[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007279055A - Method of manufacturing acceleration sensor - Google Patents

Method of manufacturing acceleration sensor Download PDF

Info

Publication number
JP2007279055A
JP2007279055A JP2007141268A JP2007141268A JP2007279055A JP 2007279055 A JP2007279055 A JP 2007279055A JP 2007141268 A JP2007141268 A JP 2007141268A JP 2007141268 A JP2007141268 A JP 2007141268A JP 2007279055 A JP2007279055 A JP 2007279055A
Authority
JP
Japan
Prior art keywords
weight
acceleration sensor
fixing portion
stopper
peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007141268A
Other languages
Japanese (ja)
Inventor
Takasumi Kobayashi
隆澄 小林
Yoshiki Nagatomo
良樹 長友
Naokatsu Ikegami
尚克 池上
Nobuo Ozawa
信男 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2007141268A priority Critical patent/JP2007279055A/en
Publication of JP2007279055A publication Critical patent/JP2007279055A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing acceleration sensor of high reliability and accuracy. <P>SOLUTION: In the method, SOI (silicon-on-insulator) wafer structured by two silicon substrates 10 and 20 bonded with insulating layer 30 is etched, and the first silicon substrate 10 is provided with aperture 11 to form each area of circumference fixing part 12, a spindle fixing part 13, a beam part 14 and a stopper part 15. Meanwhile, a pedestal part 21 and a spindle part 23 slightly thinner than this pedestal part are formed on the second silicon substrate 20. Then the circumference fixing part 12 and the pedestal part 21, and an insulating layer 30, other than those except connecting the region between the spindle fixing part 13 and the spindle part 23, are removed by etching. By forming in dimensions so as to overlap the spindle part 23 with the stopper part 15, acceleration-based displacement of this spindle part 23 is limited, on the basis of the vessel, where the stopper part 15 and the pedestal part 21 are fixed. Thus breakage due to excessive acceleration can be avoided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、XYZの3軸方向の加速度を検出するための加速度センサの製造方法、特に過大な加速度による破壊防止技術に関するものである。   The present invention relates to a method for manufacturing an acceleration sensor for detecting acceleration in three axis directions of XYZ, and particularly to a technique for preventing destruction due to excessive acceleration.

特公平8−7228号公報Japanese Patent Publication No. 8-7228 特開平10−48243号公報Japanese Patent Laid-Open No. 10-48243

図2(a),(b)は、従来の加速度センサの構成図である。
図2(a)は前記特許文献1の第1図に記載された加速度センサで、円盤状のシリコンによる単結晶基板50を有している。単結晶基板50には、中心から順に同心円状に、作用部51、可撓部52及び固定部53が配置されている。可撓部52は、裏面の肉厚が薄く形成されて可撓性を有するようになっており、表面にはピエゾ抵抗効果を有する複数の抵抗素子(図示していない)が形成されている。作用部51の裏面には円柱状の重錘体54が固着され、固定部53は円筒状の台座55を介して容器60の底部61に接着剤62で固着されている。台座55は、通常の状態で重錘体54が容器60の底面に接触しないような高さに設定されている。
2A and 2B are configuration diagrams of a conventional acceleration sensor.
FIG. 2A shows an acceleration sensor described in FIG. 1 of Patent Document 1 having a single crystal substrate 50 made of disc-shaped silicon. On the single crystal substrate 50, an action part 51, a flexible part 52, and a fixing part 53 are arranged concentrically in order from the center. The flexible part 52 is formed so that the thickness of the back surface is thin and has flexibility, and a plurality of resistance elements (not shown) having a piezoresistance effect are formed on the surface. A columnar weight body 54 is fixed to the back surface of the action portion 51, and the fixing portion 53 is fixed to the bottom portion 61 of the container 60 with an adhesive 62 via a cylindrical base 55. The pedestal 55 is set to a height such that the weight body 54 does not contact the bottom surface of the container 60 in a normal state.

容器60の壁面部63の上部には配線孔が設けられ、この配線孔を通して配線用の電極70が外部に引き出されている。電極70の容器60内の一端は、ボンディングワイヤ71によって単結晶基板50上の抵抗素子に接続されている。また、容器60の上部は、蓋64が被せられている。   A wiring hole is provided in the upper part of the wall surface 63 of the container 60, and the wiring electrode 70 is drawn out through the wiring hole. One end of the electrode 70 in the container 60 is connected to a resistance element on the single crystal substrate 50 by a bonding wire 71. The upper part of the container 60 is covered with a lid 64.

このような加速度センサでは、可撓部52上に線状に形成された抵抗素子をX方向及びY方向に配置し、各抵抗素子の歪みによる電気抵抗の変化を検出して、重錘体54に加えられる加速度の大きさと向きを算出できるようになっている。   In such an acceleration sensor, resistance elements formed linearly on the flexible portion 52 are arranged in the X direction and the Y direction, and a change in electric resistance due to distortion of each resistance element is detected, and the weight body 54 is detected. The magnitude and direction of acceleration applied to the can be calculated.

また、大きな加速度が加えられたときには、重錘体54が容器60の底部61に接触して過大な変位を阻止し、単結晶基板50の破壊を防止するようになっている。   Further, when a large acceleration is applied, the weight body 54 comes into contact with the bottom 61 of the container 60 to prevent an excessive displacement and prevent the single crystal substrate 50 from being broken.

図2(b)は前記特許文献2の図5に記載された2層構造の加速度センサの断面図で、質量部の過大な変位を阻止するための構造を示している。   FIG. 2B is a cross-sectional view of the acceleration sensor having a two-layer structure described in FIG. 5 of Patent Document 2 and shows a structure for preventing an excessive displacement of the mass part.

この加速度センサは、正方形の第1の半導体基板70と第2の半導体基板80を、接着剤や溶着等の周知の固着手段で接合して構成されている。半導体基板70は、図には表れていない正方形の中心質量部71、この中心質量部71の四隅に接続された4個の周辺質量部72、基板周辺の支持部73、及び中心質量部71と支持部73とを可撓性を持たせて接続するために肉厚を薄くした梁部74が一体に形成されている。また、梁部74の表面には、図示されていないが、ピエゾ抵抗効果を有する複数の抵抗素子が形成されている。一方、半導体基板80は、中央部に位置する錘部81と、この錘部81の周囲に一定の間隔をあけて配置された台座82とで構成されている。   This acceleration sensor is configured by joining a square first semiconductor substrate 70 and a second semiconductor substrate 80 by a known fixing means such as an adhesive or welding. The semiconductor substrate 70 includes a square central mass portion 71 not shown in the figure, four peripheral mass portions 72 connected to the four corners of the central mass portion 71, a support portion 73 around the substrate, and a central mass portion 71 In order to connect the support portion 73 with flexibility, a beam portion 74 having a reduced thickness is integrally formed. Although not shown, a plurality of resistance elements having a piezoresistance effect are formed on the surface of the beam portion 74. On the other hand, the semiconductor substrate 80 is composed of a weight part 81 located in the center part and a pedestal 82 arranged around the weight part 81 with a certain interval.

そして、図2(b)の構造1では、周辺質量部72の外周を、錘部81の外周よりも大きく形成すると共に、周辺質量部72と重なる台座82の内側の上面に、この周辺質量部72との間に間隙を形成するための凹部82aを設けている。   In the structure 1 of FIG. 2B, the outer periphery of the peripheral mass part 72 is formed larger than the outer periphery of the weight part 81, and the peripheral mass part is formed on the upper surface of the pedestal 82 overlapping the peripheral mass part 72. A recess 82 a for forming a gap is formed between the second recess 72 and the second recess 72.

これにより、周辺質量部72と台座82の重なりによって質量部の過大な変位が阻止されるようになっている。また、図2(b)の構造2では、周辺質量部72の外周を、錘部81の外周よりも小さく形成すると共に、支持部73と重なる錘部81の周辺の上面に、この支持部73との間に間隙を形成するための凹部81aを設けている。これにより、支持部73と錘部81の重なりによって質量部の過大な変位が阻止されるようになっている。   Thereby, an excessive displacement of the mass part is prevented by the overlap of the peripheral mass part 72 and the pedestal 82. 2B, the outer periphery of the peripheral mass portion 72 is formed smaller than the outer periphery of the weight portion 81, and the support portion 73 is formed on the upper surface of the periphery of the weight portion 81 that overlaps the support portion 73. Is provided with a recess 81a for forming a gap therebetween. Thereby, an excessive displacement of the mass portion is prevented by the overlap of the support portion 73 and the weight portion 81.

しかしながら、従来の加速度センサの製造方法では、次のような課題があった。
例えば、図2(a)の加速度センサは、台座55を容器60の底部61に接着剤62で固着している。このため、接着剤62の量が多くなったり、接着時の押し付け圧力が大きくなった場合に、この接着剤62が重錘体54の下側に押し出され、ついには重錘体54まで達してこの重錘体54を固定してしまうという問題があった。また、接着剤62が厚くなって重錘体54と容器60の底部61との距離が広がり、ストッパとして働く限界距離を越えてしまうという問題があった。
However, the conventional method for manufacturing an acceleration sensor has the following problems.
For example, in the acceleration sensor of FIG. 2A, the base 55 is fixed to the bottom 61 of the container 60 with an adhesive 62. For this reason, when the amount of the adhesive 62 increases or the pressing pressure at the time of bonding increases, the adhesive 62 is pushed out below the weight body 54 and finally reaches the weight body 54. There is a problem that the weight body 54 is fixed. Further, there is a problem that the adhesive 62 becomes thick and the distance between the weight body 54 and the bottom 61 of the container 60 increases and exceeds the limit distance that acts as a stopper.

一方、図2(b)の加速度センサは、製造に当たって、2枚の半導体基板70,80を別々に加工した後に接合するという工程が必要であった。このため、製造過程における工程が多くなり、コスタダウンが困難であるという問題があった。また、接合時の寸法誤差が大きくなり、信頼性と精度の向上が困難であるという問題を有していた。   On the other hand, in manufacturing the acceleration sensor of FIG. 2B, a process of joining the two semiconductor substrates 70 and 80 after processing them separately is necessary. For this reason, there existed a problem that the process in a manufacturing process increased and it was difficult to cost down. Moreover, the dimensional error at the time of joining becomes large, and there is a problem that it is difficult to improve reliability and accuracy.

本発明の加速度センサの製造方法では、第1の半導体層、該第1の半導体層上に形成される第1の層、該第1の層上に形成される第2の半導体層を有する積層基板からなる半導体ウェハを準備する工程と、前記第2の半導体層に複数の開口部を設けることによって、錘固定部、周辺固定部、該錘固定部を該周辺固定部に可撓性を有するように接続する梁部、及び該周辺固定部から延在するストッパを形成する工程と、前記第1の半導体層に凹部を設けることによって、方形状の上面を有する中心質量部と該中心質量部からそれぞれ延在する周辺質量部とからなる錘部及び該錘部を離間して囲う台座部を画成する工程と、前記第1の層を選択的に除去することによって、前記錘固定部と前記錘部の前記中心質量部との間、及び前記周辺固定部と前記台座部との間の該第1の層を残存させる工程とを有することを特徴とする。   In the acceleration sensor manufacturing method of the present invention, the first semiconductor layer, the first layer formed on the first semiconductor layer, and the second semiconductor layer formed on the first layer are stacked. A step of preparing a semiconductor wafer made of a substrate, and providing a plurality of openings in the second semiconductor layer make the weight fixing portion, the peripheral fixing portion, and the weight fixing portion flexible to the peripheral fixing portion. Forming a beam part to be connected and a stopper extending from the peripheral fixing part, and providing a central mass part having a rectangular upper surface by providing a recess in the first semiconductor layer, and the central mass part Forming a weight part composed of a peripheral mass part extending from each of the first and second pedestal parts that surround and separate the weight part, and selectively removing the first layer, Between the central mass part of the weight part and the peripheral fixing part Characterized in that a step of leaving the first layer between the serial pedestal.

本発明の他の加速度センサの製造方法では、絶縁層及び該絶縁層上に形成される半導体基板を含む半導体ウェハを準備する工程と、前記半導体基板に複数の開口部を設けることによって、錘固定部、周辺固定部、該錘固定部と該周辺固定部とを可撓的に接続する梁部、該周辺固定部から延在し該開口部を有するストッパを画成する工程と、前記絶縁層の前記周辺固定部に対応する部分に台座部を形成する工程と、前記絶縁層の前記錘固定部に対応する部分に錘部を形成する工程と、前記周辺固定部と前記台座部及び前記錘固定部と前記錘部をそれぞれ接続する絶縁層を残し、前記ストッパに画成された開口部を含む前記複数の開口部を介して前記ストッパと前記錘部の間の絶縁層を除去する工程と、を有することを特徴とする。   In another acceleration sensor manufacturing method of the present invention, a weight is fixed by preparing a semiconductor wafer including an insulating layer and a semiconductor substrate formed on the insulating layer, and providing a plurality of openings in the semiconductor substrate. Defining a stopper having an opening, extending from the peripheral fixing part, a beam part flexibly connecting the weight fixing part and the peripheral fixing part, and the insulating layer Forming a pedestal portion in a portion corresponding to the peripheral fixing portion, forming a weight portion in a portion corresponding to the weight fixing portion of the insulating layer, the peripheral fixing portion, the pedestal portion, and the weight Removing an insulating layer between the stopper and the weight portion through the plurality of openings, leaving an insulating layer connecting the fixed portion and the weight portion, respectively, and including an opening defined in the stopper; It is characterized by having.

本発明の加速度センサの製造方法によれば、錘部の変位を制限するストッパを形成している。これにより、容器側への変位のみならず、この容器とは反対側への変位量を制限することが可能になり、過大な加速度による破壊を防止することができる。なお、ストッパを補強するための補強材を形成すれば、このストッパの損傷も防止することができる。   According to the acceleration sensor manufacturing method of the present invention, the stopper for limiting the displacement of the weight portion is formed. As a result, it is possible to limit not only the displacement toward the container but also the amount of displacement toward the opposite side of the container, and the destruction due to excessive acceleration can be prevented. If a reinforcing material for reinforcing the stopper is formed, the stopper can be prevented from being damaged.

更に、半導体ウェハを用いて歪検出手段、梁部、ストッパ、錘部、台座等を形成し、加速度センサを製造するようにしている。これにより、複数の部品の貼り付け処理が不要になって、寸法誤差が極めて小さくすることが可能になり、信頼性と精度を向上させることができる。   Furthermore, an acceleration sensor is manufactured by forming strain detection means, a beam portion, a stopper, a weight portion, a pedestal, and the like using a semiconductor wafer. This eliminates the need for attaching a plurality of components, makes it possible to reduce the dimensional error and improve the reliability and accuracy.

加速度センサの製造方法では、第1の半導体層、該第1の半導体層上に形成される第1の層、該第1の層上に形成される第2の半導体層を有する積層基板からなる半導体ウェハを準備する。そして、前記第2の半導体層に複数の開口部を設けることによって、錘固定部、周辺固定部、該錘固定部を該周辺固定部に可撓性を有するように接続する梁部、及び該周辺固定部から延在するストッパを形成する。次に、前記第1の半導体層に凹部を設けることによって、方形状の上面を有する中心質量部と該中心質量部からそれぞれ延在する周辺質量部とからなる錘部及び該錘部を離間して囲う台座部を画成する。その後、前記第1の層を選択的に除去することによって、前記錘固定部と前記錘部の前記中心質量部との間、及び前記周辺固定部と前記台座部との間の該第1の層を残存させる。   In the method of manufacturing an acceleration sensor, the acceleration sensor includes a laminated substrate having a first semiconductor layer, a first layer formed on the first semiconductor layer, and a second semiconductor layer formed on the first layer. A semiconductor wafer is prepared. Then, by providing a plurality of openings in the second semiconductor layer, a weight fixing portion, a peripheral fixing portion, a beam portion for connecting the weight fixing portion to the peripheral fixing portion so as to have flexibility, and the A stopper extending from the peripheral fixing portion is formed. Next, by providing a concave portion in the first semiconductor layer, a weight portion including a central mass portion having a rectangular upper surface and a peripheral mass portion extending from the central mass portion and the weight portion are separated from each other. The pedestal that surrounds is defined. Thereafter, by selectively removing the first layer, the first layer between the weight fixing part and the central mass part of the weight part and between the peripheral fixing part and the pedestal part. Leave the layer.

(加速度センサの構造)
図1(a)〜(d)は、本発明の実施例1を示す加速度センサの構成図であり、同図(a)は平面図、同図(c)は裏面図、及び同図(b),(d)は同図(a)中の断面A−A,B−Bにおける断面図である。
(Acceleration sensor structure)
1A to 1D are configuration diagrams of an acceleration sensor showing Embodiment 1 of the present invention, where FIG. 1A is a plan view, FIG. 1C is a back view, and FIG. ) And (d) are cross-sectional views taken along cross-sections AA and BB in FIG.

また、図3(a)〜(d)は、図1の加速度センサにおける各層のパターンを示す平面図であり、同図(a)は第1のシリコン基板10、同図(b)は絶縁層30、同図(c)は補強部41、及び同図(d)は第2のシリコン基板20の、それぞれのパターンを示している。   3A to 3D are plan views showing patterns of respective layers in the acceleration sensor of FIG. 1, in which FIG. 3A is a first silicon substrate 10 and FIG. 3B is an insulating layer. 30, (c) shows the respective patterns of the reinforcing portion 41, and (d) shows the pattern of the second silicon substrate 20.

この加速度センサは、第2の半導体層である厚さ5μm程度の第1のシリコン基板10と、第1の半導体層である厚さ525μm程度の第2のシリコン基板20とを、第1の層である絶縁層30を介して貼り合わせたSOI(Silicon on Insulator)ウェハに、エッチング等の処理を施して形成したものである。   This acceleration sensor includes a first silicon substrate 10 having a thickness of about 5 μm, which is a second semiconductor layer, and a second silicon substrate 20 having a thickness of about 525 μm, which is a first semiconductor layer. The SOI (Silicon on Insulator) wafer bonded through the insulating layer 30 is subjected to a process such as etching.

加速度センサ1個分のシリコン基板10は、1辺が2.5mm程度のほぼ正方形をしており、その内側に4個の開口部11を設けることにより、周辺固定部12、錘固定部13、梁部14、及びストッパ部15の各領域が形成されている。   The silicon substrate 10 for one acceleration sensor has a substantially square shape with one side of about 2.5 mm, and by providing four openings 11 inside thereof, a peripheral fixing portion 12, a weight fixing portion 13, Each region of the beam portion 14 and the stopper portion 15 is formed.

周辺固定部12は、シリコン基板10の周辺部に設けられた幅500μm程度の領域であり、錘固定部13は、このシリコン基板10の中央部に設けられた1辺が700μm程度のほぼ正方形の領域である。周辺固定部12と錘固定部13との間は、縦及び横方向に直交するように設けられた幅400μm程度の4つの梁部14で接続されている。梁部14の表面には、機械的歪みによって電気抵抗が変化するピエゾ抵抗効果を有する抵抗素子16が形成されている。   The peripheral fixing portion 12 is a region having a width of about 500 μm provided in the peripheral portion of the silicon substrate 10, and the weight fixing portion 13 is a substantially square having a side of about 700 μm provided in the central portion of the silicon substrate 10. It is an area. The peripheral fixing portion 12 and the weight fixing portion 13 are connected by four beam portions 14 having a width of about 400 μm provided so as to be orthogonal to the vertical and horizontal directions. On the surface of the beam portion 14, a resistance element 16 having a piezoresistance effect in which an electrical resistance changes due to mechanical strain is formed.

周辺固定部12と梁部14で囲まれるほぼ正方形の領域の内で、この周辺固定部12の2辺を有するほぼ直角三角形の領域がストッパ部15となっており、このストッパ部15の反対側のほぼ直角三角形の領域が開口部11となっている。また、ストッパ部15には、複数の小さな開口部17が設けられている。   Of the substantially square area surrounded by the peripheral fixing part 12 and the beam part 14, a substantially right triangle area having two sides of the peripheral fixing part 12 is a stopper part 15, on the opposite side of the stopper part 15. The region of a substantially right triangle is the opening 11. Further, the stopper portion 15 is provided with a plurality of small openings 17.

一方、シリコン基板20は、シリコン基板10の周辺固定部12に対応して周辺に設けられた幅500μm程度の台座部21と、この台座部21の内側に間隙22を介して設けられた錘部23を有している。錘部23は、シリコン基板10の錘固定部13、開口部11及びストッパ部15の領域に対応した形状をしている。即ち、錘部23は、錘固定部13に対応する中心質量部である中央錘部23aと、この中央錘部23aの四隅に接続された4個の周辺質量部である周辺錘部23bとで構成されている。   On the other hand, the silicon substrate 20 includes a pedestal portion 21 having a width of about 500 μm provided in the periphery corresponding to the peripheral fixing portion 12 of the silicon substrate 10 and a weight portion provided inside the pedestal portion 21 via a gap 22. 23. The weight part 23 has a shape corresponding to the areas of the weight fixing part 13, the opening part 11 and the stopper part 15 of the silicon substrate 10. That is, the weight portion 23 includes a central weight portion 23a that is a central mass portion corresponding to the weight fixing portion 13, and a peripheral weight portion 23b that is four peripheral mass portions connected to the four corners of the central weight portion 23a. It is configured.

また、シリコン基板20において、シリコン基板10の梁部14に対応する箇所は、溝部24としてシリコンが除去されている。錘部23の厚さは、台座部21の厚さよりも最大許容変位量(例えば、5μm)だけ薄く形成されている。更に、錘部23の下部の周囲には、例えば幅と高さが20μm程度の段差部23cが形成されている。   Further, in the silicon substrate 20, silicon corresponding to the beam portion 14 of the silicon substrate 10 is removed as a groove portion 24. The thickness of the weight portion 23 is formed thinner than the thickness of the pedestal portion 21 by a maximum allowable displacement amount (for example, 5 μm). Further, a step portion 23c having a width and a height of about 20 μm is formed around the lower portion of the weight portion 23, for example.

シリコン基板10,20は、周辺固定部12に対応して残された絶縁層30の酸化膜31と、錘固定部13に対応して残された絶縁層30の酸化膜32を介して相互に接続されている。また、シリコン基板10の表面で、四隅の周辺固定部12とストッパ部15の境界線上には、このストッパ部15を補強するために、図示しない保護膜を介して、アルミニウム等による補強部41が設けられている。   The silicon substrates 10 and 20 are mutually connected via the oxide film 31 of the insulating layer 30 left corresponding to the peripheral fixing part 12 and the oxide film 32 of the insulating layer 30 left corresponding to the weight fixing part 13. It is connected. Further, on the surface of the silicon substrate 10, on the boundary line between the peripheral fixing portion 12 and the stopper portion 15 at the four corners, a reinforcing portion 41 made of aluminum or the like is provided via a protective film (not shown) to reinforce the stopper portion 15. Is provided.

(加速度センサの製造方法)
図4及び図5は、図1の加速度センサの製造方法を示す工程図(その1、及びその2)である。以下、この図4及び図5に従って、図1の加速度センサの製造方法を説明する。
(Acceleration sensor manufacturing method)
4 and 5 are process diagrams (No. 1 and No. 2) showing a method of manufacturing the acceleration sensor of FIG. A method for manufacturing the acceleration sensor shown in FIG. 1 will be described below with reference to FIGS.

(1) 工程1
例えば、厚さ5μmで体積抵抗率6〜8Ω/cm程度のN型のシリコン基板10と厚さ525μmで体積抵抗率16Ω/cm程度のシリコン基板20を、厚さ5μm程度の酸化シリコンによる絶縁層30を介して貼り合わせたSOIウェハを準備する。
(1) Process 1
For example, an N-type silicon substrate 10 having a thickness of about 5 to 8 Ω / cm and a silicon substrate 20 having a thickness of about 525 μm and a volume resistivity of about 16 Ω / cm is formed of an insulating layer made of silicon oxide having a thickness of about 5 μm. An SOI wafer bonded through 30 is prepared.

(2) 工程2
シリコン基板10の表面に、1000℃程度の加湿雰囲気を用いた熱酸化条件で、厚さ0.4μm程度の酸化シリコンによる保護膜40を形成する。
(2) Process 2
A protective film 40 made of silicon oxide having a thickness of about 0.4 μm is formed on the surface of the silicon substrate 10 under thermal oxidation conditions using a humidified atmosphere of about 1000 ° C.

(3) 工程3
ホトリソエッチング技術を用いて保護膜40に開口部40aを設け、ボロン拡散法により、シリコン基板10の表面に抵抗素子16等となるP型の拡散層18を形成する。更に、拡散層18の表面にCVD(Chemical Vapor Deposition)法によって保護酸化膜40bを形成する。
(3) Process 3
An opening 40a is provided in the protective film 40 using a photolithography etching technique, and a P-type diffusion layer 18 that becomes the resistance element 16 and the like is formed on the surface of the silicon substrate 10 by a boron diffusion method. Further, a protective oxide film 40b is formed on the surface of the diffusion layer 18 by a CVD (Chemical Vapor Deposition) method.

(4) 工程4
ホトリソエッチング技術を用いて保護酸化膜40bに電極取り出し口40cを開口し、メタルスパッタリング技術を用いて保護膜40上にアルミニウムを堆積する。更に、ホトリソエッチング技術を用いてアルミニウムをエッチングし、補強部41と配線42を同時に形成する。
(4) Process 4
An electrode outlet 40c is opened in the protective oxide film 40b using a photolithography etching technique, and aluminum is deposited on the protective film 40 using a metal sputtering technique. Further, aluminum is etched using a photolitho etching technique, and the reinforcing portion 41 and the wiring 42 are formed simultaneously.

(5) 工程5
PRD(Plasma Reactive Deposition)法を用いて、保護膜40及びその上に 形成された補強部41や配線42の表面に、保護用のシリコン窒化膜43を形成する。尚、次の工程6以降の説明では、このシリコン窒化膜43の図示を省略している。
(5) Process 5
Using a PRD (Plasma Reactive Deposition) method, a protective silicon nitride film 43 is formed on the surface of the protective film 40 and the reinforcing portions 41 and wirings 42 formed thereon. It should be noted that the silicon nitride film 43 is not shown in the description of the next step 6 and subsequent steps.

(6) 工程6
シリコン窒化膜43上にホトレジストを形成し、ホトリソエッチング技術を用いて、梁部14とストッパ部15を区隔する開口部11と、後の工程で周辺錘部23bとストッパ部15の間に介在する絶縁層30を除去するために用いる開口部17を形成する。
(6) Process 6
A photoresist is formed on the silicon nitride film 43, and the photolithography etching technique is used to separate the beam portion 14 and the stopper portion 15 between the peripheral weight portion 23b and the stopper portion 15 in a later step. An opening 17 used to remove the intervening insulating layer 30 is formed.

(7) 工程7
SOIウェハの裏面、即ちシリコン基板20の表面に、CVD技術を用いて酸化膜44を形成する。台座部21に対応するように周囲の酸化膜44を残し、中央部の酸化膜44をホトリソエッチング技術を用いて除去して、開口部44aを形成する。更に、開口部44aに中に、錘部23に対応するホトレジスト45を形成する。
(7) Process 7
An oxide film 44 is formed on the back surface of the SOI wafer, that is, on the surface of the silicon substrate 20 by using the CVD technique. The peripheral oxide film 44 is left so as to correspond to the pedestal portion 21, and the central oxide film 44 is removed using a photolithography etching technique to form an opening 44a. Further, a photoresist 45 corresponding to the weight portion 23 is formed in the opening 44a.

(8) 工程8
周辺部に残された酸化膜44とホトレジスト45をエッチングマスクとし、ガスチョッピング・エッチング技術(GCET:Gas Chopping Etching Technology、所謂 Bosch法)を用いてシリコン基板20の表面を20μm程度エッチングし、凹部20aを形成する。その後、ホトレジスト45のみを除去する。
(8) Process 8
The surface of the silicon substrate 20 is etched by about 20 μm by using a gas chopping etching technique (GCET) (so-called Bosch method) using the oxide film 44 and the photoresist 45 left in the peripheral portion as an etching mask. Form. Thereafter, only the photoresist 45 is removed.

(9) 工程9
酸化膜44をエッチングマスクとし、GCETを用いてシリコン基板20の表面を5μm程度、追加エッチングする。これにより、厚さが台座部21よりも5μm程度薄い錘部23が得られ、更に中央部よりも厚さが20μm程度薄い周辺部が形成される。この周辺部は、後の工程で段差部23cとなるものである。
(9) Process 9
Using the oxide film 44 as an etching mask, the surface of the silicon substrate 20 is additionally etched by about 5 μm using GCET. As a result, a weight portion 23 having a thickness about 5 μm thinner than the pedestal portion 21 is obtained, and a peripheral portion having a thickness about 20 μm thinner than the center portion is formed. This peripheral portion becomes the step portion 23c in a later process.

(10) 工程10
ホトリソ技術により、シリコン基板20の台座部21と錘部23の間の間隙22及び溝部24を形成するためのエッチングマスク46を形成する。
(10) Step 10
An etching mask 46 for forming the gap 22 and the groove 24 between the base portion 21 and the weight portion 23 of the silicon substrate 20 is formed by photolithography.

(11) 工程11
GCETを用いて、シリコン基板20の間隙22と溝部24を形成する。
(11) Step 11
The gap 22 and the groove 24 of the silicon substrate 20 are formed using GCET.

(12) 工程12
工程11までの処理が完了したSOIウェハを緩衝ふっ酸に浸漬し、シリコン基板10,20間の絶縁層30をエッチングする。この時、シリコン基板10に設けられた開口部11,17と、シリコン基板20の間隙22及び溝部24から緩衝ふっ酸が流入し、周辺錘部23bとストッパ部15の間に介在する絶縁層30が除去される。
(12) Step 12
The SOI wafer that has been processed up to step 11 is immersed in buffered hydrofluoric acid, and the insulating layer 30 between the silicon substrates 10 and 20 is etched. At this time, buffer hydrofluoric acid flows from the openings 11 and 17 provided in the silicon substrate 10 and the gap 22 and the groove 24 of the silicon substrate 20, and the insulating layer 30 interposed between the peripheral weight portion 23 b and the stopper portion 15. Is removed.

その後、通常の半導体製造方法と同様に、SOIウェハからチップを切り出し、容器に収容して所定の配線を行う。   Thereafter, in the same manner as in a normal semiconductor manufacturing method, a chip is cut out from the SOI wafer, accommodated in a container, and predetermined wiring is performed.

(加速度センサの動作)
前記の製造方法により製造された加速度センサでは、以下のように動作する。
容器に収容された加速度センサの錘部23に下向きの加速度が加えられると、梁部14が撓んで、この錘部23が下側に変位する。錘部23の下側への変位は、この錘部23の底面が容器の底部に接する位置で停止され、それ以上の変位は阻止される。また、錘部23に上向きの加速度が与えられると、梁部14が撓んでこの錘部23は上側に変位するが、周辺錘部23bがストッパ部15に接した位置で停止され、それ以上の変位は阻止される。
(Acceleration sensor operation)
The acceleration sensor manufactured by the above manufacturing method operates as follows.
When a downward acceleration is applied to the weight portion 23 of the acceleration sensor accommodated in the container, the beam portion 14 is bent and the weight portion 23 is displaced downward. The downward displacement of the weight portion 23 is stopped at a position where the bottom surface of the weight portion 23 is in contact with the bottom portion of the container, and further displacement is prevented. Further, when an upward acceleration is applied to the weight portion 23, the beam portion 14 is bent and the weight portion 23 is displaced upward, but is stopped at a position where the peripheral weight portion 23b contacts the stopper portion 15, Displacement is prevented.

一方、4つの梁部14に形成された抵抗素子16の電気抵抗は、この梁部14の撓みに応じて変化する。これにより、4つの抵抗素子16の変化量に基づいて、加速度の大きさと方向が算出される。   On the other hand, the electrical resistance of the resistance elements 16 formed on the four beam portions 14 changes according to the deflection of the beam portions 14. Thereby, the magnitude and direction of acceleration are calculated based on the amount of change of the four resistance elements 16.

(実施例1の効果)
本実施例1によれば、次のような効果がある。
(Effect of Example 1)
According to the first embodiment, there are the following effects.

(i) 錘部23の上側への許容量を越える変位は、補強部41で補強が施されたストッパ部15で阻止され、下側への許容量を越える変位は容器60の底面61で阻止される。これにより、過大な加速度によるセンサの破壊を防止することができる。   (I) Displacement exceeding the upper limit of the weight portion 23 is blocked by the stopper portion 15 reinforced by the reinforcing portion 41, and displacement exceeding the lower limit is blocked by the bottom surface 61 of the container 60. Is done. Thereby, destruction of the sensor due to excessive acceleration can be prevented.

(ii) SOIウェハをエッチングして形成しているので、複数のシリコン基板を貼り合わせるという工程が不要である。このため、寸法誤差が極めて小さくなり、信頼性と精度を向上させることができる。   (Ii) Since the SOI wafer is formed by etching, a step of bonding a plurality of silicon substrates is unnecessary. For this reason, a dimensional error becomes very small and reliability and precision can be improved.

(iii) 錘部23の下部の周囲に段差部23cを形成している。これにより、台座部21の裏面に接着剤を塗布して容器60に固着するときに、この容器60の底部61と台座部21の間から接着剤が押し出されても、この接着剤が錘部23に達してこの錘部23を固定してしまうおそれがない。   (Iii) A step portion 23 c is formed around the lower portion of the weight portion 23. Thus, when the adhesive is applied to the back surface of the pedestal portion 21 and is fixed to the container 60, even if the adhesive is pushed out from between the bottom 61 of the container 60 and the pedestal portion 21, There is no possibility of reaching 23 and fixing the weight portion 23.

(変形例)
なお、本発明は、上記実施例に限定されず、種々の変形が可能である。この変形例としては、例えば、次のようなものがある。
(Modification)
In addition, this invention is not limited to the said Example, A various deformation | transformation is possible. Examples of this modification include the following.

(a) 形状は正方形に限定されない。長方形や円形でも良い。また、シリコン基板10,20等の寸法は、例示したものに限定されない。   (A) The shape is not limited to a square. It may be rectangular or circular. Further, the dimensions of the silicon substrates 10 and 20 are not limited to those illustrated.

(b) 工程4で電極取り出し口を設ける時に、台座部21の上に位置する周辺固定部12上に開口部を設けて、アルミニウムの配線42とこの周辺固定部12のシリコンの合金層を形成するようにしても良い。これにより、補強部41の強度を向上することができる。   (B) When the electrode outlet is provided in step 4, an opening is provided on the peripheral fixing portion 12 located on the pedestal portion 21, and an aluminum wiring 42 and a silicon alloy layer of the peripheral fixing portion 12 are formed. You may make it do. Thereby, the intensity | strength of the reinforcement part 41 can be improved.

(c) 工程4,5では、単一のアルミニウム層で補強部41や配線42を形成したが、補強部41の強度を更に高めるために、周知の多層配線形成技術を用いて複数のアルミニウム層を形成しても良い。   (C) In steps 4 and 5, the reinforcing portion 41 and the wiring 42 are formed with a single aluminum layer. However, in order to further increase the strength of the reinforcing portion 41, a plurality of aluminum layers are formed using a known multilayer wiring forming technique. May be formed.

(d) 工程9は、表面をレジストでカバーしておいて、裏面のシリコン露出部を水酸化カリウム液、或いはTMAH(Tetra-methylammonium Hydroxide)液でエッチングするようにしても良い。また、裏面の酸化膜形成を開口部の形成前に行い、その後、開口部の形成、裏面の酸化膜の開口部の形成を順次行い、更に工程7を行うようにしても良い。   (D) In step 9, the front surface may be covered with a resist, and the silicon exposed portion on the back surface may be etched with potassium hydroxide solution or TMAH (Tetra-methylammonium Hydroxide) solution. Further, the oxide film on the back surface may be formed before the opening is formed, and thereafter, the formation of the opening and the formation of the opening of the oxide film on the back surface may be sequentially performed, and then step 7 may be performed.

本発明の実施例1を示す加速度センサの構成図である。It is a block diagram of the acceleration sensor which shows Example 1 of this invention. 従来の加速度センサの構成図である。It is a block diagram of the conventional acceleration sensor. 図1の加速度センサにおける各層のパターンを示す平面図である。It is a top view which shows the pattern of each layer in the acceleration sensor of FIG. 図1の加速度センサの製造方法を示す工程図(その1)である。FIG. 3 is a process diagram (part 1) illustrating a method of manufacturing the acceleration sensor of FIG. 1; 図1の加速度センサの製造方法を示す工程図(その2)である。FIG. 8 is a process diagram (part 2) illustrating the method for manufacturing the acceleration sensor of FIG. 1;

符号の説明Explanation of symbols

10,20 シリコン基板
11,17 開口部
12 周辺固定部
13 錘固定部
14 梁部
15 ストッパ部
16 抵抗素子
20a 凹部
21 台座部
22 間隙
23 錘部
24 溝部
30 絶縁層
31,32 酸化膜
40 保護膜
41 補強部
42 配線
DESCRIPTION OF SYMBOLS 10,20 Silicon substrate 11,17 Opening part 12 Peripheral fixing part 13 Weight fixing part 14 Beam part 15 Stopper part 16 Resistance element 20a Recessed part 21 Base part 22 Gap 23 Weight part 24 Groove part 30 Insulating layer 31, 32 Oxide film 40 Protective film 41 Reinforcement part 42 Wiring

Claims (5)

第1の半導体層、該第1の半導体層上に形成される第1の層、該第1の層上に形成される第2の半導体層を有する積層基板からなる半導体ウェハを準備する工程と、
前記第2の半導体層に複数の開口部を設けることによって、錘固定部、周辺固定部、該錘固定部を該周辺固定部に可撓性を有するように接続する梁部、及び該周辺固定部から延在するストッパを形成する工程と、
前記第1の半導体層に凹部を設けることによって、方形状の上面を有する中心質量部と該中心質量部からそれぞれ延在する周辺質量部とからなる錘部及び該錘部を離間して囲う台座部を画成する工程と、
前記第1の層を選択的に除去することによって、前記錘固定部と前記錘部の前記中心質量部との間、及び前記周辺固定部と前記台座部との間の該第1の層を残存させる工程と、
を有することを特徴とする加速度センサの製造方法。
Preparing a semiconductor wafer comprising a laminated substrate having a first semiconductor layer, a first layer formed on the first semiconductor layer, and a second semiconductor layer formed on the first layer; ,
By providing a plurality of openings in the second semiconductor layer, a weight fixing portion, a peripheral fixing portion, a beam portion for connecting the weight fixing portion to the peripheral fixing portion in a flexible manner, and the peripheral fixing Forming a stopper extending from the portion;
By providing a recess in the first semiconductor layer, a weight part including a central mass part having a rectangular upper surface and a peripheral mass part extending from the central mass part, and a pedestal that surrounds and separates the weight part The process of defining the part,
By selectively removing the first layer, the first layer between the weight fixing part and the central mass part of the weight part and between the peripheral fixing part and the pedestal part is removed. A process of remaining;
A method for manufacturing an acceleration sensor, comprising:
請求項1記載の加速度センサの製造方法において、
前記ストッパの上部に補強材を形成する工程を追加したことを特徴とする加速度センサの製造方法。
The method of manufacturing an acceleration sensor according to claim 1,
A method for manufacturing an acceleration sensor, comprising the step of forming a reinforcing material on an upper portion of the stopper.
請求項2に記載の加速度センサの製造方法において、
前記ストッパの上部に補強材を形成する工程は、前記第1の半導体層に凹部を形成する工程より前に行われることを特徴とする加速度センサの製造方法。
In the manufacturing method of the acceleration sensor according to claim 2,
The method of manufacturing an acceleration sensor, wherein the step of forming a reinforcing material on the stopper is performed before the step of forming a recess in the first semiconductor layer.
絶縁層及び該絶縁層上に形成される半導体基板を含む半導体ウェハを準備する工程と、
前記半導体基板に複数の開口部を設けることによって、錘固定部、周辺固定部、該錘固定部と該周辺固定部とを可撓的に接続する梁部、該周辺固定部から延在し該開口部を有するストッパを画成する工程と、
前記絶縁層の前記周辺固定部に対応する部分に台座部を形成する工程と、
前記絶縁層の前記錘固定部に対応する部分に錘部を形成する工程と、
前記周辺固定部と前記台座部及び前記錘固定部と前記錘部をそれぞれ接続する絶縁層を残し、前記ストッパに画成された開口部を含む前記複数の開口部を介して前記ストッパと前記錘部の間の絶縁層を除去する工程と、
を有することを特徴とする加速度センサの製造方法。
Preparing a semiconductor wafer including an insulating layer and a semiconductor substrate formed on the insulating layer;
By providing a plurality of openings in the semiconductor substrate, a weight fixing portion, a peripheral fixing portion, a beam portion that flexibly connects the weight fixing portion and the peripheral fixing portion, and extending from the peripheral fixing portion, Defining a stopper having an opening;
Forming a pedestal portion in a portion corresponding to the peripheral fixing portion of the insulating layer;
Forming a weight portion in a portion corresponding to the weight fixing portion of the insulating layer;
The stopper and the weight are interposed through the plurality of openings including openings formed in the stopper, leaving an insulating layer connecting the peripheral fixing portion and the pedestal portion and the weight fixing portion and the weight portion, respectively. Removing the insulating layer between the parts;
A method for manufacturing an acceleration sensor, comprising:
請求項5に記載の加速度センサの製造方法において、前記絶縁層を除去する工程は、ウェットエッチングによって行われることを特徴とする加速度センサの製造方法。   6. The method of manufacturing an acceleration sensor according to claim 5, wherein the step of removing the insulating layer is performed by wet etching.
JP2007141268A 2007-05-29 2007-05-29 Method of manufacturing acceleration sensor Pending JP2007279055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007141268A JP2007279055A (en) 2007-05-29 2007-05-29 Method of manufacturing acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007141268A JP2007279055A (en) 2007-05-29 2007-05-29 Method of manufacturing acceleration sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002366814A Division JP4518738B2 (en) 2002-12-18 2002-12-18 Acceleration sensor

Publications (1)

Publication Number Publication Date
JP2007279055A true JP2007279055A (en) 2007-10-25

Family

ID=38680615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007141268A Pending JP2007279055A (en) 2007-05-29 2007-05-29 Method of manufacturing acceleration sensor

Country Status (1)

Country Link
JP (1) JP2007279055A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0389900U (en) * 1989-12-27 1991-09-12
JP2822486B2 (en) * 1989-09-27 1998-11-11 株式会社デンソー Strain-sensitive sensor and method of manufacturing the same
JPH11135804A (en) * 1997-08-29 1999-05-21 Matsushita Electric Works Ltd Semiconductor accelerometer and its manufacture
JP2003329702A (en) * 2002-05-13 2003-11-19 Wacoh Corp Acceleration sensor and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2822486B2 (en) * 1989-09-27 1998-11-11 株式会社デンソー Strain-sensitive sensor and method of manufacturing the same
JPH0389900U (en) * 1989-12-27 1991-09-12
JPH11135804A (en) * 1997-08-29 1999-05-21 Matsushita Electric Works Ltd Semiconductor accelerometer and its manufacture
JP2003329702A (en) * 2002-05-13 2003-11-19 Wacoh Corp Acceleration sensor and its manufacturing method

Similar Documents

Publication Publication Date Title
US7010976B2 (en) Acceleration sensor and manufacturing method thereof
US20090045474A1 (en) MEMS sensor and production method of MEMS sensor
US9835507B2 (en) Dynamic quantity sensor
JP4272115B2 (en) Acceleration sensor and manufacturing method thereof
JP4518738B2 (en) Acceleration sensor
US8796791B2 (en) Hybrid intergrated component and method for the manufacture thereof
JP2009020001A (en) Acceleration sensor
JP4688600B2 (en) Manufacturing method of semiconductor sensor
JP4542885B2 (en) Acceleration sensor and manufacturing method thereof
US8530985B2 (en) Chip package and method for forming the same
JP3533984B2 (en) Semiconductor acceleration sensor and method of manufacturing the same
US7705412B2 (en) SOI substrate and semiconductor acceleration sensor using the same
JP4883688B2 (en) Vacuum package, electronic device, and manufacturing method of vacuum package
JP4093267B2 (en) Acceleration sensor
JP2010147285A (en) Mems, vibration gyroscope, and method of manufacturing mems
JP3938199B1 (en) Wafer level package structure and sensor device
JP4883077B2 (en) Semiconductor device and manufacturing method thereof
JP2007279055A (en) Method of manufacturing acceleration sensor
JP2006145547A (en) Acceleration sensor and its manufacturing method
JP2008241482A (en) Sensor device
JPH09116173A (en) Semiconductor sensor and its manufacture
JP4250387B2 (en) Converter and manufacturing method thereof
JP5617801B2 (en) Semiconductor device and manufacturing method thereof
JP5406081B2 (en) Manufacturing method of semiconductor device
JP6773437B2 (en) Stress sensor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019