JP2007278676A - Heat exchanger - Google Patents
Heat exchanger Download PDFInfo
- Publication number
- JP2007278676A JP2007278676A JP2006109517A JP2006109517A JP2007278676A JP 2007278676 A JP2007278676 A JP 2007278676A JP 2006109517 A JP2006109517 A JP 2006109517A JP 2006109517 A JP2006109517 A JP 2006109517A JP 2007278676 A JP2007278676 A JP 2007278676A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- liquid
- heat exchange
- passes
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
本発明は、主に空気調和機などに利用されるヒートポンプサイクルに関するもので、蒸発器として機能する場合と凝縮器として機能する場合によってそれぞれに適したパスに変更し、いずれの場合でも高い熱交換性能を得ることのできる技術を提供するものである。 The present invention relates to a heat pump cycle mainly used for an air conditioner or the like, and it is changed to a path suitable for each case when functioning as an evaporator and when functioning as a condenser. The technology that can obtain the performance is provided.
冷凍およびヒートポンプサイクルを用いて冷暖房を行う空気調和機においては、熱交換器は蒸発器および凝縮器の両方の機能を果たしている。冷媒は、蒸発器では気液2相状態から気相へ、凝縮器では気相から液相へ状態変化し、熱交換器を流れる冷媒の向きも蒸発器と凝縮器では逆になる。また、熱交換器の管内熱伝達性能は冷媒の流速が大きく影響し、流速が速いほど性能が良い。すなわち、冷媒が気相から液相へ変化して液相部で流速が大きく落ちる凝縮器では、パス数を減らし流速を上げたほうがシステムの効率を向上させることができる。一方、冷媒が気液2相状態から気相へ変化し、凝縮器に比べて流速が速く圧力損失が増加しやすい蒸発器では、パス数を減らし過ぎるとシステムの効率は低下する。 In an air conditioner that performs air conditioning using a refrigeration and a heat pump cycle, the heat exchanger functions as both an evaporator and a condenser. The refrigerant changes its state from a gas-liquid two-phase state to a gas phase in the evaporator and from the gas phase to the liquid phase in the condenser, and the direction of the refrigerant flowing through the heat exchanger is reversed between the evaporator and the condenser. The heat transfer performance in the pipe of the heat exchanger is greatly affected by the flow rate of the refrigerant, and the higher the flow rate, the better the performance. That is, in a condenser in which the refrigerant changes from the gas phase to the liquid phase and the flow velocity greatly decreases in the liquid phase portion, the efficiency of the system can be improved by increasing the flow velocity by reducing the number of passes. On the other hand, in an evaporator in which the refrigerant changes from a gas-liquid two-phase state to a gas phase and the flow velocity is higher than that of a condenser and pressure loss is likely to increase, the efficiency of the system decreases if the number of passes is reduced too much.
従来の技術では、この課題を解決する方法として、逆止弁を複数組み合わせて用い、熱交換器が凝縮器として機能する時は1パスで、凝縮器として機能する時は2パスで運転して、冷房暖房どちらも効率よく運転しようというものがある(例えば、特許文献1参照)。また別の方法として、逆止弁ではなく三方弁などの冷媒流路切換制御手段を用い、冷房暖房の運転切り替えだけではなく、空調負荷の大小にも対応して室内熱交換器と室外熱交換器のパス数を制御し、効率の良い運転を行うものがある(例えば、特許文献2参照)。 In the prior art, as a method of solving this problem, a combination of check valves is used, and when the heat exchanger functions as a condenser, it is operated in one pass, and when it functions as a condenser, it is operated in two passes. In some cases, both cooling and heating are to be operated efficiently (see, for example, Patent Document 1). Another method is to use a refrigerant flow switching control means such as a three-way valve instead of a check valve, and not only switching the cooling / heating operation but also the size of the air-conditioning load and the outdoor heat exchanger. Some devices perform an efficient operation by controlling the number of passes of the device (for example, see Patent Document 2).
図2に特許文献1に示されたヒートポンプ式熱交換器を用いた冷暖房装置の冷房および暖房サイクルの構成図を、図3に特許文献2に示された空気調和機の構成図を示す。図2の冷房サイクル20は、圧縮機21、四方弁25、室外熱交換器23、減圧器24、室内熱交換器22等で構成されている。室内熱交換器22には逆止弁41,42,43が、室外熱交換器23には逆止弁51,52,53が備えられている。冷房運転時は、冷媒が実線矢印71の方向に流れ、室外熱交換器23はブロック61からブロック62を経る経路をたどる1パスで、室内熱交換器22はブロック31とブロック32が並列となる2パスで運転を行う。暖房運転の場合は、冷媒が破線矢印72の方向に流れ、室内熱交換器22は1パス、室外熱交換器23は2パスで運転を行う。 FIG. 2 shows a configuration diagram of the cooling and heating cycle of the air-conditioning apparatus using the heat pump heat exchanger shown in Patent Document 1, and FIG. 3 shows a configuration diagram of the air conditioner shown in Patent Document 2. The cooling cycle 20 in FIG. 2 includes a compressor 21, a four-way valve 25, an outdoor heat exchanger 23, a decompressor 24, an indoor heat exchanger 22, and the like. The indoor heat exchanger 22 is provided with check valves 41, 42 and 43, and the outdoor heat exchanger 23 is provided with check valves 51, 52 and 53. During the cooling operation, the refrigerant flows in the direction of the solid arrow 71, the outdoor heat exchanger 23 is one path following the path from the block 61 to the block 62, and the indoor heat exchanger 22 has the blocks 31 and 32 in parallel. Drive in 2 passes. In the case of heating operation, the refrigerant flows in the direction of the broken line arrow 72, the indoor heat exchanger 22 is operated in one pass, and the outdoor heat exchanger 23 is operated in two passes.
図3の空気調和機は、圧縮機1、四方弁2、室外熱交換器3、減圧器4、室内熱交換器5等で構成されている。室外熱交換器3は冷媒流路3a,3bの2つのパスと切換制御可能な三方弁6a,6bを、室内熱交換器5は冷媒流路5a,5bの2つのパスと切換制御可能な三方弁7a,7bを備えている。冷房暖房の運転モードと空調負荷の大小に応じて、制御部8が三方弁6a,6b,7a,7bを制御し、室外熱交換器3と室内熱交換器5を1パスあるいは2パスで運転を行う。
しかしながら、1つのパスを取り上げてみたときに、冷媒は気相、気液2相、液相と変化し、その変化につれて流速も大きく変化をしている。気相部はもともと流速が早く高い熱伝達性能を示すのに対し、液相部は流速が遅く気相部や気液2相部に比べ熱伝達性能が
低くなっている。
However, when one path is taken up, the refrigerant changes into a gas phase, a gas-liquid two phase, and a liquid phase, and the flow velocity greatly changes with the change. The gas phase portion originally has a high flow rate and high heat transfer performance, whereas the liquid phase portion has a low flow rate and lower heat transfer performance than the gas phase portion and the gas-liquid two-phase portion.
特許文献1および特許文献2に記載の従来の装置においては、熱交換器全体のパス数を切り替えているため、1パスあたりの冷媒循環量を気相部や乾き度の高い気液2相部の流速に合わせて設計すれば、液相部の熱伝達性能が十分上がらず、液相部の流速に合わせれば、気相部や気液2相部は、流速が上がりすぎ圧力損失が増大し、システムの性能を十分に引き出せないという課題があった。 In the conventional apparatuses described in Patent Document 1 and Patent Document 2, since the number of passes of the entire heat exchanger is switched, the refrigerant circulation amount per pass is changed to a gas phase portion or a gas-liquid two-phase portion having a high degree of dryness. If it is designed to match the flow rate of the liquid phase, the heat transfer performance of the liquid phase part will not be sufficiently improved, and if it is matched to the flow rate of the liquid phase part, the gas phase part and the gas-liquid two-phase part will rise too much and the pressure loss will increase. There was a problem that the performance of the system could not be fully utilized.
本発明は、前記従来の課題を解決するもので、パス切り替えにより、より効率的な熱交換性能を得ることのできる熱交換器を提供することを目的とする。 The present invention solves the above-described conventional problems, and an object thereof is to provide a heat exchanger that can obtain more efficient heat exchange performance by switching paths.
前記従来の課題を解決するために、本発明の熱交換器は、蒸発器として機能する場合と凝縮器として機能する場合とで液冷媒の比率が高い側のパス数を変更するパス数変更手段を備えるものである。これにより、冷媒の流速が低く管内の熱伝達性能が低い液相部の性能向上と気相あるいは気液2相部の圧力損失抑制を両立することができる。 In order to solve the above-mentioned conventional problems, the heat exchanger of the present invention has a number-of-pass changing means for changing the number of passes on the side where the ratio of the liquid refrigerant is high between when functioning as an evaporator and when functioning as a condenser. Is provided. Thereby, the performance improvement of the liquid phase part with the low flow rate of a refrigerant | coolant and the low heat transfer performance in a pipe | tube and the pressure loss suppression of a gaseous phase or a gas-liquid two-phase part can be made compatible.
本発明の熱交換器は、蒸発器として機能する場合と凝縮器として機能する場合とで液冷媒の比率が高い側のパス数を変更するパス数変更手段を備え、液相部の性能向上と気相あるいは気液2相部の圧力損失抑制を両立させるもので、冷房暖房いずれの運転においてもより効率的な熱交換性能の熱交換器を提供することができる。 The heat exchanger according to the present invention includes path number changing means for changing the number of paths on the side having a higher liquid refrigerant ratio when functioning as an evaporator and functioning as a condenser, and improves the performance of the liquid phase part. The pressure loss of the gas phase or the gas-liquid two-phase part can be suppressed at the same time, and a heat exchanger with more efficient heat exchange performance can be provided in any operation of cooling and heating.
第1の発明は、蒸発器として機能する場合と凝縮器として機能する場合とで液冷媒の比率が高い側のパス数を変更するパス数変更手段を備え、液相部の性能向上と気相あるいは気液2相部の圧力損失抑制を両立させるもので、冷房暖房いずれの運転においてもより効率的な熱交換性能を得ることができる。 1st invention is equipped with the pass number change means which changes the pass number by the side where the ratio of a liquid refrigerant is high in the case where it functions as an evaporator and the case where it functions as a condenser, and improves the performance of a liquid phase part, and a gaseous phase Alternatively, both the pressure loss suppression of the gas-liquid two-phase part is achieved, and more efficient heat exchange performance can be obtained in any of the cooling and heating operations.
第2の発明は、凝縮器として機能する場合の液冷媒の比率が高い側の流路断面積の和を、蒸発器として機能する場合の半分以下とするもので、管径が変化するような熱交換器でも容易に設計することができる。 In the second aspect of the invention, the sum of the flow passage cross-sectional areas on the side where the liquid refrigerant ratio is high when functioning as a condenser is less than half that when functioning as an evaporator, and the pipe diameter changes. Even heat exchangers can be designed easily.
第3の発明は、特に第1の発明において、パス数変更手段に逆止弁を用いるもので、小型で安価な構成を実現することができる。 In the third invention, in particular, in the first invention, a check valve is used as the pass number changing means, and a small and inexpensive configuration can be realized.
第4の発明は、特に第3の発明において、凝縮器時の前記液冷媒の比率が高い側のパス数を蒸発器時の1/nにする場合、前記逆止弁の配置数は、nが奇数であれば(n−1)×(凝縮時のパス数)個、nが偶数であれば(n×(凝縮時のパス数)+1)個から(n−1)×(凝縮時のパス数)個とするもので、nが変わっても容易に本発明の熱交換器を構成することができる。 In a fourth aspect of the invention, particularly in the third aspect of the invention, when the number of passes on the side where the ratio of the liquid refrigerant at the time of the condenser is high is 1 / n of that at the time of the evaporator, the number of check valves arranged is n (N−1) × (number of passes during condensation) if n is an odd number, and (n × (number of passes during condensation) +1) to (n−1) × (number of passes during condensation) if n is an even number. The number of passes), and even if n changes, the heat exchanger of the present invention can be easily configured.
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
(実施の形態1)
図1は、本発明における第1の実施の形態である熱交換器の構成図である。図1において、冷媒が気相あるいは気体の比率が高い気液2相状態にあるガス側熱交換部102と、液体の比率が高い気液2相あるいは液相の状態にある液側熱交換部103とから熱交換器101が構成され、ガス側熱交換部102と液側熱交換部103は、いずれも冷媒の流れ
るチューブと熱交換性能を向上させるためのフィンから構成されている。図1では便宜上2つの要素に分割しているが、実際には1つの熱交換器を分割して構成するのが合理的である。
(Embodiment 1)
FIG. 1 is a configuration diagram of a heat exchanger according to the first embodiment of the present invention. In FIG. 1, the gas side heat exchange part 102 in which the refrigerant is in a gas-liquid two-phase state with a high gas ratio or gas ratio and the liquid-side heat exchange part in a gas-liquid two-phase or liquid phase state with a high liquid ratio. The heat exchanger 101 is composed of 103, and the gas side heat exchange unit 102 and the liquid side heat exchange unit 103 are each composed of a tube through which a refrigerant flows and fins for improving heat exchange performance. In FIG. 1, it is divided into two elements for convenience, but in practice it is reasonable to divide and configure one heat exchanger.
ガス側熱交換部102は、ガス側熱交換フィン104に配管経路105a,105b,105c,105dのチューブが並列に配置され、合計4パスとなっている。液側熱交換部103は液側熱交換フィン106に、配管経路107a,107b,107c,107dのチューブが配置されている。フィンやチューブの仕様は、ガス側熱交換部102と同様である。また、液側熱交換部103の前後には逆止弁108a,108b,108c,108d,108eが配置され、熱交換器101を流れる冷媒の方向によってパス数が変化するよう構成されている。 In the gas side heat exchange unit 102, tubes of piping paths 105a, 105b, 105c, and 105d are arranged in parallel on the gas side heat exchange fins 104, for a total of four paths. In the liquid side heat exchange unit 103, tubes of piping paths 107a, 107b, 107c, and 107d are arranged on the liquid side heat exchange fins 106. The specifications of the fins and tubes are the same as those of the gas side heat exchange unit 102. In addition, check valves 108 a, 108 b, 108 c, 108 d, and 108 e are arranged before and after the liquid side heat exchange unit 103, and are configured so that the number of passes changes depending on the direction of the refrigerant flowing through the heat exchanger 101.
図1において、熱交換器101を凝縮器として機能させる場合は、冷媒を矢印111,112の向き(図面上、右方向)に流すことで、逆止弁108a,108b,108c,108dが閉塞し、逆止弁108eのみ開口となって、ガス側熱交換部102において冷媒は配管経路105a,105b,105c,105dを矢印111a,111b,111c,111dに沿った4パスで流れ、液側熱交換部103では配管経路107a,107b,107c,107dを矢印112aに沿た1パスで流れる。 In FIG. 1, when the heat exchanger 101 functions as a condenser, the check valves 108a, 108b, 108c, and 108d are closed by flowing the refrigerant in the directions of arrows 111 and 112 (rightward in the drawing). Only the check valve 108e is opened, and in the gas side heat exchange section 102, the refrigerant flows through the piping paths 105a, 105b, 105c, and 105d in four paths along the arrows 111a, 111b, 111c, and 111d, and the liquid side heat exchange. In the part 103, the pipe paths 107a, 107b, 107c, and 107d flow through one path along the arrow 112a.
このとき液側熱交換部103は、冷媒は液体状態となるようなサイズ、冷媒量あるいは制御にて運転するのが効率的である。冷媒が例えばR410Aの場合、40℃〜50℃における液体状態では気体状態に比べ密度が10倍程度高く、液側熱交換部103をガス側熱交換部102と同様に4パスで構成すると液側熱交換部103における冷媒の熱伝達が大幅に低下するので、図1のように矢印112aに沿った1パスとすることで液側熱交換部103の熱交換性能を向上させることができる。 At this time, it is efficient to operate the liquid side heat exchanging unit 103 with a size, a refrigerant amount, or a control so that the refrigerant is in a liquid state. In the case where the refrigerant is R410A, for example, the density in the liquid state at 40 ° C. to 50 ° C. is about 10 times higher than that in the gas state, and the liquid side heat exchange unit 103 is configured in four passes like the gas side heat exchange unit 102. Since the heat transfer of the refrigerant in the heat exchanging unit 103 is significantly reduced, the heat exchanging performance of the liquid side heat exchanging unit 103 can be improved by using one path along the arrow 112a as shown in FIG.
一方、熱交換器101を蒸発器として機能させる場合は、冷媒を矢印113,114の向きに流すことで、逆止弁108a,108b,108c,108dが開口し、逆止弁108eのみ閉塞となって、液側熱交換部103において冷媒は配管経路107a,107b,107c,107dを矢印113a,113b,113c,113dに沿った4パスで流れ、ガス側熱交換部102では配管経路105a,105b,105c,105dを矢印114a,114b,114c,114dに沿った4パスの流れとなる。 On the other hand, when the heat exchanger 101 functions as an evaporator, the check valves 108a, 108b, 108c, and 108d are opened and only the check valve 108e is closed by flowing the refrigerant in the directions of arrows 113 and 114. In the liquid side heat exchange unit 103, the refrigerant flows through the piping paths 107a, 107b, 107c, and 107d in four paths along the arrows 113a, 113b, 113c, and 113d, and in the gas side heat exchange unit 102, the piping paths 105a, 105b, 105c and 105d become a four-pass flow along arrows 114a, 114b, 114c, and 114d.
このとき液側熱交換部103は気液2相状態で流れに沿って蒸発が進み、例えばR410Aの場合、0℃〜20℃においては液体気体の密度比は20倍以上で、平均流速は10倍〜20倍も上昇していく。パスが凝縮器のときと同じ1パスでは、流速が速いことから圧力損失が増加し、液側熱交換部103出口の冷媒の状態を同一としたときに液側熱交換部103の平均温度が上昇し熱交換性能が低下する。図1では、矢印114a,114b,114c,114dに沿った4パスの流れとすることで圧力損失の増加を抑えることで、液側熱交換部103の熱交換性能を向上させることができる。 At this time, the liquid side heat exchanging portion 103 evaporates along the flow in a gas-liquid two-phase state. For example, in the case of R410A, at 0 ° C. to 20 ° C., the liquid gas density ratio is 20 times or more and the average flow velocity is 10 It rises by 20 to 20 times. In the same one pass as when the pass is a condenser, the pressure loss increases because the flow velocity is high, and the average temperature of the liquid side heat exchange unit 103 becomes equal when the state of the refrigerant at the outlet of the liquid side heat exchange unit 103 is the same. Increases and heat exchange performance decreases. In FIG. 1, the heat exchange performance of the liquid side heat exchanging unit 103 can be improved by suppressing the increase in pressure loss by using a four-pass flow along the arrows 114 a, 114 b, 114 c, and 114 d.
ガス側熱交換部102では、凝縮器(40℃〜50℃)の場合の冷媒密度は、蒸発器(0℃〜20℃)の場合と比べ、例えばR410Aでは大きくても5倍以下であるので、凝縮で調整したパス数を蒸発で変更しても液側熱交換部103ほどの効果は得られない。 In the gas side heat exchange unit 102, the refrigerant density in the case of the condenser (40 ° C. to 50 ° C.) is, for example, 5 times or less in R410A at most compared to the case of the evaporator (0 ° C. to 20 ° C.). Even if the number of passes adjusted by condensation is changed by evaporation, the effect as that of the liquid side heat exchange unit 103 cannot be obtained.
液側熱交換部103のパス数変更に関して、実験の結果では、凝縮時のパス数を蒸発時の1/2とすると顕著な効果が見られ、1/3,1/4程度が性能的にもガス側熱交換部と液側熱交換部の構成比的にもバランスよく構成でき、1/5を下回るとガス側熱交換部と液側熱交換部の構成比においてバランスが悪化し好ましくなかった。 Regarding the change in the number of passes of the liquid side heat exchanging unit 103, the experimental results show a remarkable effect when the number of passes at the time of condensation is ½ that at the time of evaporation. The gas-side heat exchange part and the liquid-side heat exchange part can also be configured in a well-balanced manner, and if it is less than 1/5, the balance is deteriorated in the composition ratio of the gas-side heat exchange part and the liquid-side heat exchange part. It was.
なお、図1においてはガス側熱交換部102と液側熱交換部103とは同仕様のチューブを用いているため、上記において「凝縮時のパス数を蒸発時の半分以下」という記述を用いたが、異なる仕様のチューブを使用する場合には、凝縮時の流路断面積が蒸発時の半分以下という記述になる。 In addition, in FIG. 1, since the gas side heat exchange part 102 and the liquid side heat exchange part 103 use the tube of the same specification, in the above, the description of "the number of passes during condensation is less than half of that during evaporation" is used. However, when tubes with different specifications are used, the cross-sectional area of the flow path during condensation is less than half that during evaporation.
また、実際の応用に際して、液側熱交換部の凝縮時のパス数と蒸発時のパス数の比は整数比になるため、熱交換器の仕様によって一義に決定することは困難であり、実仕様とつき合わせて決定する必要がある。凝縮時のパス数を蒸発時の1/nにする時の逆止弁の配置数はnが奇数であれば、(n−1)×(凝縮時のパス数)個、nが偶数であれば(n×(凝縮時のパス数)+1)個から(n+1)×(凝縮時のパス数)個となる。 In actual applications, the ratio of the number of passes at the time of condensation and the number of passes at the time of evaporation in the liquid side heat exchange section is an integer ratio, so it is difficult to determine unambiguously depending on the specifications of the heat exchanger. It is necessary to decide in conjunction with the specifications. When n is an odd number when the number of passes during condensation is 1 / n during evaporation, if n is an odd number, (n-1) x (number of passes during condensation), and n is an even number. From (n × (number of passes during condensation) +1) to (n + 1) × (number of passes during condensation).
配置の規則としては、凝縮時のパス数分のブロックに分割し、各ブロックにおいて次のように逆止弁を配置していく。まず、蒸発器として使用した場合に、液側熱交換部の冷媒入り口側で2つのパスを連結し、その連結位置に逆止弁から冷媒が流れ込むように1個の逆止弁を配置する。図1で言えば配管経路107aと107bの連結部に逆止弁108cを配置する。このように、蒸発器入り口側の全てのパスに対して2パスに1個の逆止弁を配置していくと、nが偶数の場合には図1と同様に全てに配置ができる。nが奇数の場合パスが1個余るので、これを凝縮器出口となるよう確保する。こうして配置した蒸発器入り口側の逆止弁の入り口側は全て1つにまとめて連結し装置に接続する。 As a rule of arrangement, it is divided into blocks corresponding to the number of passes at the time of condensation, and check valves are arranged in each block as follows. First, when used as an evaporator, two paths are connected on the refrigerant inlet side of the liquid side heat exchange section, and one check valve is arranged so that the refrigerant flows from the check valve to the connection position. In FIG. 1, a check valve 108c is arranged at the connecting portion between the piping paths 107a and 107b. As described above, when one check valve is arranged in two passes with respect to all the passes on the evaporator inlet side, if n is an even number, the check valves can be arranged in the same manner as in FIG. When n is an odd number, there is one more pass, and this is ensured to be the condenser outlet. All the inlet sides of the check valves arranged in this way on the evaporator inlet side are connected together and connected to the apparatus.
蒸発器時、液側熱交換部出口側への逆止弁の配置は、まず凝縮器時に冷媒入り口となるパスを1個決め、これに各パスが一繋がりとなるよう2つずつパスを連結し、その連結位置に、蒸発器時に逆止弁に冷媒が流れ込むように1個の逆止弁を配置する。図1で言えば配管経路107aを凝縮器時の冷媒入り口として確保し、配管経路107bと107cの連結部に逆止弁108aを配置する。 At the time of the evaporator, the check valve is arranged at the outlet side of the liquid side heat exchange part. First, determine one path as the refrigerant inlet at the time of the condenser, and connect two paths so that each path is connected to this. In the connection position, one check valve is arranged so that the refrigerant flows into the check valve during the evaporator. In FIG. 1, the piping path 107a is secured as a refrigerant inlet at the time of the condenser, and a check valve 108a is disposed at the connecting portion between the piping paths 107b and 107c.
このように、液側熱交換部出口側の残り全てのパスに対して2パスに1個の逆止弁を配置していくと、nが偶数の場合には図1の配管経路107dと同様に1個パスが残るので、逆止弁108bのように蒸発器時に逆止弁に冷媒が流れ込むように1個の逆止弁を配置し、逆止弁108eのように液側熱交換部出口すぐで分岐して蒸発器入り口へ戻る逆止弁1個を配した経路を設ける。ブロックつまり凝縮時のパス数が複数ある場合、この経路は合流して設けても良いので、この経路の数は1から凝縮時のパス数個までで適切な数を選べばよい。nが奇数の場合には、パスを余すことなく逆止弁を配置していくことができるが、先に凝縮器時の冷媒出口として確保したパスが凝縮器出口となるよう注意し、凝縮器出口を蒸発器入り口側の逆止弁と同様に連結する。 In this way, when one check valve is arranged in two passes for all the remaining passes on the outlet side of the liquid side heat exchange section, when n is an even number, it is the same as the piping route 107d in FIG. Therefore, one check valve is arranged so that the refrigerant flows into the check valve during the evaporator like the check valve 108b, and the liquid side heat exchange section outlet like the check valve 108e is arranged. A route is provided with a check valve that branches immediately and returns to the evaporator inlet. If there are a plurality of blocks, that is, the number of paths at the time of condensation, these paths may be merged. Therefore, the number of paths may be selected from 1 to several paths at the time of condensation. When n is an odd number, the check valve can be arranged without leaving a path. However, be careful that the path previously secured as the refrigerant outlet at the time of the condenser becomes the condenser outlet. Connect the outlet in the same way as the check valve on the evaporator inlet side.
この規則に従えば、nが変わっても容易に本発明の熱交換器を構成することができる。また、図1において、パス切り替えは安価な逆止弁を用いて構成され、流れの方向に応じて自動的に行われるので、安価で簡単に実現することができる。 If this rule is followed, even if n changes, the heat exchanger of this invention can be comprised easily. In FIG. 1, the path switching is configured using an inexpensive check valve, and is automatically performed according to the flow direction, so that it can be easily realized at a low cost.
本発明の熱交換器は、蒸発器として機能する場合と凝縮器として機能する場合とで液冷媒の比率が高い側のパス数を変更するパス数変更手段を備え、液相部の性能向上と気相あるいは気液2相部の圧力損失抑制を両立させ、冷房暖房いずれの運転においても理想的な熱交換性能の熱交換器を提供するものであって、空気調和機などの室内室外の熱交換器として特に有効なものであるが、冷却あるいは加熱対象が空気や水その他流体および固体であって、冷凍サイクルとヒートポンプサイクルを可逆的に構成するシステムの熱交換器として適用できる。また、冷媒の種類を問わず効果を有するものである。 The heat exchanger according to the present invention includes path number changing means for changing the number of paths on the side having a higher liquid refrigerant ratio when functioning as an evaporator and functioning as a condenser, and improves the performance of the liquid phase part. It is a heat exchanger with ideal heat exchange performance in both the cooling and heating operations, which is compatible with pressure loss suppression in the gas phase or gas-liquid two-phase part. Although it is particularly effective as an exchanger, it can be applied as a heat exchanger of a system in which the object to be cooled or heated is air, water or other fluid and solid, and the refrigeration cycle and the heat pump cycle are configured reversibly. Moreover, it has an effect irrespective of the kind of refrigerant.
101 熱交換器
102 ガス側熱交換部
103 液側熱交換部
104 ガス側熱交換フィン
105a,105b,105c,105d 配管経路
106 液側熱交換フィン
107a,107b,107c,107d 配管経路
108a,108b,108c,108d,108e 逆止弁
DESCRIPTION OF SYMBOLS 101 Heat exchanger 102 Gas side heat exchange part 103 Liquid side heat exchange part 104 Gas side heat exchange fin 105a, 105b, 105c, 105d Piping path 106 Liquid side heat exchange fin 107a, 107b, 107c, 107d Piping path 108a, 108b, 108c, 108d, 108e Check valve
Claims (4)
When the number of passes on the side where the ratio of the liquid refrigerant at the time of the condenser is high is set to 1 / n of that at the time of the evaporator, the number of check valves arranged is (n-1) × (condensation if n is an odd number. The number of passes when the number of passes is n (n × (number of passes during condensation) +1) to (n−1) × (number of passes during condensation) if n is an even number. 3. The heat exchanger according to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006109517A JP2007278676A (en) | 2006-04-12 | 2006-04-12 | Heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006109517A JP2007278676A (en) | 2006-04-12 | 2006-04-12 | Heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007278676A true JP2007278676A (en) | 2007-10-25 |
Family
ID=38680285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006109517A Pending JP2007278676A (en) | 2006-04-12 | 2006-04-12 | Heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007278676A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011099256A1 (en) | 2010-02-15 | 2011-08-18 | ダイキン工業株式会社 | Heat exchanger for air conditioner |
WO2013190830A1 (en) * | 2012-06-18 | 2013-12-27 | パナソニック株式会社 | Heat exchanger and air conditioner |
JP2014126322A (en) * | 2012-12-27 | 2014-07-07 | Hitachi Appliances Inc | Air conditioner and outdoor heat exchanger used in air conditioner |
CN108592678A (en) * | 2018-05-21 | 2018-09-28 | 杭州中泰深冷技术股份有限公司 | A kind of outer siphon plate-fin heat exchanger of multi-stag and its method |
CN108612579A (en) * | 2018-04-02 | 2018-10-02 | 武汉理工大学 | Noise reducing type exhaust gas cleaner |
CN110254169A (en) * | 2019-06-26 | 2019-09-20 | 曼德电子电器有限公司 | Air-conditioning system for vehicle and the vehicle with it |
US10899196B2 (en) | 2016-06-21 | 2021-01-26 | Denso Corporation | Refrigeration cycle device |
KR20210093561A (en) * | 2020-01-20 | 2021-07-28 | 엘지전자 주식회사 | Outdoor Heat Exchanger of the Air Conditioner System for Simultaneous Cooling and Heating |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006046735A (en) * | 2004-08-03 | 2006-02-16 | Mitsubishi Electric Corp | Air conditioner |
-
2006
- 2006-04-12 JP JP2006109517A patent/JP2007278676A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006046735A (en) * | 2004-08-03 | 2006-02-16 | Mitsubishi Electric Corp | Air conditioner |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011099256A1 (en) | 2010-02-15 | 2011-08-18 | ダイキン工業株式会社 | Heat exchanger for air conditioner |
JP2011163741A (en) * | 2010-02-15 | 2011-08-25 | Daikin Industries Ltd | Heat exchanger for air conditioner |
CN102753927A (en) * | 2010-02-15 | 2012-10-24 | 大金工业株式会社 | Heat exchanger for air conditioner |
AU2011215523B2 (en) * | 2010-02-15 | 2013-06-20 | Daikin Industries, Ltd. | Heat exchanger for air conditioner |
US9618269B2 (en) | 2010-02-15 | 2017-04-11 | Daikin Industries, Ltd. | Heat exchanger with tube arrangement for air conditioner |
CN102753927B (en) * | 2010-02-15 | 2014-06-18 | 大金工业株式会社 | Heat exchanger for air conditioner |
JPWO2013190830A1 (en) * | 2012-06-18 | 2016-02-08 | パナソニックIpマネジメント株式会社 | Heat exchanger and air conditioner |
CN104350341A (en) * | 2012-06-18 | 2015-02-11 | 松下知识产权经营株式会社 | Heat exchanger and air conditioner |
WO2013190830A1 (en) * | 2012-06-18 | 2013-12-27 | パナソニック株式会社 | Heat exchanger and air conditioner |
JP2014126322A (en) * | 2012-12-27 | 2014-07-07 | Hitachi Appliances Inc | Air conditioner and outdoor heat exchanger used in air conditioner |
US10899196B2 (en) | 2016-06-21 | 2021-01-26 | Denso Corporation | Refrigeration cycle device |
CN108612579A (en) * | 2018-04-02 | 2018-10-02 | 武汉理工大学 | Noise reducing type exhaust gas cleaner |
CN108592678A (en) * | 2018-05-21 | 2018-09-28 | 杭州中泰深冷技术股份有限公司 | A kind of outer siphon plate-fin heat exchanger of multi-stag and its method |
CN108592678B (en) * | 2018-05-21 | 2023-09-01 | 杭州中泰深冷技术股份有限公司 | Multistage type outer siphon plate-fin heat exchanger and method thereof |
CN110254169A (en) * | 2019-06-26 | 2019-09-20 | 曼德电子电器有限公司 | Air-conditioning system for vehicle and the vehicle with it |
KR20210093561A (en) * | 2020-01-20 | 2021-07-28 | 엘지전자 주식회사 | Outdoor Heat Exchanger of the Air Conditioner System for Simultaneous Cooling and Heating |
KR102318941B1 (en) | 2020-01-20 | 2021-10-28 | 엘지전자 주식회사 | Outdoor Heat Exchanger of the Air Conditioner System for Simultaneous Cooling and Heating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3982545B2 (en) | Air conditioner | |
JP5927415B2 (en) | Refrigeration cycle equipment | |
JP5496217B2 (en) | heat pump | |
JP6605117B2 (en) | Refrigeration cycle equipment | |
WO2014020651A1 (en) | Air-conditioning device | |
JP5332604B2 (en) | Cooling and heating simultaneous operation type air conditioner | |
JP2007278676A (en) | Heat exchanger | |
JP5866000B2 (en) | Air conditioning and hot water supply system | |
JP2008180422A (en) | Air conditioner | |
JP2006071174A (en) | Refrigerating device | |
JP5936785B1 (en) | Air conditioner | |
JP2017101855A (en) | Air conditioning system | |
JP2011242048A (en) | Refrigerating cycle device | |
JP4303032B2 (en) | Air conditioner | |
JP2018096636A (en) | Heat exchanger and refrigeration system using the same | |
JP4041067B2 (en) | Air conditioner with air conditioning function | |
JP2010096360A (en) | Air conditioner | |
JP2005515395A5 (en) | ||
JP2015158326A (en) | Refrigeration device and air conditioner using refrigeration device | |
WO2021065678A1 (en) | Air conditioner | |
JP2017101854A (en) | Air conditioning system | |
JP5677237B2 (en) | Air conditioner | |
JP2007212108A (en) | Air conditioner | |
JP2006317063A (en) | Air conditioner | |
JP6984048B2 (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090325 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20090414 |
|
A977 | Report on retrieval |
Effective date: 20110317 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20110329 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110526 |
|
A02 | Decision of refusal |
Effective date: 20110823 Free format text: JAPANESE INTERMEDIATE CODE: A02 |