[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007275255A - Propylene resin for medical syringe, medical syringe formed by injection-molding the same and prefilled syringe preparation - Google Patents

Propylene resin for medical syringe, medical syringe formed by injection-molding the same and prefilled syringe preparation Download PDF

Info

Publication number
JP2007275255A
JP2007275255A JP2006104473A JP2006104473A JP2007275255A JP 2007275255 A JP2007275255 A JP 2007275255A JP 2006104473 A JP2006104473 A JP 2006104473A JP 2006104473 A JP2006104473 A JP 2006104473A JP 2007275255 A JP2007275255 A JP 2007275255A
Authority
JP
Japan
Prior art keywords
syringe
propylene
medical
polypropylene resin
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006104473A
Other languages
Japanese (ja)
Other versions
JP4987339B2 (en
Inventor
Isao Wada
功 和田
Naoya Akiyama
直也 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prime Polymer Co Ltd
Original Assignee
Prime Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime Polymer Co Ltd filed Critical Prime Polymer Co Ltd
Priority to JP2006104473A priority Critical patent/JP4987339B2/en
Publication of JP2007275255A publication Critical patent/JP2007275255A/en
Application granted granted Critical
Publication of JP4987339B2 publication Critical patent/JP4987339B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide polypropylene resin composition having superior rigidity, heat resistance, transparency and impact resistance and attaining high productivity, and a medical instrument formed of the polypropylene resin composition. <P>SOLUTION: The polypropylene resin is composed of a propylene homopolymer having (i) a melt flow rate (ASTM D 1238, 230°C, 2.16 kg load) of 10-60 g/10 minutes, (ii) a meso pentad fraction (mmmm) of 0.920-0.950, and (iii) a molecular weight distribution (Mw/Mn) of 2.0-5.6, and not subjected to molecular weight reducing adjustment by a peroxide. This medical syringe is obtained by injection-molding the polypropylene resin, and this prefilled syringe preparation is obtained by filling the medical syringe with a medical solution with a pH of 5.0-9.0. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ポリプロピレン樹脂を用いて射出成形によって生産され、薬液を充填したプレフィルドシリンジ関し、さらに詳しくは、衛生性、耐熱性、成形時の気泡発生抑制とロングラン成形性、更には射出成形時のコア金型抜き取り時の傷付性を従来成し得なかったレベルで全てを満足した医療用シリンジに関するもの、且つ内溶液であるpHが5.0〜9.0である各種薬剤とのESCRによる耐衝撃性、薬剤安定性をも考慮したプレフィルドシリンジ製剤に関する。   The present invention relates to a prefilled syringe produced by injection molding using a polypropylene resin and filled with a chemical solution. More specifically, hygiene, heat resistance, suppression of bubble generation during molding and long run moldability, and further during injection molding ESCR with various types of medicines that have a pH level of 5.0 to 9.0, which is related to medical syringes that satisfy all requirements at the level at which damage to the core mold could not be achieved. The present invention relates to a prefilled syringe preparation that also considers impact resistance and drug stability.

近年、誤った投薬処理などによる問題を減少させる目的で、薬液充填プレフィルドシリンジ製剤が注目されている。   In recent years, a prefilled syringe preparation filled with a chemical solution has attracted attention for the purpose of reducing problems caused by an erroneous dosing process.

一般に薬液充填プレフィルドシリンジはガラスや環状ポリオレフィンで生産されているが、価格が高く市場普及が進んでいない。一方、ポリプロピレン樹脂を用いたプレフィルドシリンジは化学的特性、物理的特性および成形加工性に優れ、しかも安価であることから使用が検討されているが、内溶液との相互作用によるシリンジの耐衝撃性低下による割れ問題や特にシリンジ成形時のコア金型抜き取り時の傷付が大きな問題となり、安定生産ができていないのが現状である。特許第3195434号や特許第2528443号記載のいわゆる従来のポリプロピレン樹脂では、機械的強度、衛生性、透明性、射出成形時のコア金型引き抜き時のシリンジ傷抑制というロングラン生産性、更に落下時の耐衝撃性が問題となっており、これらを全て満足させるポリプロピレン樹脂は無く、問題を全て解決した薬液充填プレフィルドシリンジ生産は困難であった。   In general, a prefilled syringe filled with a chemical solution is produced from glass or cyclic polyolefin, but its price is high and its market spread is not progressing. On the other hand, prefilled syringes using polypropylene resin are considered to be used because they are excellent in chemical properties, physical properties and moldability, and are inexpensive. However, the impact resistance of syringes due to interaction with the internal solution is being investigated. The current problem is that stable production has not been achieved due to cracking problems due to lowering and damage particularly when the core mold is removed during syringe molding. With the so-called conventional polypropylene resins described in Japanese Patent Nos. 3195434 and 2528443, mechanical strength, hygiene, transparency, long run productivity that suppresses syringe flaws at the time of pulling out the core mold during injection molding, and further when dropped Impact resistance has become a problem, there is no polypropylene resin that satisfies all of these problems, and it has been difficult to produce a prefilled syringe filled with a chemical solution that has solved all the problems.

こうした要求を安価なポリプロピレン樹脂を用いる事で実現できれば、広く薬液充填プレフィルドシリンジ製剤の普及に貢献でき、高齢患者への医療費抑制など非常に社会貢献度が高い。
特許第3195434号 特許第2528443号
If these demands can be realized by using inexpensive polypropylene resin, it can contribute to the widespread use of prefilled syringe preparations filled with chemicals, and has a very high degree of social contribution such as medical cost control for elderly patients.
Japanese Patent No. 3195434 Japanese Patent No. 2528443

本発明は、上記のような従来技術に伴う問題を解決しようとするものであって、衛生性、耐熱性、成形時の気泡発生抑制とロングラン成形性、更には射出成形時のコア金型抜き取り時の傷付性を従来成し得なかったレベルで全てを満足する医療用シリンジの提供と、内溶液のpHが5.0〜9.0である各種薬剤を充填し、ESCR(薬剤によって耐衝撃性が低下する現象で耐環境応力破壊とも言う)による耐衝撃性、薬剤安定性をも考慮した安価なプレフィルドシリンジ製剤を提供し、医療現場への更なる安全性を提供することを課題とする。   The present invention seeks to solve the problems associated with the prior art as described above, including hygiene, heat resistance, suppression of bubble generation during molding and long run moldability, and core mold extraction during injection molding. Provide a medical syringe that satisfies all requirements at a level that has not been able to achieve conventional scratch resistance, and is filled with various drugs whose pH of the inner solution is 5.0 to 9.0. It is a problem to provide an inexpensive prefilled syringe formulation that takes into account impact resistance and drug stability due to the phenomenon of impact resistance degradation and also referred to as environmental stress fracture resistance, and to provide further safety to the medical field To do.

〔1〕i)メルトフローレート(ASTM D 1238,230℃、2.16kg荷重)が10〜60g/10分、ii)メソペンタッド分率(mmmm)が0.920〜0.950、iii)分子量分布(Mw/Mn)が2.0〜5.6のプロピレン単独重合体からなり、iiii)過酸化物による分子量減量調整処理を施していない事を特徴とする医療用シリンジ用ポリプロピレン樹脂。
〔2〕〔1〕記載のポリプロピレン樹脂を射出成形して得られる医療用シリンジ。
〔3〕〔2〕記載の医療用シリンジにpHが5.0〜9.0である薬液を充填した事を特徴とするプレフィルドシリンジ製剤。
[1] i) Melt flow rate (ASTM D 1238, 230 ° C., 2.16 kg load) is 10 to 60 g / 10 min, ii) Mesopentad fraction (mmmm) is 0.920 to 0.950, iii) Molecular weight distribution ( Mw / Mn) is made of a propylene homopolymer having a molecular weight of 2.0 to 5.6, and iii) is not subjected to molecular weight reduction adjustment treatment with peroxide, and is a polypropylene resin for medical syringes.
[2] A medical syringe obtained by injection molding the polypropylene resin according to [1].
[3] A prefilled syringe preparation, wherein the medical syringe according to [2] is filled with a chemical solution having a pH of 5.0 to 9.0.

本発明によれば、衛生性、耐熱性、成形時の気泡発生抑制とロングラン成形性、更には射出成形時のコア金型抜き取り時の傷付性を従来成し得なかったレベルで全てを満足し且つ安価な医療用シリンジが完成し、且つ内溶液pHが5.0〜9.0である各種薬剤を充填し、ESCRによる耐衝撃性、薬剤安定性をも達成した市場浸透が急速に拡大する安価プレフィルドシリンジ製剤が得られる。   According to the present invention, hygiene, heat resistance, suppression of bubble generation during molding and long run moldability, as well as scratch resistance when extracting a core die during injection molding are all satisfied at a conventional level. In addition, a low-cost medical syringe has been completed, and various drugs with an internal solution pH of 5.0 to 9.0 have been filled, and the impact of ESCR and drug stability have been achieved. An inexpensive prefilled syringe formulation is obtained.

以下、本発明に係るポリプロピレン樹脂およびその用途について具体的に説明する。   Hereinafter, the polypropylene resin and its use according to the present invention will be specifically described.

本発明に係るポリプロピレン樹脂は、i)メルトフローレート(MFR)(ASTM D 1238,230℃、2.16kg荷重)が10〜60g/10分、ii)メソペンタッド分率(mmmm)が0.920〜0.950、iii)分子量分布(Mw/Mn)が2.0〜5.6であるプロピレン単独重合体からなり、iiii)過酸化物による分子量減量調整処理を施していないことを特徴とする。   The polypropylene resin according to the present invention has an i) melt flow rate (MFR) (ASTM D 1238, 230 ° C., 2.16 kg load) of 10 to 60 g / 10 min, ii) a mesopentad fraction (mmmm) of 0.920 to 0 .950, iii) a propylene homopolymer having a molecular weight distribution (Mw / Mn) of 2.0 to 5.6, and iiii) a molecular weight reduction adjustment treatment with a peroxide is not performed.

本発明にかかるポリプロピレン樹脂は、1種のプロピレン単独重合体であっても、2種以上のプロピレン単独重合体のブレンド品であってもよい。    The polypropylene resin according to the present invention may be a single propylene homopolymer or a blend of two or more propylene homopolymers.

本発明に係るプロピレン単独重合体のMFRは10〜60g/10分の範囲であるが、分子量分布が3.0以上5.5以下の場合は特に、15〜40g/10分であることが好ましく、20〜30g/10分であることがより好ましい。また、分子量分布が2.0以上3.0未満の場合は特に、30〜60g/10分であることが好ましく、35〜55g/10分であることがより好ましく、40〜45g/10分であることがさらに好ましい。   The MFR of the propylene homopolymer according to the present invention is in the range of 10 to 60 g / 10 min. However, when the molecular weight distribution is 3.0 or more and 5.5 or less, it is preferably 15 to 40 g / 10 min. More preferably, it is 20-30 g / 10min. Moreover, when the molecular weight distribution is 2.0 or more and less than 3.0, it is particularly preferably 30 to 60 g / 10 minutes, more preferably 35 to 55 g / 10 minutes, and 40 to 45 g / 10 minutes. More preferably it is.

MFRがこの範囲にある場合、医療用シリンジの多数個取りの射出成形が可能であり、且つ耐衝撃性も保持できる。MFRがこの範囲にない場合、即ちMFRが10未満の場合、医療用シリンジの多数個取りの射出成形ができず、実生産性に乏しく、MFRが60を超える場合、低分子量過ぎて耐衝撃性が保てない。   When the MFR is in this range, it is possible to perform injection molding of a large number of medical syringes and to maintain impact resistance. If the MFR is not within this range, that is, if the MFR is less than 10, the injection molding of a large number of medical syringes cannot be performed, and the actual productivity is poor. If the MFR exceeds 60, the impact resistance is too low. Can not keep.

MFRの調整にあたっては、今回の発明の大きな特徴であるが、過酸化物による分子量減量調整処理をしてはならない事が重要である。過酸化物による分子量減量調整処理により生成する低分子量成分と過酸化物の分解物が、シリンジ生産時に金型へ吸着することにより、シリンジ内面へ傷がつき、射出成形時のコア金型抜き取り時の傷付性が問題となる。   In adjusting the MFR, which is a major feature of the present invention, it is important not to perform a molecular weight reduction adjustment process with a peroxide. When low molecular weight components and peroxide decomposition products generated by the peroxide weight reduction adjustment process are adsorbed to the mold during syringe production, the inner surface of the syringe is damaged, and the core mold is removed during injection molding. The scratching property is a problem.

ポリプロピレン樹脂が減成したものであるかの確認方法は、ポリプロピレン樹脂をクロロホルムに入れ、超音波洗浄60分にて抽出処理し、ガスクロマトグラフ分析によって過酸化物の分解生成物であるアセトン、アルコール類を分析する事で可能である。   A method for confirming whether the polypropylene resin has deteriorated is as follows. Put the polypropylene resin in chloroform, extract it by ultrasonic cleaning for 60 minutes, and analyze by acetone and alcohols which are peroxide decomposition products by gas chromatographic analysis. It is possible by analyzing

過酸化物による減成以外でMFRの好ましい調整方法は重合における水素濃度と重合温度が最も効果的であるが、複数の樹脂ブレンドによるMFR調整も可能である。   A preferable method for adjusting MFR other than degradation by peroxide is most effective in the hydrogen concentration and polymerization temperature in the polymerization, but MFR adjustment by a plurality of resin blends is also possible.

本発明に係るプロピレン単独重合体の、13C−NMRで測定したメソペンタッド分率(mmmm)は0.920〜0.950であり、好ましくは0.920〜0.940である。 The mesopentad fraction (mmmm) measured by 13 C-NMR of the propylene homopolymer according to the present invention is 0.920 to 0.950, preferably 0.920 to 0.940.

メソペンタッド分率をこの範囲とすることによるメリットは、3つあり、1つは透明性の大幅向上である。これは水蒸気滅菌後の透過率低下をも抑制できる。2つ目はシリンジの耐衝撃性である。シリンジ成型では、筒状の部位を溶融させて成型する為、歪みとウェルドが残りやすく、且つポリプロピレンの流動配向結晶化(流動しながら結晶化しながら固化する)によって更に歪みが生じる。これによって衝撃が加わった時に破壊しやすくなる問題がある。メソペンタッド分率をこの範囲とすることにより、特にポリプロピレンの配向結晶化を大幅に低減でき、耐衝撃性を向上させる事ができる事を我々は新たに発見した。3つ目はこの範囲から大幅に外れるとシリンジの耐熱性やシリンジ同士の接触による耐傷付性が不良になる点である。   There are three advantages of setting the mesopentad fraction within this range, and one is a significant improvement in transparency. This can also suppress a decrease in transmittance after steam sterilization. The second is the impact resistance of the syringe. In syringe molding, since a cylindrical part is melted and molded, distortion and weld are likely to remain, and further distortion occurs due to flow orientation crystallization of polypropylene (solidifying while flowing). As a result, there is a problem that it is easily broken when an impact is applied. We have newly discovered that by setting the mesopentad fraction within this range, it is possible to significantly reduce the orientation crystallization of polypropylene, and to improve the impact resistance. The third point is that if it is significantly out of this range, the heat resistance of the syringe and the scratch resistance due to contact between the syringes become poor.

メソペンタッド分率(mmmm)は、13C−NMRを使用して測定されるポリプロピレン分子鎖中のペンタッド単位でのアイソタクチック連鎖の存在割合を示している。具体的には、プロピレン単位で5個連続してメソ結合した連鎖の中心にあるメチル基に由来する吸収強度(Pmmmm)のプロピレン単位の全メチル基に由来する吸収強度(Pw)に対する比、すなわち〔(Pmmmm)/(Pw)〕として求められる値である。また、本発明に係るプロピレン単独重合体の分子量分布は2.0〜5.6であり、好ましくは3.0〜5.0である。 The mesopentad fraction (mmmm) indicates the abundance of isotactic chains in pentad units in a polypropylene molecular chain measured using 13 C-NMR. Specifically, the ratio of the absorption intensity (Pmmmm) derived from the methyl group at the center of the chain in which five meso-bonded propylene units are consecutive to the absorption intensity (Pw) derived from all the methyl groups in the propylene unit, that is, This is a value obtained as [(Pmmmm) / (Pw)]. The molecular weight distribution of the propylene homopolymer according to the present invention is 2.0 to 5.6, preferably 3.0 to 5.0.

メソペンタッド分率及び分子量分布を上記範囲に調節する方法は詳細は実施例に記載するが、触媒と助触媒、重合条件によって調節可能である。   The method for adjusting the mesopentad fraction and the molecular weight distribution to the above ranges is described in detail in the Examples, but can be adjusted by the catalyst, the cocatalyst and the polymerization conditions.

分子量分布をこの範囲に限定することにより、配向結晶化による残留応力を低減でき、耐衝撃性に寄与できるメリットがある。   By limiting the molecular weight distribution to this range, there is an advantage that residual stress due to orientation crystallization can be reduced and contribution to impact resistance can be achieved.

メルトフローレートとメソペンタッド分率及び分子量分布の全てが上記の範囲内にあると、得られるポリプロピレン樹脂の流動性(成形性)とシリンジとした時の透明性及び特に高い耐衝撃性が得られ、且つ従来無し得なかったコア金型抜き取り時の傷が高度に抑制され、内容物視認性に富んだ非常に良好で高機能なシリンジを得る事ができる。   When the melt flow rate, the mesopentad fraction and the molecular weight distribution are all within the above ranges, the flowability (moldability) of the resulting polypropylene resin, transparency when used as a syringe, and particularly high impact resistance are obtained. In addition, it is possible to obtain a very good and highly functional syringe that is highly suppressed in scratches at the time of extraction of the core mold, which could not be obtained in the past, and that is rich in contents visibility.

本発明に係るプロピレン単独重合体は、公知のチタン系やメタロセン系重合用触媒と助触媒の存在下に、プロピレンを単独重合させることによって製造される。重合用触媒としては、例えば、WO01/27124号公報に記載された重合用触媒を用いることができる。プロピレン単独重合体の重合工程は、通常、約−50〜200℃、好ましくは約50〜100℃の温度で、また通常、常圧〜100kg/cm2、好ましくは約2〜50kg/cm2の圧力下で行なわれる。プロピレンの重合は、回分式、半連続式、連続式の何れの方法によっても行うことができる。 The propylene homopolymer according to the present invention is produced by homopolymerizing propylene in the presence of a known titanium or metallocene polymerization catalyst and a co-catalyst. As the polymerization catalyst, for example, the polymerization catalyst described in WO01 / 27124 can be used. The polymerization process of the propylene homopolymer is usually at a temperature of about −50 to 200 ° C., preferably about 50 to 100 ° C., and usually at normal pressure to 100 kg / cm 2 , preferably about 2 to 50 kg / cm 2 . Performed under pressure. The polymerization of propylene can be carried out by any of batch, semi-continuous and continuous methods.

本発明に係るポリプロピレン樹脂は、必要に応じてリン系酸化防止剤、アミン系酸化防止剤、ハイドロタルサイトを代表とする塩酸吸収剤を含有してもよい。   The polypropylene resin according to the present invention may contain a phosphorus-based antioxidant, an amine-based antioxidant, and a hydrochloric acid absorbent typified by hydrotalcite as necessary.

リン系酸化防止剤としては、特に制限はなく、従来公知のリン系酸化防止剤を用いることができる。なお、リン系酸化防止剤の使用が1種類のみであると、ブリードによる内容物汚染が少ないため好ましい。リン系酸化防止剤としては、3価の有機リン化合物が好ましく、具体的には、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルフォスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジフォスファイトなどが挙げられる。   There is no restriction | limiting in particular as phosphorus antioxidant, A conventionally well-known phosphorus antioxidant can be used. Note that it is preferable that only one type of phosphorus-based antioxidant is used because the content contamination due to bleeding is small. The phosphorus antioxidant is preferably a trivalent organic phosphorus compound, specifically, tris (2,4-di-t-butylphenyl) phosphite, 2,2-methylenebis (4,6-di-). t-butylphenyl) octyl phosphite, bis (2,6-di-t-butyl-4-methylphenyl) pentaerythritol diphosphite, and the like.

リン系酸化防止剤は、ポリプロピレン樹脂100重量部に対して、通常0.05〜0.3重量部、好ましくは0.07〜0.2重量部、特に好ましくは0.1〜0.15重量部の割合で用いられる。   The phosphorus-based antioxidant is usually 0.05 to 0.3 parts by weight, preferably 0.07 to 0.2 parts by weight, particularly preferably 0.1 to 0.15 parts by weight with respect to 100 parts by weight of the polypropylene resin. Used in parts ratio.

アミン系酸化防止剤としては、ピペリジン環を持つ化合物が例示される。具体的には、コハク酸ジメチル・1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6- テトラメチルピペリジン重縮合物、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ポリ[[6-[1-[(1,1,3,3-テトラメチルブチル)アミノ]-s-トリアジン-2,4-ジイル][[(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]ヘキサメチレン[(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]]などが挙げられる。   Examples of amine-based antioxidants include compounds having a piperidine ring. Specifically, dimethyl succinate / 1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate, bis (2,2,6,6-tetramethyl- 4-piperidyl) sebacate, poly [[6- [1-[(1,1,3,3-tetramethylbutyl) amino] -s-triazine-2,4-diyl] [[(2,2,6, 6-tetramethyl-4-piperidyl) imino] hexamethylene [(2,2,6,6-tetramethyl-4-piperidyl) imino]] and the like.

アミン系酸化防止剤は、ポリプロピレン樹脂100重量部に対して、通常0.01〜0.3重量部、好ましくは0.01〜0.2重量部、さらに好ましくは0.01〜0.1重量部、特に好ましくは0.03〜0.06重量部の割合で用いられる。   The amine-based antioxidant is usually 0.01 to 0.3 parts by weight, preferably 0.01 to 0.2 parts by weight, more preferably 0.01 to 0.1 parts by weight with respect to 100 parts by weight of the polypropylene resin. Parts, particularly preferably 0.03-0.06 parts by weight.

塩酸吸収剤としては、滅菌方法や薬液との白濁物生成、造核剤との相互作用を考慮し、ハイドロタルサイトが好ましいが、薬液との反応性などが無い場合に限っては、適宜脂肪酸金属塩を極力減量したハイドロタルサイトとの併用系も使用できる。塩酸吸収剤添加量は、ポリプロピレン樹脂100重量部に対して、0.02〜0.20重量部の割合で用いられる。   As the hydrochloric acid absorbent, hydrotalcite is preferable in consideration of the sterilization method, the formation of white turbidity with the chemical solution, and the interaction with the nucleating agent, but the fatty acid is suitably used only when there is no reactivity with the chemical solution. A combined system with hydrotalcite with the metal salt reduced as much as possible can also be used. The added amount of hydrochloric acid absorbent is 0.02 to 0.20 parts by weight with respect to 100 parts by weight of the polypropylene resin.

本発明に係るポリプロピレン樹脂は、必要に応じて、本発明の目的を損なわない範囲で、さらに耐熱安定剤、帯電防止剤、スリップ剤を配合することもできる。   If necessary, the polypropylene resin according to the present invention may further contain a heat resistance stabilizer, an antistatic agent, and a slip agent within the range not impairing the object of the present invention.

本発明に係るポリプロピレン樹脂に対して、透明性を付与するため、核剤を添加してもよい。核剤としては一般的な核剤が使用可能である。有機リン酸エステルに代表されるアデカスタブNA−11が最も一般的である。但し、第14改正日本薬局方一般試験法『プラスチック製医薬品容器試験法』のプラスチック製水性注射剤容器(ポリエチレン製またはポリプロピレン性注射剤容器)規格である紫外吸収スペクトルを満足する為、ソルビトール系核剤の添加は望ましくない。   In order to impart transparency to the polypropylene resin according to the present invention, a nucleating agent may be added. A general nucleating agent can be used as the nucleating agent. Adekastab NA-11 represented by organic phosphate ester is the most common. However, in order to satisfy the ultraviolet absorption spectrum which is the standard for plastic aqueous injection container (polyethylene or polypropylene injection container) of the 14th revised Japanese Pharmacopoeia General Test Method "Plastic Drug Container Test Method", sorbitol core Addition of agents is not desirable.

本発明に係るポリプロピレン樹脂は、前記プロピレン単独重合体に対して、必要に応じて造核剤および他の添加剤たとえばリン系酸化防止剤、アミン系酸化防止剤、塩酸吸収剤等を、ヘンシェルミキサー、V型ブレンダー、タンブラーブレンダー、リボンブレンダーなどを用いて混合した後、単軸押出機、多軸押出機、ニーダー、バンバリーミキサーなどを用いて溶融混練することによって、上記各成分および添加剤が均一に分散混合された高品質のポリプロピレン樹脂組成物として得ることが出来る。   The polypropylene resin according to the present invention contains a nucleating agent and other additives such as a phosphorus-based antioxidant, an amine-based antioxidant, a hydrochloric acid absorbent, etc., if necessary, with respect to the propylene homopolymer. After mixing using a V-type blender, tumbler blender, ribbon blender, etc., the above components and additives are uniform by melt-kneading using a single screw extruder, multi-screw extruder, kneader, Banbury mixer, etc. It can be obtained as a high-quality polypropylene resin composition dispersed and mixed.

本発明に係る医療用シリンジは、前記ポリプロピレン樹脂を射出成形して得られる。ポリプロピレン樹脂の射出成形の方法としては、通常用いられる方法を用いることが出来る。前記ポリプロピレン樹脂を用いて射出成形を行うことによって、衛生性、耐熱性、成形時の気泡発生抑制とロングラン成形性、更には射出成形時のコア金型抜き取り時の傷付性を従来成し得なかったレベルで全てを満足する医療用シリンジを提供することができる。   The medical syringe according to the present invention is obtained by injection molding the polypropylene resin. As a method for injection molding of polypropylene resin, a commonly used method can be used. By performing injection molding using the polypropylene resin, hygiene, heat resistance, suppression of bubble generation during molding and long run moldability, as well as scratchability when extracting a core die during injection molding can be achieved. It is possible to provide a medical syringe satisfying all at a level that has not been obtained.

本発明に係るプレフィルドシリンジ薬剤において用いられる薬液はpHが5.0〜9.0である事が望ましい。それよりも酸性や塩基性の高い薬剤の場合、水蒸気滅菌や長期保存においてシリンジへの薬液成分のシリンジへの吸着や、ポリプロピレン樹脂組成物からの微量抽出物との相互作用によって効能失効のおそれがあり望ましくない。   As for the chemical | medical solution used in the prefilled syringe chemical | medical agent which concerns on this invention, it is desirable that pH is 5.0-9.0. In the case of drugs with higher acidity or basicity than that, there is a risk that efficacy will be lost due to adsorption of chemical components to the syringe or interaction with a trace amount extract from the polypropylene resin composition during steam sterilization or long-term storage. There are undesirable.

薬液は上記pH範囲であれば限定されないが、例えばヘパリン水溶液や塩化カリウム水溶液に代表される中性(pHが7.0近傍)の薬液である事が特に望ましい。高揮発性製剤や高濃度アルコール製剤は滅菌時にシリンジ内圧上昇による変形などがあり、pHに寄らず薬液から除外する。   The chemical solution is not limited as long as it is in the above pH range, but for example, it is particularly desirable that the chemical solution be a neutral (pH around 7.0) such as a heparin aqueous solution or a potassium chloride aqueous solution. Highly volatile and high-concentration alcohol preparations are deformed due to an increase in syringe internal pressure during sterilization, and are excluded from chemical solutions regardless of pH.

本発明に係るプレフィルドシリンジ製剤は特定のポリプロピレン樹脂を射出成形してなり、剛性、耐熱性、成形時の気泡抑制、衛生性、ハイサイクル生産性を保持したまま特に従来到達しえない更なる透明性改良と耐衝撃性に優れ、且つ、ロングラン射出成形においてシリンジ内面に傷がつきにくいという、従来のポリプロピレン樹脂では得られない全てのバランスを有する。   The prefilled syringe preparation according to the present invention is obtained by injection-molding a specific polypropylene resin, and further transparency that cannot be achieved in the past while maintaining rigidity, heat resistance, suppression of bubbles during molding, hygiene, and high cycle productivity. It has all of the balance that cannot be obtained with conventional polypropylene resins, such as excellent property improvement and impact resistance, and that the inner surface of the syringe is not easily damaged in long-run injection molding.

次に、本発明を実施例により説明するが、本発明は、これらの実施例によって何ら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention, this invention is not limited at all by these Examples.

実施例等において、物性は次の方法で測定した。
・ メルトフローレート(MFR)は、ASTM D 1238に準拠し、230℃、荷重2.16kgで測定した。
・ メソペンタッド分率(mmmm)は、13C−NMRを使用して測定されるポリプロピレン分子鎖中のペンタッド単位でのアイソタクチック連鎖の存在割合を示している。具体的には、プロピレン単位で5個連続してメソ結合した連鎖の中心にあるメチル基に由来する吸収強度(Pmmmm)のプロピレン単位の全メチル基に由来する吸収強度(Pw)に対する比、すなわち〔(Pmmmm)/(Pw)〕として求めた。
(3)曲げ弾性率は、ASTM D 790に準拠して曲げ試験を行ない、その結果から曲げ弾性率を算出した。
(4)加熱変形温度;ASTM D 648に準じて行った。単位は℃。
(5)透明性(視認性)評価;長さ12cm、幅11cm、厚み1mmの角板を200℃溶融温度/金型温度30℃にて射出成形し、第14改正日本薬局方一般試験法『プラスチック製医薬品容器試験法』のプラスチック製水性注射剤容器(ポリエチレン製またはポリプロピレン性注射剤容器)に準じ、121℃1時間シリンジを水蒸気滅菌し、滅菌前後での純水中での並行透過光率を測定した。日本薬局方基準は並行透過光率で55%以上であるが、製品形状や肉厚、特にシリンジの場合1mm〜1.2mm肉厚にて設計されており、55%を1mmとして、1.2mm肉厚の場合を想定し、1mmの55%の2割増しである66%以上を合格判定基準○とし、65%以下の並行透過光率で×とした。
(6)成形性の評価として、20ml、厚み1mmの注射器外筒8本取り金型にて150t電動射出成形機にて、シリンジ生産サイクルタイム(秒)をもとめ、6秒以上となる物は×とした。
In Examples and the like, physical properties were measured by the following methods.
The melt flow rate (MFR) was measured at 230 ° C. and a load of 2.16 kg according to ASTM D 1238.
-Mesopentad fraction (mmmm) has shown the abundance ratio of the isotactic chain in the pentad unit in the polypropylene molecular chain measured using < 13 > C-NMR. Specifically, the ratio of the absorption intensity (Pmmmm) derived from the methyl group at the center of the chain in which five meso-bonded propylene units are consecutive to the absorption intensity (Pw) derived from all the methyl groups in the propylene unit, that is, [(Pmmmm) / (Pw)].
(3) The bending elastic modulus was subjected to a bending test according to ASTM D 790, and the bending elastic modulus was calculated from the result.
(4) Heat deformation temperature: It was performed according to ASTM D648. The unit is ° C.
(5) Transparency (visibility) evaluation: A square plate having a length of 12 cm, a width of 11 cm, and a thickness of 1 mm was injection-molded at 200 ° C. melting temperature / die temperature of 30 ° C., and the 14th revised Japanese Pharmacopoeia General Test Method “ According to the plastic water-based injection container (polyethylene or polypropylene-type injection container) of “Plastic drug container test method”, the syringe is steam sterilized for 1 hour at 121 ° C, and the parallel light transmittance in pure water before and after sterilization Was measured. The Japanese Pharmacopoeia standard is 55% or more in terms of parallel transmittance, but the product shape and thickness, especially in the case of syringes are designed with a thickness of 1 mm to 1.2 mm, with 55% being 1 mm and 1.2 mm. Assuming the case of wall thickness, 66% or more, which is 20% of 55% of 1 mm, was set as a pass criterion, and X was set as a parallel transmitted light rate of 65% or less.
(6) As an evaluation of moldability, a syringe production cycle time (seconds) was determined with a 150-ton electric injection molding machine using a 20 ml, 1 mm-thick syringe outer mold with a thickness of 1 mm. It was.

また、200ショットを生産し、シリンジ内面にコア金型抜き取り傷が入ったものを×、傷の無いものを○とした。   In addition, 200 shots were produced, and the case where the core mold was removed from the inner surface of the syringe was marked with ×, and the case without scratch was marked with ○.

後述するが、MFRが低い為に成形できなかったものは成形不可と記した。
(7)上記シリンジを用い、ヘパリン(500u/ml)水溶液を入れて押し子をし、日局方溶出物試験121℃1時間水蒸気滅菌後のシリンジの変形を目視で評価した。
(8)シリンジ破壊高さは45gの四角錘を上記シリンジ胴部に種々の高さで落下させ、破壊高さの平均(n=10)をもとめ、50cm高さ以下で割れた場合を×とした。
As will be described later, those that could not be molded due to low MFR were marked as unmoldable.
(7) Using the above syringe, heparin (500 u / ml) aqueous solution was put into a pusher, and the deformation of the syringe after steam sterilization at 121 ° C. for 1 hour was evaluated visually.
(8) Syringe breaking height is 45 g of square weight dropped on the syringe barrel at various heights, and the average breaking height (n = 10) is determined. did.

〔製造例1〕
[固体状チタン触媒成分(a)の調製]
無水塩化マグネシウム952g、デカン4420mlおよび2−エチルヘキシルアルコール3906gを、130℃で2時間加熱して均一溶液とした。この溶液中に無水フタル酸213gを添加し、130℃にてさらに1時間攪拌混合を行って無水フタル酸を溶解させた。
[Production Example 1]
[Preparation of solid titanium catalyst component (a)]
952 g of anhydrous magnesium chloride, 4420 ml of decane and 3906 g of 2-ethylhexyl alcohol were heated at 130 ° C. for 2 hours to obtain a homogeneous solution. To this solution, 213 g of phthalic anhydride was added, and further stirred and mixed at 130 ° C. for 1 hour to dissolve phthalic anhydride.

このようにして得られた均一溶液を23℃まで冷却した後、この均一溶液の750mlを、−20℃に保持された四塩化チタン2000ml中に1時間にわたって滴下した。滴下後、得られた混合液の温度を4時間かけて110℃に昇温し、110℃に達したところでフタル酸ジイソブチル(DIBP)52.2gを添加し、これより2時間攪拌しながら同温度に保持した。次いで熱時濾過にて固体部を採取し、この固体部を2750mlの四塩化チタンに再懸濁させた後、再び110℃で2時間加熱した。
加熱終了後、再び熱濾過にて固体部を採取し、110℃のデカンおよびヘキサンを用いて、洗浄液中にチタン化合物が検出されなくなるまで洗浄した。
上記の様に調製された固体状チタン触媒成分(a)はヘキサンスラリーとして保存されるが、このうち一部を乾燥して触媒組成を調べた。固体状チタン触媒成分(a)は、チタンを3重量%、塩素を58重量%、マグネシウムを18重量%およびDIBPを21重量%の量で含有していた。
After cooling the homogeneous solution thus obtained to 23 ° C., 750 ml of this homogeneous solution was dropped into 2000 ml of titanium tetrachloride maintained at −20 ° C. over 1 hour. After the dropwise addition, the temperature of the resulting mixture was raised to 110 ° C. over 4 hours. When the temperature reached 110 ° C., 52.2 g of diisobutyl phthalate (DIBP) was added, and the mixture was stirred at the same temperature for 2 hours. Held on. Subsequently, the solid part was collected by hot filtration, and the solid part was resuspended in 2750 ml of titanium tetrachloride, and then heated again at 110 ° C. for 2 hours.
After the heating, the solid part was again collected by hot filtration, and washed with decane and hexane at 110 ° C. until no titanium compound was detected in the washing solution.
The solid titanium catalyst component (a) prepared as described above was stored as a hexane slurry. A part of the catalyst was dried to examine the catalyst composition. The solid titanium catalyst component (a) contained 3% by weight of titanium, 58% by weight of chlorine, 18% by weight of magnesium and 21% by weight of DIBP.

[予備重合触媒の調製]
200 リットルの攪拌機付きオートクレーブ中に、窒素雰囲気下、精製ヘプタン140 リットル、トルエチルアルミニウム0.28mol、および上記で得られた固体状チタン触媒成分(a)をチタン原子換算で0.094mol装入した後、プロピレンを1350g導入し、温度20℃以下に保ちながら、1時間反応させた。
重合終了後、反応器内を窒素で置換し、上澄液の除去および精製ヘプタンによる洗浄を3回行った。得られた予備重合触媒を精製ヘプタンに再懸濁して触媒供給槽に移し、固体状チタン触媒成分(a)濃度で1.5g/Lとなるよう、精製ヘプタンにより調整を行った。この予備重合触媒は固体状チタン触媒成分(a)1g当りポリプロピレンを6g含んでいた。
[Preparation of prepolymerization catalyst]
In a 200 liter autoclave equipped with a stirrer, under a nitrogen atmosphere, 140 liters of purified heptane, 0.28 mol of toluethylaluminum, and 0.094 mol of the solid titanium catalyst component (a) obtained above were charged in terms of titanium atoms. Thereafter, 1350 g of propylene was introduced and reacted for 1 hour while maintaining the temperature at 20 ° C. or lower.
After completion of the polymerization, the inside of the reactor was replaced with nitrogen, and the supernatant was removed and washed with purified heptane three times. The obtained prepolymerized catalyst was resuspended in purified heptane, transferred to a catalyst supply tank, and adjusted with purified heptane so that the solid titanium catalyst component (a) concentration was 1.5 g / L. This prepolymerized catalyst contained 6 g of polypropylene per 1 g of the solid titanium catalyst component (a).

[重合]
内容積 500リットルの攪拌機付き重合槽1に液化プロピレンを300リットルを装入し、この液位を保ちながら、液化プロピレン130kg/h、前記予備重合触媒1.7g/h、トリエチルアルミニウム42mmol/h、シクロヘキシルメチルジメトキシシラン6.3mmol/h、ノルマルブチルメチルジメトキシシラン0.7mmol/hを連続的に供給し、温度75℃で重合した。また水素220NL/h供給した。得られたスラリーは失活後、液体プロピレンによる洗浄槽に送液後、ポリプロピレンパウダーを洗浄した。その後、プロピレンを蒸発させてポリプロピレンパウダー(A1)を得た。
この組成はMFR20g/10分、メソペンタッド分率(mmmm)が0.950、Mw/Mnが5.2であった。
[polymerization]
While charging 300 liters of liquefied propylene into a polymerization tank 1 with a stirrer having an internal volume of 500 liters and maintaining this liquid level, 130 kg / h of liquefied propylene, 1.7 g / h of the prepolymerized catalyst, 42 mmol / h of triethylaluminum, Cyclohexylmethyldimethoxysilane (6.3 mmol / h) and normal butylmethyldimethoxysilane (0.7 mmol / h) were continuously supplied, and polymerization was performed at a temperature of 75 ° C. Hydrogen 220 NL / h was supplied. The obtained slurry was deactivated, and then sent to a liquid propylene washing tank, and the polypropylene powder was washed. Thereafter, propylene was evaporated to obtain polypropylene powder (A1).
This composition had an MFR of 20 g / 10 min, a mesopentad fraction (mmmm) of 0.950, and Mw / Mn of 5.2.

〔製造例2〕
内容積 500リットルの攪拌機付き重合槽1に液化プロピレンを300リットルを装入し、この液位を保ちながら、液化プロピレン130kg/h、製造例1と同じ予備重合触媒1.9g/h、トリエチルアルミニウム50mmol/h、シクロヘキシルメチルジメトキシシラン3.9mmol/h、ノルマルブチルメチルジメトキシシラン4.4mmol/hを連続的に供給し、温度75℃で重合した。また水素170NL/h供給した。得られたスラリーは失活後、液体プロピレンによる洗浄槽に送液後、ポリプロピレンパウダーを洗浄した。その後、プロピレンを蒸発させてポリプロピレンパウダー(A2)を得た。
この組成はMFR20g/10分、メソペンタッド分率(mmmm)が0.935、Mw/Mnが5.1であった。
[Production Example 2]
300 liters of liquefied propylene was charged into a polymerization tank 1 with a stirrer having an internal volume of 500 liters, and while maintaining this liquid level, 130 kg / h of liquefied propylene, 1.9 g / h of the same prepolymerization catalyst as in Production Example 1, triethylaluminum 50 mmol / h, cyclohexylmethyldimethoxysilane 3.9 mmol / h, and normalbutylmethyldimethoxysilane 4.4 mmol / h were continuously supplied, and polymerization was performed at a temperature of 75 ° C. Further, hydrogen was supplied at 170 NL / h. The obtained slurry was deactivated, and then sent to a liquid propylene washing tank, and the polypropylene powder was washed. Thereafter, propylene was evaporated to obtain polypropylene powder (A2).
This composition had an MFR of 20 g / 10 min, a mesopentad fraction (mmmm) of 0.935, and Mw / Mn of 5.1.

〔製造例3〕
内容積 500リットルの攪拌機付き重合槽1に液化プロピレンを300リットルを装入し、この液位を保ちながら、液化プロピレン130kg/h、製造例1と同じ予備重合触媒2.0g/h、トリエチルアルミニウム55mmol/h、シクロヘキシルメチルジメトキシシラン1.8mmol/h、ノルマルブチルメチルジメトキシシラン7.3mmol/hを連続的に供給し、温度75℃で重合した。また水素115NL/h供給した。得られたスラリーは失活後、液体プロピレンによる洗浄槽に送液後、ポリプロピレンパウダーを洗浄した。その後、プロピレンを蒸発させてポリプロピレンパウダー(A3)を得た。
この組成はMFR20g/10分、メソペンタッド分率(mmmm)が0.920、Mw/Mnが5.1であった。
[Production Example 3]
300 liters of liquefied propylene was charged into a polymerization tank 1 with a stirrer having an internal volume of 500 liters, and while maintaining this liquid level, 130 kg / h of liquefied propylene, 2.0 g / h of the same prepolymerization catalyst as in Production Example 1, triethylaluminum 55 mmol / h, cyclohexylmethyldimethoxysilane 1.8 mmol / h, and normal butylmethyldimethoxysilane 7.3 mmol / h were continuously supplied, and polymerization was performed at a temperature of 75 ° C. In addition, hydrogen was supplied at 115 NL / h. The obtained slurry was deactivated, and then sent to a liquid propylene washing tank, and the polypropylene powder was washed. Thereafter, propylene was evaporated to obtain polypropylene powder (A3).
This composition had an MFR of 20 g / 10 min, a mesopentad fraction (mmmm) of 0.920, and Mw / Mn of 5.1.

〔製造例4〕
〔固体触媒担体の調整〕
1L枝付フラスコにSiO(洞海化学社製)300gをサンプリングし、トルエン800mLを入れ、スラリー化した。次に5L4つ口フラスコへ移液をし、トルエン260mLを加えた。メチルアルミノキサン(以下、MAO)−トルエン溶液(アルベマール社製10wt%溶液)を2830mL導入した。室温のままで、30分間攪拌した。1時間で110℃に昇温し、4時間反応を行った。反応終了後、室温まで冷却した。冷却後、上澄みトルエンを抜き出し、フレッシュなトルエンで、置換率が95%になるまで、置換を行った。
〔固体触媒成分(b)の調整(担体への遷移金属化合物成分の担持)〕
グローブボックス内にて、5L4口フラスコにジフェニルメチレン(3-t-ブチル-5-メチルシクロペンタジエニル)(2,7-ジ-t-ブチルフルオレニル)ジルコニウムジクロリドを2.0g秤取った。フラスコを外へ出し、トルエン0.46リットルと固体触媒担体の製造で調製したMAO/Si、SiO2/トルエンスラリー1.4リットルを窒素下で加え、30分間攪拌し担持を行った。得られたジフェニルメチレン(3-t-ブチル-5-メチルシクロペンタジエニル)(2,7-t-ブチルフルオレニル)ジルコニウムジクロリド/MAO/SiO/トルエンスラリーはノルマル−ヘプタンにて99%置換を行い、最終的なスラリー量を4.5リットルとした。この操作は、室温で行った。
[Production Example 4]
[Preparation of solid catalyst support]
300 g of SiO 2 (manufactured by Dokai Chemical Co., Ltd.) was sampled in a 1 L branch flask, and 800 mL of toluene was added to make a slurry. Next, the solution was transferred to a 5 L four-necked flask, and 260 mL of toluene was added. 2830 mL of methylaluminoxane (hereinafter referred to as MAO) -toluene solution (Albemarle 10 wt% solution) was introduced. The mixture was stirred for 30 minutes while remaining at room temperature. The temperature was raised to 110 ° C. over 1 hour and the reaction was carried out for 4 hours. After completion of the reaction, it was cooled to room temperature. After cooling, the supernatant toluene was extracted and replaced with fresh toluene until the replacement rate reached 95%.
[Preparation of solid catalyst component (b) (support of transition metal compound component on support)]
In a glove box, 2.0 g of diphenylmethylene (3-t-butyl-5-methylcyclopentadienyl) (2,7-di-t-butylfluorenyl) zirconium dichloride was weighed in a 5 L four-necked flask. . The flask was taken out, 0.46 liters of toluene and 1.4 liters of MAO / Si, SiO2 / toluene slurry prepared in the production of the solid catalyst support were added under nitrogen, and the mixture was stirred for 30 minutes to carry. The resulting diphenylmethylene (3-t-butyl-5-methylcyclopentadienyl) (2,7-t-butylfluorenyl) zirconium dichloride / MAO / SiO 2 / toluene slurry was 99% in normal-heptane. Substitution was performed and the final slurry volume was 4.5 liters. This operation was performed at room temperature.

〔前重合体の製造〕
前記の固体触媒成分(b)189g、トリエチルアルミニウム99.5mL、ヘプタン94.5Lを内容量200Lの攪拌機付きオートクレーブに挿入し、内温15〜20℃に保ちエチレンを2640g挿入し、180分間攪拌しながら反応させた。重合終了後、固体成分を沈降させ、上澄み液の除去およびヘプタンによる洗浄を2回行った。得られた前重合体を精製ヘプタンに再懸濁して、固体触媒成分濃度で2g/Lとなるよう、ヘプタンにより調整を行った。一部、サンプリングを行い、前重合体の分析を行った。この前重合体、即ち前重合触媒は固体触媒成分(b)1g当りポリエチレンを10g含んでいた。
〔予重合体の製造〕
内容量58Lの管状重合器にプロピレンを45kg/h、水素を12NL/h、前記で製造した触媒スラリーを固体触媒成分(b)として2.5g/h、トリエチルアルミニウム1.5g/hを連続的に供給し、気相の存在しない満液の状態にて重合した。管状反応器の温度は30℃であり、圧力は2.8MPa/Gであった。
(Prepolymer production)
189 g of the above-mentioned solid catalyst component (b), 99.5 mL of triethylaluminum, and 94.5 L of heptane were inserted into an autoclave equipped with a stirrer with an internal volume of 200 L, maintained at an internal temperature of 15 to 20 ° C., 2640 g of ethylene were inserted, and stirred for 180 minutes. It was made to react. After completion of the polymerization, the solid component was precipitated, and the supernatant was removed and washed with heptane twice. The obtained prepolymer was resuspended in purified heptane and adjusted with heptane so that the solid catalyst component concentration was 2 g / L. A part was sampled and the prepolymer was analyzed. This prepolymer, that is, the prepolymerization catalyst, contained 10 g of polyethylene per 1 g of the solid catalyst component (b).
[Prepolymer production]
Propylene 45 kg / h, hydrogen 12 NL / h, 2.5 g / h of the catalyst slurry produced above as solid catalyst component (b), 1.5 g / h of triethylaluminum continuously in a tubular polymerizer with an internal volume of 58 L And polymerized in a full liquid state without a gas phase. The temperature of the tubular reactor was 30 ° C., and the pressure was 2.8 MPa / G.

〔本重合〕
前記の予重合で得られたスラリーは内容量1000Lの攪拌機付きベッセル重合器へ送り、更に本重合を行った。重合器へは、プロピレンを50kg/h、水素を気相部の水素濃度が0.45mol%になるように供給した。重合温度70℃、圧力2.7MPa/Gで重合を行った。
得られたスラリーは内容量500Lの攪拌機付きベッセル重合器へ送り、更に本重合を行った。重合器へは、プロピレンを30kg/h、水素を気相部の水素濃度が0.5mol%になるように供給した。重合温度68℃、圧力2.7MPa/Gで重合を行った。
得られたスラリーを気化後、気固分離を行い、プロピレン系重合体粒子(A4)を得た。得られたプロピレン系重合体粒子は、80℃で真空乾燥を行った。
この組成はMFR40、メソペンタッド分率(mmmm)が0.950、Mw/Mnが2.0であった。
[Main polymerization]
The slurry obtained by the pre-polymerization was sent to a vessel polymerization vessel with a stirrer having an internal volume of 1000 L, and further polymerization was performed. To the polymerization reactor, propylene was supplied at 50 kg / h, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.45 mol%. Polymerization was performed at a polymerization temperature of 70 ° C. and a pressure of 2.7 MPa / G.
The obtained slurry was sent to a vessel polymerization vessel with a stirrer having an internal volume of 500 L, and further polymerization was performed. To the polymerization reactor, propylene was supplied at 30 kg / h, and hydrogen was supplied so that the hydrogen concentration in the gas phase was 0.5 mol%. Polymerization was performed at a polymerization temperature of 68 ° C. and a pressure of 2.7 MPa / G.
After vaporizing the resulting slurry, gas-solid separation was performed to obtain propylene polymer particles (A4). The resulting propylene polymer particles were vacuum dried at 80 ° C.
This composition had MFR40, a mesopentad fraction (mmmm) of 0.950, and Mw / Mn of 2.0.

〔製造例5〕
内容積 500リットルの攪拌機付き重合槽1に液化プロピレンを300リットルを装入し、この液位を保ちながら、液化プロピレン130kg/h、製造例1と同じ予備重合触媒2.1g/h、トリエチルアルミニウム58mmol/h、シクロヘキシルメチルジメトキシシラン0.2mmol/h、ノルマルブチルメチルジメトキシシラン9.5mmol/hを連続的に供給し、温度75℃で重合した。また水素50NL/h供給した。得られたスラリーは失活後、液体プロピレンによる洗浄槽に送液後、ポリプロピレンパウダーを洗浄した。その後、プロピレンを蒸発させてポリプロピレンパウダー(A5)を得た。この組成はMFR20g/10分、メソペンタッド分率(mmmm)が0.910、Mw/Mnが5.1であった。
[Production Example 5]
While charging 300 liters of liquefied propylene into a polymerization tank 1 with an internal volume of 500 liters while maintaining this liquid level, 130 kg / h of liquefied propylene, 2.1 g / h of the same prepolymerization catalyst as in Production Example 1, triethylaluminum 58 mmol / h, cyclohexylmethyldimethoxysilane 0.2 mmol / h, and normal butylmethyldimethoxysilane 9.5 mmol / h were continuously fed and polymerized at a temperature of 75 ° C. Hydrogen was supplied at 50 NL / h. The obtained slurry was deactivated, and then sent to a liquid propylene washing tank, and the polypropylene powder was washed. Thereafter, propylene was evaporated to obtain polypropylene powder (A5). This composition had an MFR of 20 g / 10 min, a mesopentad fraction (mmmm) of 0.910, and Mw / Mn of 5.1.

〔製造例6〕
内容積 500リットルの攪拌機付き重合槽1に液化プロピレンを300リットルを装入し、この液位を保ちながら、液化プロピレン130kg/h、製造例1と同じ予備重合触媒1.5g/h、トリエチルアルミニウム38mmol/h、ジシクロペンチルジメトキシシラン6.3mmol/hを連続的に供給し、温度75℃で重合した。また水素230NL/h供給した。得られたスラリーは失活後、液体プロピレンによる洗浄槽に送液後、ポリプロピレンパウダーを洗浄した。その後、プロピレンを蒸発させてポリプロピレンパウダー(A6)を得た。
この組成はMFR20g/10分、メソペンタッド分率(mmmm)が0.960、Mw/Mnが5.6であった。
[Production Example 6]
While charging 300 liters of liquefied propylene into a polymerization tank 1 with a stirrer having an internal volume of 500 liters and maintaining this liquid level, 130 kg / h of liquefied propylene, 1.5 g / h of the same prepolymerization catalyst as in Production Example 1, triethylaluminum 38 mmol / h, 6.3 mmol / h of dicyclopentyldimethoxysilane were continuously supplied, and polymerization was performed at a temperature of 75 ° C. Hydrogen 230 NL / h was supplied. The obtained slurry was deactivated, and then sent to a liquid propylene washing tank, and the polypropylene powder was washed. Thereafter, propylene was evaporated to obtain polypropylene powder (A6).
This composition had an MFR of 20 g / 10 min, a mesopentad fraction (mmmm) of 0.960, and Mw / Mn of 5.6.

〔製造例7〕
(1)固体触媒成分(B)の調製 窒素で置換した内容積5リットルの攪拌器付三つ口フラスコにジエトキシマグネシウム160g(1.4モル)を投入し、さらに脱水処理したヘプタンを500ミリリットル加えた。40℃に加熱し四塩化ケイ素28.5ミリリットル(225ミリモル)を加え、20分間攪拌し、フタル酸ジエチルを127ミリモル加えた。溶液を80℃まで昇温し、引き続き四塩化チタンを滴下ロートを用いて461ミリリットル(4.2モル)滴下した。内温を110℃とし2時間攪拌し担持操作とした。その後脱水ヘプタンを用いて十分洗浄を行った。さらに四塩化チタンを768ミリリットル(7モル)加え、内温を110℃とし2時間攪拌し2回目の担持操作とした。その後脱水ヘプタンを用いて十分洗浄を行い固体成分(B)を得た。(2)固体触媒の予備重合 窒素で置換した内容積1リットルの攪拌機付きの三つ口フラスコに上記の固体状チタン触媒成分60グラム(37.6ミリモル−Ti)を含むヘプタンスラリーを投入し、更に脱水したヘプタンを加えて、全量を500ミリリットルとした。これを40℃に制御しながら攪拌し、トリエチルアルミニウム24.8ミリモル、シクロヘキシルジメトキシシラン6.2ミリモルを加えた。40℃のまま、120分間プロピレンを所定量吸収させ、残留プロピレンを窒素で置換して、ヘプタンを用いて充分洗浄を行い、予備重合触媒成分(B)を85グラム得た(シール量:0.43グラム−PP/グラム固体状Ti触媒成分)。(3)プロピレンスラリー重合 内容積10リットルの攪拌機付ステンレス製オートクレーブを十分乾燥し、窒素置換の後、内部に脱水処理したヘプタン6リットルを加えた。このオートクレーブ温度を80℃に加温し、トリエチルアルミニウム12ミリモル、続いてシクロヘキシルメチルジメトキシシラン1.2ミリモルを加えた。次いで水素を0.02MPa導入した後、プロピレンを導入して全圧を0.78MPaとした。系内が安定した後、上記予備重合触媒成分をTi当たりで0.3ミリモルを加え、重合を開始しとした。その1時間後、メタノール50ミリリットルを系内に投入して重合終了とし降温、脱圧した。続いて、固体部を取り出し、ろ別、真空乾燥した。その結果、プロピレン重合体(A7)2.4kgを得た。この重合体の135℃テトラリン中で測定した極限粘度[η]は1.49dl/gであった。また、JIS K7210に準拠して測定したMFRは20.0g/10分、メソペンタッド分率(mmmm)は0.927、Mw/Mnは5.8であった。
[Production Example 7]
(1) Preparation of solid catalyst component (B) 160 g (1.4 mol) of diethoxymagnesium was added to a 5-necked three-necked flask with an internal volume substituted with nitrogen and 500 ml of dehydrated heptane was added. added. The mixture was heated to 40 ° C., 28.5 ml (225 mmol) of silicon tetrachloride was added, stirred for 20 minutes, and 127 mmol of diethyl phthalate was added. The temperature of the solution was raised to 80 ° C., and subsequently 461 ml (4.2 mol) of titanium tetrachloride was added dropwise using a dropping funnel. The internal temperature was set to 110 ° C. and the mixture was stirred for 2 hours to carry out the supporting operation. Thereafter, it was thoroughly washed with dehydrated heptane. Further, 768 ml (7 moles) of titanium tetrachloride was added, the internal temperature was set to 110 ° C., and the mixture was stirred for 2 hours to carry out the second loading operation. Thereafter, the solid component (B) was obtained by sufficiently washing with dehydrated heptane. (2) Prepolymerization of solid catalyst A heptane slurry containing 60 g (37.6 mmol-Ti) of the above solid titanium catalyst component was charged into a three-necked flask equipped with a stirrer with an internal volume of 1 liter substituted with nitrogen, Further, dehydrated heptane was added to make a total volume of 500 ml. This was stirred while controlling at 40 ° C., and 24.8 mmol of triethylaluminum and 6.2 mmol of cyclohexyldimethoxysilane were added. While maintaining the temperature at 40 ° C., a predetermined amount of propylene was absorbed for 120 minutes, and the remaining propylene was replaced with nitrogen, and washed thoroughly with heptane to obtain 85 grams of a prepolymerized catalyst component (B) (seal amount: 0.00). 43 grams-PP / gram solid Ti catalyst component). (3) Propylene Slurry Polymerization A stainless steel autoclave with a stirrer with an internal volume of 10 liters was sufficiently dried, and after substitution with nitrogen, 6 liters of dehydrated heptane was added. The autoclave temperature was warmed to 80 ° C. and 12 mmol of triethylaluminum was added followed by 1.2 mmol of cyclohexylmethyldimethoxysilane. Next, 0.02 MPa of hydrogen was introduced, and then propylene was introduced to bring the total pressure to 0.78 MPa. After the system was stabilized, 0.3 mmol of the prepolymerized catalyst component per Ti was added to start the polymerization. After 1 hour, 50 ml of methanol was charged into the system to complete the polymerization, and the temperature was lowered and the pressure was released. Subsequently, the solid part was taken out, filtered and dried in vacuum. As a result, 2.4 kg of a propylene polymer (A7) was obtained. The intrinsic viscosity [η] of this polymer measured in 135 ° C. tetralin was 1.49 dl / g. The MFR measured in accordance with JIS K7210 was 20.0 g / 10 min, the mesopentad fraction (mmmm) was 0.927, and Mw / Mn was 5.8.

〔製造例8〕
予備重合 内容積5リットルの攪拌機付きの三つ口フラスコを十分に乾燥し窒素ガスで置換した後、脱水処理したヘプタンを4リットル、ジエチルアルミニウムクロライド140グラムを加え固体触媒成分(A)(市販のSolvay型三塩化チタン触媒(東ソー・ファインケム社製))20gを加えた。内温を20℃に保持し、攪拌しながらプロピレンを連続的に導入した。80分後、攪拌を停止し結果的に固体触媒1g当たり0.8gのプロピレンが重合した予備重合触媒成分(A)を得た。(2)プロピレン重合内容積10リットルの攪拌機付きステンレス製オートクレーブを十分乾燥し窒素ガスで置換した後、脱水処理したヘプタン6リットルを加え、系内の窒素をプロピレンで置換した。その後、内温を60℃として水素を0.14MPa加えて攪拌しながらプロピレンを導入した。系内が全圧0.78MPa、60℃に安定した後、上記予備重合触媒成分を固体触媒換算で0.75グラム含んだヘプタンスラリー150ミリリットルを加えて重合開始とした。重合開始4時間プロピレンを連続的に供給した後、50ミリリットルのメタノールを添加し重合終了とし降温、脱圧した。内容物を全量フィルター付きろ過槽へ移し1−ブタノール 100ミリリットルを加え85℃で1時間撹拌した後に固液分離した。更に、85℃のヘプタン5リットル、蒸留水1リットルの混合液で固体部を2回洗浄し、真空乾燥した。その結果、プロピレン重合体(A8)3.5kgを得た。この重合体の135℃テトラリン中で測定した極限粘度[η]は1.42dl/gであった。また、JIS K7210に準拠して測定したMFRは20.7g/10分、メソペンタッド分率(mmmm)は0.940、Mw/Mnは8.4であった。
[Production Example 8]
Prepolymerization A three-necked flask equipped with a stirrer with an internal volume of 5 liters was thoroughly dried and replaced with nitrogen gas. Then, 4 liters of dehydrated heptane and 140 grams of diethylaluminum chloride were added to add a solid catalyst component (A) (commercially available 20 g of Solvay type titanium trichloride catalyst (manufactured by Tosoh Finechem) was added. The internal temperature was kept at 20 ° C., and propylene was continuously introduced while stirring. After 80 minutes, stirring was stopped, and as a result, a prepolymerized catalyst component (A) in which 0.8 g of propylene was polymerized per 1 g of the solid catalyst was obtained. (2) Propylene polymerization A stainless steel autoclave with a stirrer with an internal volume of 10 liters was sufficiently dried and replaced with nitrogen gas, 6 liters of dehydrated heptane was added, and nitrogen in the system was replaced with propylene. Thereafter, propylene was introduced while stirring by adding 0.14 MPa of hydrogen at an internal temperature of 60 ° C. After the system was stabilized at a total pressure of 0.78 MPa and 60 ° C., 150 ml of heptane slurry containing 0.75 grams of the prepolymerized catalyst component in terms of solid catalyst was added to initiate polymerization. After continuously supplying propylene for 4 hours from the start of polymerization, 50 ml of methanol was added to complete the polymerization, and the temperature was lowered and the pressure was released. The entire contents were transferred to a filtration tank with a filter, 100 ml of 1-butanol was added, and the mixture was stirred at 85 ° C. for 1 hour, followed by solid-liquid separation. Further, the solid part was washed twice with a mixed solution of 5 liters of heptane at 85 ° C. and 1 liter of distilled water, and vacuum dried. As a result, 3.5 kg of a propylene polymer (A8) was obtained. The intrinsic viscosity [η] of this polymer measured in 135 ° C. tetralin was 1.42 dl / g. The MFR measured in accordance with JIS K7210 was 20.7 g / 10 min, the mesopentad fraction (mmmm) was 0.940, and Mw / Mn was 8.4.

プロピレン重合体(A10)及びプロピレン重合体(A11)は製造例6における水素量を調整してそれぞれ製造した。   The propylene polymer (A10) and the propylene polymer (A11) were produced by adjusting the amount of hydrogen in Production Example 6.

〔製造例9〕
内容積 500リットルの攪拌機付き重合槽1に液化プロピレンを300リットルを装入し、この液位を保ちながら、液化プロピレン130kg/h、予備重合触媒1.4g/h、トリエチルアルミニウム35mmol/h、シクロヘキシルメチルジメトキシシラン5.2mmol/h、ノルマルブチルメチルジメトキシシラン0.6mmol/hを連続的に供給し、温度75℃で重合した。また水素240NL/h、エチレン2kg/h供給した。得られたスラリーは失活後、液体プロピレンによる洗浄槽に送液後、ポリプロピレンパウダーを洗浄した。その後、プロピレンを蒸発させてポリプロピレンパウダー(A12)を得た。
この組成はMFR20g/10分、エチレン含有量2.3wt%、Mw/Mnが5.6であった。
[Production Example 9]
300 liters of liquefied propylene was charged into a polymerization tank 1 with a stirrer having an internal volume of 500 liters, and while maintaining this liquid level, 130 kg / h of liquefied propylene, 1.4 g / h of prepolymerized catalyst, 35 mmol / h of triethylaluminum, cyclohexyl Methyldimethoxysilane (5.2 mmol / h) and normal butylmethyldimethoxysilane (0.6 mmol / h) were continuously supplied, and polymerization was performed at a temperature of 75 ° C. Hydrogen 240 NL / h and ethylene 2 kg / h were supplied. The obtained slurry was deactivated, and then sent to a liquid propylene washing tank, and the polypropylene powder was washed. Thereafter, propylene was evaporated to obtain polypropylene powder (A12).
This composition had MFR 20 g / 10 min, ethylene content 2.3 wt%, and Mw / Mn 5.6.

実施例等で使用した原料およびその物性値は以下のとおりである。
プロピレン単独重合体(A1)
メルトフローレート:20g/10分、メソペンタッド分率:0.950。
Mw/Mn=5.2。
プロピレン単独重合体(A2)
メルトフローレート:20g/10分、メソペンタッド分率:0.935。
Mw/Mn=5.1。
プロピレン単独重合体(A3)
メルトフローレート:20g/10分、メソペンタッド分率:0.920。
Mw/Mn=5.1。
プロピレン単独重合体(A4)
メルトフローレート:40g/10分、メソペンタッド分率:0.950。
Mw/Mn=2.0。
プロピレン単独重合体(A5)
メルトフローレート:20g/10分、メソペンタッド分率:0.910。
Mw/Mn=5.1。
プロピレン単独重合体(A6)
メルトフローレート:20g/10分、メソペンタッド分率:0.960。
Mw/Mn=5.6。
プロピレン単独重合体(A7)
メルトフローレート:20g/10分、メソペンタッド分率:0.927。
Mw/Mn=5.8。
プロピレン単独重合体(A8)
メルトフローレート:20g/10分、メソペンタッド分率:0.940。
Mw/Mn=8.4。
プロピレン単独重合体(A9)
メルトフローレート:20g/10分、メソペンタッド分率:0.930。
Mw/Mn=4.1。
プロピレン単独重合体(A10)
メルトフローレート:5g/10分、メソペンタッド分率:0.920。
Mw/Mn=5.6。
プロピレン単独重合体(A11)
メルトフローレート:65g/10分、メソペンタッド分率:0.920。
Mw/Mn=5.6。
エチレン−プロピレンランダム共重合体(A12)
メルトフローレート:20g/10分、エチレン含有量:2.3wt%、Mw/Mn=5.6。
The raw materials used in the examples and the physical property values are as follows.
Propylene homopolymer (A1)
Melt flow rate: 20 g / 10 min, mesopentad fraction: 0.950.
Mw / Mn = 5.2.
Propylene homopolymer (A2)
Melt flow rate: 20 g / 10 min, mesopentad fraction: 0.935.
Mw / Mn = 5.1.
Propylene homopolymer (A3)
Melt flow rate: 20 g / 10 min, mesopentad fraction: 0.920.
Mw / Mn = 5.1.
Propylene homopolymer (A4)
Melt flow rate: 40 g / 10 min, mesopentad fraction: 0.950.
Mw / Mn = 2.0.
Propylene homopolymer (A5)
Melt flow rate: 20 g / 10 min, mesopentad fraction: 0.910.
Mw / Mn = 5.1.
Propylene homopolymer (A6)
Melt flow rate: 20 g / 10 min, mesopentad fraction: 0.960.
Mw / Mn = 5.6.
Propylene homopolymer (A7)
Melt flow rate: 20 g / 10 min, mesopentad fraction: 0.927.
Mw / Mn = 5.8.
Propylene homopolymer (A8)
Melt flow rate: 20 g / 10 min, mesopentad fraction: 0.940.
Mw / Mn = 8.4.
Propylene homopolymer (A9)
Melt flow rate: 20 g / 10 min, mesopentad fraction: 0.930.
Mw / Mn = 4.1.
Propylene homopolymer (A10)
Melt flow rate: 5 g / 10 min, mesopentad fraction: 0.920.
Mw / Mn = 5.6.
Propylene homopolymer (A11)
Melt flow rate: 65 g / 10 min, mesopentad fraction: 0.920.
Mw / Mn = 5.6.
Ethylene-propylene random copolymer (A12)
Melt flow rate: 20 g / 10 min, ethylene content: 2.3 wt%, Mw / Mn = 5.6.

造核剤(B)
ナトリウム-2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)ホスフェート(アデカ社製、商品名 アデカスタブNA−11UY)。
リン系酸化防止剤(C)
トリス(2,4-ジ-t-ブチルフェニル)フォスファイト(チバスペシャリティケミカルズ社製、商品名 イルガフォス168)。
アミン系酸化防止剤(D)
コハク酸ジメチル・1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物(チバスペシャリティケミカルズ社製、商品名 チヌビン622LD)。
塩酸吸収剤(E)
Mg4Al2(OH)12CO3・3H20で表されるハイドロタルサイト(協和化学社製、商品名 DHT−4A)。
過酸化物(F)
2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン(日本油脂社製、商品名 パーヘキサ25B)。
Nucleator (B)
Sodium-2,2-methylenebis (4,6-di-t-butylphenyl) phosphate (trade name, Adeka Stub NA-11UY, manufactured by Adeka).
Phosphorous antioxidant (C)
Tris (2,4-di-t-butylphenyl) phosphite (trade name: Irgaphos 168, manufactured by Ciba Specialty Chemicals).
Amine-based antioxidant (D)
Dimethyl succinate / 1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate (manufactured by Ciba Specialty Chemicals, trade name Tinuvin 622LD).
Hydrochloric acid absorbent (E)
Hydrotalcite represented by Mg 4 Al 2 (OH) 12 CO 3 .3H 2 0 (Kyowa Chemical Co., Ltd., trade name DHT-4A).
Peroxide (F)
2,5-dimethyl-2,5-di (t-butylperoxy) hexane (manufactured by NOF Corporation, trade name: Perhexa 25B).

プロピレン単独重合体(A1)100重量部をヘンシェルミキサー中に供給し、さらに、前記造核剤(B)0、10重量部、リン系酸化防止剤(C)0.10重量部、アミン系酸化防止剤(D)0.04重量部、塩酸吸収剤(E)0.03重量部を添加し、攪拌混合した。
次いで、得られた混合物を、日本製鋼所製高速ニ軸押出機CIM50Sと単軸押出機P65EXT(65mmφ)のタンデム機を用いて、樹脂温度200℃で溶融混練し、その混練物を押出し、水槽にて冷却・切断してポリプロピレン樹脂組成物のペレットを得た。次いで、そのペレットを用いて、射出成形により200℃、金型温度40℃にて厚み2mmのシート状試験片、曲げ強度試験用の試験片(ASTM D 790、厚み3.2mm、長さ127mm、幅12.7mm)、および加熱変形温度試験用の試験片(ASTM D 648、厚み4.0mm、長さ127mm、幅12.7mm)を作製した。
これら試験片を用いて、前述の方法に従って測定した。これらの結果を表1に示す。
100 parts by weight of a propylene homopolymer (A1) is supplied into a Henschel mixer, and further, 0, 10 parts by weight of the nucleating agent (B), 0.10 parts by weight of a phosphorus antioxidant (C), an amine-based oxidation 0.04 part by weight of inhibitor (D) and 0.03 part by weight of hydrochloric acid absorbent (E) were added and mixed with stirring.
Next, the obtained mixture was melt-kneaded at a resin temperature of 200 ° C. using a tandem machine of a high speed twin screw extruder CIM50S and a single screw extruder P65EXT (65 mmφ) manufactured by Nippon Steel Works, and the kneaded product was extruded and water tank Was cooled and cut to obtain polypropylene resin composition pellets. Next, using the pellets, a sheet-shaped test piece having a thickness of 2 mm at 200 ° C. and a mold temperature of 40 ° C. by injection molding, a test piece for bending strength test (ASTM D 790, thickness 3.2 mm, length 127 mm, And a test piece (ASTM D 648, thickness 4.0 mm, length 127 mm, width 12.7 mm) for the heat deformation temperature test.
Using these test pieces, measurement was performed according to the method described above. These results are shown in Table 1.

実施例1において、プロピレン単独重合体(A1)をプロピレン単独重合体(A2)に変更した以外は実施例1と同様に行った。物性測定結果を表1に示す。   In Example 1, it carried out like Example 1 except having changed the propylene homopolymer (A1) into the propylene homopolymer (A2). The physical property measurement results are shown in Table 1.

実施例1において、プロピレン単独重合体(A1)をプロピレン単独重合体(A3)に変更した以外は実施例1と同様に行った。物性測定結果を表1に示す。   In Example 1, it carried out like Example 1 except having changed the propylene homopolymer (A1) into the propylene homopolymer (A3). The physical property measurement results are shown in Table 1.

実施例1において、プロピレン単独重合体(A1)をプロピレン単独重合体(A4)に変更した以外は実施例1と同様に行った。物性測定結果を表1に示す。   In Example 1, it carried out like Example 1 except having changed the propylene homopolymer (A1) into the propylene homopolymer (A4). The physical property measurement results are shown in Table 1.

〔比較例1〕
実施例1において、プロピレン単独重合体(A1)をプロピレン単独重合体(A5)に変更した以外は実施例1と同様に行った。物性測定結果を表1に示す。
[Comparative Example 1]
In Example 1, it carried out like Example 1 except having changed the propylene homopolymer (A1) into the propylene homopolymer (A5). The physical property measurement results are shown in Table 1.

〔比較例2〕
実施例1において、プロピレン単独重合体(A1)をプロピレン単独重合体(A6)に変更した以外は実施例1と同様に行った。物性測定結果を表1に示す。
[Comparative Example 2]
In Example 1, it carried out like Example 1 except having changed the propylene homopolymer (A1) into the propylene homopolymer (A6). The physical property measurement results are shown in Table 1.

〔比較例3〕
実施例1において、プロピレン単独重合体(A1)をプロピレン単独重合体(A7)に変更した以外は実施例1と同様に行った。物性測定結果を表1に示す。
[Comparative Example 3]
In Example 1, it carried out like Example 1 except having changed the propylene homopolymer (A1) into the propylene homopolymer (A7). The physical property measurement results are shown in Table 1.

〔比較例4〕
実施例1において、プロピレン単独重合体(A1)をプロピレン単独重合体(A8)に変更した以外は実施例1と同様に行った。物性測定結果を表1に示す。
[Comparative Example 4]
In Example 1, it carried out like Example 1 except having changed the propylene homopolymer (A1) into the propylene homopolymer (A8). The physical property measurement results are shown in Table 1.

〔比較例5〕
プロピレン単独重合体(A9)は、以下のようにして過酸化物による分子量減量調整処理によってメルトフローレートを調整して用いた。
MFRが2g/10分、メソペンタッド分率:0.930、Mw/Mn=5.1のプロピレン単独重合体パウダー100重量部をヘンシェルミキサー中に供給し、さらに、前記造核剤(B)0、10重量部、リン系酸化防止剤(C)0.10重量部、アミン系酸化防止剤(D)0.04重量部、塩酸吸収剤(E)0.03重量部、過酸化物(F)を0.04重量部添加し、攪拌混合した。
次いで、得られた混合物を、日本製鋼所製高速ニ軸押出機CIM50Sと単軸押出機P65EXT(65mmφ)のタンデム機を用いて、樹脂温度200℃で溶融混練し、その混練物を押出し、水槽にて冷却・切断してポリプロピレン樹脂組成物のペレット(A9)を得た。この組成は、メルトフローレート20g/10分にし、メソペンタッド分率:0.930、Mw/Mn=4.1であった。次いで、そのペレットを用いて、実施例1同様に射出成形により200℃、金型温度40℃にて厚み2mmのシート状試験片、曲げ強度試験用の試験片(ASTM D 790、厚み3.2mm、長さ127mm、幅12.7mm)、および加熱変形温度試験用の試験片(ASTM D 648、厚み4.0mm、長さ127mm、幅12.7mm)を作製した。
これら試験片を用いて、前述の方法に従って測定した。これらの結果を表1に示す。
[Comparative Example 5]
The propylene homopolymer (A9) was used by adjusting the melt flow rate by the molecular weight reduction adjustment treatment with peroxide as follows.
100 parts by weight of a propylene homopolymer powder having an MFR of 2 g / 10 min, a mesopentad fraction: 0.930, and Mw / Mn = 5.1 was fed into a Henschel mixer, and the nucleating agent (B) 0, 10 parts by weight, phosphorus antioxidant (C) 0.10 parts by weight, amine antioxidant (D) 0.04 parts by weight, hydrochloric acid absorbent (E) 0.03 parts by weight, peroxide (F) 0.04 part by weight was added and mixed with stirring.
Subsequently, the obtained mixture was melt kneaded at a resin temperature of 200 ° C. using a tandem machine of a high speed twin screw extruder CIM50S manufactured by Nippon Steel Works and a single screw extruder P65EXT (65 mmφ), the kneaded product was extruded, The pellet (A9) of a polypropylene resin composition was obtained by cooling and cutting at. This composition had a melt flow rate of 20 g / 10 min, a mesopentad fraction: 0.930, and Mw / Mn = 4.1. Then, using the pellets, a sheet-shaped test piece having a thickness of 2 mm at 200 ° C. and a mold temperature of 40 ° C. by injection molding as in Example 1, a test piece for bending strength test (ASTM D 790, thickness 3.2 mm). , 127 mm in length, 12.7 mm in width), and a test piece (ASTM D 648, thickness 4.0 mm, length 127 mm, width 12.7 mm) for heat deformation temperature test.
Using these test pieces, measurement was performed according to the method described above. These results are shown in Table 1.

〔比較例6〕
実施例1において、プロピレン単独重合体(A1)をプロピレン単独重合体(A10)に変更した以外は実施例1と同様に行った。物性測定結果を表1に示す。
[Comparative Example 6]
In Example 1, it carried out like Example 1 except having changed the propylene homopolymer (A1) into the propylene homopolymer (A10). The physical property measurement results are shown in Table 1.

〔比較例7〕
実施例1において、プロピレン単独重合体(A1)をプロピレン単独重合体(A11)に変更した以外は実施例1と同様に行った。物性測定結果を表1に示す。
[Comparative Example 7]
In Example 1, it carried out like Example 1 except having changed the propylene homopolymer (A1) into the propylene homopolymer (A11). The physical property measurement results are shown in Table 1.

〔比較例8〕
実施例1において、プロピレン単独重合体(A1)をエチレン−プロピレンランダム共重合体(A12)に変更した以外は実施例1と同様に行った。物性測定結果を表1に示す。
[Comparative Example 8]
In Example 1, it carried out like Example 1 except having changed the propylene homopolymer (A1) into the ethylene-propylene random copolymer (A12). The physical property measurement results are shown in Table 1.

Figure 2007275255
Figure 2007275255

表1に記載した物性測定結果から、本発明に係る高度に制御されたポリプロピレン樹脂により、成形品(医療用シリンジ)が、従来無し得なかった透明性と耐衝撃性と剛性のバランス、衛生性、耐熱性、成形時の気泡発生抑制とロングラン成形性、更には射出成形時のコア金型抜き取り時の傷付性全てを満足した。   From the physical property measurement results shown in Table 1, with a highly controlled polypropylene resin according to the present invention, the molded product (medical syringe) has a balance of transparency, impact resistance and rigidity, and hygiene that could not be achieved conventionally. In addition, it satisfied all of the heat resistance, suppression of bubble generation during molding, long run moldability, and scratch resistance when removing the core mold during injection molding.

今回の狭いプロピレン単独重合体の組成範囲且つ過酸化物による分子量調整をしない事によって初めてこのようなすべてのシリンジとしての必要物性を全て満足できる事を見出した事は大きい。   It has been found that, for the first time, all of the necessary physical properties of all of these syringes can be satisfied by not adjusting the molecular weight of the narrow propylene homopolymer composition and peroxide.

また、この医療用シリンジに内溶液のpHが5.0〜9.0である各種薬剤を充填し、薬剤安定性をも達成したプレフィルドシリンジ製剤を得た。   Moreover, this medical syringe was filled with various chemicals having a pH of the internal solution of 5.0 to 9.0 to obtain a prefilled syringe preparation that also achieved chemical stability.

この樹脂組成物を使用した場合、他の高価な副原料を用いておらず、薬価の低い薬剤を用いたプレフィルドシリンジの市場供給性に大いに貢献し、安全な医療現場への貢献が大きい。今後の市場への浸透が大いに期待でき、医療現場での誤使用や破損、内溶液の視認性などの安全性が向上し、非常に有用である。
When this resin composition is used, it does not use other expensive auxiliary materials, greatly contributes to the marketability of prefilled syringes using drugs with low drug prices, and greatly contributes to the safe medical field. It can be expected to penetrate into the market in the future, and it is very useful because it has improved safety such as misuse and breakage at medical sites and visibility of internal solution.

Claims (3)

メルトフローレート(ASTM D 1238,230℃、2.16kg荷重)が10〜60g/10分、ii)メソペンタッド分率(mmmm)が0.920〜0.950、iii)分子量分布(Mw/Mn)が2.0〜5.6のプロピレン単独重合体からなり、iiii)過酸化物による分子量減量調整処理を施していない事を特徴とする医療用シリンジ用ポリプロピレン樹脂。 Melt flow rate (ASTM D 1238, 230 ° C., 2.16 kg load) is 10 to 60 g / 10 min, ii) Mesopentad fraction (mmmm) is 0.920 to 0.950, iii) Molecular weight distribution (Mw / Mn) is A polypropylene resin for medical syringes, characterized in that it comprises a propylene homopolymer of 2.0 to 5.6 and iiii) is not subjected to molecular weight reduction adjustment treatment with peroxide. 請求項1記載のポリプロピレン樹脂を射出成形して得られる医療用シリンジ。 A medical syringe obtained by injection molding of the polypropylene resin according to claim 1. 請求項2記載の医療用シリンジにpHが5.0〜9.0である薬液を充填した事を特徴とするプレフィルドシリンジ製剤。

A prefilled syringe preparation, wherein the medical syringe according to claim 2 is filled with a chemical solution having a pH of 5.0 to 9.0.

JP2006104473A 2006-04-05 2006-04-05 Propylene resin for medical syringe, medical syringe obtained by injection molding thereof, and prefilled syringe preparation Active JP4987339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006104473A JP4987339B2 (en) 2006-04-05 2006-04-05 Propylene resin for medical syringe, medical syringe obtained by injection molding thereof, and prefilled syringe preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006104473A JP4987339B2 (en) 2006-04-05 2006-04-05 Propylene resin for medical syringe, medical syringe obtained by injection molding thereof, and prefilled syringe preparation

Publications (2)

Publication Number Publication Date
JP2007275255A true JP2007275255A (en) 2007-10-25
JP4987339B2 JP4987339B2 (en) 2012-07-25

Family

ID=38677405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006104473A Active JP4987339B2 (en) 2006-04-05 2006-04-05 Propylene resin for medical syringe, medical syringe obtained by injection molding thereof, and prefilled syringe preparation

Country Status (1)

Country Link
JP (1) JP4987339B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115338A (en) * 1989-06-08 1991-05-16 Becton Dickinson & Co Polymer composition having high transparency and radiation stability
JP2528443B2 (en) * 1987-12-30 1996-08-28 三菱化学株式会社 Low-dissolution drug solution, infusion, blood transfusion device
WO1999007747A1 (en) * 1997-08-12 1999-02-18 Chisso Corporation Process for the preparation of olefin (co)polymers, olefin copolymers, and application thereof
JP2000230086A (en) * 1999-02-09 2000-08-22 Chisso Corp Polypropylene sheet
WO2001027124A1 (en) * 1999-10-08 2001-04-19 Mitsui Chemicals, Inc. Metallocene compound, process for producing metallocene compound, olefin polymerization catalyst, process for producing polyolefin, and polyolefin
JP3195434B2 (en) * 1991-09-10 2001-08-06 第一製薬株式会社 Drug-filled syringe formulation
JP2004256606A (en) * 2003-02-25 2004-09-16 Mitsui Chemicals Inc Polypropylene resin composition and its use
JP2005154406A (en) * 2003-10-31 2005-06-16 Ono Pharmaceut Co Ltd Injection container filled with sodium ozagrel-containing aqueous solution
JP2005314490A (en) * 2004-04-27 2005-11-10 Mitsui Chemicals Inc Polypropylene resin composition and medical equipment therefrom, prefilled syringe

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2528443B2 (en) * 1987-12-30 1996-08-28 三菱化学株式会社 Low-dissolution drug solution, infusion, blood transfusion device
JPH03115338A (en) * 1989-06-08 1991-05-16 Becton Dickinson & Co Polymer composition having high transparency and radiation stability
JP3195434B2 (en) * 1991-09-10 2001-08-06 第一製薬株式会社 Drug-filled syringe formulation
WO1999007747A1 (en) * 1997-08-12 1999-02-18 Chisso Corporation Process for the preparation of olefin (co)polymers, olefin copolymers, and application thereof
JP2000230086A (en) * 1999-02-09 2000-08-22 Chisso Corp Polypropylene sheet
WO2001027124A1 (en) * 1999-10-08 2001-04-19 Mitsui Chemicals, Inc. Metallocene compound, process for producing metallocene compound, olefin polymerization catalyst, process for producing polyolefin, and polyolefin
JP2004256606A (en) * 2003-02-25 2004-09-16 Mitsui Chemicals Inc Polypropylene resin composition and its use
JP2005154406A (en) * 2003-10-31 2005-06-16 Ono Pharmaceut Co Ltd Injection container filled with sodium ozagrel-containing aqueous solution
JP2005314490A (en) * 2004-04-27 2005-11-10 Mitsui Chemicals Inc Polypropylene resin composition and medical equipment therefrom, prefilled syringe

Also Published As

Publication number Publication date
JP4987339B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP5995927B2 (en) Polypropylene resin composition and blow container
JP5514550B2 (en) Polypropylene resin for syringes, syringes obtained from the same, and prefilled syringe preparations
JP7269698B2 (en) Propylene-based resin composition for medical use and molded article thereof
JP6390231B2 (en) Medical propylene-ethylene resin composition and injection molded product thereof
JP2003138074A (en) Medical stretch blow molded container
JP2010202694A (en) Propylene-ethylene-based resin composition and injection-molded article thereof
JP5433196B2 (en) Medical polypropylene resin composition and molded product
JP6236897B2 (en) Propylene-based resin composition and molded product thereof
JP6409561B2 (en) Medical propylene-based resin composition and molded product thereof
JP5197987B2 (en) Artificial dialysis parts
JP2012152933A (en) Propylene-based resin injection-molded product
JP4236995B2 (en) Polypropylene resin composition and use thereof
JP6565435B2 (en) Propylene resin composition for medical kit preparation for radiation sterilization and medical kit preparation thereof
JP4987339B2 (en) Propylene resin for medical syringe, medical syringe obtained by injection molding thereof, and prefilled syringe preparation
EP4130139A1 (en) Injection-molded article for medical use
JP2015155515A (en) Propylene-based resin composition, and molded article of the same
JP2009082698A (en) Member for dialysis
EP3327083B1 (en) Polypropylene resin composition and molded body for medical use, which uses same
JPH11255835A (en) Medical molded article
JP4628870B2 (en) PROPYLENE RESIN COMPOSITION AND SYMBOL OUTLET AND FOOD CONTAINER COMPRISING THE COMPOSITION
JP4087266B2 (en) Polypropylene resin composition and use thereof
JP2014054373A (en) Propylene-based composition for kit preparation for medical use, and kit preparation for medical use
JP5020477B2 (en) Polypropylene resin composition, medical instrument comprising the composition, and prefilled syringe
JP6409563B2 (en) Medical propylene-based resin composition and injection-molded product thereof
JP2018059015A (en) Propylene resin composition for radiation sterilization corresponding medical kit preparation and medical kit preparation thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090311

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120425

R150 Certificate of patent or registration of utility model

Ref document number: 4987339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250