[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007277238A - Method for producing voglibose - Google Patents

Method for producing voglibose Download PDF

Info

Publication number
JP2007277238A
JP2007277238A JP2007097433A JP2007097433A JP2007277238A JP 2007277238 A JP2007277238 A JP 2007277238A JP 2007097433 A JP2007097433 A JP 2007097433A JP 2007097433 A JP2007097433 A JP 2007097433A JP 2007277238 A JP2007277238 A JP 2007277238A
Authority
JP
Japan
Prior art keywords
voglibose
formula
reaction
purity
perbenzyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007097433A
Other languages
Japanese (ja)
Inventor
Jae Heon Lee
リー・ジェホン
Churuhyun Park
パク・チュルヒュン
Eun Ju Park
パク・ウンジュ
Jae Ho Yoo
ヨ・ジェホ
Dong Jun Kim
キム・ドンジュン
Young Kil Chang
チャン・ヨンキル
Gwan Sun Lee
リー・グワンスン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanmi Pharmaceutical Co Ltd
Hanmi Pharmaceutical Industries Co Ltd
Original Assignee
Hanmi Pharmaceutical Co Ltd
Hanmi Pharmaceutical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanmi Pharmaceutical Co Ltd, Hanmi Pharmaceutical Industries Co Ltd filed Critical Hanmi Pharmaceutical Co Ltd
Publication of JP2007277238A publication Critical patent/JP2007277238A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/02Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage
    • B65D81/05Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents
    • B65D81/127Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents using rigid or semi-rigid sheets of shock-absorbing material
    • B65D81/133Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents using rigid or semi-rigid sheets of shock-absorbing material of a shape specially adapted to accommodate contents, e.g. trays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/02Internal fittings
    • B65D25/10Devices to locate articles in containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D5/00Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
    • B65D5/42Details of containers or of foldable or erectable container blanks
    • B65D5/44Integral, inserted or attached portions forming internal or external fittings
    • B65D5/50Internal supporting or protecting elements for contents

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an improved method mass-producing high-purity voglibose in high yield by a simpler process. <P>SOLUTION: A high-purity solid phase perbenzylvoglibose benzenesulfonic acid salt obtained by reacting perbenzylvoglibose with benzenesulfonic acid is subjected to hydrogenation reaction, and debenzylation is efficiently advanced thereby even when a trace amount of palladium catalyst is used in ordinary pressure and voglibose is readily isolated by reacting the resultant voglibose benzenesulfonate with a base. As a result, the high-purity voglibose can be mass-produced in high yield and high purity by using a simple process. The voglibose is an α-glucosidase inhibitor-based therapeutic agent for diabetes mellitus and has an effect of suppressing postprandial elevation of glycemia by blocking decomposition of disaccharide to monosaccharide by suppressing secretion of digestive enzyme in the mucous membrane of the small intestine. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はイノソース(inosose)誘導体を出発物質として用いて1)還元的アミノ化反応;2)ベンゼンスルホン酸付加反応;3)脱保護反応;及び4)遊離化反応からなる工程によって下記式1のボグリボースを高収率及び高純度で合成することができる新規な方法に関する。

Figure 2007277238
The present invention employs an inosose derivative as a starting material, and includes a 1) reductive amination reaction; 2) a benzenesulfonic acid addition reaction; 3) a deprotection reaction; and 4) a liberation reaction. The present invention relates to a novel method capable of synthesizing voglibose with high yield and high purity.
Figure 2007277238

ボグリボースはアルファ−グルコシダーゼ阻害剤(α-glucosidase inhibitor)系の糖尿病治療剤であって、小腸粘膜で消化酵素分泌を抑制して二糖類が単糖類に分解されることを遮断することで食後血糖上昇を抑制する効能を有する。特に、ボグリボースは酵素抑制作用に優れて二糖類分解酵素に対して相対的に高い親和力を有するので、投与量を画期的に減らすことができ、消化器系の副作用も少ないので糖尿病治療に非常に有用な薬物である。   Voglibose is an alpha-glucosidase inhibitor-based diabetes treatment that increases postprandial blood glucose by inhibiting digestive enzyme secretion in the small intestinal mucosa and blocking the decomposition of disaccharides into monosaccharides. Has the effect of suppressing In particular, voglibose has an excellent enzyme-inhibiting action and has a relatively high affinity for disaccharide-degrading enzymes. Therefore, the dosage can be dramatically reduced and there are few side effects on the digestive system. It is a useful drug.

ボグリボースは多様な経路を通じて合成することができるが、その代表的な合成方法として米国特許第4,701,559号には、下記反応式1に示すように、ボグリボースと類似の化学構造を有するバリエナミン(1)を出発物質として用いて5段階の反応を経て式1のボグリボースを製造する方法が開示されている。

Figure 2007277238
Voglibose can be synthesized through various routes. US Pat. No. 4,701,559 discloses a typical synthesis method of valienamine having a chemical structure similar to that of voglibose as shown in the following reaction scheme 1. A process for producing voglibose of Formula 1 via a five-step reaction using (1) as a starting material is disclosed.
Figure 2007277238

前記方法はバリエナミン(1)のアミン基をN−アシル化させてN−カルバモイルバリエナミン(2)を製造し、その二重結合をハルロゲン化させて製造した環状の(cyclic)ハローカルバメート誘導体(3)をさらに脱ハロゲン化させて環状のカルバメート誘導体(4)を製造した後、バリオールアミン(5)を製造し、バリオールアミン(5)からジヒドロキシアセトンとの還元的アミノ化反応を通じて最終的に式1のボグリボースを製造する方法である。   In this method, N-acylation of the amine group of varienamine (1) to produce N-carbamoylvarienamine (2) and the double bond to be halogenated to produce a cyclic (hazalbamate) derivative (3 ) Is further dehalogenated to produce a cyclic carbamate derivative (4), and then variolamine (5) is produced, and finally, through reductive amination reaction from variolamine (5) with dihydroxyacetone. A method for producing voglibose of Formula 1.

この方法の化学的に反応段階においては問題はないが、反応後処理時に中間産物及び最終産物を分離して得る過程において樹脂カラムを用いなければならないので量産に不向きであり、全収率も6%内外と非常に低いので非経済的である。特に、前記方法で出発物質として用いるバリエナミンは、ストレプトミセスヒグロスコピクス(Streptomyces hygroscopicus)などのような微生物の発酵を通じて得るか、またはバリダマイシン(validamycin)を微生物で分解させて得ることができるが、いずれも収率が非常に低く、その精製方法が複雑であり、バリエナミンを産業的規模の量として確保し難いという問題点がある。   Although there is no problem in the chemical reaction stage of this method, it is unsuitable for mass production because a resin column must be used in the process of separating and obtaining the intermediate product and the final product during the post-reaction process, and the total yield is 6 It is uneconomical because it is very low at%. In particular, the valienamine used as a starting material in the method can be obtained through fermentation of a microorganism such as Streptomyces hygroscopicus, or can be obtained by decomposing validamycin with a microorganism. However, the yield is very low, the purification method is complicated, and there is a problem that it is difficult to secure valienamine as an industrial scale amount.

さらに他の方法として、米国特許第4,898,986号及び第5,004,838号は下記反応式2に示すように、ジアルキルチオイノソース(6)を出発物質として用い、4段階の反応を経て式1のボグリボースを製造する方法を開示している。

Figure 2007277238
前記式中、Xは−SQであり、Qは低級アルキル又は低級アルキレンを意味する。 As another method, U.S. Pat. Nos. 4,898,986 and 5,004,838 use a dialkylthioinosose (6) as a starting material, as shown in the following reaction scheme 2. Discloses a method for producing voglibose of formula 1.
Figure 2007277238
In the above formula, X is -SQ, and Q means lower alkyl or lower alkylene.

この方法は、ジアルキルチオイノソース誘導体(6)を還元的アミノ化反応させた後、ジアルキルチオ基をラネーニッケル(Raney Ni)を用いて除去する反応を順次行ってペルベンジルボグルボース(7)を製造した後、ペルベンジル基を3.4〜4気圧下でラネーニッケルを用いて除去することによって式1のボグリボースを製造する。
しかし、前記方法はジアルキルチオ基を除去するために高価のラネーニッケルを重量比で3倍も用いなければならず、ベンジル基は3.5〜4気圧の高圧下で反応させないと除去されないので別途の高圧反応器を備えなければならないという問題点があり、特に全収率が17%内外に過ぎないという短所がある。
In this method, after the reductive amination reaction of the dialkylthioinosose derivative (6), the reaction of removing the dialkylthio group using Raney nickel is sequentially performed to obtain perbenzylboglubose (7). After preparation, the voglibose of formula 1 is prepared by removing the perbenzyl group with Raney nickel under 3.4-4 atm.
However, in order to remove the dialkylthio group, the above method must use expensive Raney nickel three times by weight, and the benzyl group cannot be removed unless it is reacted under a high pressure of 3.5 to 4 atm. There is a problem that a high-pressure reactor has to be provided, and in particular, the overall yield is only 17%.

一方、これと類似する方法として、フカセら(Fukase, H et al., J.Org.Chem.,57:3651〜3658,1992)は下記反応式3に示すように、イノソース誘導体(8)を用いて還元的アミノ化反応及び脱保護反応を経てボグリボースを製造する方法を開示している。

Figure 2007277238
On the other hand, as a method similar to this, Fukase et al. (Fukase, H et al., J. Org. Chem., 57: 3651-3658, 1992) showed an inosose derivative (8) as shown in the following reaction formula 3. And a method for producing voglibose through a reductive amination reaction and a deprotection reaction.
Figure 2007277238

この方法はジアルキルチオ基を有しないイノソース(8)から還元的アミノ化反応を通じてペルベンジルボグルボース(7)を製造し、ペルベンジル基をパラジウム−ブラック(Pd−black)触媒を用いてギ酸中で除去することによって式1のボグリボースを製造する。   In this method, perbenzylboglubose (7) is produced from inosource (8) having no dialkylthio group through a reductive amination reaction, and the perbenzyl group is formed in formic acid using a palladium-black (Pd-black) catalyst. The voglibose of Formula 1 is produced by removing.

前記方法はジアルキルチオ−イノソース(6)を出発物質として用いる方法に比べて反応が容易であり、収率も高いという長所はあるが、還元的アミノ化反応後、反応産物をシリカゲルを用いたカラムクロマトグラフィー法で分離・精製しなければならないという煩わしさがある。また、触媒として用いる高価のパラジウム−ブラックは引火性が高くて産業的な規模での取り扱いに際して危険性が非常に高く、100重量%以上添加しなければならないので非経済的であるという問題点がある。さらに、脱保護反応後、ボグリボースがギ酸塩形態で得られるので、ギ酸を除去し、純粋な塩基(base)状のボグリボースを得るためにはダウエックス(Dowex)陽イオン樹脂及びアンバーライト(Amberlite)樹脂を用いたカラムクロマトグラフィーを連続的に行わなければならないので、量産に不向きである。   Although the above method has advantages in that the reaction is easier and the yield is higher than the method using dialkylthio-inosose (6) as a starting material, a column using silica gel as the reaction product after the reductive amination reaction. There is an annoyance that must be separated and purified by a chromatographic method. In addition, expensive palladium-black used as a catalyst is highly flammable and extremely dangerous when handled on an industrial scale, and it is uneconomical because it must be added in an amount of 100% by weight or more. is there. Furthermore, after the deprotection reaction, voglibose is obtained in the formate form, so to remove formic acid and obtain a pure base voglibose, Dowex cation resin and Amberlite. Since column chromatography using a resin must be performed continuously, it is not suitable for mass production.

また他の方法として国際公開公報WO2005/030698号は下記反応式4に示すようにペルベンジルボグルボース(7)を5%−パラジウム/炭素及び塩酸の反応下で還元脱保護すると共にその塩酸塩(9)を製造した後、無機塩基又は有機塩基で中和して式1のボグリボースを製造する方法を開示している。

Figure 2007277238
As another method, International Publication No. WO2005 / 030698 discloses reductive deprotection of perbenzylboglubose (7) under the reaction of 5% palladium / carbon and hydrochloric acid as shown in the following reaction formula 4 and its hydrochloride. After producing (9), a method for producing voglibose of Formula 1 by neutralizing with an inorganic base or an organic base is disclosed.
Figure 2007277238

この方法も脱保護反応時に高価のパラジウム/炭素を100重量%の量で添加しなければならないので非経済的であり、大量のパラジウム触媒を用いる場合には反応器に触媒を投入する際や反応物をろ過した後に空気中の酸素と蒸気化した有機溶媒との混合比が特定の範囲に到達するとパラジウム−炭素触媒による発火が起こって火事発生の恐れがあるので、量産の際の危険性が非常に高く、特に3〜3.5気圧の高圧状態で反応を行わなければならないので、別途の高圧反応器を要するだけでなく、高圧反応器それ自体を大きく製作できず反応規模が制限されるという問題点がある。   This method is also uneconomical because expensive palladium / carbon must be added in an amount of 100% by weight during the deprotection reaction. When a large amount of palladium catalyst is used, the reaction is performed when the catalyst is introduced into the reactor. When the mixing ratio of oxygen in the air and the vaporized organic solvent reaches a specific range after filtering the product, there is a risk of fire due to the ignition of the palladium-carbon catalyst. Since the reaction must be performed at a very high pressure, particularly at a high pressure of 3 to 3.5 atm, not only a separate high-pressure reactor is required, but the high-pressure reactor itself cannot be made large and the reaction scale is limited. There is a problem.

また、原料に用いるペルベンジルボグルボース(7)は前記反応式3と同様にイノソース(8)から還元的アミノ化反応を通じて製造することになるが、還元的アミノ化反応後に得られるペルベンジルボグルボース(7)はオイル状であってHPLCによる純度が90%にしかならない極めて低い純度を有するので、これを精製しない状態で脱保護及び中和反応を経れば最終的に得るボグリボースは含量未満になるか、または不純物の含量が基準値から越える不純な状態で得られる。これを避けるためには精製を行わなければならないが、固体でないオイル状の液体であるため、カラムクロマトグラフィー法を通じて精製することになるが、この方法は生産性側面で非効率的であり、特に量産には不向きである。
また、ペルベンジルボグルボース(7)から最終ボグリボースを得る収率が約54%と低いのでコスト競争力にも劣るという短所を有する。
In addition, perbenzylboglubose (7) used as a raw material is produced from inosource (8) through a reductive amination reaction in the same manner as in the above reaction formula 3, but the perbenzylbobose (7) obtained after the reductive amination reaction is used. Grubose (7) is oily and has an extremely low purity of only 90% by HPLC. Therefore, if it is subjected to deprotection and neutralization without purification, the final voglibose content is It is obtained in an impure state where the impurity content is less than or exceeds the reference value. In order to avoid this, purification must be carried out, but since it is an oily liquid that is not solid, it is purified through column chromatography, but this method is inefficient in terms of productivity, especially Not suitable for mass production.
Further, since the yield of obtaining the final voglibose from the perbenzyl bogulose (7) is as low as about 54%, it has a disadvantage of being inferior in cost competitiveness.

結果的に前記の方法は、容量の制限を受ける高圧の反応器を要する点、全収率が低くて多量のパラジウム触媒を使用するので、製造コストがかなり高くなる点、脱保護産物の低い純度に起因して低品質の最終物が得られる点等のために、産業的規模に適用するには好ましくない製造方法である。
米国特許第4,701,559号 米国特許第4,898,986号 米国特許第5,004,838号 国際公開公報WO2005/030698号 Fukase, H et al., J.Org.Chem.,57:3651〜3658,1992
As a result, the above-described method requires a high-pressure reactor that is limited in capacity, uses a large amount of palladium catalyst with a low overall yield, considerably increases production costs, and low purity of deprotected products. This is a manufacturing method that is not preferable for application to an industrial scale because, for example, a low-quality final product can be obtained.
US Pat. No. 4,701,559 U.S. Pat. No. 4,898,986 US Pat. No. 5,004,838 International Publication No. WO2005 / 030698 Fukase, H et al. , J. et al. Org. Chem. 57: 3651-3658,1992.

そこで、本発明者らは従来のボグリボース製造方法上の諸問題点を解決しようと鋭意研究した結果、ペルベンジルボグリボースをベンゼンスルホン酸と反応させて得た高純度の固相ペルベンジルボグリボースベンゼンスルホン酸塩を加水素反応させれば、常圧で極少量のパラジウム触媒を用いても脱ベンジル化が効率的に進行し、得られたボグリボースベンゼンスルホン酸塩を塩基と反応させればボグリボースを容易に遊離させて高純度のボグリボースを高収率で製造できるということを確認することによって本発明を完成するに至った。   Therefore, the present inventors have intensively studied to solve various problems in the conventional voglibose production method, and as a result, high purity solid phase perbenzyl voglibose benzene sulfonic acid obtained by reacting perbenzyl voglibose with benzene sulfonic acid. If the salt is hydrogenated, debenzylation will proceed efficiently even if a very small amount of palladium catalyst is used at normal pressure, and if the resulting voglibose benzenesulfonate is reacted with a base, voglibose can be easily produced. The present invention was completed by confirming that it can be liberated to produce high-purity voglibose in a high yield.

従って、本発明の目的は高純度のボグリボースをより簡単な工程によって高収率で量産することができる改善された方法を提供することである。   Accordingly, an object of the present invention is to provide an improved method capable of mass-producing high-purity voglibose in a high yield by a simpler process.

前記目的を果たすため、本発明は
1)式5のイノソース誘導体と式6の2−アミノ−1,3−プロパンジオールの還元的アミノ化(reductive amination)反応を通じて式4のペルベンジルボグリボースを製造する段階;
2)前記ペルベンジルボグリボースにベンゼンスルホン酸を加えて式3のペルベンジルボグリボースベンゼンスルホン酸塩を製造する段階;
3)前記ペルベンジルボグリボースベンゼンスルホン酸塩を脱保護して式2のボグリボースベンゼンスルホン酸塩を製造する段階;及び
4)前記ボグリボースベンゼンスルホン酸塩を塩基で処理してボグリボースを遊離する段階を含む、式1のボグリボースの製造方法を提供する:

Figure 2007277238
Figure 2007277238
Figure 2007277238
Figure 2007277238
Figure 2007277238
Figure 2007277238
前記式中、Phはフェニル基であり、Bnはベンジル基である。 To achieve the above object, the present invention provides: 1) Preparation of perbenzyl voglibose of formula 4 through reductive amination reaction of inosose derivative of formula 5 and 2-amino-1,3-propanediol of formula 6 Stage;
2) adding benzene sulfonic acid to the perbenzyl voglibose to produce perbenzyl voglibose benzene sulfonate of formula 3;
3) deprotecting the perbenzyl voglibose benzene sulfonate to produce voglibose benzene sulfonate of formula 2; and 4) treating the voglibose benzene sulfonate with a base to liberate voglibose. A method for producing voglibose of formula 1 is provided:
Figure 2007277238
Figure 2007277238
Figure 2007277238
Figure 2007277238
Figure 2007277238
Figure 2007277238
In the above formula, Ph is a phenyl group, and Bn is a benzyl group.

本発明の製造方法によれば、糖尿病治療剤であるボグリボースを簡単な工程によって高収率及び高純度で大量生産することができる。   According to the production method of the present invention, voglibose, which is a therapeutic agent for diabetes, can be mass-produced with high yield and high purity by a simple process.

本発明による製造方法を概略的に説明すれば下記反応式5に示す通りである:

Figure 2007277238
前記式中、Ph及びBnは前記で定義した通りである。

本発明で出発物質として用いられる式5のイノソース誘導体は公知の方法(Ikegami, S et al., Organic Letters 2(4):457〜460, 2000)を用いて容易に製造することができる。 The production method according to the present invention is schematically illustrated as the following reaction scheme 5.
Figure 2007277238
In the above formula, Ph and Bn are as defined above.

The inosose derivative of formula 5 used as a starting material in the present invention can be easily prepared by using a known method (Ikegami, S et al., Organic Letters 2 (4): 457-460, 2000).

本発明の方法を前記各段階別により具体的に説明すれば次の通りである。
段階1)還元的アミノ化反応
ディーン−スタークトラップ(Dean−stark trap)を備えた装置を用いて式5のイノソース誘導体と式6の2−アミノ−1,3−プロパンジオールとの縮合反応を行ってシッフ塩基(Schiff base)を製造した後、同一反応器に還元剤を加えてシッフ塩基を還元させることによって式4のペルベンジルボグリボースを製造する。
縮合反応に用いる式6の2−アミノ−1,3−プロパンジオールは式5のイノソース誘導体に対して1〜5当量の量で用いることができ、好ましくは1.5〜3当量の量で用いる。
The method of the present invention will be described in detail according to the respective steps as follows.
Step 1) Reductive amination reaction Using an apparatus equipped with a Dean-stark trap, a condensation reaction between an inosose derivative of formula 5 and 2-amino-1,3-propanediol of formula 6 is performed. After preparing a Schiff base, a perbenzylboglibose of Formula 4 is prepared by adding a reducing agent to the same reactor to reduce the Schiff base.
The 2-amino-1,3-propanediol of the formula 6 used for the condensation reaction can be used in an amount of 1 to 5 equivalents, preferably 1.5 to 3 equivalents, relative to the inosose derivative of the formula 5. .

縮合反応に用いる溶媒としてはメタノール、エタノール、プロパノール、アセトニトリル、ジメチルスルホキシド、N,N−ジメチルホルムアミド、ジオキサン、テトラヒドロフラン、酢酸エチル、ベンゼン、トルエン又はキシレンを単独で、または、混合して用いることができる。特に、メタノール−ベンゼン混合液又はメタノール−トルエン混合液を溶媒とし、ディーン−スタークトラップを有する装置を用いて反応中生成した水を共沸蒸留(azeotropic distillation)で除去しながら縮合反応を行うことが最も好ましい。水を除去しながら反応させる場合、反応が順調に進行し、副生成物の生成が少なくなるという長所がある。この際の縮合反応を還流温度で行う場合には1〜3時間の反応時間で十分である。   As a solvent used in the condensation reaction, methanol, ethanol, propanol, acetonitrile, dimethyl sulfoxide, N, N-dimethylformamide, dioxane, tetrahydrofuran, ethyl acetate, benzene, toluene or xylene can be used alone or in combination. . In particular, the condensation reaction may be carried out while removing water produced during the reaction by azeotropic distillation using an apparatus having a Dean-Stark trap using a methanol-benzene mixture or methanol-toluene mixture as a solvent. Most preferred. When the reaction is carried out while removing water, there is an advantage that the reaction proceeds smoothly and the production of by-products is reduced. When the condensation reaction at this time is performed at the reflux temperature, a reaction time of 1 to 3 hours is sufficient.

一方、生成したシッフ塩基は、還元剤を用いて還元することができ、還元剤としては水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ素リチウム、水素化メトキシホウ素ナトリウム、水素化シアノホウ素ナトリウム、水素化アルミニウムリチウム、ジメチルアミンボランなどを用いることができ、特に、水素化シアノホウ素ナトリウムを用いることが好ましい。   On the other hand, the generated Schiff base can be reduced using a reducing agent, such as sodium borohydride, potassium borohydride, lithium borohydride, sodium methoxyborohydride, sodium cyanoborohydride, Lithium aluminum hydride, dimethylamine borane and the like can be used, and sodium cyanoborohydride is particularly preferably used.

前記還元剤は式5のイノソース誘導体に対して1〜15当量の量で用いることができ、2〜6当量の量で用いることが好ましい。   The reducing agent can be used in an amount of 1 to 15 equivalents, preferably 2 to 6 equivalents, relative to the inosose derivative of Formula 5.

前記還元反応に用いる溶媒としてはメタノール、エタノール、N,N−ジメチルホルムアミド、ジオキサン、テトラヒドロフラン、アセトニトリルなどがあり、特に、メタノールが好ましい。
還元反応は0〜50℃、好ましくは10〜30℃の温度で1〜24時間行う。
Examples of the solvent used in the reduction reaction include methanol, ethanol, N, N-dimethylformamide, dioxane, tetrahydrofuran, acetonitrile, and the like, and methanol is particularly preferable.
The reduction reaction is performed at a temperature of 0 to 50 ° C., preferably 10 to 30 ° C. for 1 to 24 hours.

段階2)ベンゼンスルホン酸付加反応
前記段階1)の還元的アミノ化反応を行った後、後処理を通じて得られた式4のペルベンジルボグリボースを特定の溶媒に溶解してベンゼンスルホン酸を加えればペルベンジルボグリボースは式3の酸付加塩の状態で溶液中で固体として析出する。生成した固体をろ過した後、固体として得られた式3のペルベンジルボグリボースベンゼンスルホン酸塩とろ液を薄膜クロマトグラフィー(TLC)及び高速液体クロマトグラフィー(HPLC)を用いて分析した結果、反応不純物はろ液を通じて効果的に除去され、単一スパット(spot)で検出された式3のペルベンジルボグリボースベンゼンスルホン酸塩は99%以上(HPLC面積%)の非常に純粋な状態で得られることを確認した。
Step 2) Benzenesulfonic acid addition reaction After the reductive amination reaction of Step 1) above, the perbenzyl voglibose of formula 4 obtained through the post-treatment is dissolved in a specific solvent and benzenesulfonic acid is added. Benzyl voglibose precipitates as a solid in solution in the form of the acid addition salt of formula 3. After filtering the produced solid, the perbenzylboglibose benzene sulfonate of Formula 3 and the filtrate obtained as a solid were analyzed using thin film chromatography (TLC) and high performance liquid chromatography (HPLC). It was confirmed that the perbenzyl voglibose benzene sulfonate of formula 3 that was effectively removed through the liquid and detected with a single spot was obtained in a very pure state of over 99% (HPLC area%). .

前記ベンゼンスルホン酸塩のような形態で分離して得る方法は還元的アミノ化反応後に反応産物をカラムクロマトグラフィーを通じて分離・精製した従来の方法に比べて、単純性や分離の効率及び目的産物の純度などの面で優れた方法である。
前記反応において、ベンゼンスルホン酸は式5のイノソース誘導体に対して1〜2当量、好ましくは1.05〜1.5当量の量で用いる。
The method obtained by separation in the form of the benzenesulfonate is simpler, more efficient in separation and more efficient in comparison with the conventional method in which the reaction product is separated and purified through column chromatography after the reductive amination reaction. This method is excellent in terms of purity.
In the reaction, benzenesulfonic acid is used in an amount of 1 to 2 equivalents, preferably 1.05 to 1.5 equivalents, relative to the inosose derivative of Formula 5.

前記反応に用いられた溶媒としては、アセトニトリル、ジオキサン、テトラヒドロフラン、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、ジエチルエーテル、イソプロピルエーテル、塩化メチレン、クロロホルム、ベンゼン又はトルエン、またはそれらの混合物が好ましく、特に、イソプロピルエーテル−アセトニトリル混合液を用いることが好ましい。   As the solvent used in the reaction, acetonitrile, dioxane, tetrahydrofuran, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, diethyl ether, isopropyl ether, methylene chloride, chloroform, benzene or toluene, or a mixture thereof is particularly preferable. It is preferable to use a mixture of isopropyl ether and acetonitrile.

本発明による還元的アミノ化反応後にベンゼンスルホン酸付加反応を行うと、式3のペルベンジルボグリボースベンゼンスルホン酸塩を80〜85%の収率で得ることが可能である。   When a benzenesulfonic acid addition reaction is carried out after the reductive amination reaction according to the present invention, it is possible to obtain a perbenzyl voglibose benzenesulfonate of formula 3 in a yield of 80 to 85%.

段階3)脱保護反応
前記段階2で得た式3のペルベンジルボグリボースベンゼンスルホン酸塩は4個のヒドロキシ基がベンジル基で保護されたテトラ(tetra)ベンジル化合物であって、パラジウム系の触媒、例えばパラジウム/炭素、酢酸パラジウム、塩化パラジウム、臭化パラジウム、ヨウ化パラジウム、酸化パラジウム、水酸化パラジウムなどを触媒として用いて水素還元反応を行ってベンジル基を除去する。一般的に4個のベンジル基を全て一時に除去することは容易でないが、本発明による式3のペルベンジルボグリボースベンゼンスルホン酸塩は少量のパラジウム系の触媒にベンゼンスルホン酸を加えて、常圧の水素下で反応させることによって脱保護反応が非常に効果的に進行する。
Step 3) Deprotection Reaction The perbenzylboglibose benzene sulfonate of formula 3 obtained in Step 2 above is a tetrabenzyl compound in which four hydroxy groups are protected with a benzyl group, comprising a palladium-based catalyst, For example, a hydrogen reduction reaction is performed using palladium / carbon, palladium acetate, palladium chloride, palladium bromide, palladium iodide, palladium oxide, palladium hydroxide, or the like as a catalyst to remove the benzyl group. Generally, it is not easy to remove all four benzyl groups at one time. However, the perbenzyl voglibose benzene sulfonate of formula 3 according to the present invention is obtained by adding benzene sulfonic acid to a small amount of a palladium-based catalyst, and By carrying out the reaction under hydrogen, the deprotection reaction proceeds very effectively.

前記パラジウム系の触媒としてはデグッサ(Degussa)タイプの5%−パラジウム/炭素及び10%−パラジウム/炭素を用いることが好ましく、特に反応時間や反応生成物の純度を考慮する際、10%−パラジウム/炭素を用いることが最も好ましい。   As the palladium-based catalyst, it is preferable to use 5% -palladium / carbon and 10% -palladium / carbon of Degussa type, and particularly when considering the reaction time and the purity of the reaction product, 10% -palladium. Most preferably, carbon is used.

前記10%−パラジウム/炭素は式3のペルベンジルボグリボースベンゼンスルホン酸塩に対して2〜10重量%の量で用いることができ、その量は3〜5重量%であることが好ましい。   The 10% -palladium / carbon may be used in an amount of 2 to 10% by weight based on the perbenzylboglibose benzene sulfonate of formula 3, and the amount is preferably 3 to 5% by weight.

このように本発明の方法はペルベンジルボグリボースのベンゼンスルホン酸塩を用いることによってパラジウム/炭素触媒を100重量%の量で用いていた従来の方法に比べて、2〜10重量%の非常に少ない量で用いても脱保護反応を効果的に行うことができるので、パラジウム系触媒が非常に高価である点を考慮する時、低コストでボグリボースを製造することができる経済的な製造方法である。   Thus, the method of the present invention is very low, 2-10% by weight, compared to the conventional method using a palladium / carbon catalyst in an amount of 100% by weight by using benzyl sulfonate of perbenzylboglibose. Even if it is used in an amount, the deprotection reaction can be carried out effectively, so when considering that the palladium catalyst is very expensive, it is an economical production method that can produce voglibose at a low cost. .

本発明では、脱保護反応を常圧でより短時間内に反応を進行させるためにベンゼンスルホン酸を補助的に添加して反応させることが好ましい。
上記において、ベンゼンスルホン酸は式3のペルベンジルボグリボースベンゼンスルホン酸塩に対して0.1〜3.0当量の量で用いることができ、0.3〜1.5当量の量で用いることが好ましい。
In the present invention, it is preferable to carry out the reaction by supplementing benzenesulfonic acid so that the deprotection reaction proceeds at a normal pressure within a shorter time.
In the above, benzenesulfonic acid can be used in an amount of 0.1-3.0 equivalents relative to the perbenzylboglibose benzenesulfonate of formula 3, and can be used in an amount of 0.3-1.5 equivalents. preferable.

反応溶媒としては脱保護反応の際に一般的に用いるメタノール、エタノール、イソプロパノール、エチレングリコール、1,2−プロパンジオールなどのようなアルコール類やテトラヒドロフランなどを用いることができ、特にメタノール−テトラヒドロフラン混合溶媒を用いることが好ましい。   As the reaction solvent, alcohols such as methanol, ethanol, isopropanol, ethylene glycol, 1,2-propanediol or tetrahydrofuran generally used in the deprotection reaction can be used, and in particular, methanol-tetrahydrofuran mixed solvent Is preferably used.

前記脱保護反応は10〜50℃、好ましくは20〜30℃の温度で2〜24時間行われ、反応終了後、脱保護された式2のボグリボースベンゼンスルホン酸塩は前記反応溶媒中で固体として析出せずに溶解された状態にあるが、反応液をろ過してパラジウム系の触媒を除去してからろ液を蒸留して濃縮した後、直ちに次の反応に用いた。

段階4)遊離化反応(中和反応)
本発明の最終目的物である式1のボグリボースを得るためには式2のボグリボースベンゼンスルホン酸塩を遊離塩基(free−base form)状態に変換しなければならないが、このために式2のボグリボースベンゼンスルホン酸塩を塩基と反応させる。
前記遊離化反応においては有機溶媒中で塩基として無機塩基よりは有機塩基を用いることが好ましい。ボグリボースは多数の水酸基を有し、水に容易に溶解するので、水中で中和すれば、純粋な状態でボグリボースを分離し難い反面、有機溶媒中で無機塩基を用いれば、中和されながら生成された塩とボグリボースとを分離し難い。しかし、ボグリボース酸付加塩を有機溶媒に溶解させて有機塩基を加えれば新たに形成された中和塩は有機溶媒中に溶解される反面、遊離された式1のボグリボースは有機溶媒に対する溶解度が低いため有機溶媒中で固体として析出されるので、ボグリボースのみを高純度で容易に分離することができる。
The deprotection reaction is carried out at a temperature of 10 to 50 ° C., preferably 20 to 30 ° C. for 2 to 24 hours. After the reaction, the deprotected voglibose benzenesulfonate of formula 2 is converted into a solid in the reaction solvent. Although dissolved without precipitation, the reaction solution was filtered to remove the palladium-based catalyst, and the filtrate was distilled and concentrated, and immediately used for the next reaction.

Step 4) liberation reaction (neutralization reaction)
In order to obtain the voglibose of formula 1 which is the final object of the present invention, the voglibose benzenesulfonate of formula 2 must be converted to the free-base form, which is why voglibose of formula 2 Benzene sulfonate is reacted with a base.
In the liberation reaction, it is preferable to use an organic base rather than an inorganic base as a base in an organic solvent. Voglibose has many hydroxyl groups and dissolves easily in water, so if neutralized in water, it is difficult to separate voglibose in a pure state. It is difficult to separate the salt and voglibose. However, if the voglibose acid addition salt is dissolved in an organic solvent and an organic base is added, the newly formed neutralized salt is dissolved in the organic solvent, whereas the liberated voglibose of Formula 1 has low solubility in the organic solvent. Therefore, since it precipitates as a solid in an organic solvent, only voglibose can be easily separated with high purity.

このような有機塩基としては環状アミン、第1級アミン、第2級アミン又は第3級アミンを用いることができ、例えばシクロヘキシルアミン、ジシクロヘキシルアミン、ジイソプロピルアミン、ジイソプロピルエチルアミン、1,5−ジアザビシクロ[4,3,0]ノン−5−エン(DBN)、1,4−ジアザビシクロ[2,2,2]オクタン(Dabco)、1,8−ジアザビシクロ[5,4,0]ウンデス−7−エン(DBU)などを用いることができ、特に、ジイソプロピルエチルアミンが好ましい。
有機塩基は式2のボグリボースベンゼンスルホン酸塩に対して1〜3当量、好ましくは1.5〜2当量の量で用いる。
As such an organic base, cyclic amine, primary amine, secondary amine or tertiary amine can be used. For example, cyclohexylamine, dicyclohexylamine, diisopropylamine, diisopropylethylamine, 1,5-diazabicyclo [4] , 3,0] non-5-ene (DBN), 1,4-diazabicyclo [2,2,2] octane (Dabco), 1,8-diazabicyclo [5,4,0] undes-7-ene (DBU) Etc.), and diisopropylethylamine is particularly preferable.
The organic base is used in an amount of 1 to 3 equivalents, preferably 1.5 to 2 equivalents, relative to voglibose benzenesulfonate of formula 2.

反応溶媒としてはアセトニトリル、ジオキサン、テトラヒドロフラン、メタノール、エタノール、イソプロパノールなどを用いることができ、特に、エタノールが好ましい。
これによって得られた式1のボグリボースはHPLCで分析すれば面積%が99.9%以上の非常に高い純度を有する。特に、式3のペルベンジルボグリボースベンゼンスルホン酸塩を脱保護及び中和反応させれば総80〜85%の高い収率で式1のボグリボースを得ることができる。従って、本発明による方法は陽イオン樹脂を多量用いて分離・精製した従来の方法と比べて見る際、ボグリボースを産業的規模で量産することができ、また高純度かつ高収率で得ることができる非常に有用な方法であることが分かる。
As the reaction solvent, acetonitrile, dioxane, tetrahydrofuran, methanol, ethanol, isopropanol and the like can be used, and ethanol is particularly preferable.
The voglibose of formula 1 obtained thereby has a very high purity with an area% of 99.9% or more as analyzed by HPLC. In particular, if the perbenzyl voglibose benzene sulfonate of formula 3 is deprotected and neutralized, voglibose of formula 1 can be obtained in a high yield of 80 to 85% in total. Therefore, the method according to the present invention enables mass production of voglibose on an industrial scale as compared with the conventional method separated and purified using a large amount of cation resin, and can be obtained with high purity and high yield. It turns out that this is a very useful method.

このように、式5のイノソース誘導体を出発物質として式3のペルベンジルボグリボースベンゼンスルホン酸塩を製造し、そのベンジル基を除去して式2のボグリボースベンゼンスルホン酸塩を製造した後、これを塩基と反応させて式1のボグリボースを製造する本発明の方法によれば、ペルベンジルボグリボースのベンゼンスルホン酸塩を用いることによって、既存の方法に比べて遥かに少量のパラジウム触媒を用いてもテトラベンジル基を常圧の水素下で容易かつ完璧に除去することができ、特にボグリボースのベンゼンスルホン酸塩を塩基と反応させることによってより簡単な工程で高純度のボグリボースを高収率で製造することができる。   Thus, perbenzyl voglibose benzene sulfonate of formula 3 is prepared using the inosose derivative of formula 5 as a starting material, and the benzyl group is removed to prepare voglibose benzene sulfonate of formula 2; According to the process of the present invention for producing voglibose of formula 1 by reaction with benzyl sulfonate, perbenzyl voglibose can be used with tetrabenzyl with a much smaller amount of palladium catalyst than existing processes. The group can be removed easily and completely under normal pressure hydrogen, especially by reacting voglibose benzenesulfonate with base to produce high purity voglibose in high yield in a simpler process. it can.

以下、本発明を実施例により詳細に説明する。但し、下記実施例は本発明を例示するものであり、本発明の内容は下記実施例に限定されない。   Hereinafter, the present invention will be described in detail with reference to examples. However, the following examples illustrate the present invention, and the content of the present invention is not limited to the following examples.

製造例1
2,3,4,6−テトラ−O−ベンジル−D−グルコノ−1,5−ラクトンの製造

Figure 2007277238
2,3,4,6−テトラ−O−ベンジル−D−グルコノ−1,5−ラクトール20gをジメチルスルホキシド150mlと無水酢酸35mlとの混合液に加え、室温で7時間反応させた。反応完了後、水100mlを加えて、1時間攪拌した後、ジエチルエーテル80mlを加えて抽出し、有機層を分離した。水層を酢酸エチル60mlで抽出し、前記の分離した有機層と混合した。この有機層に飽和重炭酸ナトリウム溶液50mlを加えて1時間室温で攪拌した後、NaCl飽和溶液でさらに洗浄してから有機層を分離し、無水硫酸マグネシウムで乾燥させた。ろ過して得たろ液を減圧下で蒸留して淡黄色オイル状の標題化合物20.0g(収率:100%)を得た。
=0.6(n−ヘキサン/酢酸エチル、2:1、v/v)
1H-NMR (300MHz, CDCl3 δ): 3.69〜3.73 (m, 2H), 4.13 (d, J=6.5Hz, 1H), 4.47〜4.74 (m, 8H), 5.0 (d, J=11.4Hz, 1H), 7.19〜7.38 (m, 20H) Production Example 1
Production of 2,3,4,6-tetra-O-benzyl-D-glucono-1,5-lactone
Figure 2007277238
20 g of 2,3,4,6-tetra-O-benzyl-D-glucono-1,5-lactol was added to a mixed solution of 150 ml of dimethyl sulfoxide and 35 ml of acetic anhydride and reacted at room temperature for 7 hours. After completion of the reaction, 100 ml of water was added and stirred for 1 hour, followed by extraction with 80 ml of diethyl ether, and the organic layer was separated. The aqueous layer was extracted with 60 ml of ethyl acetate and mixed with the separated organic layer. To this organic layer, 50 ml of saturated sodium bicarbonate solution was added and stirred for 1 hour at room temperature. After further washing with a saturated NaCl solution, the organic layer was separated and dried over anhydrous magnesium sulfate. The filtrate obtained by filtration was distilled under reduced pressure to obtain 20.0 g (yield: 100%) of the title compound as a pale yellow oil.
R f = 0.6 (n-hexane / ethyl acetate, 2: 1, v / v)
1 H-NMR (300MHz, CDCl 3 δ): 3.69 ~ 3.73 (m, 2H), 4.13 (d, J = 6.5Hz, 1H), 4.47 ~ 4.74 (m, 8H), 5.0 (d, J = 11.4Hz , 1H), 7.19-7.38 (m, 20H)

製造例2
2,3,4,6−テトラ−O−ベンジル−5,5−ジメチルスピロ[1,5]−アンヒドロ−D−グルシトール−1,2−[1,3]ジオキサンの製造

Figure 2007277238
前記製造例1で製造された2,3,4,6−テトラ−O−ベンジル−D−グルコノ−1,5−ラクトン20gをトルエン100mlに加えてネオペンチルグリコール5.6gを徐々に滴加した後、1時間室温で攪拌した。メトキシトリメチルシラン25.5mlを徐々に滴加し、トリメチルシリルトリフルオロメタンスルホネート0.7mlを加えた後、40〜45℃を維持しながら5時間攪拌した。反応が終わった後、氷水を加えて冷却させ、トリエチルアミンを滴加してpHを7に調整した。トルエンを減圧下で除去し、残渣を塩化メチレン100mlに溶解して水120mlで洗浄した後、有機層を無水硫酸マグネシウムで乾燥させた。ろ過して得たろ液を減圧下で蒸留し、析出した固体にメタノール150ml−水50mlを洗浄し、再結晶させた後、ろ過してから熱風乾燥して白色固体状の標題化合物19.1g(収率:83%)を得た。
=0.5(n−ヘキサン/酢酸エチル、3:1、v/v)
1H-NMR (300MHz, CDCl3 δ): 0.76 (s, 3H), 3.38 (dd, J=2.4, 10.2Hz, 1H), 3.40 (dd, J=2.4, 10.2Hz, 1H), 3.53〜3.76 (m, 6H), 3.87 (t, J=9.2Hz, 1H), 4.06 (d, J=10.7Hz, 1H), 4.51 (d, J=11.0Hz, 1H), 4.55 (d, J=12.2Hz, 1H), 4.63 (d, J=12.2Hz, 1H), 4.74 (d, J=11.0Hz, 1H), 4.76 (d, J=11.3Hz, 1H), 4.83 (d, J=11.0Hz, 1H), 4.95 (d, J=11.0Hz, 1H), 5.02 (d, J=11.3Hz, 1H), 7.14〜7.40 (m, 20H) Production Example 2
Preparation of 2,3,4,6-tetra-O-benzyl-5,5-dimethylspiro [1,5] -anhydro-D-glucitol-1,2- [1,3] dioxane
Figure 2007277238
20 g of 2,3,4,6-tetra-O-benzyl-D-glucono-1,5-lactone produced in Production Example 1 was added to 100 ml of toluene, and 5.6 g of neopentyl glycol was gradually added dropwise. Thereafter, the mixture was stirred at room temperature for 1 hour. 25.5 ml of methoxytrimethylsilane was gradually added dropwise, 0.7 ml of trimethylsilyl trifluoromethanesulfonate was added, and the mixture was stirred for 5 hours while maintaining 40 to 45 ° C. After the reaction was completed, ice water was added and cooled, and triethylamine was added dropwise to adjust the pH to 7. Toluene was removed under reduced pressure, the residue was dissolved in 100 ml of methylene chloride and washed with 120 ml of water, and then the organic layer was dried over anhydrous magnesium sulfate. The filtrate obtained by filtration was distilled under reduced pressure, and the precipitated solid was washed with 150 ml of methanol-50 ml of water, recrystallized, filtered, and then dried with hot air to give 19.1 g of the title compound as a white solid ( Yield: 83%).
R f = 0.5 (n-hexane / ethyl acetate, 3: 1, v / v)
1 H-NMR (300MHz, CDCl 3 δ): 0.76 (s, 3H), 3.38 (dd, J = 2.4, 10.2Hz, 1H), 3.40 (dd, J = 2.4, 10.2Hz, 1H), 3.53 to 3.76 (m, 6H), 3.87 (t, J = 9.2Hz, 1H), 4.06 (d, J = 10.7Hz, 1H), 4.51 (d, J = 11.0Hz, 1H), 4.55 (d, J = 12.2Hz , 1H), 4.63 (d, J = 12.2Hz, 1H), 4.74 (d, J = 11.0Hz, 1H), 4.76 (d, J = 11.3Hz, 1H), 4.83 (d, J = 11.0Hz, 1H ), 4.95 (d, J = 11.0Hz, 1H), 5.02 (d, J = 11.3Hz, 1H), 7.14-7.40 (m, 20H)

製造例3Production Example 3
イノソース誘導体(式5)の製造Production of inosose derivative (formula 5)

Figure 2007277238
Figure 2007277238

〈段階1〉メチル付加反応
2Mトリメチルアルミニウムのトルエン溶液417mlを反応容器に入れて60℃に加熱した後、前記製造例2で得た2,3,4,6−テトラ−O−ベンジル−5,5−ジメチルスピロ[1,5]−アンヒドロ−D−グルシトール−1,2−[1,3]ジオキサン100gをトルエン200mlに溶解させた溶液を徐々に滴加し、反応混合液を90℃内外に加熱して2時間攪拌した。反応終結後、トルエン600mlを加えて温度を5〜10℃に下げた後、水600mlを徐々に滴加してから1時間攪拌した。遊離した有機層を分離し、水層は300mlのジエチルエーテルで2回抽出した後、前記有機層と混合した。この有機層を無水硫酸マグネシウムで乾燥させた後、ろ過して得たろ液を減圧下で蒸留して淡黄色オイル状の残渣を得た。
<Step 1> Methyl addition reaction 417 ml of 2M trimethylaluminum in toluene was placed in a reaction vessel and heated to 60 ° C., and then 2,3,4,6-tetra-O-benzyl-5, obtained in Production Example 2 was used. A solution prepared by dissolving 100 g of 5-dimethylspiro [1,5] -anhydro-D-glucitol-1,2- [1,3] dioxane in 200 ml of toluene was gradually added dropwise, and the reaction mixture was brought into and out of 90 ° C. Heated and stirred for 2 hours. After completion of the reaction, 600 ml of toluene was added to lower the temperature to 5 to 10 ° C., and then 600 ml of water was gradually added dropwise, followed by stirring for 1 hour. The free organic layer was separated, and the aqueous layer was extracted twice with 300 ml of diethyl ether and then mixed with the organic layer. The organic layer was dried over anhydrous magnesium sulfate and then filtered, and the filtrate obtained was distilled under reduced pressure to obtain a pale yellow oily residue.

〈段階2〉酸化反応
前記段階1のメチル付加反応で得た淡黄色のオイル状の残渣にジケチルスルホキシド1.2L及び無水酢酸300mlを加えて室温で一晩中攪拌した。氷浴中で水1Lを加え、ジエチルエーテル2Lを加えた後、室温で2時間攪拌して有機層を分離した。分離された有機層を飽和重炭酸ナトリウム溶液1Lで3回、飽和NaCl溶液1Lで1回洗浄し、無水硫酸マグネシウムで乾燥させてろ過した後、ろ液を減圧下で蒸留して黄色のオイル状の残渣を得た。
<Step 2> Oxidation reaction 1.2 L of diketyl sulfoxide and 300 ml of acetic anhydride were added to the pale yellow oily residue obtained in the methyl addition reaction in Step 1, and the mixture was stirred overnight at room temperature. 1 L of water was added in an ice bath, 2 L of diethyl ether was added, and the mixture was stirred at room temperature for 2 hours to separate the organic layer. The separated organic layer was washed three times with 1 L of saturated sodium bicarbonate solution and once with 1 L of saturated NaCl solution, dried over anhydrous magnesium sulfate and filtered, and then the filtrate was distilled under reduced pressure to give a yellow oil. Of residue was obtained.

〈段階3〉環化(cyclization)反応
前記段階2の酸化反応で得た残渣にテトラヒドロフラン1L及び水150mlを加えて攪拌した後、塩化亜鉛22.4gを加えて3時間還流させた。還流後、温度を室温に下げ、水1Lを徐々に滴加した。ジエチルエーテル1Lを加えて抽出して分離した有機層を飽和重炭酸ナトリウム溶液1Lで2回、NaCl飽和溶液1Lで1回洗浄した後、無水硫酸マグネシウムで乾燥させてろ過した後、減圧下で溶媒を除去した。残渣をクロロホルム150mlに溶解し、n−ヘキサン200mlを徐々に加えながら結晶化させた。生成した固体をろ過し、熱風乾燥して微白色固体状の標題化合物44.2g(収率:50%)を得た。
=0.35(n−ヘキサン/酢酸エチル、2:1、v/v)
1H-NMR (300MHz, CDCl3 δ): 2.45 (dd, J=3.0, 15.0Hz, 2H), 2.85 (s, 1H), 3.17 (d, J=9.0Hz, 1H), 3.55 (d, J=9.0Hz, 1H), 4.06 (d, J=9.0Hz, 2H), 4.15 (d, J=9.0Hz, 1H), 4.44 (d, J=10.0Hz, 2H), 4.55 (d, J=12.0Hz, 1H), 4.77 (d, J=12.0Hz, 2H), 4.95〜5.03 (m, 3H), 7.08〜7.42 (m, 20H)
実施例1
<Step 3> Cyclization reaction 1 L of tetrahydrofuran and 150 ml of water were added to the residue obtained in the oxidation reaction of Step 2 above and stirred, and then 22.4 g of zinc chloride was added and refluxed for 3 hours. After refluxing, the temperature was lowered to room temperature and 1 L of water was slowly added dropwise. The organic layer separated by extraction with 1 L of diethyl ether was washed twice with 1 L of saturated sodium bicarbonate solution and once with 1 L of saturated NaCl solution, then dried over anhydrous magnesium sulfate, filtered, and then the solvent was removed under reduced pressure. Was removed. The residue was dissolved in 150 ml of chloroform and crystallized while gradually adding 200 ml of n-hexane. The produced solid was filtered and dried with hot air to obtain 44.2 g (yield: 50%) of the title compound as a fine white solid.
Rf = 0.35 (n-hexane / ethyl acetate, 2: 1, v / v)
1 H-NMR (300MHz, CDCl 3 δ): 2.45 (dd, J = 3.0, 15.0Hz, 2H), 2.85 (s, 1H), 3.17 (d, J = 9.0Hz, 1H), 3.55 (d, J = 9.0Hz, 1H), 4.06 (d, J = 9.0Hz, 2H), 4.15 (d, J = 9.0Hz, 1H), 4.44 (d, J = 10.0Hz, 2H), 4.55 (d, J = 12.0 Hz, 1H), 4.77 (d, J = 12.0Hz, 2H), 4.95 to 5.03 (m, 3H), 7.08 to 7.42 (m, 20H)
Example 1

〈段階1〉<Stage 1>
(1S)−(1(OH),2,4,5/1,3)−2,3,4−トリ−O−ベンジル−5−[[2−ヒドロキシ−1−(ヒドロキシメチル)エチル]アミノ]−1−C−[(ベンジルオキシ)−メチル]−1,2,3,4−シクロヘキサンテトロールベンゼンスルホン酸塩(ペルベンジルボグリボースベンゼンスルホン酸塩、式3)の製造(1S)-(1 (OH), 2,4,5 / 1,3) -2,3,4-tri-O-benzyl-5-[[2-hydroxy-1- (hydroxymethyl) ethyl] amino Preparation of 1-C-[(benzyloxy) -methyl] -1,2,3,4-cyclohexanetetrol benzene sulfonate (perbenzyl voglibose benzene sulfonate, formula 3)

Figure 2007277238
Figure 2007277238

(1−1)
ペルベンジルボグルボース(式4)の製造
前記製造例3で得たイノソース誘導体20gをメタノール−トルエン(1:1 v/v)混合液400mlに加え、セリノール7.5gを徐々に滴加した。前記混合物を還流させながら1時間攪拌し、縮合反応中に生成した反応水をディーン−スタークトラップ(Dean−stark trap)を備えた装置を用いて除去しながら反応させた。反応後、減圧下でメタノール−トルエン混合液を除去し、残渣に酢酸エチル400ml及び水200mlを加えて有機層を分離した。分離された有機層を無水硫酸マグネシウムで乾燥させてろ過した後、ろ液を減圧下で蒸留して淡黄色のオイル状の残渣を得た。前記残渣にメタノール1Lを加え、室温で水素化ホウ素ナトリウム13.6gを1時間間隔で1/3分量ずつ分けて加えながら一晩中攪拌した。反応が終わった後、メタノールを減圧下で除去して得た残渣に酢酸エチル400ml及び水200mlを加えて有機層を分離した。分離した有機層を無水硫酸マグネシウムで乾燥させてろ過した後、ろ液を減圧下で蒸留して淡黄色オイル状の残渣を得た。
(1-1)
Production of perbenzylbogrubose (Formula 4) 20 g of the inosource derivative obtained in Production Example 3 was added to 400 ml of a methanol-toluene (1: 1 v / v) mixture, and 7.5 g of serinol was gradually added dropwise. The mixture was stirred for 1 hour under reflux, and reacted while removing the reaction water generated during the condensation reaction using an apparatus equipped with a Dean-stark trap. After the reaction, the methanol-toluene mixture was removed under reduced pressure, and 400 ml of ethyl acetate and 200 ml of water were added to the residue to separate the organic layer. The separated organic layer was dried over anhydrous magnesium sulfate and filtered, and then the filtrate was distilled under reduced pressure to obtain a pale yellow oily residue. 1 L of methanol was added to the residue, and the mixture was stirred overnight while adding 13.6 g of sodium borohydride in 1 / 3-minute portions at 1 hour intervals. After the reaction was completed, 400 ml of ethyl acetate and 200 ml of water were added to the residue obtained by removing methanol under reduced pressure, and the organic layer was separated. The separated organic layer was dried over anhydrous magnesium sulfate and filtered, and then the filtrate was distilled under reduced pressure to obtain a pale yellow oily residue.

(1−2)
ペルベンジルボグリボースベンゼンスルホン酸塩(式3)の製造
(1−1)で得た残渣にアセトニトリル−イソプロピルエーテル(1:1 v/v)200mlを加え、ベンゼンスルホン酸6.0gを加えた後、室温で2時間攪拌し、白色の懸濁液にイソプロピルエーテル100mlを徐々に加えて室温でさらに2時間攪拌した後、析出した結晶をろ過した。ろ過した結晶をアセトニトリル−イソプロピルエーテル(1:2、v/v)80mlで洗浄し、熱風乾燥して白色固体状の標題化合物23.6g(収率:83%)を得た。
=0.2(塩化メチレン/メタノール、20:1、v/v)
1H-NMR (300MHz, CDCl3 δ): 1.75 (d, J=15.0Hz, 1H), 2.22 (d, J=15.5Hz, 1H), 3.45〜3.51 (m, 3H), 3.54 (brd s, 1H), 3.85〜4.16 (m, 7H), 4.27 (d, J=9.0Hz, 1H), 4.41〜4.54 (m, 3H), 4.63 (d, J=10.5Hz, 1H), 4.75 (d, J=10.5Hz,, 2H), 7.07〜7.30 (m, 23H), 7.79 (d, J=10Hz, 2H)
(1-2)
Production of perbenzyl voglibose benzenesulfonate (formula 3)
To the residue obtained in (1-1), 200 ml of acetonitrile-isopropyl ether (1: 1 v / v) was added, 6.0 g of benzenesulfonic acid was added, and the mixture was stirred at room temperature for 2 hours. After gradually adding 100 ml of isopropyl ether and stirring at room temperature for 2 hours, the precipitated crystals were filtered. The filtered crystals were washed with 80 ml of acetonitrile-isopropyl ether (1: 2, v / v) and dried with hot air to obtain 23.6 g of the title compound as a white solid (yield: 83%).
R f = 0.2 (methylene chloride / methanol, 20: 1, v / v)
1 H-NMR (300MHz, CDCl 3 δ): 1.75 (d, J = 15.0Hz, 1H), 2.22 (d, J = 15.5Hz, 1H), 3.45 ~ 3.51 (m, 3H), 3.54 (brd s, 1H), 3.85 to 4.16 (m, 7H), 4.27 (d, J = 9.0Hz, 1H), 4.41 to 4.54 (m, 3H), 4.63 (d, J = 10.5Hz, 1H), 4.75 (d, J = 10.5Hz, 2H), 7.07 ~ 7.30 (m, 23H), 7.79 (d, J = 10Hz, 2H)

〈段階2〉
(1S)−(1(OH),2,4,5/1,3)−5−[[2−ヒドロキシ−1−(ヒドロキシメチル)エチル]アミノ]−1−C−[ヒドロキシメチル]−1,2,3,4−シクロヘキサンテトロール(ボグリボース、式1)の製造

Figure 2007277238
前記実施例1で得たペルベンジルボグリボースベンゼンスルホン酸塩10gをテトラヒドロフラン−メタノール(1:1、v/v)100mlに溶解し、10%−パラジウム/炭素(degussa)0.3g及びベンゼンスルホン酸2.0gを加えた後、常圧の水素気流中で室温を維持しながら12時間攪拌した後、反応混合液をセライトを通してろ過した。得られたろ液をテトラヒドロフラン−メタノール(1:1、v/v)20mlで洗浄し、ジイソプロピルアミン9.1mlを加えた後、室温で2時間攪拌した。析出した結晶をメタノール30mlで洗浄し、乾燥して白色の標題化合物2.86g(収率:84%)を得た。
=0.3(イソプロパノール/酢酸/水、5:1:1、v/v)
1H-NMR (300MHz, D2O δ): 1.45 (dd, J=2.7, 15.0Hz, 1H), 2.01 (dd, J=3.1, 15.0Hz, 1H), 2.81 (m, 1H), 3.34 (dt, J=2.7, 3.1, 4.0Hz, 1H), 3.37 (d, J=9.0Hz, 1H), 3.45 (s, 1/2H), 3.54 (s, 1/2H), 3.58〜3.65 (m, 5H), 3.76 (t, J=9.2, 9.6Hz, 1H) <Stage 2>
(1S)-(1 (OH), 2,4,5 / 1,3) -5-[[2-hydroxy-1- (hydroxymethyl) ethyl] amino] -1-C- [hydroxymethyl] -1 , 2,3,4-Cyclohexanetetrol (Voglibose, Formula 1)
Figure 2007277238
10 g of perbenzylboglibose benzenesulfonate obtained in Example 1 was dissolved in 100 ml of tetrahydrofuran-methanol (1: 1, v / v), 0.3 g of 10% palladium / carbon (degussa) and benzenesulfonic acid 2 After adding 0.0 g, the mixture was stirred for 12 hours while maintaining room temperature in a hydrogen stream under normal pressure, and then the reaction mixture was filtered through celite. The obtained filtrate was washed with 20 ml of tetrahydrofuran-methanol (1: 1, v / v), 9.1 ml of diisopropylamine was added, and the mixture was stirred at room temperature for 2 hours. The precipitated crystals were washed with 30 ml of methanol and dried to obtain 2.86 g of white title compound (yield: 84%).
R f = 0.3 (isopropanol / acetic acid / water, 5: 1: 1, v / v)
1 H-NMR (300MHz, D 2 O δ): 1.45 (dd, J = 2.7, 15.0Hz, 1H), 2.01 (dd, J = 3.1, 15.0Hz, 1H), 2.81 (m, 1H), 3.34 ( dt, J = 2.7, 3.1, 4.0Hz, 1H), 3.37 (d, J = 9.0Hz, 1H), 3.45 (s, 1 / 2H), 3.54 (s, 1 / 2H), 3.58 to 3.65 (m, 5H), 3.76 (t, J = 9.2, 9.6Hz, 1H)

前記のように製造されたボグリボースの純度をHPLC(カラム:Asahipak NH2P-50 4E(Shodex社製)、溶出液:アセトニトリル/pH6.5リン酸ナトリウムバッファーの混合液(63:37))で分析し、含量は電位差法を用いて測定したが、ボグリボース0.4gを精密に測量して氷酢酸80mlに溶かし、0.1N過塩素酸で滴定した後、0.1N−過塩素酸1mlに対応するボグリボースの量(mg)を計算する手順によって、次のように含量を決定した。
HPLC純度:99.97%(面積%)
含量:99.4%
融点(m.p):165〜166℃
The purity of voglibose produced as described above was analyzed by HPLC (column: Asahipak NH2P-50 4E (manufactured by Shodex), eluent: acetonitrile / pH 6.5 sodium phosphate buffer mixture (63:37)). The content was measured using a potentiometric method, but 0.4 g of voglibose was precisely measured, dissolved in 80 ml of glacial acetic acid, titrated with 0.1N perchloric acid, and then corresponding to 1 ml of 0.1N-perchloric acid. The content was determined by the procedure for calculating the amount (mg) of voglibose as follows.
HPLC purity: 99.97% (area%)
Content: 99.4%
Melting point (mp): 165-166 ° C

実施例2
前記実施例1の段階2でテトラヒドロフラン−メタノールの代りにエタノールを用いたことを除いては実施例1と同一な方法を行って、純度99.94%のボグリボースを収率82%で得た。
Example 2
The same procedure as in Example 1 was performed except that ethanol was used in place of tetrahydrofuran-methanol in Step 2 of Example 1 to obtain voglibose having a purity of 99.94% in a yield of 82%.

本発明のボグリボースの製造方法はペルベンジルボグリボースのベンゼンスルホン酸塩を用いることにより、ペルベンジルボグリボース塩酸塩を用いたボグリボース製造方法(例:国際公開公報WO2005/030698号、収率:54%)に比べてボグリボースを格段に優れた純度及び収率で製造することができる。   The method for producing voglibose according to the present invention uses a benzenesulfonate salt of perbenzylboglibose, thereby producing a voglibose production method using perbenzylboglibose hydrochloride (eg, International Publication No. WO2005 / 030698, yield: 54%). Compared to this, voglibose can be produced with remarkably superior purity and yield.

Claims (9)

1)式5のイノソース誘導体と式6の2−アミノ−1,3−プロパンジオールとの還元的アミノ化(reductive amination)反応を通じて式4のペルベンジルボグリボースを製造する段階;
2)前記ペルベンジルボグリボースにベンゼンスルホン酸を加えて式3のペルベンジルボグリボースベンゼンスルホン酸塩を製造する段階;
3)前記ペルベンジルボグリボースベンゼンスルホン酸塩のベンジル基を脱保護させて式2のボグリボースベンゼンスルホン酸塩を製造する段階;及び
4)前記ボグリボースベンゼンスルホン酸塩を塩基で処理してボグリボースを遊離する段階を含む、式1のボグリボースの製造方法:
Figure 2007277238
Figure 2007277238
Figure 2007277238
Figure 2007277238
Figure 2007277238
Figure 2007277238
前記式中、Phはフェニル基であり、Bnはベンジル基である。
1) preparing a perbenzylvoglibose of formula 4 through a reductive amination reaction of an inosose derivative of formula 5 with 2-amino-1,3-propanediol of formula 6;
2) adding benzene sulfonic acid to the perbenzyl voglibose to produce perbenzyl voglibose benzene sulfonate of formula 3;
3) deprotecting the benzyl group of the perbenzyl voglibose benzene sulfonate to produce voglibose benzene sulfonate of formula 2; and 4) treating the voglibose benzene sulfonate with a base to liberate voglibose. A process for producing voglibose of formula 1 comprising steps:
Figure 2007277238
Figure 2007277238
Figure 2007277238
Figure 2007277238
Figure 2007277238
Figure 2007277238
In the above formula, Ph is a phenyl group, and Bn is a benzyl group.
前記段階2)で、ベンゼンスルホン酸を式5のイノソース誘導体に対して1〜2当量の量で用いることを特徴とする請求項1に記載の製造方法。   The method according to claim 1, wherein in step 2), benzenesulfonic acid is used in an amount of 1 to 2 equivalents with respect to the inosose derivative of formula 5. 前記段階3)で、脱保護反応が常圧の水素存在下でパラジウム触媒及びベンゼンスルホン酸を用いて行われることを特徴とする請求項1に記載の製造方法。   The method according to claim 1, wherein in step 3), the deprotection reaction is performed using a palladium catalyst and benzenesulfonic acid in the presence of hydrogen at normal pressure. 前記パラジウム触媒がデグッサ(degussa)タイプの10%−パラジウム/炭素であることを特徴とする請求項3に記載の製造方法。   4. The process according to claim 3, wherein the palladium catalyst is a degussa type 10% palladium / carbon. 前記10%−パラジウム/炭素を式3のペルベンジルボグリボースベンゼンスルホン酸塩に対して3〜5重量%で用いることを特徴とする請求項4に記載の製造方法。   The method according to claim 4, wherein the 10% -palladium / carbon is used in an amount of 3 to 5% by weight based on the perbenzylboglibose benzenesulfonate of formula 3. 前記ベンゼンスルホン酸を式3のペルベンジルボグリボースベンゼンスルホン酸塩に対して0.1〜3.0当量の量で用いることを特徴とする請求項3に記載の製造方法。   The said benzenesulfonic acid is used in the quantity of 0.1-3.0 equivalent with respect to the perbenzyl voglibose benzenesulfonate of Formula 3, The manufacturing method of Claim 3 characterized by the above-mentioned. 前記ベンゼンスルホン酸を式3のペルベンジルボグリボースベンゼンスルホン酸塩に対して0.3〜1.5当量の量で用いることを特徴とする請求項6に記載の製造方法。   The production method according to claim 6, wherein the benzenesulfonic acid is used in an amount of 0.3 to 1.5 equivalents with respect to the perbenzylboglibose benzenesulfonate of formula 3. 前記段階4)で塩基がシクロヘキシルアミン、ジシクロヘキシルアミン、ジイソプロピルアミン、ジイソプロピルエチルアミン、1,5−ジアザビシクロ[4,3,0]ノン−5−エン(DBN)、1,4−ジアザビシクロ[2,2,2]オクタン(Dabco)及び1,8−ジアザビシクロ[5,4,0]ウンデス−7−エン(DBU)からなる群から選ばれることを特徴とする請求項1に記載の製造方法。   In step 4), the base is cyclohexylamine, dicyclohexylamine, diisopropylamine, diisopropylethylamine, 1,5-diazabicyclo [4,3,0] non-5-ene (DBN), 1,4-diazabicyclo [2,2, 2) The production method according to claim 1, wherein the production method is selected from the group consisting of octane (Dabco) and 1,8-diazabicyclo [5,4,0] undes-7-ene (DBU). 前記塩基がジイソプロピルエチルアミンであることを特徴とする請求項8に記載の製造方法。   The method according to claim 8, wherein the base is diisopropylethylamine.
JP2007097433A 2006-04-05 2007-04-03 Method for producing voglibose Pending JP2007277238A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060031066A KR100714197B1 (en) 2006-04-05 2006-04-05 Process for the preparation of voglibose

Publications (1)

Publication Number Publication Date
JP2007277238A true JP2007277238A (en) 2007-10-25

Family

ID=38269610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007097433A Pending JP2007277238A (en) 2006-04-05 2007-04-03 Method for producing voglibose

Country Status (2)

Country Link
JP (1) JP2007277238A (en)
KR (1) KR100714197B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105254514A (en) * 2015-11-12 2016-01-20 重庆植恩药业有限公司 Preparing method for tetra-benzyl-voglibose
CN110317142A (en) * 2019-07-18 2019-10-11 重庆植恩药业有限公司 A kind of preparation method of voglibose
CN111748000A (en) * 2019-03-29 2020-10-09 沈阳药科大学 3-deoxy-5-hydroxy-1-amino carbo-carbohydrate compounds and uses thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239551A (en) * 1984-07-13 1987-02-20 マクニ−ラブ・インコ−ポレ−テツド Acetylenic phenoxypropanol derivatives and pharmecological compositions for antihypertensive
JPS63501870A (en) * 1985-11-25 1988-07-28 レオ・ファ−マシュ−ティカル・プロダクツ・リミテッド・エイ/エス(レ−ベンス・ケミスケ・ファブリック・プロデュクチオンスアクチ−セルスカブ) New propane-1,3-diol derivatives and their uses
JP2000103766A (en) * 1998-09-29 2000-04-11 Fuji Photo Film Co Ltd Purification of 2,6-diisopropylaniline and production of triarylmethane or diarylmethane
WO2005030698A1 (en) * 2003-09-26 2005-04-07 Ranbaxy Laboratories Limited Process for the preparation of voglibose

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1006637C2 (en) * 1997-07-21 1999-01-25 Urban Solutions B V Foldable bicycle.
JP2003146957A (en) * 2001-11-09 2003-05-21 Sawai Pharmaceutical Co Ltd Method for producing valiolamine and intermediate thereof
WO2003080561A1 (en) 2002-03-27 2003-10-02 Sawai Pharmaceutical Co., Ltd. Process for preparation of voglibose

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239551A (en) * 1984-07-13 1987-02-20 マクニ−ラブ・インコ−ポレ−テツド Acetylenic phenoxypropanol derivatives and pharmecological compositions for antihypertensive
JPS63501870A (en) * 1985-11-25 1988-07-28 レオ・ファ−マシュ−ティカル・プロダクツ・リミテッド・エイ/エス(レ−ベンス・ケミスケ・ファブリック・プロデュクチオンスアクチ−セルスカブ) New propane-1,3-diol derivatives and their uses
JP2000103766A (en) * 1998-09-29 2000-04-11 Fuji Photo Film Co Ltd Purification of 2,6-diisopropylaniline and production of triarylmethane or diarylmethane
WO2005030698A1 (en) * 2003-09-26 2005-04-07 Ranbaxy Laboratories Limited Process for the preparation of voglibose

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105254514A (en) * 2015-11-12 2016-01-20 重庆植恩药业有限公司 Preparing method for tetra-benzyl-voglibose
CN105254514B (en) * 2015-11-12 2017-09-05 重庆植恩药业有限公司 A kind of preparation method of Tetrabenzyl voglibose
CN111748000A (en) * 2019-03-29 2020-10-09 沈阳药科大学 3-deoxy-5-hydroxy-1-amino carbo-carbohydrate compounds and uses thereof
CN111748000B (en) * 2019-03-29 2022-05-20 沈阳药科大学 3-deoxy-5-hydroxy-1-amino carbo-carbohydrate compounds and uses thereof
CN110317142A (en) * 2019-07-18 2019-10-11 重庆植恩药业有限公司 A kind of preparation method of voglibose
CN110317142B (en) * 2019-07-18 2023-03-28 植恩生物技术股份有限公司 Preparation method of voglibose

Also Published As

Publication number Publication date
KR100714197B1 (en) 2007-05-02

Similar Documents

Publication Publication Date Title
WO2009064476A1 (en) Preparation of sitagliptin intermediate
JP5546539B2 (en) Substances and methods for the stereoselective synthesis of variolamines
US9309215B2 (en) Chiral intermediate, process for producing the same and its use in the manufacture of tolterodine, fesoterodine, or the active metabolite thereof
US20100324139A1 (en) Process to pregabalin
EP1948594B1 (en) Process for the synthesis of intermediates of chloramphenicol or its analogues
JP2007277238A (en) Method for producing voglibose
CN101469008B (en) Capecitabine hydroxy derivatives, preparation thereof and use in capecitabine preparation
JP2011522027A (en) Novel and efficient synthesis method of amino acids
KR100743617B1 (en) Process for the preparation of chiral 3-hydroxy pyrrolidine compound and derivatives thereof having high optical purity
AU2009357276A1 (en) Improved process for the preparation of Montelukast and salts thereof
WO2007024113A1 (en) Process for the preparation of chiral 3-hydroxy pyrrolidine compound and derivatives thereof having high optical purity
KR100658906B1 (en) Process for the preparation of voglibose
KR20030050412A (en) A process for preparing rebamipide
EP2448916B1 (en) Production of trans-4-aminocyclopent-2-ene-1-carboxylic acid derivatives
JP2020070296A (en) Method for producing linagliptin
JP4829418B2 (en) Optically active halohydrin derivative and method of using the same
CN110105222A (en) A kind of novel processing step of 4- aminoidan class compound
JP2004231521A (en) Method for synthesizing 3-chloro-5-nitrotoluene
KR20080097708A (en) Process for preparation of sarpogrelate hcl salt
JP4187822B2 (en) Process for producing optically active 4-hydroxy-2-pyrrolidone
EP4219443A1 (en) Method for preparing intermediate for synthesis of sphingosine-1-phosphate receptor agonist
CN116375650A (en) Preparation method of agoraphobia intermediate
KR20090085445A (en) MANUFACTURING PROCESS OF 2-AMINOMALONAMIDE AS INTERMEDIATE FOR PRODUCING 4-CARBAMOYL-1-beta;-D-RIBOFURANOSYLIMIDAZOLIUM-5-OLATE
JP2008231022A (en) Method for producing optically active carbamoylpyrrolidine derivative
JPH06157494A (en) Alpha-acylaminoketone derivative, its production and its utilization

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118