JP2007284596A - Prepreg and copper clad laminate - Google Patents
Prepreg and copper clad laminate Download PDFInfo
- Publication number
- JP2007284596A JP2007284596A JP2006114598A JP2006114598A JP2007284596A JP 2007284596 A JP2007284596 A JP 2007284596A JP 2006114598 A JP2006114598 A JP 2006114598A JP 2006114598 A JP2006114598 A JP 2006114598A JP 2007284596 A JP2007284596 A JP 2007284596A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- prepreg
- copper
- type epoxy
- clad laminate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
Abstract
Description
本発明は、発光ダイオード(LED)実装用プリント配線板と、これに用いられるプリプレグ並びに銅張積層板に関するものである。本発明で得られるLED実装用プリント配線板は、特に近紫外光領域において光反射率が高い特徴を有すると共に、熱伝導率や耐熱性に優れる。 The present invention relates to a printed wiring board for mounting a light emitting diode (LED), a prepreg used for the printed wiring board, and a copper-clad laminate. The printed wiring board for LED mounting obtained by the present invention has a high light reflectivity particularly in the near-ultraviolet region, and is excellent in thermal conductivity and heat resistance.
従来、LED実装用プリント配線板としては、二酸化チタンを含有したエポキシ樹脂をガラス織布に含浸させた後、加熱硬化させた積層板(例えば特許文献1参照)や、二酸化チタンに加えて、アルミナを含有したエポキシ樹脂を用いた積層板(例えば特許文献2参照)等が知られている。しかし、通常のエポキシ樹脂積層板は、耐熱性が低く、プリント配線板の製造工程やLED実装工程における加熱処理や、或いはLED実装後の使用時における発熱による変形が発生し、チップLEDとも呼ばれる発光素子として使用される場合に信頼性の低下が懸念されている。また、熱伝導率が低いため、LED実装後の使用時の発熱を発光素子の外部に放散させることができず、前記した発熱による変形がより発生しやすくなっている。更に、近年、波長380〜420nmの近紫外光を発するLED素子と、これら波長光により赤色,緑色,青色の光を発する蛍光体を組み合わせることで白色光を発するチップLEDの開発・製品化が進んでいるが、従来の技術による積層板では、これら380〜420nmの波長の近紫外光領域における光反射率が低いため、近紫外波長光を発するLED素子の搭載には不適当であった。 Conventionally, as a printed wiring board for LED mounting, an epoxy resin containing titanium dioxide is impregnated into a glass woven cloth, and then heat-cured laminated board (see, for example, Patent Document 1), in addition to titanium dioxide, alumina A laminate (for example, refer to Patent Document 2) using an epoxy resin containing bismuth is known. However, normal epoxy resin laminates have low heat resistance, and heat treatment in the manufacturing process of printed wiring boards and LED mounting processes, or deformation due to heat generation during use after LED mounting, light emission also called chip LED When used as an element, there is a concern about a decrease in reliability. In addition, since the thermal conductivity is low, heat generated during use after LED mounting cannot be dissipated outside the light emitting element, and deformation due to the heat generation described above is more likely to occur. Furthermore, in recent years, development and commercialization of chip LEDs that emit white light have progressed by combining LED elements that emit near-ultraviolet light with a wavelength of 380 to 420 nm and phosphors that emit red, green, and blue light using these wavelength lights. However, the conventional laminated plate has a low light reflectance in the near-ultraviolet light region having a wavelength of 380 to 420 nm, and thus is not suitable for mounting an LED element that emits near-ultraviolet light.
本発明の目的は、上記したような課題を解決する、特に近紫外光領域において光反射率が高く、また、熱伝導率や耐熱性に優れるLED実装用プリント配線板を提供することにある。 The objective of this invention is providing the printed wiring board for LED mounting which solves the above subjects, and is high in light reflectance especially in the near-ultraviolet region, and is excellent in heat conductivity and heat resistance.
本発明者らは、かかる問題点の解決のため種々検討した結果、熱硬化性樹脂として特定の二種類のエポキシ樹脂を使用し、窒化ホウ素を組み合わせた樹脂組成物を使用したプリプレグを用いることにより、紫外光から可視光領域、特に短波長領域において光反射率が高く、また、熱伝導率や耐熱性に優れるLED実装用プリント配線板が得られることを見出し、本発明に到達した。すなわち本発明は、ビスフェノールAノボラック型エポキシ樹脂(A)、脂環式エポキシ樹脂(B)、窒化ホウ素(C)を含有する樹脂組成物と基材を含有するプリプレグであり、好ましくは、樹脂組成物が、更にシアン酸エステル化合物(D)及び/又は酸無水物(E)を含有する樹脂組成物であるプリプレグであり、これらプリプレグを銅箔とを組み合わせ、加熱硬化してなる銅張積層板であり、これら銅張り積層板を用いて製造されるLED実装用プリント配線板である。 As a result of various studies for solving such problems, the present inventors have used two specific types of epoxy resins as thermosetting resins, and by using a prepreg using a resin composition in which boron nitride is combined. The present inventors have found that a printed wiring board for LED mounting having a high light reflectivity in the ultraviolet to visible light region, particularly in the short wavelength region, and having excellent thermal conductivity and heat resistance can be obtained. That is, the present invention is a prepreg containing a resin composition containing a bisphenol A novolac type epoxy resin (A), an alicyclic epoxy resin (B), and boron nitride (C) and a substrate, preferably a resin composition. The product is a prepreg which is a resin composition further containing a cyanate ester compound (D) and / or an acid anhydride (E), and a copper-clad laminate obtained by combining these prepregs with a copper foil and heat curing It is a printed wiring board for LED mounting manufactured using these copper-clad laminates.
本発明で得られる銅張積層板は、特に近紫外光領域において光反射率が高く、また、熱伝導率や耐熱性に優れることから、波長380〜420nmの近紫外光を発するLED素子と、これら波長光により赤色,緑色,青色の光を発する蛍光体を組み合わせることで白色光を発するチップLED等の実装用プリント配線板等に好適に使用される。 The copper-clad laminate obtained in the present invention has a high light reflectance particularly in the near-ultraviolet region, and since it has excellent thermal conductivity and heat resistance, an LED element that emits near-ultraviolet light with a wavelength of 380 to 420 nm, By combining phosphors that emit red, green, and blue light with these wavelength lights, it is suitably used for a printed wiring board for mounting such as a chip LED that emits white light.
本発明で使用されるビスフェノールAノボラック型エポキシ樹脂(A)は、ビスフェノールAとホルムアルデヒドから得られるノボラック樹脂のエポキシ化物であれば特に限定されない。ビスフェノールAノボラック型エポキシ樹脂(A)の含有量は、樹脂組成物の樹脂成分中の45〜90重量%、好ましくは、50〜85重量%である。ビスフェノールAノボラック型エポキシ樹脂(A)の含有量が、上記範囲より少ない場合は、得られた銅張積層板の加熱処理や光照射処理による変色が大きくなり、また耐熱性も低下する。また上記範囲より多い場合には、切削・研磨加工性が悪くなる。 The bisphenol A novolak type epoxy resin (A) used in the present invention is not particularly limited as long as it is an epoxidized product of novolak resin obtained from bisphenol A and formaldehyde. The content of the bisphenol A novolac type epoxy resin (A) is 45 to 90% by weight, preferably 50 to 85% by weight in the resin component of the resin composition. When the content of the bisphenol A novolac type epoxy resin (A) is less than the above range, discoloration of the obtained copper-clad laminate by heat treatment or light irradiation treatment is increased, and heat resistance is also lowered. On the other hand, when the amount is larger than the above range, the cutting / polishing workability deteriorates.
本発明で使用される脂環式エポキシ樹脂(B)としては、公知の脂環式化合物のエポキシ化物であれば特に限定されない。具体的には、「総説エポキシ樹脂」(出版・編:エポキシ樹脂技術協会、発行:2003年)等の公知の書籍,文献に記載されているもの等が用いられる。代表的なものを具体的な商品を含め例示すると、3,4−エポキシシクロヘキシルメチル−3’,4‘−エポキシシクロヘキサンカルボキシレート{商品名:セロキサイド2021、セロキサイド2021A、セロキサイド2021P(以上ダイセル化学工業(株)製),ERL4221、ERL4221D、ERL4221E(以上ダウケミカル日本(株)製)}、ビス(3,4−エポキシシクロヘキシルメチル)アジペート{商品名:ERL4299(ダウケミカル日本(株)製),EXA7015(大日本インキ化学工業(株)製)}、1−エポキシエチル−3,4−エポキシシクロヘキサン、リモネンジエポキシド,セロキサイド2081(ダイセル化学工業(株)製),エピコートYX8000(ジャパンエポキシレジン(株)製),エピコートYX8034(ジャパンエポキシレジン(株)製)等が挙げられ、1種もしくは2種以上を適宜混合して使用することも可能である。好ましい脂環式エポキシ樹脂(B)としては、3,4−エポキシシクロヘキシルメチル−3’,4‘−エポキシシクロヘキサンカルボキシレート、ビス(3,4−エポキシシクロヘキシルメチル)アジペート、エピコートYX8000が挙げられる。脂環式エポキシ樹脂(B)の含有量は、樹脂組成物の樹脂成分中の5〜50重量%、好ましくは、10〜45重量%である。脂環式エポキシ樹脂(B)の含有量が、上記範囲より少ない場合は、得られた銅張積層板の加熱処理や光照射処理による変色が大きくなり、上記範囲より多い場合には、耐熱性が低下する。 The alicyclic epoxy resin (B) used in the present invention is not particularly limited as long as it is an epoxidized product of a known alicyclic compound. Specifically, known books such as “Review Epoxy Resin” (published / edited: Epoxy Resin Technology Association, Issued: 2003) and those described in the literature are used. Typical examples including specific products include 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate {trade names: Celoxide 2021, Celoxide 2021A, Celoxide 2021P (above Daicel Chemical Industries ( Co., Ltd.), ERL 4221, ERL 4221D, ERL 4221E (manufactured by Dow Chemical Japan Co., Ltd.)}, bis (3,4-epoxycyclohexylmethyl) adipate {trade name: ERL 4299 (manufactured by Dow Chemical Japan Co., Ltd.), EXA7015 ( Dainippon Ink Chemical Co., Ltd.)}, 1-epoxyethyl-3,4-epoxycyclohexane, limonene diepoxide, celoxide 2081 (manufactured by Daicel Chemical Industries), Epicoat YX8000 (manufactured by Japan Epoxy Resin Co., Ltd.) ), Epicote Y 8034 (manufactured by Japan Epoxy Resins Co.), and the like, can also be used by mixing one or two or more appropriately. Preferred examples of the alicyclic epoxy resin (B) include 3,4-epoxycyclohexylmethyl-3 ', 4'-epoxycyclohexanecarboxylate, bis (3,4-epoxycyclohexylmethyl) adipate, and Epicoat YX8000. Content of an alicyclic epoxy resin (B) is 5 to 50 weight% in the resin component of a resin composition, Preferably, it is 10 to 45 weight%. When the content of the alicyclic epoxy resin (B) is less than the above range, discoloration due to heat treatment or light irradiation treatment of the obtained copper-clad laminate becomes large. Decreases.
本発明で使用される樹脂組成物には、必要に応じて、ビスフェノールAノボラック型エポキシ樹脂(A)と脂環式エポキシ樹脂(B)以外のエポキシ樹脂を併用することも可能である。これらのエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂,クレゾールノボラック型エポキシ樹脂,ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、3官能フェノール型エポキシ樹脂、4官能フェノール型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、或いはこれらのハロゲン化物などが例示される。 In the resin composition used in the present invention, an epoxy resin other than the bisphenol A novolac type epoxy resin (A) and the alicyclic epoxy resin (B) can be used in combination as necessary. These epoxy resins include bisphenol A type epoxy resin, bisphenol E type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, and naphthalene type. Epoxy resin, trifunctional phenol type epoxy resin, tetrafunctional phenol type epoxy resin, glycidyl ester type epoxy resin, phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene type epoxy resin, or these And the like.
本発明で使用される窒化ホウ素(C)としては、公知の窒化ホウ素であれば特に限定されないが、具体的には、結晶構造が、立方晶型,六方晶型,菱面体晶型の窒化ホウ素が用いられ、好ましくは、六方晶型の窒化ホウ素が用いられる。窒化ホウ素(C)の平均粒子径としては、5μm以下のものが好ましく、更には、3μm以下のものが好適であり、粒度分布や平均粒子径を変化させたものを適宜組み合わせて使用することも可能である。窒化ホウ素(C)の含有量は、樹脂組成物中の樹脂成分の合計量100重量部に対して、25〜150重量部、好ましくは、50〜100重量部である。窒化ホウ素(C)の含有量が、上記範囲より少ない場合、光反射率が不充分で、LED実装用プリント配線板に不適であり、上記範囲より多い場合、絶縁層が硬くなり過ぎ、プリント配線板,チップLEDの製造時の搬送等での割れ,欠けが発生しやすくなると共に、プリント配線板におけるメカニカルドリル加工やチップLEDにおけるダイシング加工において、ドリルビットやダイシングブレードの折損や加工できないという不具合が発生する。 The boron nitride (C) used in the present invention is not particularly limited as long as it is a known boron nitride. Specifically, the crystal structure is cubic, hexagonal or rhombohedral boron nitride. Preferably, hexagonal boron nitride is used. The average particle size of boron nitride (C) is preferably 5 μm or less, more preferably 3 μm or less, and those having a changed particle size distribution or average particle size may be used in appropriate combination. Is possible. Content of boron nitride (C) is 25-150 weight part with respect to 100 weight part of total amounts of the resin component in a resin composition, Preferably, it is 50-100 weight part. When the content of boron nitride (C) is less than the above range, the light reflectance is insufficient and it is not suitable for a printed wiring board for LED mounting. When the content is more than the above range, the insulating layer becomes too hard, and the printed wiring Breaking and chipping during transportation of plates and chip LEDs are likely to occur, and there is a problem that drill bits and dicing blades cannot be broken or processed in mechanical drill processing on printed wiring boards and dicing processing on chip LEDs. appear.
本発明で使用される樹脂組成物には、エポキシ樹脂の硬化成分として、アミン化合物、フェノール化合物、シアン酸エステル化合物(D)、酸無水物(E)等を併用するが、シアン酸エステル化合物(D)及び/または酸無水物(E)が好適である。 In the resin composition used in the present invention, an amine compound, a phenol compound, a cyanate ester compound (D), an acid anhydride (E) and the like are used in combination as a curing component of the epoxy resin. D) and / or acid anhydride (E) are preferred.
本発明で好適に使用されるシアン酸エステル化合物(D)としては、1分子中に2個以上のシアナト基を有する化合物であれば特に限定されない。具体的には、1,3−または1,4−ジシアナトベンゼン、1,3,5−トリシアナトベンゼン、ビス(3,5−ジメチル−4−シアナトフェニル)メタン、1,3−、1,4−、1,6−、1,8−、2,6−または2,7−ジシアナトナフタレン、1,3,6−トリシアナトナフタレン、4,4−ジシアナトビフェニル、ビス(4−シアナトフェニル)メタン、2,2−ビス(4−シアナトフェニル)プロパン、2,2−ビス(3,5−ジブロモ−4−シアナトフェニル)プロパン、ビス(4−シアナトフェニル)エーテル、ビス(4−シアナトフェニル)チオエーテル、ビス(4−シアナトフェニル)スルホン、トリス(4−シアナトフェニル)ホスファイト、トリス(4−シアナトフェニル)ホスフェート、および、各種ノボラック樹脂とハロゲン化シアンとの反応により得られるシアン酸エステル化合物などが例示され、1種もしくは2種以上を適宜混合して使用することも可能である。好ましいシアン酸エステル化合物(D)としては、1,3−または1,4−ジシアナトベンゼン、1,3,5−トリシアナトベンゼン、ビス(3,5−ジメチル−4−シアナトフェニル)メタン、ビス(4−シアナトフェニル)メタン、2,2−ビス(4−シアナトフェニル)プロパン、フェノールノボラック型のシアン酸エステル、ナフトールアラルキル型のシアン酸エステル化合物が挙げられる。シアン酸エステル化合物(D)の含有量は、樹脂組成物の樹脂成分中の10〜40重量%、好ましくは、15〜30重量%である。シアン酸エステル化合物(D)の含有量が、上記範囲より少ない場合は、得られた銅張積層板の耐熱性が低く、熱変形が大きくなる。また上記範囲より多い場合には、加熱処理・光照射処理による変色が大きくなる。 The cyanate ester compound (D) preferably used in the present invention is not particularly limited as long as it is a compound having two or more cyanato groups in one molecule. Specifically, 1,3- or 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, bis (3,5-dimethyl-4-cyanatophenyl) methane, 1,3-, 1 , 4-, 1,6-, 1,8-, 2,6- or 2,7-dicyanatonaphthalene, 1,3,6-tricyanatonaphthalene, 4,4-dicyanatobiphenyl, bis (4-si Anatophenyl) methane, 2,2-bis (4-cyanatophenyl) propane, 2,2-bis (3,5-dibromo-4-cyanatophenyl) propane, bis (4-cyanatophenyl) ether, bis (4-cyanatophenyl) thioether, bis (4-cyanatophenyl) sulfone, tris (4-cyanatophenyl) phosphite, tris (4-cyanatophenyl) phosphate, and various novolak resins and cyanogen halides of Cyanate ester compound obtained by response and are illustrated, it is also possible to use a mixture of one or more appropriate. Preferred cyanate ester compounds (D) include 1,3- or 1,4-dicyanatobenzene, 1,3,5-tricyanatobenzene, bis (3,5-dimethyl-4-cyanatophenyl) methane, Examples thereof include bis (4-cyanatophenyl) methane, 2,2-bis (4-cyanatophenyl) propane, phenol novolak type cyanate ester, and naphthol aralkyl type cyanate ester compound. Content of a cyanate ester compound (D) is 10 to 40 weight% in the resin component of a resin composition, Preferably it is 15 to 30 weight%. When content of a cyanate ester compound (D) is less than the said range, the heat resistance of the obtained copper clad laminated board is low, and a thermal deformation becomes large. When the amount is more than the above range, discoloration due to heat treatment / light irradiation treatment becomes large.
本発明で好適に使用される、酸無水物(E)としては、脂環式酸無水物、芳香族酸無水物、脂肪族酸無水物、ハロゲン化無水物等の公知の酸無水物であれば特に限定されない。具体的には、「総説エポキシ樹脂」(出版・編:エポキシ樹脂技術協会、発行:2003年)等の公知の書籍,文献に記載されているもの等が用いられる。代表的なものでは、無水マレイン酸、無水フタル酸、無水トリメリット酸、無水ピロメロット酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルナジック酸無水物、水素化メチルナジック酸無水物等やエピクロンB4400(大日本インキ化学工業(株)製)等の脂環式四塩基酸無水物や特開2005−36218号公報に示されている、シクロヘキサン−1,3,4−トリカルボン酸−3,4−無水物等の脂環式二塩基酸無水物等が挙げられる。好ましい酸無水物(E)としては、エピクロンB4400,シクロヘキサン−1,3,4−トリカルボン酸−3,4−無水物,ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、水素化メチルナジック酸無水物が挙げられる。酸無水物(E)の含有量は、樹脂組成物の樹脂成分中の3〜30重量%、好ましくは、5〜20重量%である。酸無水物(E)の含有量が、上記範囲より少ない場合は、得られた銅張積層板の加熱処理・光照射処理による変色が大きくなる。また上記範囲より多い場合には、未反応の酸無水物が過剰となり、耐薬品性が低下する。 The acid anhydride (E) preferably used in the present invention may be a known acid anhydride such as an alicyclic acid anhydride, an aromatic acid anhydride, an aliphatic acid anhydride, or a halogenated anhydride. If it does not specifically limit. Specifically, known books such as “Review Epoxy Resin” (published / edited: Epoxy Resin Technology Association, Issued: 2003) and those described in the literature are used. Typical examples are maleic anhydride, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic anhydride Products, alicyclic tetrabasic acid anhydrides such as epimethyl B4400 (manufactured by Dainippon Ink & Chemicals, Inc.), cyclohexane- Examples include alicyclic dibasic acid anhydrides such as 1,3,4-tricarboxylic acid-3,4-anhydride. Preferred acid anhydrides (E) include epiclone B4400, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, and hydrogenated methylnadic acid anhydride. Is mentioned. Content of an acid anhydride (E) is 3 to 30 weight% in the resin component of a resin composition, Preferably, it is 5 to 20 weight%. When content of an acid anhydride (E) is less than the said range, the discoloration by the heat processing and light irradiation process of the obtained copper clad laminated board becomes large. Moreover, when more than the said range, an unreacted acid anhydride becomes excess and chemical resistance falls.
本発明で使用される樹脂組成物には、ポリジメチルシロキサン系界面活性剤を併用することが好適である。このポリジメチルシロキサン系界面活性剤は、ポリジメチルシロキサンに有機官能基を導入したものであり、ポリエーテル変性ポリジメチルシロキサン,エポキシ変性ポリジメチルシロキサン,ポリエステル変性ポリジメチルシロキサン,アルキル変性ポリジメチルシロキサン,アミノ変性ポリジメチルシロキサン,カルボキシル変性ポリジメチルシロキサン,フェノール変性ポリジメチルシロキサン,メタクリル変性ポリジメチルシロキサンなどがあり、無機充填剤である窒化ホウ素を、樹脂組成物中に均一に分散させるために使用される。具体的な商品名としては、ビッグケミー・ジャパン(株)製のBYK-306、307、308、310、330、333、341、344等や、東レ・ダウコーニング(株)製のSH-203、230、3746、8400、8700、SF-8410、8416、8419、8422、FS-1265等が例示される。また必要に応じて、公知の表面処理剤や分散剤を用いることができる。表面処理剤としては、アミノ系,エポキシ系,ビニル系,メタクリル系,メルカプト系,ウレイド系,イソシアネート系等のシランカップリング剤や、アミノ系,エポキシ系,カルボキシ系等のチタネートカップリング剤等が用いられる。分散剤としては、カチオン系,アニオン系,非イオン系,シリコン系等の界面活性剤が用いられる。 In the resin composition used in the present invention, it is preferable to use a polydimethylsiloxane surfactant in combination. This polydimethylsiloxane-based surfactant is obtained by introducing an organic functional group into polydimethylsiloxane, such as polyether-modified polydimethylsiloxane, epoxy-modified polydimethylsiloxane, polyester-modified polydimethylsiloxane, alkyl-modified polydimethylsiloxane, amino acid. Modified polydimethylsiloxane, carboxyl-modified polydimethylsiloxane, phenol-modified polydimethylsiloxane, methacryl-modified polydimethylsiloxane, and the like are used to uniformly disperse boron nitride as an inorganic filler in the resin composition. Specific product names include BYK-306, 307, 308, 310, 330, 333, 341, 344, etc. manufactured by Big Chemie Japan Co., Ltd., and SH-203, 230 manufactured by Toray Dow Corning Co., Ltd. 3746, 8400, 8700, SF-8410, 8416, 8419, 8422, FS-1265, and the like. Moreover, a well-known surface treating agent and a dispersing agent can be used as needed. Surface treatment agents include amino, epoxy, vinyl, methacrylic, mercapto, ureido, and isocyanate silane coupling agents, amino, epoxy, and carboxy titanate coupling agents. Used. As the dispersant, cationic, anionic, nonionic, silicon-based surfactants are used.
本発明で使用される樹脂組成物には、必要に応じ、硬化速度を適宜調節するために硬化促進剤を併用することも可能である。これらは、エポキシ樹脂の硬化促進剤として一般に使用されるものであれば、特に限定されるものではない。これらの具体例としては、イミダゾール類及びその誘導体、第3級アミン等が挙げられる。 In the resin composition used in the present invention, a curing accelerator can be used in combination in order to adjust the curing rate as needed. These are not particularly limited as long as they are generally used as curing accelerators for epoxy resins. Specific examples thereof include imidazoles and derivatives thereof, tertiary amines and the like.
本発明で使用される樹脂組成物には、窒化ホウ素に加えて、無機充填剤として、二酸化チタン、天然シリカ、溶融シリカ、合成シリカ、タルク、焼成タルク、酸化亜鉛、酸化マグネシウム、酸化ジルコニウム、水酸化アルミニウム等の公知の無機充填剤を使用することも可能である。 In addition to boron nitride, the resin composition used in the present invention includes titanium dioxide, natural silica, fused silica, synthetic silica, talc, calcined talc, zinc oxide, magnesium oxide, zirconium oxide, water as an inorganic filler. It is also possible to use a known inorganic filler such as aluminum oxide.
本発明で使用される樹脂組成物には、必要に応じて、有機溶剤を使用することが可能である。この有機溶剤としては、ビスフェノールAノボラック型エポキシ樹脂(A)と脂環式エポキシ樹脂(B)との混合物と相溶するものであれば、特に限定されるものではない。具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、ジメチルホルムアミドやジメチルアセトアミドなどのアミド類等が挙げられる。 If necessary, an organic solvent can be used for the resin composition used in the present invention. The organic solvent is not particularly limited as long as it is compatible with a mixture of the bisphenol A novolak type epoxy resin (A) and the alicyclic epoxy resin (B). Specific examples include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, aromatic hydrocarbons such as benzene, toluene and xylene, amides such as dimethylformamide and dimethylacetamide, and the like.
本発明で使用される基材としては、各種プリント配線板材料に用いられている公知のものを使用することができる。例えば、Eガラス、Dガラス、Sガラス、NEガラス等の無機繊維、ポリイミド、ポリアミド、ポリエステル等の有機繊維が挙げられ、目的とする用途や性能により適宜選択し、単独もしくは2種類以上を組み合わせて使用することも可能である。形状としては、織布、不織布などが挙げられ、織布の織り方としては、平織り、ななこ織り、綾織り等公知のものが使用でき、これらを開繊処理したものやシランカップリング剤などで表面処理したガラス織布が好適に使用される。基材の厚さや重量は、特に限定されないが、厚み200μm以下、重量250g/m2以下のガラス織布が好ましい。 As a base material used by this invention, the well-known thing used for various printed wiring board materials can be used. For example, inorganic fibers such as E glass, D glass, S glass, and NE glass, and organic fibers such as polyimide, polyamide, and polyester can be selected as appropriate according to the intended use and performance, either alone or in combination of two or more. It is also possible to use it. Examples of the shape include woven fabric and non-woven fabric. As the weaving method of the woven fabric, known ones such as plain weave, nanako weave and twill weave can be used. A surface-treated glass woven fabric is preferably used. The thickness and weight of the substrate are not particularly limited, but a glass woven fabric having a thickness of 200 μm or less and a weight of 250 g / m 2 or less is preferable.
本発明のプリプレグの製造方法は、ビスフェノールAノボラック型エポキシ樹脂(A)、脂環式エポキシ樹脂(B)、窒化ホウ素(C)を含有する樹脂組成物と基材とを含有するプリプレグが得られる方法であれば、特に限定されない。例えば、上記ガラス織布に、上記樹脂組成物を含浸または塗布させた後、100〜200℃の乾燥機中で、1〜30分加熱させる方法などにより半硬化させ、プリプレグを製造する方法などが例示される。プリプレグにおけるガラス織布含有量は、25〜75重量%の範囲が好ましい。 The method for producing a prepreg of the present invention provides a prepreg containing a resin composition containing a bisphenol A novolac type epoxy resin (A), an alicyclic epoxy resin (B), and boron nitride (C) and a substrate. If it is a method, it will not specifically limit. For example, after impregnating or applying the resin composition to the glass woven fabric, the glass composition is semi-cured by a method of heating in a dryer at 100 to 200 ° C. for 1 to 30 minutes, and the like to produce a prepreg. Illustrated. The glass woven fabric content in the prepreg is preferably in the range of 25 to 75% by weight.
本発明の銅張積層板の製造方法は、上記のプリプレグを少なくとも1枚以上と銅箔とを組み合わせ、加熱硬化して、銅張積層板が得られる方法であれば、特に限定されない。例えば、本発明のプリプレグを1枚或いは、2枚以上重ね合わせ、その片面もしくは両面に、銅箔を配置した構成で、加熱・加圧下に積層成形し、銅張積層板とする方法などが例示される。この際、必要に応じて、本発明のプリプレグの下に他のプリプレグを配置して、使用することも可能である。本発明の銅張積層板に使用する銅箔としては、電解銅箔、圧延銅箔等の公知のものが使用でき、特に厚さ1.5〜70μmの電解銅箔が好適に使用される。銅張積層板の積層成形条件としては、通常のプリント配線板用積層板の手法が適用でき、例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機などを使用し、温度:100〜300℃、圧力:0.2〜10MPa、加熱時間:0.1〜5時間の範囲が一般的であるが、絶縁層厚みの均一化、気泡の除去等の点から、積層成形は10kPa以下の真空雰囲気下で行うことが好ましい。 The method for producing a copper clad laminate of the present invention is not particularly limited as long as it is a method in which at least one prepreg is combined with a copper foil and cured by heating to obtain a copper clad laminate. For example, one or two or more prepregs of the present invention are stacked, and a copper foil is disposed on one or both sides thereof, and laminated and formed under heating and pressure to form a copper-clad laminate. Is done. At this time, if necessary, another prepreg may be disposed under the prepreg of the present invention. As copper foil used for the copper clad laminated board of this invention, well-known things, such as electrolytic copper foil and rolled copper foil, can be used, and an electrolytic copper foil having a thickness of 1.5 to 70 μm is particularly preferably used. As a lamination molding condition of the copper-clad laminate, a general method for a laminate for a printed wiring board can be applied. In general, the range of ° C., pressure: 0.2 to 10 MPa, and heating time: 0.1 to 5 hours is used, but from the standpoints of uniformizing the insulating layer thickness, removing bubbles, etc., lamination molding is a vacuum of 10 kPa or less It is preferable to carry out in an atmosphere.
上記の手法により得られた銅張積層板は、例えば、「プリント回路ハンドブック」(出版:近代科学社、C.F.クームズJr.編、プリント回路学会監訳)等の公知のプリント配線板の製法に関する文献、書籍に提示されている方法に準じて、プリント配線板に加工される。具体的には、メカニカルドリル加工やレーザー加工等による孔あけ工程、無電解銅メッキ工程、電解銅メッキ工程、サブトラクティブ工法やセミアディティブ工法或いはアディティブ工法等によるパターン形成工程、ソルダーレジスト工程、外形加工工程、洗浄工程等を経て、プリント配線板に加工される。更に、こうして得られたプリント配線板は、公知の方法により、LEDが実装される。具体的には、プラズマ等での洗浄、LED素子の搭載、搭載用樹脂の硬化、ワイヤボンディング接合、フリップチップ接合等によるLED素子とプリント配線板との電気的接続、LED素子と電気的接続部の樹脂による保護(封止)、保護した樹脂の硬化、ダイシング加工による個片化等の工程を経てチップLEDとも呼ばれる発光素子に加工される。こうして得られた発光素子は、常態、或いは、加熱・光照射などの負荷を与えられた後に、その表面の反射率の測定が行なわれ、その光学的な特性が評価される。尚、積層板としての光学特性評価としては、プリント配線板,チップLEDへの加工を経ずに、常態、或いは、加熱・光照射などの負荷を与えられた後に反射率の測定が行なわれる。 The copper-clad laminate obtained by the above method is, for example, a known printed wiring board production method such as “Printed Circuit Handbook” (published by Modern Science Co., Ltd., CF Combs Jr., edited by the Printed Circuit Society). The printed wiring board is processed in accordance with the literature and the method presented in the book. Specifically, drilling process by mechanical drilling or laser processing, electroless copper plating process, electrolytic copper plating process, pattern formation process by subtractive method, semi-additive method or additive method, solder resist process, external processing The printed wiring board is processed through a process, a cleaning process, and the like. Furthermore, LEDs are mounted on the printed wiring board thus obtained by a known method. Specifically, electrical connection between the LED element and the printed wiring board, such as cleaning with plasma, mounting of the LED element, curing of the mounting resin, wire bonding bonding, flip chip bonding, etc., LED element and electric connection portion It is processed into a light emitting element called a chip LED through processes such as protection (sealing) of the resin, curing of the protected resin, and individualization by dicing. The light-emitting element obtained in this way is subjected to normal conditions or a load such as heating and light irradiation, and then the reflectance of the surface is measured to evaluate its optical characteristics. For evaluation of the optical characteristics of the laminated plate, the reflectance is measured after applying a load such as normal heating or light irradiation without processing the printed wiring board and the chip LED.
以下に実施例、比較例で本発明を具体的に説明する。尚、『部』は重量部を表す。
(実施例1)
ビスフェノールAノボラック型エポキシ樹脂(商品名:エピクロンN865、大日本インキ化学工業(株)製)70部をメチルエチルケトンに溶解し、これに、脂環式エポキシ樹脂(商品名:ERL4221D、 ダウケミカル日本(株)製)20部、ビスフェノールA型エポキシ樹脂(商品名:エピコート1001、ジャパンエポキシレジン(株)製)10部、ジシアンジアミド4部を予めジメチルホルムアミドに溶解したもの加え、均一に溶解混合した。更に、界面活性剤(商品名:BYK-310、ビックケミー・ジャパン(株)製)0.03部を加え溶解混合後、六方晶型窒化ホウ素 (商品名:SW-03、平均粒径3μm、National Nitride Technology社製)75部を加え、更に2−エチル−4−メチルイミダゾール0.05部を加え、均一攪拌混合してワニスを得た。このワニスを、厚さ46μm、重量48g/m2の平織りEガラス織布(商品名:E06E-SK、ユニチカグラスファイバー(株)製)に含浸し、150℃で8分乾燥させ、ガラス布含有量が50重量%のプリプレグを作製した。このプリプレグを2枚重ね、その上下面に厚さ12μmの電解銅箔を配置し、180℃、3MPa、4kPa以下の真空下で2時間積層成形し、絶縁層厚み105μmの銅張積層板を得た。評価結果を表1に示す。
The present invention will be specifically described below with reference to examples and comparative examples. “Parts” represents parts by weight.
Example 1
70 parts of bisphenol A novolac type epoxy resin (trade name: Epicron N865, manufactured by Dainippon Ink & Chemicals, Inc.) is dissolved in methyl ethyl ketone, and then alicyclic epoxy resin (trade name: ERL 4221D, Dow Chemical Japan Co., Ltd.). )) 20 parts, bisphenol A type epoxy resin (trade name: Epicoat 1001, Japan Epoxy Resin Co., Ltd.) 10 parts, and dicyandiamide 4 parts previously dissolved in dimethylformamide were added and uniformly dissolved and mixed. Further, 0.03 part of a surfactant (trade name: BYK-310, manufactured by Big Chemie Japan Co., Ltd.) was added and dissolved and mixed. Then, hexagonal boron nitride (trade name: SW-03, average particle size 3 μm, National) 75 parts of Nitride Technology) and 0.05 parts of 2-ethyl-4-methylimidazole were added, and the mixture was uniformly stirred and mixed to obtain a varnish. This varnish was impregnated into a plain weave E glass woven fabric (trade name: E06E-SK, manufactured by Unitika Glass Fiber Co., Ltd.) having a thickness of 46 μm and a weight of 48 g / m 2 and dried at 150 ° C. for 8 minutes to contain a glass cloth. A prepreg having an amount of 50% by weight was produced. Two sheets of this prepreg are stacked, and an electrolytic copper foil with a thickness of 12 μm is placed on the upper and lower surfaces of the prepreg, and then laminated for 2 hours under a vacuum of 180 ° C., 3 MPa, 4 kPa or less to obtain a copper-clad laminate with an insulating layer thickness of 105 μm. It was. The evaluation results are shown in Table 1.
(実施例2)
2,2−ビス(4−シアナトフェニル)プロパン25部を、メチルエチルケトンに溶解し、これに、ビスフェノールAノボラック型エポキシ樹脂(エピクロンN865) 50部、脂環式エポキシ樹脂(商品名:セロキサイド2021P、(株)ダイセル化学工業製)25部を加え、均一に溶解混合した。更に、界面活性剤(BYK-310) 0.05部を加え、溶解混合後、六方晶型窒化ホウ素 (商品名:SA-04、平均粒径4μm、National Nitride Technology社製)100部、更に、オクチル酸亜鉛 0.03部を加え、均一攪拌混合してワニスを得た。このワニスを、厚さ84μm、重量105g/m2の平織りEガラス織布(商品名:1116、旭シュエーベル(株)製)に含浸し、150℃で12分乾燥させ、ガラス布含有量が58重量%のプリプレグを作製した。このプリプレグを2枚重ね、その上下面に厚さ18μmの電解銅箔を配置し、200℃、2MPa、4kPa以下の真空下で2時間積層成形し、絶縁層厚み198μmの銅張積層板を得た。評価結果を表1に示す。
(Example 2)
25 parts of 2,2-bis (4-cyanatophenyl) propane is dissolved in methyl ethyl ketone, and 50 parts of bisphenol A novolac type epoxy resin (Epicron N865), alicyclic epoxy resin (trade name: Celoxide 2021P, 25 parts (manufactured by Daicel Chemical Industries, Ltd.) were added and uniformly dissolved and mixed. Furthermore, 0.05 part of a surfactant (BYK-310) was added, and after dissolution and mixing, 100 parts of hexagonal boron nitride (trade name: SA-04, average particle size 4 μm, manufactured by National Nitride Technology), 0.03 part of zinc octylate was added and stirred uniformly to obtain a varnish. This varnish was impregnated into a plain weave E glass woven fabric (trade name: 1116, manufactured by Asahi Schavel Co., Ltd.) having a thickness of 84 μm and a weight of 105 g / m 2 and dried at 150 ° C. for 12 minutes. A weight percent prepreg was prepared. Two prepregs are stacked, and an electrolytic copper foil with a thickness of 18 μm is placed on the upper and lower surfaces of the two prepregs, and laminated for 2 hours under a vacuum of 200 ° C., 2 MPa, 4 kPa or less to obtain a copper-clad laminate with an insulating layer thickness of 198 μm. It was. The evaluation results are shown in Table 1.
(実施例3)
ビスフェノールAノボラック型エポキシ樹脂(商品名:エピコート157S70、ジャパンエポキシレジン(株)製) 70部をメチルエチルケトンに溶解し、これに、脂環式エポキシ樹脂(ERL4221D)10部を加え、均一に溶解混合した。更に、シクロヘキサン−1,3,4−トリカルボン酸−3,4−無水物(三菱ガス化学(株)製)20部、界面活性剤(商品名:BYK-341、ビックケミー・ジャパン(株)製) 0.02部を加え、溶解混合後、六方晶型窒化ホウ素(商品名:PG、平均粒径5μm、UK Abrasives社製)50部を加え、均一攪拌混合してワニスを得た。このワニスを、厚さ30μm、重量31.5g/m2の平織りEガラス織布(商品名:WEX570、日東紡(株)製)に含浸し、150℃で4分乾燥させ、ガラス布含有量が40重量%のプリプレグを作製した。このプリプレグを2枚重ね、その上下面に厚さ12μmの電解銅箔を配置し、実施例1と同様にして積層成形し、絶縁層厚み74μmの銅張積層板を得た。評価結果を表1に示す。
(Example 3)
70 parts of bisphenol A novolac type epoxy resin (trade name: Epicoat 157S70, manufactured by Japan Epoxy Resin Co., Ltd.) was dissolved in methyl ethyl ketone, and 10 parts of alicyclic epoxy resin (ERL4221D) was added thereto and mixed uniformly. . Furthermore, 20 parts of cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride (Mitsubishi Gas Chemical Co., Ltd.), surfactant (trade name: BYK-341, manufactured by Big Chemie Japan Co., Ltd.) After 0.02 part was added and dissolved and mixed, 50 parts of hexagonal boron nitride (trade name: PG, average particle size 5 μm, UK Abrasives) was added and stirred uniformly to obtain a varnish. This varnish was impregnated into a plain weave E glass woven fabric (trade name: WEX570, manufactured by Nittobo Co., Ltd.) having a thickness of 30 μm and a weight of 31.5 g / m 2 , and dried at 150 ° C. for 4 minutes. A 40% by weight prepreg was prepared. Two prepregs were stacked, and an electrolytic copper foil having a thickness of 12 μm was disposed on the upper and lower surfaces thereof, and laminated and formed in the same manner as in Example 1 to obtain a copper-clad laminate having a thickness of 74 μm. The evaluation results are shown in Table 1.
(実施例4)
2,2−ビス(4−シアナトフェニル)プロパン15部を、メチルエチルケトンに溶解し、これに、ビスフェノールAノボラック型エポキシ樹脂(エピクロンN865) 70部、脂環式エポキシ樹脂(セロキサイド2021P)10部を加え、均一に溶解混合した。更に、シクロヘキサン−1,3,4−トリカルボン酸−3,4−無水物(三菱ガス化学(株)製)5部、界面活性剤(BYK-341) 0.04部を加え、溶解混合後、六方晶型窒化ホウ素 (SW-03)50部を加え、更に、オクチル酸亜鉛 0.03部を加え、均一攪拌混合してワニスを得た。このワニスを、厚さ24μm、重量27g/m2の平織りEガラス織布(商品名:E03E-SK、ユニチカグラスファイバー(株)製)に含浸し、150℃で3分乾燥させ、ガラス布含有量が40重量%のプリプレグを作製した。このプリプレグを2枚重ね、その上下面に厚さ12μmの電解銅箔を配置し、200℃、20kgf/cm2、30mmHg以下の真空下で2時間積層成形し、絶縁層厚み62μmの銅張積層板を得た。評価結果を表1に示す。
Example 4
15 parts of 2,2-bis (4-cyanatophenyl) propane are dissolved in methyl ethyl ketone, and 70 parts of bisphenol A novolac type epoxy resin (Epiclon N865) and 10 parts of alicyclic epoxy resin (Celoxide 2021P) are added thereto. In addition, it was uniformly dissolved and mixed. Further, 5 parts of cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride (Mitsubishi Gas Chemical Co., Ltd.) and 0.04 part of a surfactant (BYK-341) were added and dissolved and mixed. 50 parts of hexagonal boron nitride (SW-03) was added, 0.03 part of zinc octylate was further added, and the mixture was uniformly stirred and mixed to obtain a varnish. This varnish was impregnated into a plain weave E glass woven fabric (trade name: E03E-SK, manufactured by Unitika Glass Fiber Co., Ltd.) having a thickness of 24 μm and a weight of 27 g / m 2 and dried at 150 ° C. for 3 minutes to contain a glass cloth A prepreg having an amount of 40% by weight was produced. Two prepregs are stacked, and 12 μm thick electrolytic copper foil is placed on the upper and lower surfaces of the two prepregs, laminated and formed under a vacuum of 200 ° C., 20 kgf / cm 2 , 30 mmHg or less for 2 hours. I got a plate. The evaluation results are shown in Table 1.
(実施例5)
実施例4において、二酸化チタン(商品名:CR-90、平均粒径0.25μm、石原産業(株)製)25部を更に加え、界面活性剤(BYK-341)を0.05部とした以外は、実施例4と同様にプリプレグを作製し、銅張積層板を作製した。評価結果を表1に示す。
(Example 5)
In Example 4, 25 parts of titanium dioxide (trade name: CR-90, average particle size of 0.25 μm, manufactured by Ishihara Sangyo Co., Ltd.) was further added, and the surfactant (BYK-341) was 0.05 parts. Except for the above, a prepreg was produced in the same manner as in Example 4 to produce a copper-clad laminate. The evaluation results are shown in Table 1.
(比較例1)
実施例1において、ビスフェノールAノボラック型エポキシ樹脂70部脂と環式エポキシ樹脂20部の代わりに、ビスフェノールA型エポキシ樹脂(エピコート1001)90部(合計100部)を用いる以外は、実施例1と同様に行い、銅張積層板を作製した。評価結果を表1に示す。
(Comparative Example 1)
In Example 1, in place of 70 parts of bisphenol A novolac type epoxy resin and 20 parts of cyclic epoxy resin, 90 parts (100 parts in total) of bisphenol A type epoxy resin (Epicoat 1001) are used. It carried out similarly and produced the copper clad laminated board. The evaluation results are shown in Table 1.
(比較例2)
実施例1において、ビスフェノールAノボラック型エポキシ樹脂70部の代わりに、クレゾールノボラック型エポキシ樹脂(N-680、大日本インキ化学工業(株)製)70部を用い、六方晶型窒化ホウ素75部の代わりに、二酸化チタン(CR-90)75部を用いた以外は、実施例1と同様に行い、銅張積層板を作製した。評価結果を表1に示す。
(Comparative Example 2)
In Example 1, instead of 70 parts of bisphenol A novolac type epoxy resin, 70 parts of cresol novolac type epoxy resin (N-680, manufactured by Dainippon Ink and Chemicals) was used, and 75 parts of hexagonal boron nitride Instead, a copper clad laminate was produced in the same manner as in Example 1 except that 75 parts of titanium dioxide (CR-90) was used. The evaluation results are shown in Table 1.
(測定・評価方法)
・反射率:銅張積層板をダイシングソーでサイズ50x50mmに切断後、表面の銅箔をエッチングにより除去し、測定用サンプルを得た。この測定用サンプルを、JIS P-8152に基づき、分光白色度光度計(東京電色(株)製:ERP-80WX)を用いて、400nmでの反射率を測定した。(n=5の平均値)
・加熱後反射率:上記測定用サンプルを180℃の熱風乾燥機で1時間加熱処理した後、上記反射率の測定と同様にして反射率を測定した。(n=5の平均値)
・ガラス転移温度:銅張積層板の表面の銅箔をエッチング後、ダイシングソーでサイズ15x40mmに切断後、DMA法によりガラス転移温度を測定した(n=5の平均値)
・熱伝導率:銅張積層板の表面の銅箔をエッチング後、ASTM E1530に基づき、熱伝導率計(アンター社製:ユニサーモ2021型)を用いて、円板熱流計法により、熱伝導率を測定した。(n=3の平均値)
(Measurement and evaluation method)
Reflectivity: After cutting the copper-clad laminate into a size of 50 × 50 mm with a dicing saw, the copper foil on the surface was removed by etching to obtain a measurement sample. The reflectance at 400 nm was measured on this measurement sample using a spectral whiteness photometer (manufactured by Tokyo Denshoku Co., Ltd .: ERP-80WX) based on JIS P-8152. (Average value of n = 5)
-Reflectance after heating: The sample for measurement was heat-treated with a hot air dryer at 180 ° C for 1 hour, and then the reflectance was measured in the same manner as in the measurement of the reflectance. (Average value of n = 5)
Glass transition temperature: After etching the copper foil on the surface of the copper clad laminate, the glass transition temperature was measured by the DMA method after cutting to a size of 15 × 40 mm with a dicing saw (average value of n = 5)
-Thermal conductivity: After etching the copper foil on the surface of the copper-clad laminate, based on ASTM E1530, using a thermal conductivity meter (produced by Antar: Unithermo 2021 type), the thermal conductivity by the disk heat flow meter method Was measured. (Average value of n = 3)
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006114598A JP4788457B2 (en) | 2006-04-18 | 2006-04-18 | Prepreg and copper clad laminate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006114598A JP4788457B2 (en) | 2006-04-18 | 2006-04-18 | Prepreg and copper clad laminate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007284596A true JP2007284596A (en) | 2007-11-01 |
JP4788457B2 JP4788457B2 (en) | 2011-10-05 |
Family
ID=38756681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006114598A Active JP4788457B2 (en) | 2006-04-18 | 2006-04-18 | Prepreg and copper clad laminate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4788457B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008106226A (en) * | 2006-09-26 | 2008-05-08 | Hitachi Chem Co Ltd | Thermosetting resin composition for light reflection, optical semiconductor element loading substrate using the same, its manufacturing method and optical semiconductor device |
JP2008179724A (en) * | 2007-01-25 | 2008-08-07 | Nitto Denko Corp | Epoxy resin composition for semiconductor packaging and semiconductor device obtained by using the same |
JP2008274260A (en) * | 2007-04-06 | 2008-11-13 | Nippon Shokubai Co Ltd | Resin composition and optical member |
JP2010093036A (en) * | 2008-10-08 | 2010-04-22 | Sumitomo Electric Ind Ltd | Superconducting coil, superconducting magnet, epoxy resin varnish and method for manufacturing them |
WO2010070890A1 (en) * | 2008-12-18 | 2010-06-24 | パナソニック株式会社 | Prepreg, process for production thereof, and printed wiring board using same |
JP2011241279A (en) * | 2010-05-17 | 2011-12-01 | Shin Kobe Electric Mach Co Ltd | Epoxy resin composition and prepreg, laminated board, and wiring board |
WO2011152402A1 (en) * | 2010-06-02 | 2011-12-08 | 三菱瓦斯化学株式会社 | Resin composition, and prepreg and laminated sheet using same |
JP2012149155A (en) * | 2011-01-18 | 2012-08-09 | Hitachi Chemical Co Ltd | Thermosetting resin composition, and prepreg, laminate and printed wiring board using the same |
JP2013053180A (en) * | 2011-08-31 | 2013-03-21 | Hitachi Chemical Co Ltd | Resin composition, resin sheet, prepreg sheet, resin cured product sheet, structure, and semiconductor device for power or for light source |
JP2014129547A (en) * | 2007-11-30 | 2014-07-10 | Taiyo Holdings Co Ltd | White curable resin composition for printed circuit board mounted with light-emitting device, cured product thereof, printed circuit board including cured product and reflection board for light emitting device comprised of cured product |
JP2016094611A (en) * | 2015-11-25 | 2016-05-26 | 日立化成株式会社 | Thermosetting resin composition, and prepreg, laminate and printed wiring board prepared therewith |
US9387608B2 (en) | 2006-11-15 | 2016-07-12 | Hitachi Chemical Company, Ltd. | Thermosetting resin composition for light reflection, method for manufacturing the resin composition and optical semiconductor element mounting substrate and optical semiconductor device using the resin composition |
JP6089144B1 (en) * | 2016-03-30 | 2017-03-01 | 日本タングステン株式会社 | Copper-clad laminate and manufacturing method thereof |
EP3581621A4 (en) * | 2017-02-07 | 2020-11-11 | Mitsubishi Gas Chemical Company, Inc. | Resin composition, prepreg, metal foil attached laminate sheet, resin sheet, and printed wiring board |
EP3918265A4 (en) * | 2019-01-31 | 2022-08-24 | Saab AB | Winter camouflage comprising hexagonal boron nitride |
-
2006
- 2006-04-18 JP JP2006114598A patent/JP4788457B2/en active Active
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008106226A (en) * | 2006-09-26 | 2008-05-08 | Hitachi Chem Co Ltd | Thermosetting resin composition for light reflection, optical semiconductor element loading substrate using the same, its manufacturing method and optical semiconductor device |
US10381533B2 (en) | 2006-11-15 | 2019-08-13 | Hitachi Chemical Company, Ltd. | Optical semiconductor element mounting substrate and optical semiconductor device using thermosetting resin composition for light reflection |
US9387608B2 (en) | 2006-11-15 | 2016-07-12 | Hitachi Chemical Company, Ltd. | Thermosetting resin composition for light reflection, method for manufacturing the resin composition and optical semiconductor element mounting substrate and optical semiconductor device using the resin composition |
JP2008179724A (en) * | 2007-01-25 | 2008-08-07 | Nitto Denko Corp | Epoxy resin composition for semiconductor packaging and semiconductor device obtained by using the same |
JP2008274260A (en) * | 2007-04-06 | 2008-11-13 | Nippon Shokubai Co Ltd | Resin composition and optical member |
JP2014129547A (en) * | 2007-11-30 | 2014-07-10 | Taiyo Holdings Co Ltd | White curable resin composition for printed circuit board mounted with light-emitting device, cured product thereof, printed circuit board including cured product and reflection board for light emitting device comprised of cured product |
JP2010093036A (en) * | 2008-10-08 | 2010-04-22 | Sumitomo Electric Ind Ltd | Superconducting coil, superconducting magnet, epoxy resin varnish and method for manufacturing them |
WO2010070890A1 (en) * | 2008-12-18 | 2010-06-24 | パナソニック株式会社 | Prepreg, process for production thereof, and printed wiring board using same |
JP2011241279A (en) * | 2010-05-17 | 2011-12-01 | Shin Kobe Electric Mach Co Ltd | Epoxy resin composition and prepreg, laminated board, and wiring board |
US10017660B2 (en) | 2010-06-02 | 2018-07-10 | Mitsubishi Gas Chemical Company, Inc. | Resin composition, and prepreg and laminated sheet using the same |
WO2011152402A1 (en) * | 2010-06-02 | 2011-12-08 | 三菱瓦斯化学株式会社 | Resin composition, and prepreg and laminated sheet using same |
JP2012149155A (en) * | 2011-01-18 | 2012-08-09 | Hitachi Chemical Co Ltd | Thermosetting resin composition, and prepreg, laminate and printed wiring board using the same |
JP2013053180A (en) * | 2011-08-31 | 2013-03-21 | Hitachi Chemical Co Ltd | Resin composition, resin sheet, prepreg sheet, resin cured product sheet, structure, and semiconductor device for power or for light source |
JP2016094611A (en) * | 2015-11-25 | 2016-05-26 | 日立化成株式会社 | Thermosetting resin composition, and prepreg, laminate and printed wiring board prepared therewith |
JP6089144B1 (en) * | 2016-03-30 | 2017-03-01 | 日本タングステン株式会社 | Copper-clad laminate and manufacturing method thereof |
WO2017169138A1 (en) * | 2016-03-30 | 2017-10-05 | 日本タングステン株式会社 | Copper-clad laminate and production method for same |
JP2017185780A (en) * | 2016-03-30 | 2017-10-12 | 日本タングステン株式会社 | Copper clad laminate sheet and manufacturing method therefor |
CN108698375A (en) * | 2016-03-30 | 2018-10-23 | 日本钨合金株式会社 | Copper-clad laminated board and its manufacturing method |
EP3581621A4 (en) * | 2017-02-07 | 2020-11-11 | Mitsubishi Gas Chemical Company, Inc. | Resin composition, prepreg, metal foil attached laminate sheet, resin sheet, and printed wiring board |
US11098195B2 (en) | 2017-02-07 | 2021-08-24 | Mitsubishi Gas Chemical Company, Inc. | Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed circuit board |
EP3918265A4 (en) * | 2019-01-31 | 2022-08-24 | Saab AB | Winter camouflage comprising hexagonal boron nitride |
US11932780B2 (en) | 2019-01-31 | 2024-03-19 | Saab Ab | Winter camouflage comprising hexagonal boron nitride |
Also Published As
Publication number | Publication date |
---|---|
JP4788457B2 (en) | 2011-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4788457B2 (en) | Prepreg and copper clad laminate | |
JP4905052B2 (en) | Prepreg and copper clad laminate | |
KR101355777B1 (en) | Prepreg, laminate, printed wiring board, and semiconductor device | |
JP5703547B2 (en) | Resin composition, prepreg, laminate, multilayer printed wiring, and semiconductor device | |
JP6319533B1 (en) | Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board | |
WO2006121090A1 (en) | White prepreg, white laminated plate, and metal foil clad white laminated plate | |
TWI577545B (en) | Resin composition, prepreg and metal foil-clad laminate | |
JP2010100803A (en) | Epoxy resin composition, sheet-like form, prepreg, cured product, laminated board, and multilayered laminated board | |
JP5263374B2 (en) | WIRING BOARD, SEMICONDUCTOR DEVICE, AND WIRING BOARD MANUFACTURING METHOD | |
JP5941847B2 (en) | Silicone / organic resin composite laminate, method for producing the same, and light-emitting semiconductor device using the same | |
JP2013001807A (en) | Resin composition for electronic circuit board material, prepreg and laminated plate | |
JP4957166B2 (en) | Prepreg and copper clad laminate | |
JP2011241279A (en) | Epoxy resin composition and prepreg, laminated board, and wiring board | |
JP5888513B2 (en) | Resin composition, prepreg and metal foil-clad laminate | |
TWI535790B (en) | Resin composition, and prepreg and metal foil-clad laminate using the same resin composition | |
JP2016002669A (en) | Metal foil-clad substrate, circuit board and electronic component-mounted substrate | |
JP5904078B2 (en) | Prepreg, metal-clad laminate, printed wiring board, and semiconductor device | |
JP2016069401A (en) | Prepreg, resin board, metal-clad laminate, printed wiring board, and semiconductor device | |
JP4830686B2 (en) | Metal foil-clad laminate and method for producing the same | |
WO2015178393A1 (en) | Metal-foil-clad substrate, circuit board, and substrate with electronic component mounted thereon | |
JP2023126287A (en) | Solder resist resin composition, resin sheet, package and circuit board | |
JP6617710B2 (en) | Metal foil-clad board, circuit board, and heating element mounting board | |
JP2012229319A (en) | Insulating material and laminated structure body | |
JP2011088950A (en) | Prepreg, metal-clad laminate and printed circuit board using them | |
JP2020117611A (en) | Resin composition, cured product, molding, prepreg, resin sheet, metal foil-clad laminate, printed wiring board, semiconductor device, encapsulant, fiber-reinforced composite material, and adhesive |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090305 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101028 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110621 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110704 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140729 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4788457 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |