[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007275829A - Purification treatment device - Google Patents

Purification treatment device Download PDF

Info

Publication number
JP2007275829A
JP2007275829A JP2006108142A JP2006108142A JP2007275829A JP 2007275829 A JP2007275829 A JP 2007275829A JP 2006108142 A JP2006108142 A JP 2006108142A JP 2006108142 A JP2006108142 A JP 2006108142A JP 2007275829 A JP2007275829 A JP 2007275829A
Authority
JP
Japan
Prior art keywords
water
gas supply
supply unit
air
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006108142A
Other languages
Japanese (ja)
Inventor
Norio Kasai
則夫 葛西
Hironori Hara
裕紀 原
Masafumi Inoue
雅史 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2006108142A priority Critical patent/JP2007275829A/en
Publication of JP2007275829A publication Critical patent/JP2007275829A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a purification treatment device capable of sufficiently supplying a sufficient amount of oxygen necessary for keeping microbial activity to the water to be treated in a tank. <P>SOLUTION: The purification treatment device is equipped with the carrier filling tank 21 arranged under the surface of the water of a target water area, a water passing device 24 for passing the water to be treated around the carrier filling tank 21 through the carrier filling tank 21 and a fine air bubble producing device 31 for mixing fine air bubbles with the water to be treated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は浄化処理装置に関し、特に水域の水面に設置する浮体式の浄化処理装置に係るものである。   The present invention relates to a purification treatment apparatus, and more particularly to a floating purification treatment apparatus installed on the surface of a water area.

従来、この種の浄化処理装置には、例えば図12に示すものがある。これは池内や湖内の水面に直接設置する浮体式浄化処理装置であり、フロート1によって上部にブロワ2を配置した木炭槽3を支持している。   Conventionally, this type of purification treatment apparatus is, for example, shown in FIG. This is a floating-type purification treatment apparatus installed directly on the surface of a pond or in a lake, and supports a charcoal tank 3 having a blower 2 disposed on the top by a float 1.

木炭槽3には木炭4を充填しており、木炭4に吸着するアオコ等の植物・動物プランクトンを食物連鎖によって酸化分解・無機化する。また、木炭4が微生物を担持する担体として機能し、BOD、COD、SS(浮遊物質)、T−N、T−Pを微生物による生物処理で分解して浄化する。   The charcoal tank 3 is filled with charcoal 4, and plants and zooplankton such as sea cucumber adsorbed on the charcoal 4 are oxidatively decomposed and mineralized by the food chain. Further, the charcoal 4 functions as a carrier for supporting microorganisms, and decomposes and purifies BOD, COD, SS (floating matter), TN, and TP by biological treatment with microorganisms.

木炭槽3は天面に玉石5を敷き詰めてあり、内部には湖水等の処理対象水を循環するための循環系6を設けている。循環系6は木炭槽3の底部に配置する集水管7と、木炭槽3の上部の側方に向けて開口する処理水排出管8と、集水管7と処理水排出管8の間の管路に介装する水中ポンプ9とからなり、木炭槽3を下向流で通過する間に浄化された処理水を集水管7で集水し、集水した処理水を水中ポンプ9により処理水排出管8を通して周囲の水域へ水平流で排出する。   The charcoal tank 3 has cobblestones 5 spread on the top surface, and a circulation system 6 for circulating water to be treated such as lake water is provided inside. The circulation system 6 includes a water collection pipe 7 disposed at the bottom of the charcoal tank 3, a treated water discharge pipe 8 that opens toward the upper side of the charcoal tank 3, and a pipe between the water collection pipe 7 and the treated water discharge pipe 8. It comprises an underwater pump 9 interposed in the road, and the treated water purified while passing through the charcoal tank 3 in a downward flow is collected by the water collecting pipe 7, and the collected treated water is treated by the underwater pump 9. It is discharged in a horizontal flow through the discharge pipe 8 to the surrounding water area.

木炭槽3の底部には逆洗管10を配置しており、定期的にブロワ2により供給する空気を逆洗管10から噴出させ、噴出する空気によって木炭4を逆洗し、木炭4に付着した処理済みの汚泥を除去し、浄化処理能力を保持又は回復させるとともに、木炭槽3の詰まりを防ぎ、通水性を回復させる。   A backwash pipe 10 is disposed at the bottom of the charcoal tank 3, and the air supplied by the blower 2 is periodically ejected from the backwash pipe 10, and the charcoal 4 is backwashed by the ejected air and adhered to the charcoal 4. The treated sludge is removed to maintain or restore the purification treatment capacity, prevent clogging of the charcoal tank 3, and restore water permeability.

木炭槽3の側部にはディフューザー11を設置しており、ブロワ2により供給する空気をディフューザー11から散気して木炭槽3の周囲の処理対象水をばっ気し、木炭槽3へ流入する処理対象水に溶存酸素を補給する。   A diffuser 11 is installed on the side of the charcoal tank 3, the air supplied by the blower 2 is diffused from the diffuser 11, the water to be treated around the charcoal tank 3 is aerated, and flows into the charcoal tank 3. Supply dissolved oxygen to the water to be treated.

また、特許文献1には、閉鎖水域の水質改善システムが記載されている。これは、第一槽の周囲に第二槽を配置し、第二槽の周囲に第三槽を配置したものであり、第一槽は閉鎖水域の貧酸素水、汚濁水を上昇流として揚水する揚水手段と微細気泡を発生させる微細気泡発生装置を備えている。第二槽は浮上物除去手段および微生物担体を有しており、浮上物除去手段は第一槽の上端開口から越流する被処理水を第一槽の上昇流の流速よりも遅い流速の下降流として流通させて浮上物を除去する。微生物担体は下降流の流通路に設けている。第三槽は第二槽から流出する被処理水を上昇流として閉鎖水域の上面に流出させるものであり、被処理水から沈降分離した沈降物を堆積させておく沈降物堆積手段および堆積した沈降物を除去する沈降物除去手段を備えている。   Patent Document 1 describes a water quality improvement system in a closed water area. This is a second tank placed around the first tank, and a third tank placed around the second tank. The first tank is pumped up using the oxygen-poor water and polluted water in the closed water area as an upward flow. And a fine bubble generator for generating fine bubbles. The second tank has floating substance removing means and a microorganism carrier, and the floating substance removing means lowers the flow rate of the treated water overflowing from the upper end opening of the first tank at a lower flow rate than the flow rate of the upward flow of the first tank. It is distributed as a stream to remove floating substances. The microbial carrier is provided in the downward flow passage. In the third tank, the treated water flowing out from the second tank flows out to the upper surface of the closed water area as an upward flow, and sediment depositing means for depositing the sediment settled and separated from the treated water and sediment Sediment removal means for removing objects is provided.

また、他の先行技術文献としては特許文献2および3がある。
特開2004−50085号公報 特開2005−842号公報 特開2005−7378号公報
Other prior art documents include Patent Documents 2 and 3.
Japanese Patent Laid-Open No. 2004-50085 JP-A-2005-842 JP 2005-7378 A

上記の構成においては、木炭槽3の側部に配置したディフューザー11から空気を散気して木炭槽3の周囲の処理対象水をばっ気することで、木炭槽3へ流入する処理対象水に溶存酸素を補給している。   In the above configuration, the processing target water flowing into the charcoal tank 3 is aerated by diffusing air from the diffuser 11 arranged on the side of the charcoal tank 3 and aeration of the processing target water around the charcoal tank 3. Replenishes dissolved oxygen.

しかし、散気した空気の気泡径が数百μmから数mmの範囲にあり、気泡径が大きいために処理対象水への溶解速度(溶解効率)が低く、結果として木炭槽3へ流入する処理対象水の溶存酸素濃度が低くなる。このため、水温が上昇する夏場や水域のBOD濃度が高くなる場合には、槽内の好気性微生物へ必要量の酸素を十分に供給することができず、好気性微生物の活性効果が不十分となる問題があった。   However, since the bubble diameter of the diffused air is in the range of several hundred μm to several mm and the bubble diameter is large, the dissolution rate (dissolution efficiency) in the water to be treated is low, and as a result, the treatment flows into the charcoal tank 3. The dissolved oxygen concentration of the target water is lowered. For this reason, when the water temperature rises in summer or when the BOD concentration in the water area becomes high, the required amount of oxygen cannot be sufficiently supplied to the aerobic microorganisms in the tank, and the activity effect of the aerobic microorganisms is insufficient. There was a problem.

本発明は上記の課題を解決するものであり、槽内の処理対象水へ微生物活性の維持に必要とする十分な酸素を供給することができる浄化処理装置を提供することを目的とする。   This invention solves said subject, and it aims at providing the purification processing apparatus which can supply sufficient oxygen required for maintenance of microbial activity to the process target water in a tank.

上記課題を解決するために、本発明の浄化処理装置は、対象水域の水面下に配置する担体充填槽と、担体充填槽の周囲の処理対象水を担体充填槽内に通水させる通水装置と、処理対象水に微細気泡を混気する微細気泡発生装置とを備えたことを特徴とする。   In order to solve the above-mentioned problems, a purification treatment apparatus of the present invention includes a carrier filling tank disposed below the surface of a target water area, and a water flow apparatus for passing the treatment target water around the carrier filling tank into the carrier filling tank. And a fine bubble generator for mixing fine bubbles in the water to be treated.

また、微細気泡発生装置を通水装置の管路に設けたことを特徴とする。
また、微細気泡の気泡径が0.1μm〜200μmであることを特徴とする。
また、微細気泡発生装置は、内周面が筒状をなすケーシングの内部に、外周面が筒状をなして空気供給源に連通する気体供給部を配置し、ケーシングの内周面と気体供給部の外周面の間に処理対象水が流れる混気流路を形成し、気体供給部が微小孔を有する多孔体もしくは多孔質体からなることを特徴とする。
Moreover, the fine bubble generator is provided in the pipe of the water supply device.
Moreover, the bubble diameter of a fine bubble is 0.1 micrometer-200 micrometers, It is characterized by the above-mentioned.
In addition, the fine bubble generating device includes a gas supply unit that has a cylindrical outer peripheral surface and communicates with an air supply source inside a casing having a cylindrical inner peripheral surface. An air-mixing flow path through which water to be treated flows is formed between the outer peripheral surfaces of the sections, and the gas supply section is made of a porous body or a porous body having micropores.

また、微細気泡発生装置は、空気供給源に連通するケーシングの内部に内周面が筒状をなす気体供給部を配置し、気体供給部の内部に処理対象水が流れる混気流路を形成し、気体供給部が微小孔を有する多孔体もしくは多孔質体からなることを特徴とする。   In addition, the fine bubble generating device includes a gas supply portion having an inner peripheral surface in a cylindrical shape inside a casing that communicates with an air supply source, and forms an air-mixing channel through which water to be treated flows inside the gas supply portion. The gas supply part is made of a porous body or a porous body having micropores.

また、通水装置は微細気泡発生装置より上流側の管路にポンプ手段を有することを特徴とする。   Further, the water flow device is characterized by having a pump means in a pipe line upstream of the fine bubble generating device.

以上のように本発明によれば、槽内の処理対象水へ微生物の維持に必要とする十分な酸素を供給することができる。また、微細気泡は通水装置の限られた空間をなす管路中に混気することが好ましく、処理対象水に対する空気の溶解速度が高くなり、結果として担体充填槽内を流れる処理対象水の溶存酸素濃度がさらに高くなり、槽内の処理対象水へ微生物活性の維持に必要とするより十分な酸素を供給することができる。微細気泡の気泡径は0.1μm〜200μmが好ましく、空気の溶解速度をさらに高めることができる。   As described above, according to the present invention, sufficient oxygen necessary for maintaining microorganisms can be supplied to the water to be treated in the tank. Further, it is preferable that the fine bubbles are mixed in the pipe line forming a limited space of the water flow device, and the dissolution rate of air with respect to the water to be treated becomes high, and as a result, the water to be treated flowing in the carrier filling tank. The dissolved oxygen concentration is further increased, and sufficient oxygen necessary for maintaining the microbial activity can be supplied to the water to be treated in the tank. The bubble diameter of the fine bubbles is preferably 0.1 μm to 200 μm, and the dissolution rate of air can be further increased.

微細気泡発生装置は、気体供給部の表面上に微小な半気泡状に噴出する気体を処理対象水が気体供給部の表面に沿って剪断することで微細気泡を発生させ、発生した微細気泡を処理対象水が連行する。このため、微生物活性のために必要十分な空気量を微細気泡として処理対象水中に容易に混気することができる。特に通水装置が微細気泡発生装置より上流側の管路にポンプ手段を有することで水流に十分な流速を与えることができ、水流の流速に依拠する微細気泡の気泡径を、所定の溶解速度を達成するのに必要な十分に小さいものにすることができる。   The fine bubble generator generates fine bubbles by causing the water to be processed to shear along the surface of the gas supply unit with the gas to be ejected in the form of fine semi-bubbles on the surface of the gas supply unit. Water to be treated is taken along. For this reason, air quantity necessary and sufficient for microbial activity can be easily mixed into the water to be treated as fine bubbles. In particular, the water flow device has a pump means in the pipeline upstream of the fine bubble generating device, so that a sufficient flow velocity can be given to the water flow, and the bubble diameter of the fine bubbles that depends on the flow velocity of the water flow is set to a predetermined dissolution rate. Can be made small enough to achieve this.

以下、本発明の実施の形態を図面に基づいて説明する。図1に示すように、浄化処理装置は池内や湖内の水面に直接設置する浮体式浄化処理装置であり、対象水域の水面下に配置する担体充填槽21と、担体充填槽21を支持する一対のフロート22と、担体充填槽21の上部に配置するブロア23と、担体充填槽21の周囲の処理対象水を担体充填槽21の内部に上向流で通水させる通水装置24を備えている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the purification treatment apparatus is a floating purification treatment apparatus installed directly on the surface of a pond or lake, and supports a carrier filling tank 21 disposed below the surface of the target water area and the carrier filling tank 21. A pair of floats 22, a blower 23 disposed at the top of the carrier filling tank 21, and a water flow device 24 that allows the water to be treated around the carrier filling tank 21 to flow into the inside of the carrier filling tank 21 in an upward flow. ing.

担体充填槽21は上部に玉石25が敷き詰めてあり、内部に担体26を充填している。担体26は微生物を担持するものであり、多孔体や繊維状物等からなる。本実施の形態では、担体26として木炭を用いる。   The carrier filling tank 21 is covered with cobblestones 25 at the top, and the carrier 26 is filled inside. The carrier 26 supports microorganisms and is made of a porous body or a fibrous material. In the present embodiment, charcoal is used as the carrier 26.

図2に示すように、通水装置24は担体充填槽21の底部に配置する散水管27と、担体充填槽21の上部の側方へ向けて開口する吸水管28と、散水管27と吸水管28を連通する連絡管29と、連絡管29の途中に介装するポンプ装置30とを備えており、ポンプ装置30より下流側の連絡管29の途中に微細気泡発生装置31を介装している。担体充填槽21の底部には逆洗管32を配置しており、逆洗管32にブロア23を接続している。   As shown in FIG. 2, the water flow device 24 includes a watering pipe 27 disposed at the bottom of the carrier filling tank 21, a water absorption pipe 28 opening toward the upper side of the carrier filling tank 21, a watering pipe 27 and water absorption. A communication pipe 29 communicating with the pipe 28 and a pump device 30 interposed in the middle of the communication pipe 29 are provided, and a fine bubble generating device 31 is interposed in the middle of the communication pipe 29 on the downstream side of the pump device 30. ing. A backwash tube 32 is disposed at the bottom of the carrier filling tank 21, and a blower 23 is connected to the backwash tube 32.

図3に示すように、微細気泡発生装置31は空気供給源のブロア23に連通するケーシング33の内部に内周面が円筒状をなす気体供給部34を配置しており、気体供給部34は内部に処理対象水が流れる混気流路35を有している。   As shown in FIG. 3, the fine bubble generating device 31 has a gas supply part 34 having an inner peripheral surface formed in a cylindrical shape inside a casing 33 communicating with the blower 23 of the air supply source. There is an air-mixing flow path 35 through which water to be treated flows.

混気流路35は上流側が連絡管29の上流側管路に連通し、下流側が連絡管29の下流側管路に連通しており、気体供給部34が微小孔を有する多孔体もしくは多孔質体からなる。本実施の形態では気体供給部34がセラミックス製の多孔壁体からなり、微細孔から噴出する微細気泡の気泡径が0.1μm〜200μm以下となる。   The air-mixing channel 35 has an upstream side communicating with the upstream side conduit of the connecting tube 29 and a downstream side communicating with the downstream side conduit of the connecting tube 29, and the gas supply unit 34 is a porous body or porous body having micropores. Consists of. In the present embodiment, the gas supply unit 34 is made of a ceramic porous wall, and the bubble diameter of the fine bubbles ejected from the fine holes is 0.1 μm to 200 μm or less.

上記の構成により、浮体式浄化処理装置を対象水域に設置してブロア23およびポンプ装置30を運転する。通水装置24は吸水管28を通して担体充填槽21の周囲の処理対象水を吸水し、連絡管29およびポンプ装置30を通して散水管27から処理対象水を担体充填槽21の内部に上向流で通水させる。   With the above configuration, the floating body purification treatment apparatus is installed in the target water area, and the blower 23 and the pump apparatus 30 are operated. The water flow device 24 absorbs the water to be treated around the carrier filling tank 21 through the water absorption pipe 28, and the water to be treated flows from the sprinkling pipe 27 through the communication pipe 29 and the pump device 30 to the inside of the carrier filling tank 21. Allow water to pass.

図5に示すように、池や湖では湖底等から分解溶出した無機栄養塩を植物プランクトンが摂取して繁殖し、植物プランクトンを捕食して動物プランクトンが繁殖し、動物プランクトンを捕食して魚類が繁殖し、その死骸および排泄物が湖底に堆積し、堆積物から溶解性有機物および無機栄養塩が分解溶出することにより、食物連鎖が生じている。   As shown in FIG. 5, in ponds and lakes, phytoplankton ingests and propagates inorganic nutrients that are decomposed and eluted from the bottom of the lake, etc. The food chain is formed by breeding, the carcasses and excrement deposited on the bottom of the lake, and the dissolved organic matter and inorganic nutrients being decomposed and eluted from the sediment.

本実施の形態の浮体式浄化処理装置は植物プランクトンおよび動物プランクトンを担体充填槽21に取り込んで酸化分解作用によって分解・無機化し、沈降を早めて浄化を促進する。また、担体充填槽21の担体26に担持した微生物で有機物を分解して処理対象水を浄化する。   The floating-type purification treatment apparatus of the present embodiment takes phytoplankton and zooplankton into the carrier filling tank 21, decomposes and mineralizes them by oxidative decomposition action, accelerates sedimentation and promotes purification. Moreover, the organic matter is decomposed by the microorganisms supported on the carrier 26 of the carrier filling tank 21 to purify the water to be treated.

図6に示すように、木炭からなる担体26の表面には生物膜36が形成されており、生物膜36は処理対象水中に含まれた溶解性有機物37を体内に取り込み、水中の溶存酸素38を利用して水39と二酸化炭素40に分解し、処理対象水を浄化する。この際に、処理対象水中の溶存酸素濃度が不足すると微生物活性が損なわれて浄化が阻害される。   As shown in FIG. 6, a biofilm 36 is formed on the surface of the carrier 26 made of charcoal. The biofilm 36 takes in soluble organic substances 37 contained in the water to be treated into the body, and dissolved oxygen 38 in the water. Is decomposed into water 39 and carbon dioxide 40 to purify the water to be treated. At this time, if the dissolved oxygen concentration in the water to be treated is insufficient, the microbial activity is impaired and the purification is inhibited.

このため、実施の形態では、微細気泡発生装置31では、ブロア23から供給する空気が気体供給部34を通して混気流路35に微細気泡として噴出し、気体供給部34の内周面に沿って流れる処理対象水が微細気泡を連行することで溶存酸素を補給する。この微細気泡の気泡径は0.1μm〜200μmとなる。   For this reason, in the embodiment, in the fine bubble generating device 31, the air supplied from the blower 23 is ejected as fine bubbles to the mixed gas flow path 35 through the gas supply unit 34 and flows along the inner peripheral surface of the gas supply unit 34. The water to be treated replenishes dissolved oxygen by entraining fine bubbles. The bubble diameter of the fine bubbles is 0.1 μm to 200 μm.

このように、通水装置24の限られた空間をなす連絡管29および散水管27の管路中に微細気泡発生装置31によって空気を微細気泡として混気することにより、通水装置24の管路を流れる処理対象水に対する空気の溶解速度が高くなり、結果として担体充填槽21の担体26の間を上向流で流れる処理対象水の溶存酸素濃度が高くなり、担体26に担持した微生物の活性を維持するのに必要とする十分な酸素を処理対象水へ供給することができ、微細気泡の気泡径が0.1μm〜200μmであることにより空気の溶解速度をさらに高めることができる。   In this way, air is mixed as fine bubbles by the fine bubble generating device 31 in the pipes of the connecting pipe 29 and the water spray pipe 27 that form a limited space of the water flow apparatus 24, thereby the pipe of the water flow apparatus 24. The dissolution rate of the air with respect to the water to be treated flowing through the passage is increased, and as a result, the dissolved oxygen concentration of the water to be treated flowing in the upward flow between the carriers 26 in the carrier filling tank 21 is increased. Sufficient oxygen required to maintain the activity can be supplied to the water to be treated, and the air dissolution rate can be further increased by the fine bubbles having a bubble diameter of 0.1 μm to 200 μm.

そして、定期的にブロワ23により供給する空気を逆洗管32から噴出させ、噴出する空気によって担体26を逆洗してろ材としての担体充填槽21の通水性を回復させ、あるいは担体26の表面に過剰に付着した付着物である植物プランクトンおよび動物プランクトンの分解物を除去する。   Then, the air supplied by the blower 23 is periodically ejected from the backwash pipe 32, and the carrier 26 is backwashed by the ejected air to restore the water permeability of the carrier filling tank 21 as a filter medium, or the surface of the carrier 26 The phytoplankton and zooplankton degradation products that are excessively attached to the surface are removed.

なお、本実施の形態では、微細気泡発生装置31を連通管29の途中に設置したが、担体充填槽21の側部や吸水管28の開口部近傍に微細気泡発生装置31を設置し、ブロア23により気体供給部34に空気を供給し、混気流路35の上流側に別途のポンプ装置を設ける構成としても良い。   In the present embodiment, the fine bubble generating device 31 is installed in the middle of the communication pipe 29. However, the fine bubble generating device 31 is installed in the vicinity of the side of the carrier filling tank 21 and the opening of the water absorption pipe 28, and the blower 23 may be configured to supply air to the gas supply unit 34 and provide a separate pump device on the upstream side of the air-mixing flow path 35.

また、微細気泡発生装置31は、図4に示すように、内周面が円筒状をなすケーシング33の内部に空気供給源のブロア23に連通する気体供給部34を配置し、ケーシング33の内部に処理対象水が流れる混気流路35を形成する構成とすることも可能である。   In addition, as shown in FIG. 4, the fine bubble generating device 31 includes a gas supply unit 34 that communicates with the blower 23 of the air supply source inside a casing 33 whose inner peripheral surface is cylindrical. It is also possible to form a mixed air flow path 35 through which the water to be treated flows.

本実施の形態では通水装置24が担体充填槽21の内部に処理対象水を上向流で通水したが、下向流で通水する構成とすることも可能である。
また、微細気泡発生装置31は、図7に示すように、ベンチュリー管41に処理対象水を供給し、縮径部42に空気を供給する構成とすることも可能である。
In the present embodiment, the water flow device 24 allows the water to be treated to flow into the inside of the carrier filling tank 21 in an upward flow, but it is also possible to adopt a configuration in which water flows in a downward flow.
Further, as shown in FIG. 7, the fine bubble generating device 31 may be configured to supply water to be processed to the venturi tube 41 and to supply air to the reduced diameter portion 42.

また、微細気泡発生装置31は、図8〜図11に示す構成とすることも可能である。ここでは、微細気泡発生装置31のケーシング51は、内周面が円筒状をなす外筒部52と、外筒部52の両端に配置するフランジ部53、54と、一方のフランジ部53に水密に接合し、ボルト等の締結部材(図示省略)によって取り付けた端板55とからなる。   Moreover, the microbubble generator 31 can also be configured as shown in FIGS. Here, the casing 51 of the fine bubble generating device 31 includes an outer cylinder part 52 having an inner peripheral surface of a cylindrical shape, flange parts 53 and 54 disposed at both ends of the outer cylinder part 52, and one flange part 53 in a watertight manner. And an end plate 55 attached by a fastening member (not shown) such as a bolt.

ケーシング51の外筒部52の内部には内筒を形成する気体供給部56を同心状に配置しており、気体供給部56は外周面が円筒状をなし、微小孔を有する多孔体もしくは多孔質体からなり、本実施の形態においては、気体供給部56がセラミックス製の多孔壁体からなる。   A gas supply part 56 forming an inner cylinder is disposed concentrically inside the outer cylinder part 52 of the casing 51, and the gas supply part 56 has a cylindrical outer peripheral surface and is a porous body or a porous body having micropores. In the present embodiment, the gas supply unit 56 is made of a ceramic porous wall.

ケーシング51の外筒部52の内周面と気体供給部56の外周面の間には処理対象水が旋回流で流れる混気流路57を形成しており、混気流路57はケーシング51の軸心方向の一端で開口し、他端がゴムスカート58で水密に閉栓されている。ゴムスカート58は気体供給部56の端部に外嵌して一方のフランジ部53に保持されており、気体供給部56と端板55の間、気体供給部56と外筒部52の間に介装している。   Between the inner peripheral surface of the outer cylinder portion 52 of the casing 51 and the outer peripheral surface of the gas supply portion 56, an air-mixing channel 57 is formed in which the water to be treated flows in a swirling flow. It opens at one end in the central direction, and the other end is watertightly closed by a rubber skirt 58. The rubber skirt 58 is externally fitted to the end of the gas supply unit 56 and is held by one flange portion 53, and between the gas supply unit 56 and the end plate 55 and between the gas supply unit 56 and the outer cylinder unit 52. It is intervening.

端板55およびゴムスカート58には気体供給部56の内部流路に連通する貫通孔55a、58aを形成しており、端板55の貫通孔55aにはねじ込み管継手59を接続している。ねじ込み管継手59は端板55の貫通孔55aに螺合するニップル59aとブロア23に接続するソケット59bからなる。   The end plate 55 and the rubber skirt 58 are formed with through holes 55 a and 58 a communicating with the internal flow path of the gas supply unit 56, and a threaded pipe joint 59 is connected to the through hole 55 a of the end plate 55. The threaded pipe joint 59 includes a nipple 59 a that is screwed into the through hole 55 a of the end plate 55 and a socket 59 b that is connected to the blower 23.

気体供給部56の一端には栓体60を水密に接着固定しており、気体供給部56の内部に挿通したロッド61の一端が栓体60に連結されている。ロッド61は他端がニップル59aからソケット59bの内部に突出しており、この他端に螺合する蝶ナット62を締め付けることで、ロッド61を介して栓体60を抜け止めしている。   A plug 60 is watertightly fixed to one end of the gas supply unit 56, and one end of a rod 61 inserted into the gas supply unit 56 is connected to the plug 60. The other end of the rod 61 protrudes from the nipple 59 a into the socket 59 b, and the plug 60 is prevented from being removed via the rod 61 by tightening a wing nut 62 that is screwed to the other end.

ケーシング51の他方のフランジ部54には噴出部63がボルト等の締結部材(図示省略)によって固定されており、噴出部63はケーシング51のフランジ部54に水密に接合するフランジ部64とレヂューサ65からなり、レヂューサ65は途中に縮径部65aを有し、拡径する先端開口65bが通水装置24の連絡管29の下流側管路に連通している。   A jet part 63 is fixed to the other flange part 54 of the casing 51 by a fastening member (not shown) such as a bolt. The jet part 63 is connected to the flange part 54 of the casing 51 in a watertight manner and a reducer 65. The reducer 65 has a reduced diameter portion 65 a in the middle, and the tip opening 65 b that expands the diameter is in communication with the downstream pipe line of the communication pipe 29 of the water flow device 24.

なお、本実施の形態では、空気の微細化をより促進するために、レヂューサ65を設けたが、レヂューサ65がなくても十分な効果が得られるため、必ずしもレヂューサ65を設けなくても良い。   In this embodiment, the reducer 65 is provided in order to further promote air miniaturization. However, since the sufficient effect can be obtained without the reducer 65, the reducer 65 is not necessarily provided.

ケーシング51は連絡管29の上流側管路に連通する液体供給口66を有しており、液体供給口66は混気流路57へ接線方向に接続している。液体供給口66は連絡管29を接続するための連結部66aと、混気流路57に接続する接続口66bとを有し、接続口66bに注水角度調整部67を配置している。   The casing 51 has a liquid supply port 66 that communicates with the upstream pipe line of the communication pipe 29, and the liquid supply port 66 is connected to the mixed gas flow path 57 in a tangential direction. The liquid supply port 66 includes a connecting portion 66a for connecting the communication pipe 29 and a connection port 66b connected to the air-mixing flow path 57, and a water injection angle adjusting portion 67 is disposed in the connection port 66b.

注水角度調整部67は液体供給口66の接続口66bに挿入する櫛歯状の二本のガイド部材67aと、ガイド部材67aを保持するフランジ部67bからなり、フランジ部67bを連結部66aおよび接続口66bのフランジ部66c、66dの間に介装し、ボルト等の締結部材(図示省略)で固定している。   The water injection angle adjustment unit 67 includes two comb-shaped guide members 67a inserted into the connection port 66b of the liquid supply port 66, and a flange portion 67b that holds the guide member 67a. The flange portion 67b is connected to the connection portion 66a and the connection portion 66a. It is interposed between the flange portions 66c and 66d of the opening 66b, and is fixed by a fastening member (not shown) such as a bolt.

注水角度調整部67はガイド部材67aの傾斜角度が異なるものを複数用意し、それらを取り替えることで旋回流の旋回ピッチを設定変更することができる。
上記の構成において、ポンプ装置30によって供給する処理対象水を、液体供給口66を通して混気流路57へ供給する。注水角度調整部67から混気流路57へ流入する処理対象水は、ガイド部材67aに案内されて気体供給部56および混気流路57の軸心に対して傾斜するように混気流路57へ流入し、混気流路57を旋回流で流れる。
A plurality of water injection angle adjusting portions 67 having different inclination angles of the guide member 67a are prepared, and the swirling pitch of the swirling flow can be set and changed by replacing them.
In the above configuration, the water to be processed supplied by the pump device 30 is supplied to the air-mixing flow path 57 through the liquid supply port 66. The water to be treated that flows into the mixture channel 57 from the water injection angle adjusting unit 67 is guided by the guide member 67 a and flows into the mixture channel 57 so as to be inclined with respect to the axes of the gas supply unit 56 and the mixture channel 57. Then, it flows in the mixed air flow path 57 in a swirling flow.

ここで、ガイド部材67aの傾斜角度が異なる注水角度調整部67を使用すると、旋回流の旋回ピッチが変わり、旋回流が混気流路57を流れる間に気体供給部56の外周面に沿って流れる距離が変化する。   Here, when the water injection angle adjustment unit 67 having a different inclination angle of the guide member 67 a is used, the swirl pitch of the swirl flow changes, and the swirl flow flows along the outer peripheral surface of the gas supply unit 56 while flowing through the mixed gas flow path 57. The distance changes.

ガイド部材67aに案内されて混気流路57へ流入する際に、流入水が気体供給部56および混気流路57の軸心に対して傾斜する角度が90°に近いほどに、気体供給部56の外周面に沿って流れる距離が長くなり、気体供給部56の外周面における旋回角速度が速くなる。   When the guide member 67a is guided to flow into the air-mixing flow path 57, the angle at which the inflowing water is inclined with respect to the axis of the gas supply section 56 and the air-mixing flow path 57 is close to 90 °. The distance that flows along the outer peripheral surface of the gas supply portion increases, and the turning angular velocity on the outer peripheral surface of the gas supply unit 56 increases.

ガイド部材67aに案内されて混気流路57へ流入する際に、流入水が気体供給部56および混気流路57の軸心に対して傾斜する角度が0°に近いほどに、気体供給部56の外周面に沿って流れる距離が短くなり、気体供給部56の外周面における旋回角速度が遅くなる。   When the guide member 67a is guided to flow into the air-mixing flow path 57, the angle at which the inflowing water is inclined with respect to the axis of the gas supply section 56 and the air-mixing flow path 57 is close to 0 °. The distance flowing along the outer peripheral surface of the gas supply portion 56 becomes shorter, and the turning angular velocity on the outer peripheral surface of the gas supply unit 56 becomes slower.

一方、ブロア23から加圧した空気を、ねじ込み管継手59を通して気体供給部56へ供給する。処理対象水が混気流路57を旋回流で流れる状態において、空気が気体供給部56の微小孔を有する多孔体もしくは多孔質体からなる壁体を通して外周面から混気流路57へ噴出する。   On the other hand, the pressurized air from the blower 23 is supplied to the gas supply unit 56 through the screw fitting 59. In a state where the water to be treated flows in a swirl flow through the air-mixing flow path 57, air is jetted from the outer peripheral surface to the air-mixing flow path 57 through a porous body having micropores in the gas supply unit 56 or a wall body made of a porous body.

このとき、旋回流が気体供給部56の外周面に沿って流れ、気体供給部56の外周面上に微小な半気泡状に噴出する気体を旋回流が気体供給部56の外周面に沿って剪断することで微細気泡が発生し、発生した微細気泡を旋回流が気体供給部56の外周面から連行することで微細気泡が連続して発生する。   At this time, the swirl flow flows along the outer peripheral surface of the gas supply unit 56, and the swirl flow flows along the outer peripheral surface of the gas supply unit 56 with the gas ejected in the form of minute semi-bubbles on the outer peripheral surface of the gas supply unit 56. The fine bubbles are generated by shearing, and the fine bubbles are continuously generated by the swirling flow entrained from the outer peripheral surface of the gas supply unit 56.

この際に、気体供給部56の外周面における旋回流の流速が速いほどに、また壁体の微小孔の孔径が小さいほどに微細気泡の粒径が小さくなり、旋回流が気体供給部56の外周面に沿って流れる距離が長くなるほどに連行する気泡量が多くなる。   At this time, as the flow velocity of the swirl flow on the outer peripheral surface of the gas supply unit 56 increases, and as the hole diameter of the microholes in the wall body decreases, the particle size of the fine bubbles decreases, and the swirl flow of the gas supply unit 56 increases. The amount of bubbles entrained increases as the distance flowing along the outer peripheral surface increases.

したがって、供給する処理対象水の流速と供給する空気量を調整することにより、任意量の空気を微細気泡として処理対象水中に混気することができ、微細気泡の気泡径も調整することができる。本実施の形態ではポンプ装置30によって処理対象水を混気流路57に供給するので、十分な旋回流の流速を確保することができる。   Therefore, by adjusting the flow rate of the processing target water to be supplied and the amount of air to be supplied, an arbitrary amount of air can be mixed into the processing target water as fine bubbles, and the bubble diameter of the fine bubbles can also be adjusted. . In the present embodiment, since the water to be treated is supplied to the mixed air flow path 57 by the pump device 30, a sufficient swirling flow velocity can be ensured.

微細気泡を伴う気液混相の旋回流は混気流路57の一端の開口からケーシング51の外部へ流れ出て噴出部63へ流入する。噴出部63へ流入した気液混相の旋回流は縮径部65aを通り、レヂューサ65において旋回半径を拡径しながら移動し、先端開口65bから連絡管29の下流側管路へ流入する。   The swirling flow of the gas-liquid mixed phase accompanied by the fine bubbles flows out from the opening of one end of the mixed gas flow path 57 to the outside of the casing 51 and flows into the ejection part 63. The swirling flow of the gas-liquid mixed phase that has flowed into the jet part 63 passes through the reduced diameter part 65a, moves while the swirling radius is increased in the reducer 65, and flows into the downstream pipe line of the connecting pipe 29 from the tip opening 65b.

また、微細気泡発生装置31は、図12に示す構成とすることも可能である。ここでは、微細気泡発生装置31のケーシング71は、気体供給口72aを備えた外套72と、外套72の両側の端部73、74のうちで一方の端部73に水密に接合し、ボルト等の締結部材71aによって取り付けた端板75とからなる。   Moreover, the microbubble generator 31 can also be configured as shown in FIG. Here, the casing 71 of the fine bubble generating device 31 is watertightly joined to one end 73 of the outer sleeve 72 having the gas supply port 72a and the end portions 73, 74 on both sides of the outer sleeve 72, such as bolts and the like. The end plate 75 is attached by the fastening member 71a.

ケーシング71の外套72の内部には気体供給部76を配置しており、気体供給部76は内周面が円筒状をなし、処理対象水が旋回流で流れる混気流路77を形成している。気体供給部76は微小孔を有する多孔体もしくは多孔質体からなり、本実施の形態ではセラミックス製の多孔壁体からなる。   A gas supply unit 76 is disposed inside the outer casing 72 of the casing 71. The gas supply unit 76 has an inner peripheral surface that is cylindrical, and forms an air-mixing channel 77 through which the water to be treated flows in a swirling flow. . The gas supply unit 76 is made of a porous body or a porous body having micropores, and in the present embodiment, is made of a ceramic porous wall.

混気流路77はケーシング71の軸心方向の一端で開口し、他端がゴムリング78で水密に閉栓されている。ゴムリング78は気体供給部76の端部と端板75との間に介装されている。   The air-mixing flow path 77 is opened at one end of the casing 71 in the axial direction, and the other end is sealed watertight by a rubber ring 78. The rubber ring 78 is interposed between the end of the gas supply unit 76 and the end plate 75.

端板75には気体供給部76の混気流路77に連通する貫通孔75aを形成しており、端板75の貫通孔75aに液体供給部79を接続している。
液体供給部79は通水装置24の連絡管29の上流側管路に連通する液体供給口80と、内周面が円筒状をなして混気流路77へ連通する液体流路81とを有している。
The end plate 75 is formed with a through hole 75 a communicating with the air-mixing flow path 77 of the gas supply unit 76, and the liquid supply unit 79 is connected to the through hole 75 a of the end plate 75.
The liquid supply unit 79 includes a liquid supply port 80 that communicates with the upstream line of the communication tube 29 of the water communication device 24, and a liquid channel 81 that has an inner peripheral surface that is cylindrical and communicates with the air-mixing channel 77. is doing.

液体供給口80は連絡管29の上流側管路に接続するための連結部80aと、液体流路81へ接線方向に接続する接続口80bとを有しており、接続口80bに注水角度調整部82を配置している。   The liquid supply port 80 has a connecting portion 80a for connecting to the upstream pipe line of the connecting pipe 29 and a connection port 80b for connecting to the liquid channel 81 in a tangential direction, and adjusting the water injection angle to the connection port 80b. The part 82 is arranged.

注水角度調整部82は液体供給口80の接続口80bに挿入する櫛歯状の二本のガイド部材82aと、ガイド部材82aを保持するフランジ部82bからなり、フランジ部82bを連結部80aおよび接続口80bの間に介装し、ボルト等の締結部材(図示省略)で固定している。注水角度調整部82はガイド部材82aの傾斜角度が異なるものを複数用意し、それらを取り替えることで旋回流の旋回ピッチを設定変更することができる。   The water injection angle adjustment unit 82 includes two comb-shaped guide members 82a inserted into the connection port 80b of the liquid supply port 80 and a flange unit 82b that holds the guide member 82a. The flange unit 82b is connected to the connection unit 80a and the connection unit 80a. It is interposed between the mouths 80b and fixed with fastening members (not shown) such as bolts. A plurality of water injection angle adjusting units 82 having different inclination angles of the guide member 82a are prepared, and the swirling pitch of the swirling flow can be set and changed by replacing them.

ケーシング71の他方の端部74には噴出部83がボルト等の締結部材71bによって固定されており、噴出部83はケーシング71の端部74に水密に接合するフランジ部84とレヂューサ85からなり、レヂューサ85は小径部85aから先端開口85bへ向けて拡径し、先端開口85bが連絡管29の下流側管路に連通している。   An ejection portion 83 is fixed to the other end portion 74 of the casing 71 by a fastening member 71b such as a bolt. The ejection portion 83 includes a flange portion 84 and a reducer 85 which are joined to the end portion 74 of the casing 71 in a watertight manner. The reducer 85 increases in diameter from the small diameter portion 85 a toward the tip opening 85 b, and the tip opening 85 b communicates with the downstream pipe line of the connecting pipe 29.

上記の構成において、ポンプ装置30により処理対象水を、液体供給部79の液体供給口80を通して液体流路81へ供給する。注水角度調整部82から液体流路81へ流入する処理対象水は、ガイド部材82aに案内されて液体流路81の軸心に対して傾斜するように液体流路81へ流入し、液体流路81および混気流路77を旋回流で流れる。   In the above configuration, the water to be treated is supplied to the liquid flow path 81 through the liquid supply port 80 of the liquid supply unit 79 by the pump device 30. The water to be treated that flows into the liquid channel 81 from the water injection angle adjusting unit 82 is guided by the guide member 82 a and flows into the liquid channel 81 so as to be inclined with respect to the axis of the liquid channel 81. 81 and the mixed air flow path 77 flow in a swirling flow.

ここで、ガイド部材82aの傾斜角度が異なる注水角度調整部82を使用すると、旋回流の旋回ピッチが変わり、旋回流が混気流路77を流れる間に気体供給部76の内周面に沿って流れる距離が変化する。   Here, when the water injection angle adjustment unit 82 having a different inclination angle of the guide member 82 a is used, the swirl pitch of the swirl flow changes, and the swirl flow flows along the inner circumferential surface of the gas supply unit 76 while flowing through the mixed gas flow path 77. The flowing distance changes.

ガイド部材82aに案内されて液体流路81へ流入する際に、流入水が液体流路81の軸心に対して傾斜する角度が90°に近いほどに、気体供給部76の内周面に沿って流れる距離が長くなり、気体供給部76の内周面における旋回角速度が速くなる。   When flowing into the liquid flow path 81 by being guided by the guide member 82a, the angle at which the inflowing water is inclined with respect to the axial center of the liquid flow path 81 is closer to 90 ° on the inner peripheral surface of the gas supply unit 76. The distance which flows along becomes long, and the turning angular velocity in the internal peripheral surface of the gas supply part 76 becomes quick.

ガイド部材82aに案内されて液体流路81へ流入する際に、流入水が液体流路81の軸心に対して傾斜する角度が0°に近いほどに、気体供給部76の内周面に沿って流れる距離が短くなり、気体供給部76の外周面における旋回角速度が遅くなる。   When flowing into the liquid channel 81 by being guided by the guide member 82a, the angle at which the inflowing water is inclined with respect to the axis of the liquid channel 81 is closer to 0 °, so that The distance which flows along becomes short, and the turning angular velocity in the outer peripheral surface of the gas supply part 76 becomes slow.

一方、ブロア23から加圧した空気を、気体供給口72aを通して気体供給部76へ供給する。処理対象水が混気流路77を旋回流で流れる状態において、空気は気体供給部76の微小孔を有する多孔体もしくは多孔質体からなる壁体を通して内周面から混気流路77へ噴出する。   On the other hand, the pressurized air is supplied from the blower 23 to the gas supply unit 76 through the gas supply port 72a. In a state where the water to be treated flows in the swirl flow through the air mixture channel 77, the air is jetted from the inner peripheral surface to the gas mixture channel 77 through the porous body having the micropores of the gas supply unit 76 or the wall body made of the porous body.

このとき、旋回流が気体供給部76の内周面に沿って流れ、気体供給部76の内周面上に微小な半気泡状に噴出する気体を旋回流が気体供給部76の内周面に沿って剪断することで微細気泡が発生し、発生した微細気泡を旋回流が気体供給部76の内周面から連行することで微細気泡が連続して発生する。   At this time, the swirling flow flows along the inner peripheral surface of the gas supply unit 76, and the swirling flow is the inner peripheral surface of the gas supply unit 76, which is ejected in a minute semi-bubble shape on the inner peripheral surface of the gas supply unit 76. The microbubbles are generated by shearing along the line, and the microbubbles are continuously generated by the swirling flow entrained from the inner peripheral surface of the gas supply unit 76.

この際に、気体供給部76の内周面における旋回流の流速が速いほどに、また壁体の微小孔の孔径が小さいほどに微細気泡の粒径が小さくなり、旋回流が気体供給部76の内周面に沿って流れる距離が長くなるほどに連行する気泡量が多くなる。   At this time, as the flow velocity of the swirl flow on the inner peripheral surface of the gas supply unit 76 increases, and as the pore diameter of the micropores in the wall body decreases, the particle size of the fine bubbles decreases, and the swirl flow becomes the gas supply unit 76. The amount of bubbles entrained increases as the distance flowing along the inner circumferential surface increases.

したがって、供給する処理対象水の流速と供給する空気量を調整することにより、任意量の空気を微細気泡として処理対象水中に混気することができ、微細気泡の気泡径も調整することができる。本実施の形態ではポンプ装置30によって処理対象水を混気流路77に供給するので、十分な旋回流の流速を確保することができる。   Therefore, by adjusting the flow rate of the processing target water to be supplied and the amount of air to be supplied, an arbitrary amount of air can be mixed into the processing target water as fine bubbles, and the bubble diameter of the fine bubbles can also be adjusted. . In the present embodiment, since the water to be treated is supplied to the mixed air flow path 77 by the pump device 30, a sufficient swirling flow velocity can be ensured.

微細気泡を伴う気液混相の旋回流は混気流路77の一端の開口からケーシング71の外部へ流れ出て噴出部83へ流入する。噴出部83へ流入した気液混相の旋回流は小径部85aを通り、レヂューサ85において旋回半径を拡径しながら移動し、先端開口85bから連絡管29の下流側管路へ流れ出る。   The swirling flow of the gas-liquid mixed phase accompanied by fine bubbles flows out of the casing 71 through the opening at one end of the mixed gas flow channel 77 and flows into the ejection part 83. The swirling flow of the gas-liquid mixed phase that has flowed into the ejection portion 83 passes through the small-diameter portion 85a, moves while expanding the swirling radius in the reducer 85, and flows out from the tip opening 85b to the downstream pipe line of the connecting pipe 29.

なお、本実施の形態では、空気の微細化をより促進するために、レヂューサ85を設けたが、レヂューサ85がなくても十分な効果が得られるため、必ずしもレヂューサ85を設けなくても良い。   In this embodiment, the reducer 85 is provided in order to further promote the miniaturization of air. However, since the sufficient effect can be obtained without the reducer 85, the reducer 85 is not necessarily provided.

本発明の実施の形態における浄化処理装置を示す斜視図The perspective view which shows the purification processing apparatus in embodiment of this invention 同浄化処理装置を示す断面図Sectional view showing the purification treatment apparatus 同浄化処理装置の微細気泡発生装置を示す断面図Sectional drawing which shows the fine bubble generator of the purification processing apparatus 本発明の他の実施の形態における微細気泡発生装置を示す断面図Sectional drawing which shows the microbubble generator in other embodiment of this invention 浄化処理装置の浄化作用を示す説明図Explanatory drawing which shows the purification effect | action of a purification processing apparatus 担体表面の状態を示す模式図Schematic diagram showing the state of the carrier surface 本発明の他の実施の形態における微細気泡発生装置を示す断面図Sectional drawing which shows the microbubble generator in other embodiment of this invention 本発明の他の実施の形態における微細気泡発生装置を示す一部破断断面図The partially broken sectional view which shows the fine bubble generator in other embodiment of this invention 同気泡発生装置の噴出部を示す断面図Sectional drawing which shows the ejection part of the bubble generator 同気泡発生装置の要部を示す断面図Sectional drawing which shows the principal part of the bubble generator 同気泡発生装置の要部を示す断面図Sectional drawing which shows the principal part of the bubble generator 本発明の他の実施の形態における微細気泡発生装置を示す一部破断断面図The partially broken sectional view which shows the fine bubble generator in other embodiment of this invention 従来の浄化処理装置を示す断面図Sectional drawing which shows the conventional purification processing apparatus

符号の説明Explanation of symbols

21 担体充填槽
22 フロート
23 ブロア
24 通水装置
25 玉石
26 担体
27 散水管
28 吸水管
29 連絡管
30 ポンプ装置
31 微細気泡発生装置
32 逆洗管
33 ケーシング
34 気体供給部
35 混気流路
36 生物膜
37 溶解性有機物
38 溶存酸素
39 水
40 二酸化炭素
41 ベンチュリー管
42 縮径部
51 ケーシング
52 外筒部
53、54 フランジ部
55 端板
55a 貫通孔、
56 気体供給部
57 混気流路
58 ゴムスカート
58a 貫通孔
59 ねじ込み管継手
59a ニップル
59b ソケット
60 栓体
61 ロッド
62 蝶ナット
63 噴出部
64 フランジ部
65 レヂューサ
65a 縮径部
65b 先端開口
66 液体供給口
66a 連結部
66b 接続口
66c、66d フランジ部
67 注水角度調整部
67a ガイド部材
67b フランジ部
71 ケーシング
72 外套
72a 気体供給口
73、74 端部
75 端板
75a 貫通孔
76 気体供給部
77 混気流路
78 ゴムリング
79 液体供給部
80 液体供給口
81 液体流路
80a 連結部
80b 接続口
82 注水角度調整部
82a ガイド部材
82b フランジ部
83 噴出部
84 フランジ部
85 レヂューサ
85a 縮径部
85b 先端開口
DESCRIPTION OF SYMBOLS 21 Carrier filling tank 22 Float 23 Blower 24 Water flow apparatus 25 Cobblestone 26 Carrier 27 Sprinkling pipe 28 Water absorption pipe 29 Connection pipe 30 Pump apparatus 31 Fine bubble generator 32 Backwash pipe 33 Casing 34 Gas supply part 35 Mixed air flow path 36 Biofilm 37 Dissolved organic matter 38 Dissolved oxygen 39 Water 40 Carbon dioxide 41 Venturi tube 42 Reduced diameter portion 51 Casing 52 Outer cylinder portion 53, 54 Flange portion 55 End plate 55a Through hole,
56 Gas supply part 57 Mixed air flow path 58 Rubber skirt 58a Through hole 59 Screwed fitting 59a Nipple 59b Socket 60 Plug body 61 Rod 62 Wing nut 63 Jetting part 64 Flange part 65 Reducer 65a Reduced diameter part 65b End opening 66 Liquid supply port 66a Connecting part 66b Connection port 66c, 66d Flange part 67 Water injection angle adjustment part 67a Guide member 67b Flange part 71 Casing 72 Outer sleeve 72a Gas supply port 73, 74 End part 75 End plate 75a Through hole 76 Gas supply part 77 Mixed air flow path 78 Rubber Ring 79 Liquid supply part 80 Liquid supply port 81 Liquid flow path 80a Connection part 80b Connection port 82 Water injection angle adjustment part 82a Guide member 82b Flange part 83 Ejection part 84 Flange part 85 Reducer 85a Reduced diameter part 85b End opening

Claims (6)

対象水域の水面下に配置する担体充填槽と、担体充填槽の周囲の処理対象水を担体充填槽内に通水させる通水装置と、処理対象水に微細気泡を混気する微細気泡発生装置とを備えたことを特徴とする浄化処理装置。 A carrier filling tank arranged below the surface of the target water area, a water flow device for passing the treatment target water around the carrier filling tank into the carrier filling tank, and a fine bubble generator for mixing fine bubbles in the treatment target water A purification treatment apparatus comprising: 微細気泡発生装置を通水装置の管路に設けたことを特徴とする請求項1に記載の浄化処理装置。 The purification treatment apparatus according to claim 1, wherein the fine bubble generation device is provided in a pipe line of the water supply device. 微細気泡の気泡径が0.1μm〜200μmであることを特徴とする請求項1又は2に記載の浄化処理装置。 The purification apparatus according to claim 1 or 2, wherein the bubble diameter of the fine bubbles is 0.1 µm to 200 µm. 微細気泡発生装置は、内周面が筒状をなすケーシングの内部に、外周面が筒状をなして空気供給源に連通する気体供給部を配置し、ケーシングの内周面と気体供給部の外周面の間に処理対象水が流れる混気流路を形成し、気体供給部が微小孔を有する多孔体もしくは多孔質体からなることを特徴とする請求項1〜3の何れか1項に記載の浄化処理装置。 In the fine bubble generating device, a gas supply unit that has a cylindrical outer peripheral surface and communicates with an air supply source is disposed inside a casing having a cylindrical inner peripheral surface, and the inner peripheral surface of the casing and the gas supply unit The mixed gas flow path through which the water to be treated flows is formed between the outer peripheral surfaces, and the gas supply unit is composed of a porous body or a porous body having micropores. Purification treatment equipment. 微細気泡発生装置は、空気供給源に連通するケーシングの内部に内周面が筒状をなす気体供給部を配置し、気体供給部の内部に処理対象水が流れる混気流路を形成し、気体供給部が微小孔を有する多孔体もしくは多孔質体からなることを特徴とする請求項1〜3の何れか1項に記載の浄化処理装置。 The fine bubble generating device has a gas supply part having a cylindrical inner peripheral surface arranged inside a casing communicating with an air supply source, and forms an air-mixing flow path through which water to be treated flows in the gas supply part. The purification processing apparatus according to any one of claims 1 to 3, wherein the supply unit is made of a porous body or a porous body having micropores. 通水装置は微細気泡発生装置より上流側の管路にポンプ手段を有することを特徴とする請求項2〜5の何れか1項に記載の浄化処理装置。 The purification apparatus according to any one of claims 2 to 5, wherein the water flow device has a pump means in a pipe line upstream of the fine bubble generating device.
JP2006108142A 2006-04-11 2006-04-11 Purification treatment device Pending JP2007275829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006108142A JP2007275829A (en) 2006-04-11 2006-04-11 Purification treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006108142A JP2007275829A (en) 2006-04-11 2006-04-11 Purification treatment device

Publications (1)

Publication Number Publication Date
JP2007275829A true JP2007275829A (en) 2007-10-25

Family

ID=38677883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006108142A Pending JP2007275829A (en) 2006-04-11 2006-04-11 Purification treatment device

Country Status (1)

Country Link
JP (1) JP2007275829A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000690A (en) * 2006-06-22 2008-01-10 Ntt Facilities Inc Power integrated filter and power integrated filter system containing it
JP2012166173A (en) * 2011-02-16 2012-09-06 Nakajima Kogyo:Kk Device for producing ultrafine bubble-containing water
JP2012176365A (en) * 2011-02-27 2012-09-13 Takatoku:Kk Water clarification method and device combined with sludge curling-up suppressing equipment in lake and pond in lentic state

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000690A (en) * 2006-06-22 2008-01-10 Ntt Facilities Inc Power integrated filter and power integrated filter system containing it
JP2012166173A (en) * 2011-02-16 2012-09-06 Nakajima Kogyo:Kk Device for producing ultrafine bubble-containing water
JP2012176365A (en) * 2011-02-27 2012-09-13 Takatoku:Kk Water clarification method and device combined with sludge curling-up suppressing equipment in lake and pond in lentic state

Similar Documents

Publication Publication Date Title
ES2376303T3 (en) APPARATUS AND PROCEDURE FOR OXYGEN RESIDUAL WATERS.
JP4869922B2 (en) Fine bubble generator
US4956080A (en) High pressure oxygen-saturated water treatment apparatus
JP4420161B2 (en) Method and apparatus for generating swirling fine bubbles
US11339068B2 (en) Eductor-based membrane bioreactor
FI100794B (en) Method and apparatus for water treatment
JP2003205228A (en) Turning type fine bubbles production apparatus
JP4515868B2 (en) Water treatment system
EP1670574B1 (en) Method and apparatus for mixing of two fluids
CA2659657C (en) Treatment of aqueous liquid
EP1009518A1 (en) System and method for delivery of gas-supersaturated fluids
JP2007275829A (en) Purification treatment device
CN102491510B (en) Membrane up-flow aerobic bioreactor (MUAR)
JPH10290993A (en) Purified water treating apparatus
JP2007160178A (en) Water area purifying apparatus, aquatic-contamination living organism recovery ship and method for treating aquatic-contamination living organism
JP2003181259A (en) Swirling type fine bubble formation method and apparatus
JP7121399B2 (en) Fish and shellfish culture water purification device, fish and shellfish culture device, and method for purifying fish and shellfish culture water
KR101762181B1 (en) Filtering apparatus using micro bubbles for fish farm
CN109292968B (en) Integrated sewage treatment device of polyaluminium chloride reinforced aerobic granular sludge membrane bioreactor
JPH05146796A (en) Device for purifying closed natural water area
JPH0710384B2 (en) Sewage treatment equipment
CN212374938U (en) Air supporting equipment and sewage treatment system
KR20020048581A (en) Method for dissolution of ozone and oxygen utilizing water pressure and apparatus therefor
JP2675261B2 (en) Purification equipment
KR102029958B1 (en) Circulating seawater filtration system by the adbanced oxidation process and circulating seawater filtration method using the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430