JP2007278163A - Fastening structure and rotary vacuum pump - Google Patents
Fastening structure and rotary vacuum pump Download PDFInfo
- Publication number
- JP2007278163A JP2007278163A JP2006105023A JP2006105023A JP2007278163A JP 2007278163 A JP2007278163 A JP 2007278163A JP 2006105023 A JP2006105023 A JP 2006105023A JP 2006105023 A JP2006105023 A JP 2006105023A JP 2007278163 A JP2007278163 A JP 2007278163A
- Authority
- JP
- Japan
- Prior art keywords
- laminated
- bolt
- fastening structure
- flange
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
- F04D19/042—Turbomolecular vacuum pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/60—Mounting; Assembling; Disassembling
- F04D29/601—Mounting; Assembling; Disassembling specially adapted for elastic fluid pumps
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Non-Positive Displacement Air Blowers (AREA)
Abstract
Description
本発明は、ターボ分子ポンプやモレキュラドラッグポンプ等の回転式真空ポンプに適した締結構造、および回転式真空ポンプに関する。 The present invention relates to a fastening structure suitable for a rotary vacuum pump such as a turbo molecular pump or a molecular drag pump, and a rotary vacuum pump.
高真空排気に用いられるターボ分子ポンプは、交互に配置された複数段の回転翼と複数段の固定翼とを備えている。各回転翼および固定翼は複数のタービンブレードから成り、回転翼はモータにより回転駆動されるロータに形成されており、固定翼はポンプのベースに固定されている。さらに、上述したタービンブレードに加えて、ドラッグポンプ段を備えたターボ分子ポンプも知られている。ドラッグポンプ段は、ロータ下部に形成された円筒部と、その円筒部と近接して配設されるネジ溝ステータとから成る。 A turbo molecular pump used for high vacuum evacuation includes a plurality of stages of rotating blades and a plurality of stages of fixed blades arranged alternately. Each of the rotor blades and the stationary blades is composed of a plurality of turbine blades. The rotor blades are formed in a rotor that is driven to rotate by a motor, and the stationary blades are fixed to the base of the pump. Furthermore, in addition to the turbine blades described above, turbomolecular pumps having a drag pump stage are also known. The drag pump stage includes a cylindrical portion formed in the lower portion of the rotor and a thread groove stator disposed in proximity to the cylindrical portion.
ターボ分子ポンプでは、タービンブレードおよび円筒部が形成されたロータは数万rpmで高速回転しており、異常な外乱が作用するとロータとステータ側(例えば、ネジ溝ステータ)とが接触するおそれがあり、その場合にはステータ側に大きな衝撃が加わることになる。また、高速回転するロータには大きな遠心力が常に作用しており、ロータとステータ側が接触した場合や、設計時の想定を越える条件下で連続運転された場合には、ロータが破壊するおそれもある。そのような場合にはさらに大きな衝撃がステータ側に加わり、ポンプケーシングを装置本体に締結しているボルトに大きな剪断力が加わるという問題があった。 In the turbo molecular pump, the rotor on which the turbine blade and the cylindrical portion are formed rotates at a high speed of tens of thousands of rpm, and there is a possibility that the rotor and the stator side (for example, a thread groove stator) come into contact with each other when an abnormal disturbance acts. In that case, a large impact is applied to the stator side. In addition, a large centrifugal force is constantly acting on a rotor that rotates at high speed, and if the rotor contacts the stator side, or if it is operated continuously under conditions exceeding the design assumptions, the rotor may be destroyed. is there. In such a case, there is a problem that a larger impact is applied to the stator side, and a large shearing force is applied to the bolt that fastens the pump casing to the apparatus main body.
そのため、ボルト孔を拡開する複数の段が形成された孔とすることにより、剪断力が一カ所に集中するのを防いでボルトの破断を防止するものが知られている(例えば、特許文献1参照)。 Therefore, it is known that a bolt formed with a plurality of steps for expanding the bolt hole prevents the bolt from breaking by preventing the shearing force from concentrating on one place (for example, Patent Documents). 1).
しかし、上記従来の技術では、ボルトが段付き孔の側面に当接して塑性変形することにより衝撃力を吸収するような構造となっているが、段付き孔であるために塑性変形による効果が十分に得られていないという欠点があった。 However, in the above-mentioned conventional technology, the bolt is in contact with the side surface of the stepped hole and plastically deforms to absorb the impact force. However, because of the stepped hole, the effect of plastic deformation is obtained. There was a disadvantage that it was not sufficiently obtained.
(1) 請求項1の発明による締結構造は、第1の部材と第2の部材とをボルトによって締結する締結構造において、ボルトを介して、第1の部材または第2の部材のいずれか一方から他方へ伝達される運動エネルギーを吸収するとともに、ボルトに作用する衝撃応力を緩和する部材であって、積層構造を有する積層部材を備えることを特徴とする。
(2) 請求項2の発明は、請求項1に記載の締結構造において、第1の部材および第2の部材の少なくともいずれか一方には、ボルトが挿通される穴が設けられ、積層部材は、穴の内周面と、ボルトとの間に配設されることを特徴とする。
(3) 請求項3の発明は、請求項1または請求項2に記載の締結構造において、積層部材を構成する個々の部材の積層方向は、ボルトに作用する衝撃応力の作用方向と略一致、または略直交することを特徴とする。
(4) 請求項4の発明は、請求項1〜3のいずれか一項に記載の締結構造において、積層構造は、積層部材によって吸収する運動エネルギーの値および積層部材によって緩和する衝撃応力の値に影響する物性値が異なる複数の部材を積層した構造であることを特徴とする。
(5) 請求項5の発明は、請求項4に記載の締結構造において、積層構造は、材質が異なることで物性値が異なることを特徴とする。
(6) 請求項6の発明は、請求項4に記載の締結構造において、積層構造は、積層部材を構成する個々の部材の少なくとも一部の部材に穴が設けられたことで物性値が異なることを特徴とする。
(7) 請求項7の発明による回転式真空ポンプは、請求項1〜6のいずれか一項に記載の締結構造によって排気対象装置に対して締結される吸気口フランジ、が形成されたポンプケーシングと、回転側排気手段が設けられてポンプケーシング内で高速回転駆動されるロータと、ポンプケーシング内に設けられて回転側排気手段と共働して排気作用を発生する固定側排気手段とを備えることを特徴とする。
(1) The fastening structure according to the first aspect of the present invention is the fastening structure in which the first member and the second member are fastened by a bolt, and either the first member or the second member via the bolt. A member that absorbs kinetic energy transmitted from one to the other and relieves impact stress acting on the bolt, and includes a laminated member having a laminated structure.
(2) The invention of
(3) The invention of
(4) The invention of
(5) The invention of
(6) The invention according to
(7) A rotary vacuum pump according to a seventh aspect of the invention is a pump casing in which an inlet flange that is fastened to an exhaust target device by the fastening structure according to any one of the first to sixth aspects is formed. And a rotor that is provided with a rotation-side exhaust means and is driven to rotate at high speed in the pump casing, and a fixed-side exhaust means that is provided in the pump casing and cooperates with the rotation-side exhaust means to generate an exhaust action. It is characterized by that.
(1) 本発明によれば、積層構造を有する積層部材によって、ボルトを介して第1の部材または第2の部材のいずれか一方から他方へ伝達される運動エネルギーを吸収するとともに、ボルトに作用する衝撃応力を緩和するように構成した。これにより、ボルトの破断や、第1の部材および第2の部材の破損を防止できる。
(2) 請求項7の発明によれば、排気対象装置および回転式真空ポンプの破損を防止できる。
(1) According to the present invention, the laminated member having the laminated structure absorbs kinetic energy transmitted from one of the first member and the second member to the other through the bolt and acts on the bolt. It was constructed so as to relieve the impact stress. Thereby, the breakage of the bolt and the breakage of the first member and the second member can be prevented.
(2) According to the invention of
以下、図を参照して本発明を実施するための最良の形態について説明する。図1は本発明による真空装置の締結構造を採用したターボ分子ポンプの概略構成を示す図であり、(a)は断面図、(b)はフランジ部分を示す平面図である。なお、平面図はフランジの上半分を示したものである。図1に示したターボ分子ポンプ1は磁気軸受式のポンプであり、ロータ2はベース3に設けられた磁気軸受4a〜4cによって非接触支持されている。4a,4bはラジアル磁気軸受であり、4cはアキシャル磁気軸受である。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. 1A and 1B are diagrams showing a schematic configuration of a turbo molecular pump employing a vacuum device fastening structure according to the present invention, wherein FIG. 1A is a sectional view and FIG. 1B is a plan view showing a flange portion. The plan view shows the upper half of the flange. The turbo
ベース3には、ロータ2を回転駆動するモータ6、タッチダウンベアリング7a,7bおよびロータ2の浮上位置を検出するためのギャップセンサ5a,5b,5cがそれぞれ設けられている。タッチダウンベアリング7a,7bにはメカニカルベアリングが用いられ、磁気軸受4a〜4cによるロータ2の磁気浮上がオフされたときにロータ2を支持する。
The
ロータ2には、回転軸方向に複数段の回転翼8が形成されている。上下に並んだ回転翼8の間には固定翼9がそれぞれ配設されている。これらの回転翼8と固定翼9とにより、ターボ分子ポンプ1のタービン翼段が構成される。各固定翼9は、スペーサ10によって上下に挟持されるように保持されている。スペーサ10は、固定翼9の保持機能とともに、固定翼9間のギャップを所定間隔に維持する機能を有している。
The
さらに、固定翼9の後段(図示下方)にはドラッグポンプ段を構成するネジステータ11が設けられており、ネジステータ11の内周面はロータ2の円筒部12と所定間隔で対向している。ロータ2およびスペーサ10によって保持された固定翼9は、吸気口フランジ13aが形成されたケーシング13内に納められている。図1(b)に示すように、吸気口フランジ13aには長穴形状のボルト孔14が等間隔で8箇所形成されており、吸気口フランジ13aは8本のボルト15によって装置側のフランジ16に固定される。ボルト孔14には、後述する積層板30が配設されている。なお、吸気口フランジ13aの径の大きさによって、フランジ厚さや使用ボルト寸法およびボルト本数は規格によって定められている。
Further, a
ボルト孔14は、長穴の長手方向が吸気口フランジ13aの円周の接線方向と略一致するように吸気口フランジ13aの周縁近傍に設けられている。ボルト孔14には、ロータ回転方向Rとは反対方向である、図1(b)における図示反時計方向に寄せられた状態で積層板30が配設されている。図2は、吸気口フランジ13aのボルト孔14の近傍を模式的に示したものであり、図1(a)のA−A断面を示す模式図である。なお、図2では、座金の記載を省略している。図2における図示左側は、図1(b)における図示反時計方向となる。ボルト孔14のうち、積層板30が設けられていない空間(図2における図示右側の空間)には、ボルト15が挿通されている。ボルト15は、装置側のフランジ16に設けられた雌ねじ部16aに螺合されている。
The
積層板30は、吸気口フランジ13aの厚さ方向に沿って板状の部材が複数積層された構造を有する。積層板30を構成する板状の部材のそれぞれは、単にボルト孔14の内部で積み重ねられているだけであり、隣り合う板状の部材とは特に固定されていない。
The laminated
図3は積層板30の作用を説明する図であり、図2と同様に図1(a)のA−A断面を示す模式図である。ボルト15は、軸の先端から領域H1の部分が装置側フランジ16の雌ネジ部16aに螺合しており、この領域H1は装置側フランジ16によって拘束されている。一方、装置側フランジ16に螺合していない領域H2は非拘束状態になっている。
FIG. 3 is a diagram for explaining the operation of the
何らかの原因でロータとステータ側が接触した場合や、ロータが破損した場合には、ベース3やケーシング13に対してロータ回転方向Rに衝撃力が作用する。この衝撃力によって吸気口フランジ13aを回転させるようなトルクTが発生し、吸気口フランジ13aが装置側フランジ16に対して図示右側にずれるように回転移動する。この回転移動により、積層板30の図示右側の端面30aがボルト15の軸に当接する。
When the rotor and the stator side come into contact for some reason, or when the rotor is damaged, an impact force acts on the
ベース3やケーシング13に作用する衝撃力は非常に大きいため、積層板30とボルト15の軸とが当接した後も吸気口フランジ13aが右側に移動して、積層板30を図示右方向に圧縮して変形させる。この積層板30の変形により、ベース3やケーシング13に与えられた衝撃エネルギーが吸収されるとともに、ボルト15へ伝達される衝撃応力が緩和される。
Since the impact force acting on the
積層板30を介して衝撃力が伝達されると、ボルト15の軸は右側に曲げられるように変形する。そのため、領域H2におけるボルト15の軸とボルト孔14の図示左側端面との距離は、図示上下方向で異なることとなる。しかし、積層板30を構成する板状の部材のそれぞれが、ボルト15の軸の傾きに合わせて図示右方向に圧縮されて変形するため、積層板30は、積層板30の図示右側端面の広い範囲でボルト15の軸と当接することになる。これにより、ボルト15へ伝達される衝撃応力の作用面積が広がる。
When an impact force is transmitted through the
このように、本実施の形態では、ボルト15に作用する衝撃応力の作用方向とは略直交する方向に板状の部材が積層されている積層板30がボルト孔14に配設されている。これにより、ターボ分子ポンプに異常状態が発生してベース3やケーシング13に衝撃力が作用しても、積層板30によって、ボルト15にかかる剪断応力と、装置側のフランジ16に伝達される運動エネルギーをともに減少させることができる。その結果、ボルト15の破断、装置側の変形や破損を防止できる。
Thus, in the present embodiment, the
図4は比較例として、標準のフランジ構造を示したものであり、(a)は衝撃力が作用する前の締結状態を示し、(b)は衝撃力が作用した場合を示す図である。吸気口フランジ13aにはボルト孔24が設けられている。ボルト15の軸は、領域H1の部分は装置側フランジ16に拘束されており、領域H2は非拘束状態となっている。
4A and 4B show a standard flange structure as a comparative example, in which FIG. 4A shows a fastening state before the impact force acts, and FIG. 4B shows a case where the impact force acts. Bolt holes 24 are provided in the
衝撃力が作用して吸気口フランジ13aを回転させるようなトルクTが発生し、吸気口フランジ13aが装置側フランジ16に対して図示右側にずれるように回転移動する。この回転移動により、図4(b)に示すようにボルト15の領域H2の部分がボルト孔24の側面に当接する。その結果、領域H2の部分は吸気口フランジ13aによって拘束状態となり、剪断応力が領域H1と領域H2との境界部分15aに集中して作用することになる。吸気口フランジ13aは複数のボルト15によって装置側フランジ16に固定されているが、各ボルト孔24の位置誤差により図4(b)のような状態になるのは各ボルト15によって異なる。そのため、最初に図4(b)のような状態となったボルト15のみに剪断応力が集中して発生し、瞬時に破断してしまうという状態が生じることになる。
A torque T that rotates the
これに対して、本実施の形態では、積層板30が変形することで各ボルト孔14の位置誤差が吸収されるので、締結に用いられているボルト15の全てでトルクTを受け止めることができる。したがって、締結に用いられている全てのボルト15の強度を有効に活用することができ、ボルト15の破断を防止することができる。
On the other hand, in this embodiment, since the
積層板30による衝撃エネルギーの吸収と衝撃応力の軽減について、以下に説明する。図5に示した簡易モデルを参照して、衝撃エネルギーの吸収について説明する。図5において、100は衝撃エネルギーを吸収する衝撃吸収機構であり、110は、衝撃吸収機構100を支持する支持部であり、120は、衝撃吸収機構100に衝突する衝突物である。衝撃吸収機構100の衝撃エネルギーが作用する方向の長さをLとし、ヤング率をEとし、衝撃エネルギーが作用する方向と垂直な断面の面積をAとし、衝突物120の衝突による変形量を△Lとする。衝突物120の質量をMとし、衝突前の初速をV0とする。
Absorption of impact energy and reduction of impact stress by the laminate 30 will be described below. The absorption of impact energy will be described with reference to the simple model shown in FIG. In FIG. 5, 100 is an impact absorbing mechanism that absorbs impact energy, 110 is a support portion that supports the
衝撃吸収機構100に作用する運動エネルギーをEm0とし、衝撃吸収機構100のひずみエネルギーをEeとし、衝撃吸収機構100のひずみをε=△L/Lとすると、次式(1),(2)が成り立つ。
Em0=1/2×MV0 2 ・・・(1)
Ee=1/2×Eε2AL ・・・(2)
Assuming that the kinetic energy acting on the
E m0 = 1/2 × MV 0 2 (1)
E e = 1/2 × Eε 2 AL (2)
支持部110に作用する運動エネルギーをEm1とすると、エネルギー保存則より次式(3)が成り立つ。
Em1=Em0−Ee ・・・(3)
支持部110に作用する運動エネルギーEm1を減らすためには衝撃吸収機構100で吸収する運動エネルギー、すなわち、ひずみエネルギーEeを増やせばよい。
Assuming that the kinetic energy acting on the support 110 is E m1 , the following equation (3) is established from the energy conservation law.
E m1 = E m0 −E e (3)
In order to reduce the kinetic energy E m1 acting on the support portion 110, the kinetic energy absorbed by the
しかし、衝撃吸収機構100の変形時に作用する衝撃応力が大きいと、支持部110に作用する応力も大きくなってしまう。そこで、図6に示した簡易モデルを参照して、衝撃応力の低減について検討する。衝撃応力をσとすると、衝突物120の衝突開始時からの経過時間△tの間に衝撃吸収機構100に与えられた力積Iは次式(4)で表される。
I=−σA△t ・・・(4)
However, if the impact stress acting when the
I = −σAΔt (4)
衝撃吸収機構100の密度をρとし、応力伝搬速度をCとする。衝突物120と衝撃吸収機構100との反発係数を1とすると、衝撃吸収機構100の区間C△tが初期速度0から△t後に速度V0となる。このときの衝撃吸収機構100の運動量変化△Pは次式(5)で表される。
△P=ρAC△tV0 ・・・(5)
衝撃吸収機構100に与えられた力積Iと衝撃吸収機構100の運動量変化△Pは等しいので、上式(4),(5)式より、次式(6)が導かれる。
σ=−ρCV0 ・・・(6)
The density of the
ΔP = ρACΔtV 0 (5)
Since the impulse I given to the
σ = −ρCV 0 (6)
応力伝搬速度Cは、材料の物性値から次式(7)のように求めることができる。
C=(E/ρ)0.5 ・・・(7)
上式(6),(7)より、次式(8)が導かれる。
σ=−V0(ρE)0.5 ・・・(8)
The stress propagation speed C can be obtained from the physical property value of the material as shown in the following formula (7).
C = (E / ρ) 0.5 (7)
From the above equations (6) and (7), the following equation (8) is derived.
σ = −V 0 (ρE) 0.5 (8)
フックの法則より、ひずみεは次式(9)で表される。
ε=−σ/E ・・・(9)
上式(2),(8),(9)より、衝撃吸収機構100で吸収する運動エネルギー(ひずみエネルギー)Eeは、次式(10)で表される。
Ee=1/2×Eε2AL
=EAL/2×(V0ρ0.5/E0.5)2
=ALρV0 2/2 ・・・(10)
From Hook's law, the strain ε is expressed by the following equation (9).
ε = −σ / E (9)
From the above equations (2), (8), and (9), the kinetic energy (strain energy) E e absorbed by the
E e = 1/2 × Eε 2 AL
= EAL / 2 × (V 0 ρ 0.5 / E 0.5 ) 2
= ALρV 0 2/2 ··· ( 10)
以上より、上式(8)で表された衝撃応力σが小さくなるように衝撃吸収機構100を設計することが望ましい。上式(10)で表された衝撃吸収機構100で吸収する運動エネルギー(以下、単に吸収エネルギーと呼ぶ)Eeが大きくなるように、衝撃吸収機構100を設計することが望ましい。そのため、衝撃吸収機構100を次のように設計することが望ましい。
(1) 衝撃吸収機構100の断面積Aを増やしたり長さLを長くする
(2) ヤング率Eの小さい材質を用いる
(3) 密度ρを最適値に調節する
From the above, it is desirable to design the
(1) Increase the cross-sectional area A or length L of the shock absorbing mechanism 100 (2) Use a material with a small Young's modulus E (3) Adjust the density ρ to an optimum value
この、衝撃吸収機構100についての望ましい設計を本実施の形態の積層板30についてあてはめてみると、次のようになる。上述した(1)については、積層板30を挿入するボルト孔14の大きさに制限があるため、積層板30とボルト15との接触面積を増やすことで、上述した断面積Aを確保して衝撃応力を分散させることが望ましい。
When this desirable design for the
上述した(2),(3)については、積層板30に用いる材質に依存する。衝撃応力σの観点から密度ρは小さい値となることが望ましく、吸収エネルギーEeの観点から密度ρは大きい値となることが望ましい。そこで、衝撃応力σをボルト15が破断しない範囲に抑えつつ、密度ρが大きくなるように材質を選定して、吸収エネルギーEeを増やすことが考えられる。すなわち、次式(11)を満たす範囲で密度ρを最大にすることが望ましい。
σ=−V0(ρE)0.5 <(ボルト15の破断応力)/(安全率) ・・・(11)
The above (2) and (3) depend on the material used for the
σ = −V 0 (ρE) 0.5 <(breaking stress of bolt 15) / (safety factor) (11)
上述した締結構造を採用したターボ分子ポンプでは、次の作用効果を奏する。
(1) 吸気口フランジ13aからボルト15に作用する衝撃力を積層板30で受け止めるように構成した。これにより、簡単な構成でボルト15にかかる剪断応力と、装置側のフランジ16に伝達される運動エネルギーをともに減少させることができるので、ボルト15の破断や装置側の破損を防止できる。
The turbo molecular pump employing the fastening structure described above has the following operational effects.
(1) The impact force acting on the
(2) 吸気口フランジ13aのボルト孔14に積層板30を配設するように構成した。これにより、吸気口フランジ13aのボルト孔14を長穴に加工し、そのボルト孔14に積層板30を配設するだけでよいので、コスト増が僅かで済み、容易に本発明を適用できる。また、既存のターボ分子ポンプに対しても僅かなコストで本発明を適用できる。
(2) The
(3) 吸気口フランジ13aの厚さ方向に沿って板状の部材が複数積層されるように積層板30を構成した。これにより、単純な構造の積層板30によって、積層板30からボルト15へ伝達される衝撃応力の作用面積を確保できるので、信頼性が高く、コストも安価で済む。
(3) The
(4) 積層板30に用いる材質を適宜選定することで、吸収エネルギーEeおよび衝撃応力σを制御できるので、積層板30の設計が容易である。また、適用するターボ分子ポンプや真空装置に合わせて積層板30を適宜設計できるので、適用範囲が広い。
(4) Since the absorbed energy E e and the impact stress σ can be controlled by appropriately selecting the material used for the laminate 30, the design of the laminate 30 is easy. In addition, since the
−−−変形例−−−
(1) 上述の説明では、吸気口フランジ13aの厚さ方向に沿って板状の部材が複数積層されるように積層板30を構成したが本発明はこれに限定されない。図7は、吸気口フランジ13aを、ボルト孔14の近傍でボルト15の軸線方向に対して垂直に切断した際の断面図である。40は、上述した積層板30の変形例である積層板である。積層板40では、吸気口フランジ13aの半径方向に沿って板状の部材が複数積層されているが、なお、積層板40では上述した積層板30と同様に、その積層方向はボルト15に作用する衝撃応力の作用方向と略直交する。この積層板40を用いることにより、トルクTによって積層板40とボルト15の軸とが当接した際に、積層板40を構成する板状の部材のそれぞれがボルト15の軸の側面に当接するので、積層板40からボルト15へ伝達される衝撃応力の作用面積を確保できる。
---- Modified example ---
(1) In the above description, the
図8は比較例として、標準のフランジ構造を示したものであり、図4(b)における吸気口フランジ13aを、ボルト孔24の近傍でボルト15の軸線方向に対して垂直に切断した際の断面図である。図4,8に示した標準のフランジ構造では、上述したように剪断応力が境界部分15aに集中してしまう。
FIG. 8 shows a standard flange structure as a comparative example. When the
これに対して、積層板40を用いることで、積層板40からボルト15へ伝達される衝撃応力の作用面積を確保できるとともに、積層板40の変形により各ボルト孔14の位置誤差が吸収されるので、締結に用いられているボルト15の全てでトルクTを受け止めることができる。したがって、上述した実施の形態と同様の作用効果を奏する。
On the other hand, by using the
(2) 上述の説明では、積層板30,40を構成する板状の部材の積層方向は、ボルト15に作用する衝撃応力の作用方向と略直交する方向であるが、本発明はこれに限定されない。たとえば、図9に示すように、吸気口フランジ13aの円周方向に沿って、すなわち、ボルト15に作用する衝撃応力の作用方向と略一致する方向に板状の部材51,52を複数積層した積層板50を用いてもよい。
(2) In the above description, the laminating direction of the plate-like members constituting the
トルクTによって積層板50の図示右側端面とボルト15の軸とが当接した後、積層板50を構成する板状の部材51,52のそれぞれが変形することによって、積層板50の図示右側端面とボルト15の軸との当接面積が増えるので、積層板50からボルト15へ伝達される衝撃応力の作用面積を確保できる。また、積層板50の変形により各ボルト孔14の位置誤差が吸収されるので、締結に用いられているボルト15の全てでトルクTを受け止めることができる。したがって、上述した実施の形態と同様の作用効果を奏する。
After the right side end surface of the
さらに、板状の部材51と板状の部材52との材質を変えてもよい。すなわち、異種材料の板を積層させてもよい。たとえば、板状の部材51にヤング率Eが小さい材料Aを用い、板状の部材52に密度ρの高い材料Bを用いることで、板状の部材51によって多くの衝撃応力を低減し、板状の部材52に多くの運動エネルギーを吸収させることができる。積層板50に用いる板状の部材を適宜組み合わせることにより、衝撃応力の低減効果と、運動エネルギーの吸収効果とを適宜調節することができる。
Further, the material of the plate-
(3) 上述の説明では、板状の部材を積層させた積層板30,40,50を用いているが、本発明はこれに限定されない。たとえば、図10に示すように、柱状の部材61を束ねた構造を有する吸収部材60を積層板30,40,50の代わりに用いてもよい。図10(a)は吸収部材60の側面図であり、図10(b)は吸収部材60の平面図であり、図10(c)は吸収部材60の正面図である。衝撃力の作用方向、すなわちトルクTの作用方向は、柱状の部材61の軸線方向と略一致することが望ましい。このような、吸収部材60を用いることで、トルクTによって経時的に変形していくボルト15の軸と、吸収部材60との当接状態が良好となるので、衝撃応力がより分散されることとなる。
(3) In the above description, the
(4) 上述の説明では、板状の部材の材質を変更することで密度ρを変更しているが、本発明はこれに限定されない。たとえば、図11に示す101は、積層板30,40,50を構成する板状の部材の変形例である。この板状の部材101では、空孔部102を複数設けることで、板状の部材101の密度を擬似的に調節している。板状の部材101の材質の密度に板状の部材101の空孔率を乗ずることで、板状の部材101の近似密度が得られる。
(4) In the above description, the density ρ is changed by changing the material of the plate-like member, but the present invention is not limited to this. For example, 101 shown in FIG. 11 is a modification of the plate-shaped member which comprises the
板状の部材101の空孔率を適宜変更することで、衝撃応力の低減効果と、運動エネルギーの吸収効果とを適宜調節することができ、適用するターボ分子ポンプや真空装置に合わせて積層板30,40,50を適宜設計できる。また、ボルト孔14以外の部位に積層板30,40,50を配設する場合であっても、配設部位毎に最適な特性を有する積層板30,40,50を設計できる。板状の部材101は、板金加工によって得られるので、製造コストが安価である。
By appropriately changing the porosity of the plate-
(5) 上述の説明では、吸気口フランジ13aのボルト孔14に積層板30,40,50を設けるように構成したが、本発明はこれに限定されない。たとえば、装置側のフランジ16に長穴を設けて積層板30,40,50を配設し、吸気口フランジ13aにボルト15を螺合させるように構成してもよい。
(5) In the above description, the
(6) 上述の説明では、ターボ分子ポンプ1と真空装置とを直接接続しているが、本発明はこれに限定されない。たとえば、図12に示すように、ターボ分子ポンプ1やモレキュラドラッグポンプ等の回転式真空ポンプ103を真空チャンバに装着する場合には、ゲートバルブやコントロールバルブ等のバルブを介して固定されることが多い。バルブ101は配管102を介して真空チャンバ100に固定されている。このような構成の場合も、装置側のフランジ16、すなわち真空チャンバ100への衝撃を抑制するために、バルブ101や配管102の各締結部分において上述した説明と同様の締結構造を採用してもよい。すなわち、吸気口フランジ13aのボルト孔14や、配管102のフランジ102a,102bのボルト孔14を上述した説明と同様に長穴に加工して、積層板30,40,50を配設してもよい。これにより、上述した実施の形態と同様の作用効果を奏する。
(6) In the above description, the turbo
(7) 上述の説明では、積層板30,40,50を構成する板状の部材のそれぞれは、単にボルト孔14の内部で積み重ねられているだけであり、隣り合う板状の部材同士は特に固定されていないが、本発明はこれに限定されない。たとえば、吸気口フランジ13aを装置側のフランジ16に固定する際などに板状の部材がバラバラにならないように、板状の部材同士を固定しておいてもよい。このときの固定強度は、上述したトルクTによる積層板30,40,50の変形に際して、それぞれ隣り合う板状の部材の変形に影響がない程度に弱いことが望ましい。吸収部材60についても同様である。
(8) 上述した各実施の形態および変形例は、それぞれ組み合わせてもよい。
(7) In the above description, each of the plate-like members constituting the
(8) You may combine each embodiment and modification which were mentioned above, respectively.
以上の実施の形態およびその変形例において、たとえば、積層部材は積層板30に、ポンプケーシングはケーシング13に、固定側排気手段は固定翼9およびネジステータ11にそれぞれ対応する。なお、以上の説明はあくまで一例であり、発明を解釈する際、上記の実施形態の記載事項と特許請求の範囲の記載事項の対応関係になんら限定も拘束もされない。
In the above embodiment and its modifications, for example, the laminated member corresponds to the
1 ターボ分子ポンプ 2 ロータ
8 回転翼 9 固定翼
11 ネジステータ 12 円筒部
13 ケーシング 13a 吸気口フランジ
14 ボルト孔 15 ボルト
16 装置側フランジ 30,40,50 積層板
60 吸収部材
DESCRIPTION OF
Claims (7)
前記ボルトを介して、前記第1の部材または前記第2の部材のいずれか一方から他方へ伝達される運動エネルギーを吸収するとともに、前記ボルトに作用する衝撃応力を緩和する部材であって、積層構造を有する積層部材を備えることを特徴とする締結構造。 In the fastening structure that fastens the first member and the second member with bolts,
A member that absorbs kinetic energy transmitted from one of the first member and the second member to the other through the bolt, and that relieves impact stress acting on the bolt. A fastening structure comprising a laminated member having a structure.
前記第1の部材および前記第2の部材の少なくともいずれか一方には、前記ボルトが挿通される穴が設けられ、
前記積層部材は、前記穴の内周面と、前記ボルトとの間に配設されることを特徴とする締結構造。 The fastening structure according to claim 1,
At least one of the first member and the second member is provided with a hole through which the bolt is inserted,
The said laminated member is arrange | positioned between the internal peripheral surface of the said hole, and the said volt | bolt, The fastening structure characterized by the above-mentioned.
前記積層部材を構成する個々の部材の積層方向は、前記ボルトに作用する衝撃応力の作用方向と略一致、または略直交することを特徴とする締結構造。 In the fastening structure according to claim 1 or 2,
The fastening structure according to claim 1, wherein a lamination direction of individual members constituting the laminated member is substantially coincident with or substantially orthogonal to an acting direction of an impact stress acting on the bolt.
前記積層構造は、前記積層部材によって吸収する前記運動エネルギーの値および前記積層部材によって緩和する前記衝撃応力の値に影響する物性値が異なる複数の部材を積層した構造であることを特徴とする締結構造。 In the fastening structure according to any one of claims 1 to 3,
The laminated structure is a structure in which a plurality of members having different physical property values that affect the value of the kinetic energy absorbed by the laminated member and the value of the impact stress relaxed by the laminated member are laminated. Construction.
前記積層構造は、材質が異なることで前記物性値が異なることを特徴とする締結構造。 The fastening structure according to claim 4,
The said laminated structure is a fastening structure characterized by the said physical-property value differing by different materials.
前記積層構造は、前記積層部材を構成する個々の部材の少なくとも一部の部材に穴が設けられたことで前記物性値が異なることを特徴とする締結構造。 The fastening structure according to claim 4,
The laminated structure is characterized in that the physical property values are different because holes are provided in at least some of the individual members constituting the laminated member.
回転側排気手段が設けられて前記ポンプケーシング内で高速回転駆動されるロータと、
前記ポンプケーシング内に設けられて前記回転側排気手段と共働して排気作用を発生する固定側排気手段とを備えることを特徴とする回転式真空ポンプ。 A pump casing formed with an intake flange that is fastened to the exhaust target device by the fastening structure according to any one of claims 1 to 6;
A rotor provided with a rotation-side exhaust means and driven to rotate at high speed in the pump casing;
A rotary vacuum pump comprising: a fixed-side exhaust means provided in the pump casing and generating an exhaust action in cooperation with the rotary-side exhaust means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006105023A JP2007278163A (en) | 2006-04-06 | 2006-04-06 | Fastening structure and rotary vacuum pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006105023A JP2007278163A (en) | 2006-04-06 | 2006-04-06 | Fastening structure and rotary vacuum pump |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007278163A true JP2007278163A (en) | 2007-10-25 |
Family
ID=38679859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006105023A Pending JP2007278163A (en) | 2006-04-06 | 2006-04-06 | Fastening structure and rotary vacuum pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007278163A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010236469A (en) * | 2009-03-31 | 2010-10-21 | Shimadzu Corp | Turbomolecular pump device |
WO2012114862A1 (en) * | 2011-02-22 | 2012-08-30 | 株式会社島津製作所 | Bolt-fastening structure for turbomolecular pump, and turbomolecular pump |
KR20160046384A (en) * | 2014-10-20 | 2016-04-29 | 현대중공업 주식회사 | High Pressure Horizontal Type Pump |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58104361U (en) * | 1982-01-11 | 1983-07-15 | 三菱電機株式会社 | reduction type starter |
JPH01241438A (en) * | 1988-03-23 | 1989-09-26 | Sumitomo Bakelite Co Ltd | Impact resistance panel |
JPH05339922A (en) * | 1992-06-11 | 1993-12-21 | Bridgestone Corp | Heavy duty elastic roller |
JPH10274189A (en) * | 1997-03-31 | 1998-10-13 | Shimadzu Corp | Turbo molecular pump |
JP2004162696A (en) * | 2002-10-23 | 2004-06-10 | Boc Edwards Kk | Molecular pump, and flange |
-
2006
- 2006-04-06 JP JP2006105023A patent/JP2007278163A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58104361U (en) * | 1982-01-11 | 1983-07-15 | 三菱電機株式会社 | reduction type starter |
JPH01241438A (en) * | 1988-03-23 | 1989-09-26 | Sumitomo Bakelite Co Ltd | Impact resistance panel |
JPH05339922A (en) * | 1992-06-11 | 1993-12-21 | Bridgestone Corp | Heavy duty elastic roller |
JPH10274189A (en) * | 1997-03-31 | 1998-10-13 | Shimadzu Corp | Turbo molecular pump |
JP2004162696A (en) * | 2002-10-23 | 2004-06-10 | Boc Edwards Kk | Molecular pump, and flange |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010236469A (en) * | 2009-03-31 | 2010-10-21 | Shimadzu Corp | Turbomolecular pump device |
WO2012114862A1 (en) * | 2011-02-22 | 2012-08-30 | 株式会社島津製作所 | Bolt-fastening structure for turbomolecular pump, and turbomolecular pump |
JP5626445B2 (en) * | 2011-02-22 | 2014-11-19 | 株式会社島津製作所 | Bolt fastening structure of turbo molecular pump and turbo molecular pump |
US9341188B2 (en) | 2011-02-22 | 2016-05-17 | Shimadzu Corporation | Bolt-fastening system for turbomolecular pump, and a pump containing the same |
KR20160046384A (en) * | 2014-10-20 | 2016-04-29 | 현대중공업 주식회사 | High Pressure Horizontal Type Pump |
KR102213232B1 (en) | 2014-10-20 | 2021-02-08 | 현대중공업터보기계 주식회사 | High Pressure Horizontal Type Pump |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100997015B1 (en) | Molecular pump and flange | |
JP5626445B2 (en) | Bolt fastening structure of turbo molecular pump and turbo molecular pump | |
JP4949746B2 (en) | Molecular pump and flange | |
JP2007278163A (en) | Fastening structure and rotary vacuum pump | |
JP5137365B2 (en) | Vacuum pump and flange | |
JP4978489B2 (en) | Casing flange structure, turbo molecular pump and vacuum pump | |
JP5343884B2 (en) | Turbo molecular pump | |
JP2007278164A (en) | Fastening structure and rotary vacuum pump | |
US20090068008A1 (en) | Fastening structure and rotary vacuum pump | |
JP5365634B2 (en) | Rotary vacuum pump | |
JP4461944B2 (en) | Turbo molecular pump | |
JP5056152B2 (en) | Turbo molecular pump | |
JP3359866B2 (en) | Turbo molecular pump | |
US8292603B2 (en) | Rotary vacuum pump, vacuum device, and pump connection structure | |
JP4895178B2 (en) | Turbo molecular pump | |
JP2017014945A (en) | Vacuum pump | |
JP2003269371A (en) | Vacuum pump | |
JP5577798B2 (en) | Turbo molecular pump | |
JP4609082B2 (en) | Flange and turbomolecular pump with this flange | |
JP3141204U (en) | Turbo molecular pump | |
JP5136262B2 (en) | Rotary vacuum pump | |
JP5434684B2 (en) | Turbo molecular pump | |
JP5532051B2 (en) | Vacuum pump | |
JP3784250B2 (en) | Vacuum pump | |
JP5246288B2 (en) | Rotary vacuum pump, vacuum device and pump connection structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080612 |
|
A977 | Report on retrieval |
Effective date: 20110317 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110322 |
|
A02 | Decision of refusal |
Effective date: 20110726 Free format text: JAPANESE INTERMEDIATE CODE: A02 |