンベア5gの終端側の直下位置に配してあり、搬送コンベア5gの終端から落下してくる非鉄金属類その他含有粉塵30aを受け取りながら二次磁力選別部3b,3cに取り込むものである。一方、二次磁力選別部3b,3cの排出側には、工程の進行方向から順にダスト類収納部36と非鉄金属類その他収納部37を並列に配している。また二次磁力選別部3b,3cは図5(a)(b)のように、材料投入用フィーダ10側に駆動プーリー12bを、材料投入用フィーダ10と離れた側にマグネットプーリー(導電部)29を間隔をあけて水平な位置関係となるように配置してあると共に、駆動プーリー12bとマグネットプーリー(導電部)29との間にベルト14bを掛け渡してある。また前記マグネットプーリー(導電部)29は、その回転によりベルト14b上を流れる非鉄金属類その他含有粉塵30aに含まれる非鉄金属類その他30bに導電して渦電流を発生させ、この渦電流を発生する非鉄金属類その他30bがベルト14b周辺の磁界と反発するためにベルト14bの搬送方向に向けて弾かれるようになる。一方で非鉄金属類その他30b以外のダスト類34は、例えばプラスティックやウレタン、木材などの非導電性のものが主であるために導電することなくベルト14bの終端付近にそのまま落下する。このことから、渦電流を利用して一次磁力選別部3aと二次磁力選別部3b、3cに近い側に前記ダスト類収納部36、離れた側に非鉄金属類その他の収納部37をそれぞれ配置して、ダスト類34と選別除去して非鉄金属類その他30bの回収を行っている。 Since the secondary light weight magnetic force sorting section 3b and the secondary heavy weight magnetic force sorting section 3c have substantially the same configuration, only the secondary light weight magnetic force sorting section 3b will be described (the secondary light weight magnetic force sorting section 3b and the secondary light weight magnetic force sorting section 3b Non-ferrous metals from which most of the iron material 26 obtained through the wind-power sorting unit 2 and the primary-magnetism sorting unit 3a has been removed are hereinafter referred to as secondary-magnetism sorting units 3b and 3c). As a means for taking in other contained dust 30a (including lightweight dust 27 and heavy dust 28), a material charging feeder 10 is provided on the intake side. It is arranged at a position immediately below the terminal end of 5 g, and takes in non-ferrous metals and other contained dust 30 a falling from the terminal end of the conveyer 5 g into the secondary magnetic force sorting units 3 b and 3 c. On the other hand, on the discharge side of the secondary magnetic force sorting units 3b and 3c, a dust storage unit 36 and a non-ferrous metal other storage unit 37 are arranged in parallel in order from the process progress direction. As shown in FIGS. 5 (a) and 5 (b), the secondary magnetic force sorting sections 3b and 3c have a driving pulley 12b on the material charging feeder 10 side and a magnet pulley (conductive section) on the side away from the material charging feeder 10. 29 is arranged so as to have a horizontal positional relationship with an interval, and a belt 14b is stretched between a drive pulley 12b and a magnet pulley (conductive portion) 29. Further, the magnet pulley (conductive portion) 29 conducts non-ferrous metals and other 30b contained in the non-ferrous metals and other contained dust 30a flowing on the belt 14b by the rotation thereof to generate eddy current and generate this eddy current. Since the non-ferrous metals 30b repels the magnetic field around the belt 14b, the non-ferrous metals 30b are repelled toward the conveying direction of the belt 14b. On the other hand, the non-ferrous metals and other dusts 34 other than 30b mainly fall in the vicinity of the end of the belt 14b without conducting electricity because they are mainly non-conductive materials such as plastic, urethane, and wood. Therefore, the dust storage unit 36 is disposed on the side close to the primary magnetic field selection unit 3a and the secondary magnetic field selection units 3b and 3c by using eddy current, and the non-ferrous metal storage unit 37 is disposed on the remote side. Then, the non-ferrous metals and other 30b are collected by sorting and removing from the dusts 34.
以上のように一次処理設備Aを構成すると、まず破砕部1で解した破砕残渣Dは、一次磁力選別部3aで鉄材26と非鉄金属類その他含有粉塵30aに選別すると共に、風力選別部2で軽量粉塵27と重量粉塵28とに選別する。さらに軽量粉塵27は二次軽量物磁力選別部3b、一方の重量粉塵28は、二次重量物磁力選別部3cのそれぞれでダスト類34を選別除去して非鉄金属類その他30bを回収する処理がなされる。 When the primary processing equipment A is configured as described above, first, the crushing residue D solved by the crushing unit 1 is sorted into the iron material 26 and the non-ferrous metals and other contained dust 30a by the primary magnetic sorting unit 3a, and at the wind sorting unit 2 Sort into light dust 27 and heavy dust 28. Further, the light dust 27 is a secondary light weight magnetic force sorting unit 3b, and the one heavy dust 28 is a secondary heavy weight magnetic force sorting unit 3c that separates and removes the dust 34 to recover non-ferrous metals and other 30b. Made.
次に二次処理設備Bは図6のブロック図に示すように、前述した一次処理設備Aから搬送した非鉄金属類その他30bの投入ホッパーと、非鉄金属類その他30bを粒径の大小で振り分ける篩部16と、比重の違いにより非鉄金属類その他30bを選別する重液選別部4とを備えている。 Next, as shown in the block diagram of FIG. 6, the secondary processing equipment B is a sieve for distributing the non-ferrous metals and other 30b transported from the primary processing equipment A and the non-ferrous metals and other 30b according to the particle size. And a heavy liquid sorting unit 4 for sorting non-ferrous metals and others 30b according to the difference in specific gravity.
前記篩部16は図7に示すように、篩17の内部に回転フィルター35を備えるものであり、篩17は、非鉄金属類その他30bの取り入れ側から排出側に向けてゆるやかに傾斜しており、回転フィルター35は、前記篩17の傾斜と同一の傾きの軸を中心とする円筒型をなしており、円筒の周壁における搬入側には直径10mm強の小径丸孔32を多数有しており、一方排出側には直径110mm強の大径丸孔33を多数有しており、油圧モーターなどにより回転フィルター35を回転するものであり、一次処理設備Aから運搬車両などで運ばれた非鉄金属類その他30bを搬送コンベア5cにより前記篩部16の中に取り入れ、該篩17内において回転フィルター35により粒径10mm以下の小粒径物、粒径10mm〜110mmの範囲内にある中粒径物、そして110mmを越える大粒径物に分けるものである。まず投入された非鉄金属類その他30bは、前記回転フィルター35の小径丸孔32により、粒径10mm以下の小粒径物が篩17の底に落とされた後、搬送コンベアを経て当該篩17外に排出することで回収される。次いで、篩17内に残留した粒径10mmを超える非鉄金属類その他30bに含まれる粒径10mm〜110mmの範囲内にある非鉄金属類その他30bが、大径丸孔33を通り篩17の底に落とされ、回転フィルター35に残留した粒径110mmを越える大粒径物は、そのまま搬送コンベアを経て篩17の外へ排出した後に回収される。そして粒径10mm〜110mmの範囲内にある非鉄金属類その他30bは、篩17内から搬送コンベア5f(重液選別部4を説明する図8を参照)を経て重液選別部4に送り込む。 As shown in FIG. 7, the sieve portion 16 includes a rotary filter 35 inside the sieve 17, and the sieve 17 is gently inclined from the intake side to the discharge side of non-ferrous metals and other 30b. The rotary filter 35 has a cylindrical shape centering on the same inclination axis as the inclination of the sieve 17, and has a large number of small-diameter round holes 32 having a diameter of more than 10 mm on the carry-in side of the cylindrical peripheral wall. On the other hand, the discharge side has many large-diameter round holes 33 having a diameter of 110 mm or more, and the rotary filter 35 is rotated by a hydraulic motor or the like. The non-ferrous metal carried from the primary processing facility A by a transport vehicle or the like. The other 30b is taken into the sieve section 16 by the conveyor 5c, and a small particle size product having a particle size of 10 mm or less and a particle size of 10 mm to 110 mm in the sieve 17 by the rotary filter 35. It is within Chutsubu 径物 and is to divide the large 径物 exceeding 110 mm. First, the non-ferrous metals and other materials 30b that have been introduced are, after a small particle diameter of 10 mm or less is dropped to the bottom of the sieve 17 by the small-diameter round hole 32 of the rotary filter 35, and then the outside of the sieve 17 through a conveyor. It is recovered by discharging it. Next, the non-ferrous metals and others 30b in the particle diameter range of 10 mm to 110 mm included in the non-ferrous metals and others 30b exceeding the particle diameter of 10 mm remaining in the sieve 17 pass through the large-diameter round holes 33 to the bottom of the sieve 17. Large particles having a particle diameter exceeding 110 mm that have been dropped and remain on the rotary filter 35 are collected as they are after being discharged out of the sieve 17 through the conveyor. And the nonferrous metals etc. 30b which are in the range of particle size 10 mm-110 mm are sent into the heavy liquid selection part 4 from the inside of the sieve 17 through the conveyance conveyor 5f (refer FIG. 8 explaining the heavy liquid selection part 4).
重液選別部4は図8(a)のように、中空の収容部Sを形成しており、収容部Sには、重液31の供給パイプ18を連通している。また収容部S内には、非鉄金属類その他30bの供給用シュート19aと、収容部S内から外に非鉄金属類その他30bを排出する排出用シュート19bとを有している。そして収容部Sでは、非鉄金属類その他30bの中の重液31の比重よりも軽いマグネシウム/ゴム/樹脂などが浮遊し、これらの成分は、収容部Sへの重液31の供給継続により廃液排出口19cから溢れ出して収容部Sの外に排出し、有価物(軽量物)の回収部に送られる。そして収容部Sの重液31に沈む比重の重いヘビーメタル類(鉄、銅、亜鉛、真鍮、鉛、ステンレスなど)・アルミニウムを多く含む非鉄金属類その他30bは、搬送コンベア5hで収容部S内の重液の水位よりも上位置まで運ばれて、前記排出用シュート19bから有価物(重比重物)の回収部へ送られる。次に、アルミニウムおよびヘビーメタル類の回収については図8(b)のように、マグネシウム/ゴム/樹脂の回収のときに使用した重液31よりも比重の重い重液31を収容部Sに供給し、さらに、ヘビーメタル類を多く含む非鉄金属類その他30bを再び前記収容部S内に投入することでアルミニウムが浮遊し、前述したマグネシウム/ゴム/樹脂の選別のときと同様に、重液31の供給継続により廃液排出口19cから溢れ出して収容部Sの外に排出し、有価物(アルミニウム用)の回収部に送られる。 As shown in FIG. 8A, the heavy liquid sorting unit 4 forms a hollow storage portion S, and the supply pipe 18 for the heavy liquid 31 is communicated with the storage portion S. Further, in the housing portion S, there are a supply chute 19a for non-ferrous metals and others 30b and a discharge chute 19b for discharging the non-ferrous metals and others 30b from the inside of the housing portion S. In the storage part S, magnesium / rubber / resin, etc., which is lighter than the specific gravity of the heavy liquid 31 in the non-ferrous metals and others 30b, floats, and these components become waste liquid by continuing to supply the heavy liquid 31 to the storage part S. It overflows from the discharge port 19c, is discharged out of the storage unit S, and is sent to a valuable material (lightweight material) recovery unit. And heavy metals (iron, copper, zinc, brass, lead, stainless steel, etc.) heavy in specific gravity sinking in heavy liquid 31 of the storage unit S, non-ferrous metals and other 30b containing a lot of aluminum are contained in the storage unit S by the conveyor 5h. Is transported to a position above the water level of the heavy liquid and is sent from the discharge chute 19b to a collection unit for valuable materials (heavy specific gravity). Next, with respect to the recovery of aluminum and heavy metals, as shown in FIG. 8B, the heavy liquid 31 having a specific gravity higher than that of the heavy liquid 31 used when recovering the magnesium / rubber / resin is supplied to the storage unit S. In addition, the non-ferrous metals and other materials 30b containing a lot of heavy metals are again put into the housing part S, so that the aluminum floats. As in the above-described magnesium / rubber / resin sorting, the heavy liquid 31 As a result, the waste liquid discharge port 19c overflows and is discharged out of the storage unit S, and sent to a valuable material (aluminum) recovery unit.
以上のように二次処理設備Bを構成すると、一次処理設備Aから送られた非鉄金属類その他30bを重液選別部4に搬送する前に、篩部16において10mm〜110mmの範囲内に粒径を調整してあることで、有価な非鉄金属類その他30bの回収が難しい10mm未満の粒径の小さなものと、重液選別部4の各構成部位に過剰な負担を与えるであろう110mmを越える粒径の大きなものを予め取り除くことができ、効率的に有価物となる非鉄金属類その他30bを選別できるようになる。また10mm以下の粒径の小粒径物はそのまま回収するか、あるいは、前述した二次磁力選別部3b,3cと略同等の構成の装置によって小粒径物に残存する非鉄金属類その他30bを選別回収するものである。さらに110mmを越える大粒径物は、二次処理設備Bに送り込まれる量が少なく、重液選別部4に送らなくても非鉄金属類その他30bの回収が容易に行える状態となっている。このことから破砕残渣Dの体積を最小限に縮小しつつ、極めて金属類の含有率の少ない最終残渣となり、この最終残渣の焼却処理のときには、金属溶融物による焼却炉の炉壁への影響がほとんどなく、しかも、残渣体積の極小化によって埋立処分場のスペースの有効的な活用も図れるようになる。 When the secondary processing equipment B is configured as described above, the non-ferrous metals and other 30b sent from the primary processing equipment A are transferred within the range of 10 mm to 110 mm in the sieve section 16 before being transported to the heavy liquid sorting section 4. By adjusting the diameter, it is difficult to recover valuable non-ferrous metals and other 30b, and a small particle size of less than 10 mm, and 110 mm that would give an excessive burden to each component part of the heavy liquid sorting unit 4 Those having a larger particle diameter can be removed in advance, and the nonferrous metals and other 30b that become valuable resources can be efficiently selected. Further, a small particle size material having a particle size of 10 mm or less is recovered as it is, or nonferrous metals and other 30b remaining in the small particle size material are removed by an apparatus having substantially the same configuration as the above-described secondary magnetic force sorting units 3b and 3c. Sort and collect. Furthermore, the large particle size exceeding 110 mm is in a state where the amount sent to the secondary processing equipment B is small and the non-ferrous metals and other 30b can be easily recovered without being sent to the heavy liquid sorting unit 4. This reduces the volume of the crushing residue D to the minimum, and it becomes a final residue with a very low content of metals. When the final residue is incinerated, there is an effect on the furnace wall of the incinerator by the molten metal. In addition, there is almost no waste volume, and the landfill site space can be effectively utilized by minimizing the volume of the residue.
1 破砕部
2 風力選別部
3a 一次磁力選別部
3b 二次軽量物磁力選別部
3c 二次重量物磁力選別部
4 重液選別部
5a,5b,5c,5f,5g,5h 搬送コンベア(搬送部)
6a 搬送路
9a 軽量物搬送路
9b 重量物搬送路
16 篩部
21 受入部
24 ローター(解し部)
25 ハンマー(解し部)
26 鉄材
27 軽量粉塵
28 重量粉塵
30a 非鉄金属類その他含有粉塵
30b 非鉄金属類その他
29 マグネットプーリー(導電部)
31 重液
34 ダスト類
A 一次処理設備
B 二次処理設備
D 破砕残渣
S 収容部
DESCRIPTION OF SYMBOLS 1 Crushing part 2 Wind power selection part 3a Primary magnetic force selection part 3b Secondary light weight magnetic force selection part 3c Secondary heavy weight magnetic force selection part 4 Heavy liquid selection part 5a, 5b, 5c, 5f, 5g, 5h Conveyor (conveyance part)
6a Conveying path 9a Lightweight material conveying path 9b Heavy material conveying path 16 Sieve part 21 Receiving part 24 Rotor (dissolving part)
25 Hammer (Unlocking part)
26 Iron Material 27 Lightweight Dust 28 Heavy Dust 30a Nonferrous Metals and Other Contained Dust 30b Nonferrous Metals and Others 29 Magnet Pulley (Conducting Part)
31 Heavy liquid 34 Dust A Primary treatment equipment B Secondary treatment equipment D Shredded residue S Containment section
Claims (4)
前記破砕部(1)は、破砕残渣(D)の受入部(21)と解し部(24,25)を有すると共に、該解し部(24,25)で解した前記破砕残渣(D)を一次磁力選別部(3a)に送る搬送部(5a)を有しており、一次磁力選別部(3a)は、鉄材(26)と非鉄金属類その他含有粉塵(30a)とを選別し且つ該非鉄金属類その他含有粉塵(30a)を風力選別部(2)に送る搬送路(5a)を有し、風力選別部(2)は、前記非鉄金属類その他の含有粉塵(30a)を風圧により軽量粉塵(27)と重量粉塵(28)とに選別する一方、軽量粉塵(27)を二次軽量物磁力選別部(3b)に送る軽量物搬送路(9a)を有すると共に、重量粉塵(28)を二次重量物磁力選別部(3c)に送る重量物搬送路(9b)を有しており、二次軽量物磁力選別部(3b)と二次重量物磁力選別部(3c)は、軽量粉塵(27)および重量粉塵(28)のそれぞれに含有する非鉄金属類その他(30b)に導電して非導電性のダスト類(34)と選別する導電部(29)を有していることを特徴とする破砕残渣からの有価物の回収システム。 A crushing section (1), a wind power sorting section (2), a primary magnetic sorting section (3a), a secondary light weight magnetic sorting section (3b), and a secondary heavy weight magnetic sorting section (3c),
The crushing part (1) includes a crushing residue (D) receiving part (21) and a breaking part (24, 25), and the crushing residue (D) solved by the breaking part (24, 25). Is conveyed to the primary magnetic sorting unit (3a), and the primary magnetic sorting unit (3a) sorts the iron material (26) and the non-ferrous metal and other contained dust (30a) and It has a conveyance path (5a) for sending non-ferrous metals and other contained dust (30a) to the wind sorting section (2), and the wind sorting section (2) is lightweight by wind pressure with the non-ferrous metals and other containing dust (30a). While having a light weight conveyance path (9a) which sends light weight dust (27) to a secondary light weight magnetic force magnetic separation part (3b) while sorting to dust (27) and heavy weight dust (28), heavy weight dust (28) Has a heavy material conveyance path (9b) for sending the secondary heavy material to the magnetic force sorting unit (3c) The mass magnetic force sorting part (3b) and the secondary heavy weight magnetic force sorting part (3c) are electrically non-conductive by conducting non-ferrous metals and others (30b) contained in the light dust (27) and heavy dust (28), respectively. A system for recovering valuable materials from crushing residues, which has a conductive part (29) for sorting out the dusts (34).
前記重液選別部(4)は、前記非鉄金属類その他(30b)の収容部(S)を有し、且つ収容部(S)の中には重液(31)を格納してあり、前記収容部(S)の取入側は、粒径10mm〜110mmの範囲内の非鉄金属類その他(30b)のみを選別して前記収容部(S)に投入する篩部(16)を備えていることを特徴とする請求項3記載の破砕残渣からの有価物の回収システム。 The non-ferrous metals and others (30b) obtained by the secondary light weight magnetic force sorting section (3b) and the secondary heavy load magnetic force sorting section (3c) are to be transported to the heavy liquid sorting section (4),
The heavy liquid sorting section (4) has a storage section (S) for the non-ferrous metals and others (30b), and a heavy liquid (31) is stored in the storage section (S), The intake side of the housing part (S) includes a sieve part (16) for selecting only non-ferrous metals and others (30b) having a particle diameter of 10 mm to 110 mm and feeding them into the housing part (S). The system for recovering valuable materials from crushing residues according to claim 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007072735A JP2007289930A (en) | 2006-03-27 | 2007-03-20 | Recovery method and recovery system of valuable substance from crushing residue |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006085717 | 2006-03-27 | ||
JP2007072735A JP2007289930A (en) | 2006-03-27 | 2007-03-20 | Recovery method and recovery system of valuable substance from crushing residue |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007289930A true JP2007289930A (en) | 2007-11-08 |
Family
ID=38761063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007072735A Pending JP2007289930A (en) | 2006-03-27 | 2007-03-20 | Recovery method and recovery system of valuable substance from crushing residue |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007289930A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009233494A (en) * | 2008-03-26 | 2009-10-15 | Nippon Mining & Metals Co Ltd | Method and system for disposing of shredder dust |
CN102441487A (en) * | 2011-10-20 | 2012-05-09 | 安徽理工大学 | Integral crushing and separating machine used in magnetite dry pre-separating and tailing discarding |
CN107029869A (en) * | 2017-06-16 | 2017-08-11 | 鞍钢集团矿业有限公司 | A kind of double media of magnetic iron ore, tower mill magnetic shake ore separators sorting process |
CN110252458A (en) * | 2019-07-02 | 2019-09-20 | 郑州工程技术学院 | A kind of civil engineering work waste treatment device |
CN111558421A (en) * | 2020-05-18 | 2020-08-21 | 梧州清新建筑废弃物再生技术有限公司 | Utilize building rubbish recovery unit of archimedes planetary gear principle |
CN111908183A (en) * | 2019-05-08 | 2020-11-10 | 江苏中吴环境工程有限公司 | Calcium carbide unloading primary breaking dust removal system and working method thereof |
CN114054468A (en) * | 2021-11-16 | 2022-02-18 | 深圳市宏途建筑有限公司 | Construction waste washs and filters sorter |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06285387A (en) * | 1993-03-31 | 1994-10-11 | Toyota Tsusho Kk | Conductive material sorting device |
JPH0847926A (en) * | 1995-07-12 | 1996-02-20 | Hitachi Ltd | Method for and apparatus of selection of plastics |
JPH09194863A (en) * | 1996-01-17 | 1997-07-29 | Kawasaki Steel Corp | Method and apparatus for producing solid fuel from waste |
JP2000135450A (en) * | 1998-10-30 | 2000-05-16 | Mitsubishi Electric Corp | Crusher, classifier, crushing and classification |
JP2000167838A (en) * | 1998-12-03 | 2000-06-20 | Hitachi Ltd | Incombustible waste treatment device |
JP2004267820A (en) * | 2003-03-05 | 2004-09-30 | Kinki:Kk | Method and equipment for treating metal waste |
-
2007
- 2007-03-20 JP JP2007072735A patent/JP2007289930A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06285387A (en) * | 1993-03-31 | 1994-10-11 | Toyota Tsusho Kk | Conductive material sorting device |
JPH0847926A (en) * | 1995-07-12 | 1996-02-20 | Hitachi Ltd | Method for and apparatus of selection of plastics |
JPH09194863A (en) * | 1996-01-17 | 1997-07-29 | Kawasaki Steel Corp | Method and apparatus for producing solid fuel from waste |
JP2000135450A (en) * | 1998-10-30 | 2000-05-16 | Mitsubishi Electric Corp | Crusher, classifier, crushing and classification |
JP2000167838A (en) * | 1998-12-03 | 2000-06-20 | Hitachi Ltd | Incombustible waste treatment device |
JP2004267820A (en) * | 2003-03-05 | 2004-09-30 | Kinki:Kk | Method and equipment for treating metal waste |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009233494A (en) * | 2008-03-26 | 2009-10-15 | Nippon Mining & Metals Co Ltd | Method and system for disposing of shredder dust |
CN102441487A (en) * | 2011-10-20 | 2012-05-09 | 安徽理工大学 | Integral crushing and separating machine used in magnetite dry pre-separating and tailing discarding |
CN107029869A (en) * | 2017-06-16 | 2017-08-11 | 鞍钢集团矿业有限公司 | A kind of double media of magnetic iron ore, tower mill magnetic shake ore separators sorting process |
CN111908183A (en) * | 2019-05-08 | 2020-11-10 | 江苏中吴环境工程有限公司 | Calcium carbide unloading primary breaking dust removal system and working method thereof |
CN110252458A (en) * | 2019-07-02 | 2019-09-20 | 郑州工程技术学院 | A kind of civil engineering work waste treatment device |
CN110252458B (en) * | 2019-07-02 | 2021-05-14 | 郑州工程技术学院 | Civil engineering construction waste treatment device |
CN111558421A (en) * | 2020-05-18 | 2020-08-21 | 梧州清新建筑废弃物再生技术有限公司 | Utilize building rubbish recovery unit of archimedes planetary gear principle |
CN114054468A (en) * | 2021-11-16 | 2022-02-18 | 深圳市宏途建筑有限公司 | Construction waste washs and filters sorter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8517177B2 (en) | Systems and methods for recovering materials from soil | |
JP2007289930A (en) | Recovery method and recovery system of valuable substance from crushing residue | |
US8857746B2 (en) | Process for improving the quality of separated materials in the scrap metal industry | |
CN107362977B (en) | Automatic sorting line for decoration garbage | |
JP4001194B2 (en) | Construction mixed waste sorting facility | |
US5356082A (en) | Incinerated waste material treatment | |
JP2008232522A (en) | Paper shredder dust disposal method and its system | |
JP3189413B2 (en) | Metal sorting and recovery equipment for waste | |
KR100809480B1 (en) | The recycle system and method for paint can wastes | |
JPH11197530A (en) | Crushing and classifying treatment system for waste containing material inadequate for crushing | |
JP2001137827A (en) | Method and device for recovering valuable metal from waste metallic composite material | |
JP2017140555A (en) | Method and apparatus for recovering noble metal from incineration ash | |
JPS63116794A (en) | Method of recovering available substance from garbage fuel ash | |
JP6502274B2 (en) | Incineration ash sorting method and apparatus | |
US20110073529A1 (en) | Scrap metal recovery system and method | |
JP2009240846A (en) | Device for recycling aluminum | |
JP2005193095A (en) | Apparatus for screening and recovering non-ferrous metal (particularly aluminum) and plastic (particularly polyvinyl chloride) and its method | |
JP2007175683A (en) | Pneumatic classifier and mixed waste treatment apparatus | |
JP7172936B2 (en) | Garbage sorting method and device | |
KR200331279Y1 (en) | A horizontal type multi-stage rotary disc separator | |
JP3704284B2 (en) | Method for producing coke oven raw materials from general plastic waste | |
JPH0810743A (en) | Treatment of waste and equipment therefor | |
JP7084840B2 (en) | Metal-containing waste treatment equipment and treatment method | |
CN113857206A (en) | Treatment method and system for household garbage incineration slag | |
JP2009233494A (en) | Method and system for disposing of shredder dust |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080116 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101109 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110308 |