[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007273657A - 磁気抵抗効果素子およびその製造方法、ならびに薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置 - Google Patents

磁気抵抗効果素子およびその製造方法、ならびに薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置 Download PDF

Info

Publication number
JP2007273657A
JP2007273657A JP2006096310A JP2006096310A JP2007273657A JP 2007273657 A JP2007273657 A JP 2007273657A JP 2006096310 A JP2006096310 A JP 2006096310A JP 2006096310 A JP2006096310 A JP 2006096310A JP 2007273657 A JP2007273657 A JP 2007273657A
Authority
JP
Japan
Prior art keywords
layer
magnetic
alloy
heusler alloy
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006096310A
Other languages
English (en)
Inventor
Tomohito Mizuno
友人 水野
Yoshihiro Tsuchiya
芳弘 土屋
Keita Kawamori
啓太 川森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2006096310A priority Critical patent/JP2007273657A/ja
Priority to US11/709,148 priority patent/US7808748B2/en
Publication of JP2007273657A publication Critical patent/JP2007273657A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3929Disposition of magnetic thin films not used for directly coupling magnetic flux from the track to the MR film or for shielding
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Hall/Mr Elements (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

【課題】MR素子を構成する各層の面と交差する方向に電流が流されるMR素子におけるMR比を大きくする。
【解決手段】MR素子5の固定層23は、体心立方構造の磁性合金層よりなる下地磁性層331と、下地磁性層331の上に形成されたホイスラー合金層332とを含んでいる。MR素子5のフリー層25は、体心立方構造の磁性合金層よりなる下地磁性層51と、下地磁性層51の上に形成されたホイスラー合金層52とを含んでいる。ホイスラー合金層332,52は、いずれも、Mnの含有率が25原子%より多く40原子%以下であるCoMnSi合金よりなり、且つ単位格子の体心位置にCo原子が配置され、単位格子の頂点位置にMn原子またはSi原子が不規則に配置されたB2構造の主成分を含んでいる。
【選択図】図1

Description

本発明は、磁気抵抗効果素子およびその製造方法、ならびに、磁気抵抗効果素子を有する薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置に関する。
近年、磁気ディスク装置の面記録密度の向上に伴って、薄膜磁気ヘッドの性能向上が求められている。薄膜磁気ヘッドとしては、基板に対して、読み出し用の磁気抵抗効果素子(以下、MR(Magnetoresistive)素子とも記す。)を有する再生ヘッドと書き込み用の誘導型電磁変換素子を有する記録ヘッドとを積層した構造の複合型薄膜磁気ヘッドが広く用いられている。
MR素子としては、異方性磁気抵抗(Anisotropic Magnetoresistive)効果を用いたAMR素子や、巨大磁気抵抗(Giant Magnetoresistive)効果を用いたGMR素子や、トンネル磁気抵抗(Tunnel-type Magnetoresistive)効果を用いたTMR素子等がある。
再生ヘッドの特性としては、高感度および高出力であることが要求される。この要求を満たす再生ヘッドとして、既に、スピンバルブ型GMR素子を用いたGMRヘッドが量産されている。最近では、面記録密度の更なる向上に対応するために、TMR素子を用いた再生ヘッドの開発が進められている。
スピンバルブ型GMR素子は、一般的には、互いに反対側を向く2つの面を有する非磁性導電層と、この非磁性導電層の一方の面に隣接するように配置されたフリー層と、非磁性導電層の他方の面に隣接するように配置された固定層と、この固定層における非磁性導電層とは反対側の面に隣接するように配置された反強磁性層とを有している。フリー層は信号磁界に応じて磁化の方向が変化する強磁性層である。固定層は、磁化の方向が固定された強磁性層である。反強磁性層は、固定層との交換結合により、固定層における磁化の方向を固定する層である。
ところで、従来のGMRヘッドでは、磁気的信号検出用の電流(以下、センス電流という。)を、GMR素子を構成する各層の面に対して平行な方向に流す構造になっていた。このような構造は、CIP(Current In Plane)構造と呼ばれる。これに対し、センス電流を、GMR素子を構成する各層の面と交差する方向、例えばGMR素子を構成する各層の面に対して垂直な方向に流す構造のGMRヘッドの開発も進められている。このような構造は、CPP(Current Perpendicular to Plane)構造と呼ばれる。以下、CPP構造の再生ヘッドに用いられるGMR素子をCPP−GMR素子と呼び、CIP構造の再生ヘッドに用いられるGMR素子をCIP−GMR素子と呼ぶ。
前述のTMR素子を用いた再生ヘッドもCPP構造となる。TMR素子は、一般的には、互いに反対側を向く2つの面を有するトンネルバリア層と、このトンネルバリア層の一方の面に隣接するように配置されたフリー層と、トンネルバリア層の他方の面に隣接するように配置された固定層と、この固定層におけるトンネルバリア層とは反対側の面に隣接するように配置された反強磁性層とを有している。トンネルバリア層は、トンネル効果によりスピンを保存した状態で電子が通過できる非磁性絶縁層である。フリー層、固定層および反強磁性層については、スピンバルブ型GMR素子と同様である。
従来のCPP−GMR素子では、固定層とフリー層の材料として、主にCoFe合金やNiFe合金が用いられていた。このような従来のCPP−GMR素子では、実用的な再生ギャップ長を実現できる層の構成において、抵抗に対する磁気抵抗変化の比率である磁気抵抗変化率(以下、MR比という。)は高々4%程度であり、実用上十分な大きさではなかった。
上記の従来のCPP−GMR素子におけるMR比が小さいのは、固定層とフリー層の材料として用いられているCoFe合金やNiFe合金のスピン分極率が小さいことに起因していると考えられる。
最近、MR比を大きくするために、固定層やフリー層の材料として、スピン分極率が1に近いハーフメタルを用いたCPP−GMR素子が提案されている。特許文献1−3には、固定層やフリー層の材料として、ハーフメタルの一種であるホイスラー合金を用いたCPP−GMR素子が記載されている。
また、TMR素子においても、固定層やフリー層の材料としてハーフメタルを用いることにより、大きなMR比を得ることが期待できる。特許文献2、3には、固定層やフリー層の材料としてホイスラー合金を用いたTMR素子も記載されている。
また、特許文献1には、固定層におけるホイスラー合金層の上下に、例えばCoFe合金、CoFeNi合金、NiFe合金、Coのいずれかの磁性材料によって形成された磁性層を配置し、フリー層におけるホイスラー合金層の上下に、例えばCoFe合金、CoFeNi合金、Coのいずれかの磁性材料によって形成された磁性層を配置した構造が記載されている。
ここで、ホイスラー合金について簡単に説明する。ホイスラー合金とは、XYZまたはXYZの化学組成を持つ規則合金の総称である。XYZの化学組成を持つ規則合金はハーフホイスラー合金と呼ばれ、XYZの化学組成を持つ規則合金はフルホイスラー合金と呼ばれる。ここで、Xは、周期表上におけるFe族、Co族、Ni族、Cu族の遷移元素および貴金属元素の中から選択された元素である。Yは、周期表上におけるTi族、V族、Cr族、Mn族の遷移元素およびFeの中から選択された1種以上の元素である。Zは、周期表上における第3周期から第5周期の典型元素の中から選択された1種以上の元素である。
特開2003−218428号公報 特開2004−221526号公報 特開2005−228998号公報
ところで、ホイスラー合金の1種としてCoMnSi合金がある。フルホイスラー合金となるときのCoMnSi合金の化学量論組成では、Co、Mn、Siの組成比は2:1:1である。この組成比のCoMnSi合金層を、CPP−GMR素子の固定層やフリー層に用いることにより、CPP−GMR素子のMR比を大幅に大きくできることが予想された。
そこで、実際に、Co、Mn、Siの組成比が2:1:1であるCoMnSi合金層を固定層やフリー層に用いたCPP−GMR素子を作製した。合金層は、特許文献1と同様に磁性層の上に形成した。このようにして作製されたCPP−GMR素子では、予想に反して、高々5%程度のMR比しか得られなかった。
本発明はかかる問題点に鑑みてなされたもので、その目的は、磁気抵抗効果素子を構成する各層の面と交差する方向に電流が流される磁気抵抗効果素子であって、磁気抵抗変化率が大きい磁気抵抗効果素子およびその製造方法、ならびに、この磁気抵抗効果素子を有する薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置を提供することにある。
本発明の磁気抵抗効果素子は、互いに反対側を向く第1および第2の面を有する非磁性層と、非磁性層の第1の面に隣接するように配置され、磁化の方向が固定された固定層と、非磁性層の第2の面に隣接するように配置され、外部磁界に応じて磁化の方向が変化するフリー層とを備えている。本発明の磁気抵抗効果素子において、磁気的信号検出用の電流は、磁気抵抗効果素子を構成する各層の面と交差する方向に流される。
本発明の磁気抵抗効果素子において、固定層とフリー層の少なくとも一方は、体心立方構造の磁性合金層よりなる下地磁性層と、下地磁性層の上に形成されたホイスラー合金層とを含んでいる。ホイスラー合金層は、Mnの含有率が25原子%より多く40原子%以下であるCoMnSi合金よりなり、且つ単位格子の体心位置にCo原子が配置され、単位格子の頂点位置にMn原子またはSi原子が不規則に配置されたB2構造の主成分を含む。
本発明におけるホイスラー合金層のスピン分極率は、Co、Mn、Siの組成比が2:1:1であるCoMnSi合金よりなる合金層が下地磁性層の上に形成された場合における、その合金層のスピン分極率よりも大きくなる。
本発明の磁気抵抗効果素子において、CoMnSi合金におけるCoの含有率は、48〜52原子%の範囲内であることが好ましい。
また、本発明の磁気抵抗効果素子において、CoMnSi合金におけるMnの含有率は、30〜40原子%の範囲内であることが好ましい。
また、本発明の磁気抵抗効果素子において、下地磁性層は、Feをy原子%、Coを(100−y)原子%含み、yが30以上100以下であってもよい。
また、本発明の磁気抵抗効果素子において、固定層は、下地磁性層およびホイスラー合金層を含み、固定層に含まれるホイスラー合金層は、固定層に含まれる下地磁性層と非磁性層との間に配置されていてもよい。この場合、固定層は、更に、固定層に含まれるホイスラー合金層と非磁性層との間に配置された中間磁性層を含んでいてもよい。中間磁性層は、Feをz原子%、Coを(100−z)原子%含み、zが30以上100以下であってもよい。
固定層は、更に、固定層に含まれるホイスラー合金層との間で固定層に含まれる下地磁性層を挟む位置に配置された非磁性中間層と、固定層に含まれる下地磁性層との間で非磁性中間層を挟む位置に配置され、磁化の方向が固定された強磁性層とを含んでいてもよい。この場合、固定層に含まれる下地磁性層、ホイスラー合金層および中間磁性層のそれぞれの磁化の方向は、強磁性層の磁化の方向とは逆方向に固定される。
また、本発明の磁気抵抗効果素子において、フリー層は、下地磁性層およびホイスラー合金層を含み、フリー層に含まれる下地磁性層は、フリー層に含まれるホイスラー合金層と非磁性層との間に配置されていてもよい。
また、本発明の磁気抵抗効果素子において、非磁性層は導電材料よりなるものであってもよいし、絶縁材料よりなるトンネルバリア層であってもよい。
本発明の磁気抵抗効果素子の製造方法によって製造される磁気抵抗効果素子は、互いに反対側を向く第1および第2の面を有する非磁性層と、非磁性層の第1の面に隣接するように配置され、磁化の方向が固定された固定層と、非磁性層の第2の面に隣接するように配置され、外部磁界に応じて磁化の方向が変化するフリー層とを備え、磁気的信号検出用の電流が、上記各層の面と交差する方向に流されるものである。
本発明の磁気抵抗効果素子の製造方法は、固定層、非磁性層、フリー層を形成する各工程を備えている。固定層を形成する工程とフリー層を形成する工程の少なくとも一方は、体心立方構造の磁性合金層よりなる下地磁性層を形成する工程と、下地磁性層の上にホイスラー合金層を形成する工程とを含んでいる。ホイスラー合金層は、Mnの含有率が25原子%より多く40原子%以下であるCoMnSi合金よりなり、且つ単位格子の体心位置にCo原子が配置され、単位格子の頂点位置にMn原子またはSi原子が不規則に配置されたB2構造の主成分を含んでいる。
本発明の磁気抵抗効果素子の製造方法は、更に、ホイスラー合金層の主成分の結晶構造をB2構造とするためにホイスラー合金層に対して熱処理を施す工程を備えていてもよい。
本発明の薄膜磁気ヘッドは、記録媒体に対向する媒体対向面と、記録媒体からの信号磁界を検出するために媒体対向面の近傍に配置された本発明の磁気抵抗効果素子と、磁気的信号検出用の電流を、磁気抵抗効果素子に対して、磁気抵抗効果素子を構成する各層の面と交差する方向に流すための一対の電極とを備えたものである。
本発明のヘッドジンバルアセンブリは、本発明の薄膜磁気ヘッドを含み、記録媒体に対向するように配置されるスライダと、スライダを弾性的に支持するサスペンションとを備えたものである。また、本発明のヘッドアームアセンブリは、本発明の薄膜磁気ヘッドを含み、記録媒体に対向するように配置されるスライダと、スライダを弾性的に支持するサスペンションと、スライダを記録媒体のトラック横断方向に移動させるためのアームとを備え、サスペンションがアームに取り付けられているものである。
本発明の磁気ディスク装置は、本発明の薄膜磁気ヘッドを含み、回転駆動される記録媒体に対向するように配置されるスライダと、スライダを支持すると共に記録媒体に対して位置決めする位置決め装置とを備えたものである。
本発明では、磁気抵抗効果素子の固定層とフリー層の少なくとも一方は、体心立方構造の磁性合金層よりなる下地磁性層と、下地磁性層の上に形成されたホイスラー合金層とを含み、ホイスラー合金層は、Mnの含有率が25原子%より多く40原子%以下であるCoMnSi合金よりなり、且つ単位格子の体心位置にCo原子が配置され、単位格子の頂点位置にMn原子またはSi原子が不規則に配置されたB2構造の主成分を含む。本発明におけるホイスラー合金層のスピン分極率は、Co、Mn、Siの組成比が2:1:1であるCoMnSi合金よりなる合金層が下地磁性層の上に形成された場合における、その合金層のスピン分極率よりも大きくなる。これにより、本発明によれば、磁気抵抗効果素子を構成する各層の面と交差する方向に電流が流される磁気抵抗効果素子の磁気抵抗変化率を大きくすることが可能になるという効果を奏する。
[第1の実施の形態]
以下、本発明の実施の形態について図面を参照して詳細に説明する。始めに、図2および図3を参照して、本発明の第1の実施の形態に係る薄膜磁気ヘッドの構成および製造方法の概略について説明する。図2は薄膜磁気ヘッドの媒体対向面および基板に垂直な断面を示す断面図、図3は薄膜磁気ヘッドの磁極部分の媒体対向面に平行な断面を示す断面図である。
本実施の形態に係る薄膜磁気ヘッドの製造方法では、まず、アルティック(Al23・TiC)等のセラミック材料よりなる基板1の上に、スパッタ法等によって、アルミナ(Al23)等の絶縁材料よりなる絶縁層2を、例えば1〜5μmの厚さに形成する。次に、絶縁層2の上に、めっき法等によって、NiFe、FeAlSi等の磁性材料よりなる再生ヘッド用の第1のシールド層3を、所定のパターンに形成する。次に、図示しないが、全体に、例えばアルミナよりなる絶縁層を形成する。次に、例えば化学機械研磨(以下、CMPという。)によって、第1のシールド層3が露出するまで絶縁層を研磨して、第1のシールド層3および絶縁層の上面を平坦化する。
次に、第1のシールド層3の上に、再生用のMR素子5を形成する。次に、図示しないが、MR素子5の2つの側部および第1のシールド層3の上面を覆うように絶縁膜を形成する。絶縁膜は、アルミナ等の絶縁材料によって形成される。次に、絶縁膜を介してMR素子5の2つの側部に隣接するように2つのバイアス磁界印加層6を形成する。次に、MR素子5およびバイアス磁界印加層6の周囲に配置されるように絶縁層7を形成する。絶縁層7は、アルミナ等の絶縁材料によって形成される。
次に、MR素子5、バイアス磁界印加層6および絶縁層7の上に、磁性材料からなる、再生ヘッド用の第2のシールド層8を形成する。第2のシールド層8は、例えばめっき法またはスパッタ法によって形成される。次に、第2のシールド層8の上に、スパッタ法等によって、アルミナ等の非磁性材料よりなる分離層18を形成する。次に、この分離層18の上に、例えばめっき法またはスパッタ法によって、磁性材料よりなる、記録ヘッド用の下部磁極層19を形成する。第2のシールド層8および下部磁極層19に用いる磁性材料は、NiFe、CoFe、CoFeNi、FeN等の軟磁性材料である。なお、第2のシールド層8、分離層18および下部磁極層19の代わりに、下部磁極層を兼ねた第2のシールド層を設けてもよい。
次に、下部磁極層19の上に、スパッタ法等によって、アルミナ等の非磁性材料よりなる記録ギャップ層9を、例えば50〜300nmの厚みに形成する。次に、磁路形成のために、後述する薄膜コイルの中心部分において、記録ギャップ層9を部分的にエッチングしてコンタクトホール9aを形成する。
次に、記録ギャップ層9の上に、例えば銅(Cu)よりなる薄膜コイルの第1層部分10を、例えば2〜3μmの厚みに形成する。なお、図2において、符号10aは、第1層部分10のうち、後述する薄膜コイルの第2層部分15に接続される接続部を表している。第1層部分10は、コンタクトホール9aの周囲に巻回される。
次に、薄膜コイルの第1層部分10およびその周辺の記録ギャップ層9を覆うように、フォトレジスト等の、加熱時に流動性を有する有機絶縁材料よりなる絶縁層11を所定のパターンに形成する。次に、絶縁層11の表面を平坦にするために所定の温度で熱処理する。この熱処理により、絶縁層11の外周および内周の各端縁部分は、丸みを帯びた斜面形状となる。
次に、絶縁層11のうちの後述する媒体対向面20側の斜面部分から媒体対向面20側にかけての領域において、記録ギャップ層9および絶縁層11の上に、記録ヘッド用の磁性材料によって、上部磁極層12のトラック幅規定層12aを形成する。上部磁極層12は、このトラック幅規定層12aと、後述する連結部分層12bおよびヨーク部分層12cとで構成される。
トラック幅規定層12aは、記録ギャップ層9の上に形成され、上部磁極層12の磁極部分となる先端部と、絶縁層11の媒体対向面20側の斜面部分の上に形成され、ヨーク部分層12cに接続される接続部とを有している。先端部の幅は記録トラック幅と等しくなっている。接続部の幅は、先端部の幅よりも大きくなっている。
トラック幅規定層12aを形成する際には、同時に、コンタクトホール9aの上に磁性材料よりなる連結部分層12bを形成すると共に、接続部10aの上に磁性材料よりなる接続層13を形成する。連結部分層12bは、上部磁極層12のうち、下部磁極層19に磁気的に連結される部分を構成する。
次に、磁極トリミングを行う。すなわち、トラック幅規定層12aの周辺領域において、トラック幅規定層12aをマスクとして、記録ギャップ層9および下部磁極層19の磁極部分における記録ギャップ層9側の少なくとも一部をエッチングする。これにより、図3に示したように、上部磁極層12の磁極部分、記録ギャップ層9および下部磁極層19の磁極部分の少なくとも一部の各幅が揃えられたトリム(Trim)構造が形成される。このトリム構造によれば、記録ギャップ層9の近傍における磁束の広がりによる実効的なトラック幅の増加を防止することができる。
次に、全体に、アルミナ等の無機絶縁材料よりなる絶縁層14を、例えば3〜4μmの厚みに形成する。次に、この絶縁層14を、例えばCMPによって、トラック幅規定層12a、連結部分層12bおよび接続層13の表面に至るまで研磨して平坦化する。
次に、平坦化された絶縁層14の上に、例えば銅(Cu)よりなる薄膜コイルの第2層部分15を、例えば2〜3μmの厚みに形成する。なお、図2において、符号15aは、第2層部分15のうち、接続層13を介して薄膜コイルの第1層部分10の接続部10aに接続される接続部を表している。第2層部分15は、連結部分層12bの周囲に巻回される。
次に、薄膜コイルの第2層部分15およびその周辺の絶縁層14を覆うように、フォトレジスト等の、加熱時に流動性を有する有機絶縁材料よりなる絶縁層16を所定のパターンに形成する。次に、絶縁層16の表面を平坦にするために所定の温度で熱処理する。この熱処理により、絶縁層16の外周および内周の各端縁部分は、丸みを帯びた斜面形状となる。
次に、トラック幅規定層12a、絶縁層14,16および連結部分層12bの上に、パーマロイ等の記録ヘッド用の磁性材料によって、上部磁極層12のヨーク部分を構成するヨーク部分層12cを形成する。ヨーク部分層12cの媒体対向面20側の端部は、媒体対向面20から離れた位置に配置されている。また、ヨーク部分層12cは、連結部分層12bを介して下部磁極層19に接続されている。
次に、全体を覆うように、例えばアルミナよりなるオーバーコート層17を形成する。最後に、上記各層を含むスライダの機械加工を行って、記録ヘッドおよび再生ヘッドを含む薄膜磁気ヘッドの媒体対向面20を形成して、薄膜磁気ヘッドが完成する。
このようにして製造される薄膜磁気ヘッドは、記録媒体に対向する媒体対向面20と再生ヘッドと記録ヘッドとを備えている。再生ヘッドの構成については、後で詳しく説明する。
記録ヘッドは、媒体対向面20側において互いに対向する磁極部分を含むと共に、互いに磁気的に連結された下部磁極層19および上部磁極層12と、この下部磁極層19の磁極部分と上部磁極層12の磁極部分との間に設けられた記録ギャップ層9と、少なくとも一部が下部磁極層19および上部磁極層12の間に、これらに対して絶縁された状態で配設された薄膜コイル10,15とを有している。この薄膜磁気ヘッドでは、図2に示したように、媒体対向面20から、絶縁層11の媒体対向面20側の端部までの長さが、スロートハイトTHとなる。なお、スロートハイトとは、媒体対向面20から、2つの磁極層の間隔が大きくなり始める位置までの長さ(高さ)をいう。
次に、図1を参照して、再生ヘッドの構成について詳しく説明する。図1は再生ヘッドの媒体対向面に平行な断面を示す断面図である。
本実施の形態における再生ヘッドは、所定の間隔を開けて配置された第1のシールド層3および第2のシールド層8と、第1のシールド層3と第2のシールド層8との間に配置されたMR素子5と、MR素子5の2つの側部および第1のシールド層3の上面を覆う絶縁膜4と、絶縁膜4を介してMR素子5の2つの側部に隣接する2つのバイアス磁界印加層6とを備えている。絶縁膜4は、例えばアルミナによって形成される。バイアス磁界印加層6は、硬磁性層(ハードマグネット)や、強磁性層と反強磁性層との積層体等を用いて構成される。具体的には、バイアス磁界印加層6は、例えばCoPtやCoCrPtによって形成される。
本実施の形態における再生ヘッドは、CPP構造の再生ヘッドである。第1のシールド層3と第2のシールド層8は、センス電流を、MR素子5に対して、MR素子5を構成する各層の面と交差する方向、例えばMR素子5を構成する各層の面に対して垂直な方向に流すための一対の電極を兼ねている。なお、第1のシールド層3および第2のシールド層8とは別に、MR素子5の上下に一対の電極を設けてもよい。MR素子5は、CPP−GMR素子である。MR素子5は、外部磁界、すなわち記録媒体からの信号磁界に応じて抵抗値が変化する。センス電流は、MR素子5を構成する各層の面と交差する方向、例えばMR素子5を構成する各層の面に対して垂直な方向に流れる。MR素子5の抵抗値はセンス電流より求めることができる。このようにして、再生ヘッドによって、記録媒体に記録されている情報を再生することができる。
MR素子5は、第1のシールド層3の上に順に積層された下地層21、反強磁性層22、固定層23、非磁性導電層24、フリー層25および保護層26を備えている。固定層23は磁化の方向が固定された層であり、反強磁性層22は、固定層23との交換結合により、固定層23における磁化の方向を固定する層である。下地層21は、その上に形成される各層の結晶性や配向性を向上させ、特に、反強磁性層22と固定層23との交換結合を良好にするために設けられる。フリー層25は、外部磁界、すなわち記録媒体からの信号磁界に応じて磁化の方向が変化する層である。保護層26は、その下の各層を保護するための層である。
下地層21の厚さは、例えば2〜6nmである。下地層21としては、例えばTa層とNiFeCr層との積層体が用いられる。
反強磁性層22の厚さは、例えば5〜30nmである。反強磁性層22は、例えば、Pt、Ru、Rh、Pd、Ni、Cu、Ir、CrおよびFeからなる群のうちの少なくとも1種MIIと、Mnとを含む反強磁性材料により構成されている。このうちMnの含有量は35原子%以上95原子%以下、その他の元素MIIの含有量は5原子%以上65原子%以下であることが好ましい。この反強磁性材料には、熱処理しなくても反強磁性を示し、強磁性材料との間に交換結合磁界を誘起する非熱処理系反強磁性材料と、熱処理により反強磁性を示すようになる熱処理系反強磁性材料とがある。この反強磁性層22は、そのどちらにより構成されていてもよい。
なお、非熱処理系反強磁性材料にはγ相を有するMn合金等があり、具体的には、RuRhMn、FeMnあるいはIrMn等がある。熱処理系反強磁性材料には規則結晶構造を有するMn合金等があり、具体的には、PtMn、NiMnおよびPtRhMn等がある。
固定層23では、反強磁性層22との界面における交換結合により、磁化の向きが固定されている。本実施の形態における固定層23は、反強磁性層22の上に順に積層されたアウター層31、非磁性中間層32およびインナー層33を有し、いわゆるシンセティック固定層になっている。アウター層31は、例えば、CoおよびFeからなる群のうちの少なくともCoを含む強磁性材料により構成された強磁性層を含んでいる。アウター層31とインナー層33は、反強磁性的に結合し、磁化の方向が互いに逆方向に固定されている。アウター層31の厚さは、例えば3〜7nmである。インナー層33の厚さは、例えば3〜7nmである。
非磁性中間層32の厚さは、例えば0.35〜1.0nmである。非磁性中間層32は、例えば、Ru、Rh、Ir、Re、Cr、ZrおよびCuからなる群のうち少なくとも1種を含む非磁性材料により構成されている。この非磁性中間層32は、インナー層33とアウター層31の間に反強磁性交換結合を生じさせ、インナー層33の磁化とアウター層31の磁化とを互いに逆方向に固定するためのものである。なお、インナー層33の磁化とアウター層31の磁化が互いに逆方向というのは、これら2つの磁化の方向が互いに180°異なる場合のみならず、2つの磁化の方向が180°±20°異なる場合を含む。
インナー層33は、非磁性中間層32の上に順に積層された下地磁性層331、ホイスラー合金層332および中間磁性層333を含んでいる。下地磁性層331、ホイスラー合金層332および中間磁性層333のそれぞれの磁化の方向は、アウター層31の磁化の方向とは逆方向に固定されている。下地磁性層331、ホイスラー合金層332および中間磁性層333については、後で詳しく説明する。
非磁性導電層24の厚さは、例えば1.0〜4.0nmである。非磁性導電層24は、例えば、Cu、AuおよびAgからなる群のうち少なくとも1種を80重量%以上含む非磁性の導電材料により構成されている。非磁性導電層24は、本発明における非磁性層に対応する。
フリー層25は、非磁性導電層24の上に順に積層された下地磁性層51およびホイスラー合金層52を含んでいる。下地磁性層51およびホイスラー合金層52については、後で詳しく説明する。
保護層26の厚さは、例えば0.5〜10nmである。保護層26としては、例えば、厚さ10nmのRu層が用いられる。
本実施の形態に係るMR素子5の製造方法は、例えばスパッタ法によって、第1のシールド層3の上に順に下地層21、反強磁性層22、固定層23、非磁性導電層24、フリー層25および保護層26を形成する各工程を備えている。
次に、本実施の形態に係る薄膜磁気ヘッドの作用について説明する。薄膜磁気ヘッドは、記録ヘッドによって記録媒体に情報を記録し、再生ヘッドによって、記録媒体に記録されている情報を再生する。
再生ヘッドにおいて、バイアス磁界印加層6によるバイアス磁界の方向は、媒体対向面20に垂直な方向と直交している。MR素子5において、信号磁界がない状態では、フリー層25の磁化の方向は、バイアス磁界の方向に揃えられている。固定層23の磁化の方向は、媒体対向面20に垂直な方向に固定されている。
MR素子5では、記録媒体からの信号磁界に応じてフリー層25の磁化の方向が変化し、これにより、フリー層25の磁化の方向と固定層23の磁化の方向との間の相対角度が変化し、その結果、MR素子5の抵抗値が変化する。MR素子5の抵抗値は、第1および第2のシールド層3,8によってMR素子5にセンス電流を流したときのシールド層3,8間の電位差より求めることができる。このようにして、再生ヘッドによって、記録媒体に記録されている情報を再生することができる。
次に、本実施の形態に係るMR素子5の特徴について説明する。本実施の形態に係るMR素子5は、互いに反対側を向く第1の面(下面)および第2の面(上面)を有する非磁性導電層24と、非磁性導電層24の第1の面(下面)に隣接するように配置され、磁化の方向が固定された固定層23と、非磁性導電層24の第2の面(上面)に隣接するように配置され、外部磁界に応じて磁化の方向が変化するフリー層25とを備えている。MR素子5には、MR素子5を構成する各層の面と交差する方向、例えばMR素子5を構成する各層の面に対して垂直な方向に、センス電流が流される。
本実施の形態における固定層23は、反強磁性層22の上に順に積層されたアウター層31、非磁性中間層32およびインナー層33を有している。インナー層33は、非磁性中間層32の上に順に積層された下地磁性層331、ホイスラー合金層332および中間磁性層333を含んでいる。
下地磁性層331は、体心立方構造の磁性合金層よりなる。また、下地磁性層331は、Fe、Co、Niのうちの少なくともFeを含む。下地磁性層331は、Feをy原子%、Coを(100−y)原子%含み、yが30以上100以下であることが好ましい。一般的に、Feをy原子%、Coを(100−y)原子%含み、yが30以上100以下であるCoFe合金またはFeの結晶構造は体心立方構造となる。
ホイスラー合金層332は、Mnの含有率が25原子%より多く40原子%以下であるCoMnSi合金よりなり、且つ単位格子の体心位置にCo原子が配置され、単位格子の頂点位置にMn原子またはSi原子が不規則に配置されたB2構造の主成分を含む。ここで、ホイスラー合金層332の「主成分」とは、X線回折法によってホイスラー合金層332の結晶構造を判定したときに最も多い結晶構造の成分を言う。上記のB2構造の主成分を含むホイスラー合金層332を形成するためには、ホイスラー合金層332を構成するCoMnSi合金におけるCoの含有率は、50原子%であるか、それに近いことが好ましく、具体的には48〜52原子%の範囲内であることが好ましい。また、後で詳しく説明するが、ホイスラー合金層332を構成するCoMnSi合金におけるMnの含有率は、30〜40原子%の範囲内であることが好ましい。
中間磁性層333は、Fe、Co、Niのうちの少なくともFeを含む。中間磁性層333は、Feをz原子%、Coを(100−z)原子%含み、zが30以上100以下であることが好ましい。
本実施の形態に係るMR素子5の製造方法において、固定層23を形成する工程は、例えばスパッタ法によって、反強磁性層22の上に順に、アウター層31、非磁性中間層32、下地磁性層331、ホイスラー合金層332および中間磁性層333を形成する各工程を含んでいる。
本実施の形態におけるフリー層25は、非磁性導電層24の上に順に積層された下地磁性層51およびホイスラー合金層52を含んでいる。下地磁性層51は、体心立方構造の磁性合金層よりなる。また、下地磁性層51は、Fe、Co、Niのうちの少なくともFeを含む。下地磁性層51は、Feをy原子%、Coを(100−y)原子%含み、yが30以上100以下であることが好ましい。一般的に、Feをy原子%、Coを(100−y)原子%含み、yが30以上100以下であるCoFe合金またはFeの結晶構造は体心立方構造となる。
ホイスラー合金層52は、Mnの含有率が25原子%より多く40原子%以下であるCoMnSi合金よりなり、且つ単位格子の体心位置にCo原子が配置され、単位格子の頂点位置にMn原子またはSi原子が不規則に配置されたB2構造の主成分を含む。ここで、ホイスラー合金層52の「主成分」とは、X線回折法によってホイスラー合金層52の結晶構造を判定したときに最も多い結晶構造の成分を言う。上記のB2構造の主成分を含むホイスラー合金層52を形成するためには、ホイスラー合金層52を構成するCoMnSi合金におけるCoの含有率は、50原子%であるか、それに近いことが好ましく、具体的には48〜52原子%の範囲内であることが好ましい。また、後で詳しく説明するが、ホイスラー合金層52を構成するCoMnSi合金におけるMnの含有率は、30〜40原子%の範囲内であることが好ましい。
本実施の形態に係るMR素子5の製造方法において、フリー層25を形成する工程は、例えばスパッタ法によって、非磁性導電層24の上に順に、下地磁性層51およびホイスラー合金層52を形成する各工程を含んでいる。
また、本実施の形態に係るMR素子5の製造方法は、ホイスラー合金層332,52のそれぞれの主成分の結晶構造をB2構造とするためにホイスラー合金層332,52に対して熱処理を施す工程を備えている。成膜直後のホイスラー合金層332,52の主な結晶構造はA2構造になっている。上記熱処理では、ホイスラー合金層332,52を所定の温度で加熱することによって、ホイスラー合金層332,52の主成分の結晶構造をB2構造に変化させる。以下、ホイスラー合金層332,52の結晶構造をB2構造に変化させることのできる最低の熱処理温度をB2規則化温度と言う。
ここで、一般的なフルホイスラー合金がとり得る結晶構造について図8ないし図10を参照して説明する。ここでは、本明細書の[背景技術]における説明と同様に、一般的なフルホイスラー合金の化学組成をXYZと表す。一般的なフルホイスラー合金がとり得る結晶構造は、L2構造、B2構造、A2構造の3つである。図8はL2構造を表している。図9はB2構造を表している。図10はA2構造を表している。L2構造、B2構造、A2構造のいずれも体心立方構造に類似している。
図8に示したL2構造では、単位格子の体心位置に元素Xの原子が配置され、単位格子の頂点位置には元素Yの原子と元素Zの原子が交互に規則的に配置される。
図9に示したB2構造では、単位格子の体心位置に元素Xの原子が配置され、単位格子の頂点位置には元素Yの原子または元素Zの原子が不規則に配置される。
図10に示したA2構造では、単位格子の体心位置と頂点位置のいずれにも、元素Xの原子または元素Yの原子または元素Zの原子が不規則に配置される。
L2構造、B2構造、A2構造のうち、L2構造とB2構造において大きなスピン分極率が発現する。
本実施の形態におけるホイスラー合金層332,52を構成するCoMnSi合金では、Co、Mn、Siの組成比が化学量論組成の2:1:1ではない。そのため、本実施の形態におけるホイスラー合金層332,52の結晶構造はB2構造またはA2構造となる。前述のように、成膜直後のホイスラー合金層332,52の主な結晶構造はA2構造になっているが、ホイスラー合金層332,52に対して熱処理を施すことにより、ホイスラー合金層332,52の主成分の結晶構造を、大きなスピン分極率が発現するB2構造に変化させることができる。
前述のようにB2構造とA2構造は体心立方構造に類似している。そのため、ホイスラー合金層332,52の下地を、それぞれ、体心立方構造の磁性合金層よりなる下地磁性層331,51とすることにより、ホイスラー合金層332,52の主成分の結晶構造をB2構造にすることが容易になる。体心立方構造の磁性合金層よりなる下地磁性層331,51を形成するために、下地磁性層331,51の材料としては、Feをy原子%、Coを(100−y)原子%含み、yが30以上100以下であるCoFe合金またはFeが好ましい。
ところで、本出願の発明者は、本発明に至る過程で、以下のような実験を行った。まず、Co、Mn、Siの組成比が2:1:1である化学量論組成で、B2構造のCoMnSi合金層を固定層やフリー層に用いたCPP−GMR素子を作製した。CoMnSi合金層は、体心立方構造の磁性合金層の上に成膜した。このようにして作製されたCPP−GMR素子では、本明細書の[発明が解決しようとする課題]にも記載したように、高々5%程度のMR比しか得られなかった。
次に、X線回折法により、上述のように体心立方構造の磁性合金層の上に成膜されたB2構造のCoMnSi合金層における(100)面の格子定数を測定した。すると、その値は約2.8Å(1Åは0.1nm)であった。バルクのCoMnSi合金における(100)面の格子定数は約3.0Åである。上記のCoMnSi合金層における(100)面の格子定数は、バルクのCoMnSi合金における(100)面の格子定数よりも7%程度小さい。このようにCoMnSi合金層の格子定数がバルクのCoMnSi合金の格子定数よりも小さくなる原因は、CoMnSi合金層の格子定数が、CoMnSi合金層の下地である磁性合金層の格子定数に依存するためと考えられる。
次に、一般に公開されている第一原理計算のプログラムを用いた電子状態計算から、Co、Mn、Siの組成比が2:1:1である化学量論組成のCoMnSi合金では、格子定数が2.8Åである場合には、B2構造であってもスピン分極率が大きくならないことが分かった。
更に、第一原理計算のプログラムを用いた電子状態計算から、格子定数が2.8ÅでB2構造のCoMnSi合金において、Coの含有率を50原子%に固定し、Mnの含有率を25原子%よりも多くすると、Mnの含有率が25原子%の場合に比べて、スピン分極率が大きくなることが分かった。
そして、実際に、Coの含有率を48〜52原子%の範囲内とし、Mnの含有率を30原子%以上としたB2構造のCoMnSi合金層を固定層やフリー層に用いたCPP−GMR素子を作製した。CoMnSi合金層は、体心立方構造の磁性合金層の上に成膜した。このようにして作製されたCPP−GMR素子では、約10%のMR比が得られた。
以上の実験を経て、本出願の発明者は本発明に至った。本発明におけるホイスラー合金層は、下地磁性層の上に形成され、Mnの含有率が25原子%より多く40原子%以下であるCoMnSi合金よりなり、且つ単位格子の体心位置にCo原子が配置され、単位格子の頂点位置にMn原子またはSi原子が不規則に配置されたB2構造の主成分を含む。このような本発明におけるホイスラー合金層のスピン分極率は、Co、Mn、Siの組成比が2:1:1であるCoMnSi合金よりなる合金層が下地磁性層の上に形成された場合における、その合金層のスピン分極率よりも大きくなる。
更に、第一原理計算のプログラムを用いた電子状態計算から、本発明におけるホイスラー合金層と非磁性導電層との間に、Feをz原子%、Coを(100−z)原子%含み、zが30以上100以下であるCoFe合金またはFeよりなる中間磁性層を挿入することにより、ホイスラー合金層の中間磁性層に対する界面におけるスピン分極率が、ホイスラー合金層の非磁性導電層に対する界面におけるスピン分極率よりも大きくなることが分かった。このことから、ホイスラー合金層と非磁性導電層との間に中間磁性層を挿入することにより、CPP−GMR素子のMR比を大きくすることができることが分かる。
以下、本実施の形態のMR素子5の効果を示す実験結果について説明する。まず、実験では、実施例のMR素子5と比較例のMR素子とを実際に作製し、それらのMR比を測定した。表1は実施例のMR素子5の具体的な構成を示し、表2は比較例のMR素子の具体的な構成を示している。表1では、Coを50原子%、Mnをx原子%、Siを(50−x)原子%含むCoMnSi合金を、Co50MnSi(50−x)と表している。なお、実施例において、xは30以上40以下である。同様に、表1では、Feを30原子%、Coを70原子%含むCoFe合金を、Co70Fe30と表し、Feをz原子%、Coを(100−z)原子%含むCoFe合金またはFeを、Co(100−z)Feと表している。なお、実施例において、zは30以上100以下である。また、表2では、Coを50原子%、Mnを25原子%、Siを25原子%含むCoMnSi合金を、Co50Mn25Si25と表している。同様に、表2では、Feを30原子%、Coを70原子%含むCoFe合金を、Co70Fe30と表している。
Figure 2007273657
Figure 2007273657
実験の結果、比較例のMR素子のMR比は6%であった。実施例のMR素子5のMR比は、xが30以上40以下、zが30以上100以下の範囲の全域において、比較例のMR素子のMR比よりも大きな値であった。一例として、xが35、zが70のときの実施例のMR素子5のMR比は、9.6%であり、比較例のMR素子のMR比の1.6倍となった。
次に、第一原理計算のプログラムを用いた電子状態計算によって、格子定数が2.8ÅでB2構造のCoMnSi合金のスピン分極率を求めた。ここでは、CoMnSi合金は、Coを50原子%、Mnをx原子%、Siを(50−x)原子%含むものとし、xの値がそれぞれ21、25、30、35、40の場合について計算を行った。また、この計算に用いた組成のCoMnSi合金よりなる層を実際に作製し、それらのB2規則化温度を測定により求めた。なお、第一原理計算の手法としては、例えば文献“小口,「第一原理計算手法の開発と公開」,固体物理,2004年,第39巻,第11号,p.184−185”において計算効率のよい手法として紹介されているKKR(Korringa-Kohn-Rostoker)法を用いた。電子状態計算では、格子定数を2.8Åに固定し、単位格子の体心位置にCo原子を配置し、xの値に応じた比率のMn原子とSi原子を単位格子の頂点位置にランダムに配置したモデルを用いた。
以下の表3と図11に、上記のCoMnSi合金におけるxの値すなわちMnの含有量(原子%)とスピン分極率PとB2規則化温度Tc(℃)との関係を示す。
Figure 2007273657
表3および図11に示したように、Mn含有量が25原子%の化学量論組成のCoMnSi合金では、格子定数が2.8ÅでB2構造の場合には、スピン分極率が0.5となる。この値は、CoFe合金のスピン分極率の値である0.4の1.25倍にしか過ぎない。しかし、表3および図11から分かるように、格子定数が2.8ÅでB2構造のCoMnSi合金において、Coを50原子%に固定し、Mnを25原子%よりも多くすると、Mnが25原子%の場合に比べてスピン分極率が大きくなる。従って、本実施の形態によれば、ホイスラー合金層332,52を構成するCoMnSi合金におけるMnの含有量を25原子%よりも多くすることにより、化学量論組成のCoMnSi合金を固定層23やフリー層25に用いる場合に比べて、MR素子5のMR比を大きくすることができる。
また、表3および図11から分かるように、Mnの含有量が21〜40原子%の範囲内では、CoMnSi合金におけるMnの含有量が多くなるほど、CoMnSi合金のB2規則化温度Tcは低下する。Mnの含有量が30原子%以上になるとB2規則化温度Tcは300℃以下になる。B2規則化温度Tcが300℃を超えると、ホイスラー合金層332,52の熱処理時に、第1のシールド層3において結晶粒の成長が起こって粗大粒が発生し、その結果、第1のシールド層3の透磁率が低下するおそれがある。従って、実用上、B2規則化温度Tcは300℃以下であることが好ましく、そのためには、Mnの含有量は30原子%以上、すなわちxは30以上であることが好ましい。
また、別の実験から、CoMnSi合金におけるMnの含有量が多くなるほど、CoMnSi合金のキュリー温度が低下することが分かった。薄膜磁気ヘッドの実用性を考慮すると、CoMnSi合金よりなるホイスラー合金層332,52のキュリー温度は200℃以上であることが好ましい。実験から、Mnの含有量を40原子%以下とすることによりCoMnSi合金のキュリー温度を200℃以上にすることができることが分かった。従って、CoMnSi合金のキュリー温度を200℃以上にするために、Mnの含有量は40原子%以下、すなわちxは40以下であることが好ましい。
次に、ホイスラー合金層332と非磁性導電層24の間に配置された中間磁性層333と、ホイスラー合金層52と非磁性導電層24の間に配置された下地磁性層51の機能について説明する。磁性層333,51を設けない場合には、ホイスラー合金層332,52と非磁性導電層24が接することになる。第一原理計算のプログラムを用いた電子状態計算から、ホイスラー合金層332の中間磁性層333に対する界面におけるスピン分極率と、ホイスラー合金層52の下地磁性層51に対する界面におけるスピン分極率は、いずれも、ホイスラー合金層332,52と非磁性導電層24が接する場合におけるホイスラー合金層332,52の非磁性導電層24に対する界面におけるスピン分極率よりも大きくなることが分かった。このことを示す電子状態計算の結果を以下で説明する。
ここでは、以下の第1ないし第3の例についての電子状態計算の結果を示す。第1の例では、CoMnSi合金層とCu層が接している。第2の例では、CoMnSi合金層と、Coを70原子%、Feを30原子%含むCoFe合金層とが接している。第3の例では、CoMnSi合金層とFe層が接している。これら第1ないし第3の例において、CoMnSi合金層はホイスラー合金層332,52に対応し、Cu層は非磁性導電層24に対応し、CoFe合金層およびFe層は磁性層333,51に対応する。いずれの例においても、CoMnSi合金層は、Coを50原子%、Mnを35原子%、Siを15原子%含み、B2構造であるものとした。なお、第一原理計算の手法としては、前述のKKR法を用いた。また、CoMnSi合金層については、格子定数を2.8Åに固定し、単位格子の体心位置にCo原子を配置し、上記のように設定された比率のMn原子とSi原子を単位格子の頂点位置にランダムに配置したモデルを用いた。
第1の例については、電子状態計算により、CoMnSi合金層のCu層に対する界面におけるCoとMnのそれぞれの、フェルミ準位における上向きスピンの状態密度および下向きスピンの状態密度を求めた。なお、Siのスピンの状態密度は、CoMnSi合金層のCu層に対する界面におけるスピン分極率にほとんど寄与しないため考慮していない。Cu層については、結晶構造を面心立方構造とすると共に、面心立方構造のCuの格子定数を用いてモデルを作成した。第1の例についての計算結果を、下記の表4に示す。
Figure 2007273657
表4には、フェルミ準位におけるCoの上向きスピンの状態密度とMnの上向きスピンの状態密度との合計と、フェルミ準位におけるCoの下向きスピンの状態密度とMnの下向きスピンの状態密度との合計と、これらに基づいて求められた界面におけるスピン分極率Pも示している。フェルミ準位におけるCoの上向きスピンの状態密度とMnの上向きスピンの状態密度との合計を[UP−DOS]と表し、フェルミ準位におけるCoの下向きスピンの状態密度とMnの下向きスピンの状態密度との合計を[DOWN−DOS]と表すと、分極率Pは、下記の式によって求められる。
P=([UP−DOS]−[DOWN−DOS])/([UP−DOS]+[DOWN−DOS])
第2の例については、電子状態計算により、CoMnSi合金層のCoFe合金層に対する界面におけるCoとMnのそれぞれの、フェルミ準位における上向きスピンの状態密度および下向きスピンの状態密度を求めた。なお、Siのスピンの状態密度は、CoMnSi合金層のCoFe合金層に対する界面におけるスピン分極率にほとんど寄与しないため考慮していない。CoFe合金層については、結晶構造を体心立方構造とすると共に、体心立方構造のCoFe合金の格子定数を用いてモデルを作成した。第2の例についての計算結果を、下記の表5に示す。表5には、表4と同様に、フェルミ準位におけるCoの上向きスピンの状態密度とMnの上向きスピンの状態密度との合計と、フェルミ準位におけるCoの下向きスピンの状態密度とMnの下向きスピンの状態密度との合計と、これらに基づいて求められた界面におけるスピン分極率Pも示している。
Figure 2007273657
第3の例については、電子状態計算により、CoMnSi合金層のFe層に対する界面におけるCoとMnのそれぞれの、フェルミ準位における上向きスピンの状態密度および下向きスピンの状態密度を求めた。なお、Siのスピンの状態密度は、CoMnSi合金層のFe層に対する界面におけるスピン分極率にほとんど寄与しないため考慮していない。Fe層については、結晶構造を体心立方構造とすると共に、体心立方構造のFeの格子定数を用いてモデルを作成した。第3の例についての計算結果を、下記の表6に示す。表6には、表4と同様に、フェルミ準位におけるCoの上向きスピンの状態密度とMnの上向きスピンの状態密度との合計と、フェルミ準位におけるCoの下向きスピンの状態密度とMnの下向きスピンの状態密度との合計と、これらに基づいて求められた界面におけるスピン分極率Pも示している。
Figure 2007273657
表4に示したように、CoMnSi合金層のCu層に対する界面におけるスピン分極率Pは、0.13という小さな値である。これに対し、表5に示したように、CoMnSi合金層のCoFe合金層に対する界面におけるスピン分極率Pは0.54という大きな値であり、表6に示したように、CoMnSi合金層のFe層に対する界面におけるスピン分極率Pも0.76という大きな値である。この結果から分かるように、ホイスラー合金層332の中間磁性層333に対する界面におけるスピン分極率と、ホイスラー合金層52の下地磁性層51に対する界面におけるスピン分極率は、いずれも、ホイスラー合金層332,52と非磁性導電層24が接する場合におけるホイスラー合金層332,52の非磁性導電層24に対する界面におけるスピン分極率よりも大きくなる。従って、磁性層333,51を設けることにより、磁性層333,51を設けずにホイスラー合金層332,52と非磁性導電層24が接する場合に比べて、MR素子5のMR比を大きくすることができる。
中間磁性層333と下地磁性層51のいずれにおいても、それらの材料としてFeを30〜100原子%含むCoFe合金またはFeを用いることにより、上記の界面におけるスピン分極率を十分に大きくすることができる。
ただし、フリー層25に含まれる下地磁性層51については、下地磁性層51に含まれるFeが30原子%を超えると、下地磁性層51の磁歪と保磁力が大きくなる。そのため、下地磁性層51の材料としては、一例として、Feを30原子%含むCoFe合金が好ましい。
以上説明したように、本実施の形態に係るMR素子5では、固定層23は、体心立方構造の磁性合金層よりなる下地磁性層331と、下地磁性層331の上に形成されたホイスラー合金層332とを含む。同様に、フリー層25は、体心立方構造の磁性合金層よりなる下地磁性層51と、下地磁性層51の上に形成されたホイスラー合金層52とを含む。ホイスラー合金層332,52は、いずれも、Mnの含有率が25原子%より多く40原子%以下であるCoMnSi合金よりなり、且つ単位格子の体心位置にCo原子が配置され、単位格子の頂点位置にMn原子またはSi原子が不規則に配置されたB2構造の主成分を含む。ホイスラー合金層332,52のスピン分極率は、Co、Mn、Siの組成比が2:1:1であるCoMnSi合金よりなる合金層が下地磁性層の上に形成された場合における、その合金層のスピン分極率よりも大きくなる。これにより、本実施の形態に係るMR素子5および薄膜磁気ヘッドによれば、センス電流がMR素子5を構成する各層の面と交差する方向に電流が流されるMR素子5のMR比を大きくすることができる。
また、本実施の形態では、xを40以下とすることにより、ホイスラー合金層332,52のキュリー温度を、実用的な200℃以上にすることができる。また、xを30以上とすることにより、ホイスラー合金層332,52のB2規則化温度Tcを、実用的な300℃以下にすることができる。
また、本実施の形態では、ホイスラー合金層332と非磁性導電層24の間に中間磁性層333が設けられ、ホイスラー合金層52と非磁性導電層24の間に下地磁性層51が設けられている。ホイスラー合金層332の中間磁性層333に対する界面におけるスピン分極率と、ホイスラー合金層52の下地磁性層51に対する界面におけるスピン分極率は、いずれも、ホイスラー合金層332,52と非磁性導電層24が接する場合におけるホイスラー合金層332,52の非磁性導電層24に対する界面におけるスピン分極率よりも大きくなる。従って、本実施の形態によれば、磁性層333,51を設けずにホイスラー合金層332,52と非磁性導電層24が接する場合に比べて、MR素子5のMR比を大きくすることができる。
なお、本実施の形態では、固定層23とフリー層25の両方が、体心立方構造の磁性合金層よりなる下地磁性層と、この下地磁性層の上に形成された、本実施の形態で規定された組成のホイスラー合金層とを含んでいる。しかし、固定層23とフリー層25の一方のみが、上記下地磁性層とホイスラー合金層とを含んでいてもよい。この場合にも、上述の効果が得られる。
以下、本実施の形態に係るヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置について説明する。まず、図4を参照して、ヘッドジンバルアセンブリに含まれるスライダ210について説明する。磁気ディスク装置において、スライダ210は、回転駆動される円盤状の記録媒体である磁気ディスクに対向するように配置される。このスライダ210は、主に図2における基板1およびオーバーコート層17からなる基体211を備えている。基体211は、ほぼ六面体形状をなしている。基体211の六面のうちの一面は、磁気ディスクに対向するようになっている。この一面には、媒体対向面20が形成されている。磁気ディスクが図4におけるz方向に回転すると、磁気ディスクとスライダ210との間を通過する空気流によって、スライダ210に、図4におけるy方向の下方に揚力が生じる。スライダ210は、この揚力によって磁気ディスクの表面から浮上するようになっている。なお、図4におけるx方向は、磁気ディスクのトラック横断方向である。スライダ210の空気流出側の端部(図4における左下の端部)の近傍には、本実施の形態に係る薄膜磁気ヘッド100が形成されている。
次に、図5を参照して、本実施の形態に係るヘッドジンバルアセンブリ220について説明する。ヘッドジンバルアセンブリ220は、スライダ210と、このスライダ210を弾性的に支持するサスペンション221とを備えている。サスペンション221は、例えばステンレス鋼によって形成された板ばね状のロードビーム222、このロードビーム222の一端部に設けられると共にスライダ210が接合され、スライダ210に適度な自由度を与えるフレクシャ223と、ロードビーム222の他端部に設けられたベースプレート224とを有している。ベースプレート224は、スライダ210を磁気ディスク262のトラック横断方向xに移動させるためのアクチュエータのアーム230に取り付けられるようになっている。アクチュエータは、アーム230と、このアーム230を駆動するボイスコイルモータとを有している。フレクシャ223において、スライダ210が取り付けられる部分には、スライダ210の姿勢を一定に保つためのジンバル部が設けられている。
ヘッドジンバルアセンブリ220は、アクチュエータのアーム230に取り付けられる。1つのアーム230にヘッドジンバルアセンブリ220を取り付けたものはヘッドアームアセンブリと呼ばれる。また、複数のアームを有するキャリッジの各アームにヘッドジンバルアセンブリ220を取り付けたものはヘッドスタックアセンブリと呼ばれる。
図5は、本実施の形態に係るヘッドアームアセンブリを示している。このヘッドアームアセンブリでは、アーム230の一端部にヘッドジンバルアセンブリ220が取り付けられている。アーム230の他端部には、ボイスコイルモータの一部となるコイル231が取り付けられている。アーム230の中間部には、アーム230を回動自在に支持するための軸234に取り付けられる軸受け部233が設けられている。
次に、図6および図7を参照して、ヘッドスタックアセンブリの一例と本実施の形態に係る磁気ディスク装置について説明する。図6は磁気ディスク装置の要部を示す説明図、図7は磁気ディスク装置の平面図である。ヘッドスタックアセンブリ250は、複数のアーム252を有するキャリッジ251を有している。複数のアーム252には、複数のヘッドジンバルアセンブリ220が、互いに間隔を開けて垂直方向に並ぶように取り付けられている。キャリッジ251においてアーム252とは反対側には、ボイスコイルモータの一部となるコイル253が取り付けられている。ヘッドスタックアセンブリ250は、磁気ディスク装置に組み込まれる。磁気ディスク装置は、スピンドルモータ261に取り付けられた複数枚の磁気ディスク262を有している。各磁気ディスク262毎に、磁気ディスク262を挟んで対向するように2つのスライダ210が配置される。また、ボイスコイルモータは、ヘッドスタックアセンブリ250のコイル253を挟んで対向する位置に配置された永久磁石263を有している。
スライダ210を除くヘッドスタックアセンブリ250およびアクチュエータは、本発明における位置決め装置に対応し、スライダ210を支持すると共に磁気ディスク262に対して位置決めする。
本実施の形態に係る磁気ディスク装置では、アクチュエータによって、スライダ210を磁気ディスク262のトラック横断方向に移動させて、スライダ210を磁気ディスク262に対して位置決めする。スライダ210に含まれる薄膜磁気ヘッドは、記録ヘッドによって、磁気ディスク262に情報を記録し、再生ヘッドによって、磁気ディスク262に記録されている情報を再生する。
本実施の形態に係るヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置は、前述の本実施の形態に係る薄膜磁気ヘッドと同様の効果を奏する。
[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。図12は、本実施の形態における再生ヘッドの媒体対向面に平行な断面を示す断面図である。図12に示したように、本実施の形態に係るMR素子5は、第1の実施の形態における非磁性導電層24の代わりに、非磁性絶縁層よりなるトンネルバリア層27が設けられた構成になっている。すなわち、本実施の形態に係るMR素子5はTMR素子になっている。トンネルバリア層27は、トンネル効果によりスピンを保存した状態で電子が通過できる層である。トンネルバリア層27の厚さは、例えば0.5〜2nmである。トンネルバリア層27の材料としては、例えばAl、Ni、Gd、Mg、Ta、Mo、Ti、W、HfまたはZrの酸化物または窒化物が用いられる。トンネルバリア層27は、本発明における非磁性層に対応する。第1の実施の形態と同様に、本実施の形態においても、MR素子5には、MR素子5を構成する各層の面と交差する方向、例えばMR素子5を構成する各層の面に対して垂直な方向に、センス電流が流される。
第1の実施の形態と同様に、本実施の形態においても、ホイスラー合金層332,52のスピン分極率が大きくなることから、TMR素子であるMR素子5のMR比を大きくすることができる。
また、本実施の形態では、ホイスラー合金層332とトンネルバリア層27の間に中間磁性層333が設けられ、ホイスラー合金層52とトンネルバリア層27の間に下地磁性層51が設けられている。これにより、トンネルバリア層27からホイスラー合金層332,52側へ移動する酸素元素に起因してホイスラー合金層332,52のスピン分極率が低下することを防止して、MR素子5のMR比の低下を防止することができる。
本実施の形態におけるその他の構成、作用および効果は、第1の実施の形態と同様である。
なお、本発明は、上記各実施の形態に限定されず、種々の変更が可能である。例えば、本発明において、固定層23はシンセティック固定層に限らない。
また、各実施の形態では、基体側に再生ヘッドを形成し、その上に、記録ヘッドを積層した構造の薄膜磁気ヘッドについて説明したが、この積層順序を逆にしてもよい。
また、読み取り専用として用いる場合には、薄膜磁気ヘッドを、再生ヘッドだけを備えた構成としてもよい。
また、本発明の磁気抵抗効果素子は、薄膜磁気ヘッドにおける再生ヘッドに限らず、磁気センサ等の他の用途にも用いることができる。
本発明の第1の実施の形態における再生ヘッドの媒体対向面に平行な断面を示す断面図である。 本発明の第1の実施の形態に係る薄膜磁気ヘッドの媒体対向面および基板に垂直な断面を示す断面図である。 本発明の第1の実施の形態に係る薄膜磁気ヘッドの磁極部分の媒体対向面に平行な断面を示す断面図である。 本発明の第1の実施の形態に係るヘッドジンバルアセンブリに含まれるスライダを示す斜視図である。 本発明の第1の実施の形態に係るヘッドアームアセンブリを示す斜視図である。 本発明の第1の実施の形態に係る磁気ディスク装置の要部を説明するための説明図である。 本発明の第1の実施の形態に係る磁気ディスク装置の平面図である。 L2構造を示す説明図である。 B2構造を示す説明図である。 A2構造を示す説明図である。 CoMnSi合金におけるMnの含有量とスピン分極率とB2規則化温度との関係を示す特性図である。 本発明の第2の実施の形態における再生ヘッドの媒体対向面に平行な断面を示す断面図である。
符号の説明
1…基板、2…絶縁層、3…第1のシールド層、4…絶縁膜、5…MR素子、6…バイアス磁界印加層、7…絶縁層、8…第2のシールド層、9…記録ギャップ層、10…薄膜コイルの第1層部分、12…上部磁極層、15…薄膜コイルの第2層部分、17…オーバーコート層、20…媒体対向面、21…下地層、22…反強磁性層、23…固定層、24…非磁性導電層、25…フリー層、26…保護層、31…アウター層、32…非磁性中間層、33…インナー層、51…下地磁性層、52…ホイスラー合金層、331…下地磁性層、332…ホイスラー合金層、333…中間磁性層。

Claims (15)

  1. 互いに反対側を向く第1および第2の面を有する非磁性層と、
    前記非磁性層の前記第1の面に隣接するように配置され、磁化の方向が固定された固定層と、
    前記非磁性層の前記第2の面に隣接するように配置され、外部磁界に応じて磁化の方向が変化するフリー層とを備え、
    磁気的信号検出用の電流が、前記各層の面と交差する方向に流される磁気抵抗効果素子であって、
    前記固定層とフリー層の少なくとも一方は、体心立方構造の磁性合金層よりなる下地磁性層と、前記下地磁性層の上に形成されたホイスラー合金層とを含み、
    前記ホイスラー合金層は、Mnの含有率が25原子%より多く40原子%以下であるCoMnSi合金よりなり、且つ単位格子の体心位置にCo原子が配置され、単位格子の頂点位置にMn原子またはSi原子が不規則に配置されたB2構造の主成分を含むことを特徴とする磁気抵抗効果素子。
  2. 前記CoMnSi合金におけるCoの含有率は、48〜52原子%の範囲内であることを特徴とする請求項1記載の磁気抵抗効果素子。
  3. 前記CoMnSi合金におけるMnの含有率は、30〜40原子%の範囲内であることを特徴とする請求項1または2記載の磁気抵抗効果素子。
  4. 前記下地磁性層は、Feをy原子%、Coを(100−y)原子%含み、yが30以上100以下であることを特徴とする請求項1ないし3のいずれかに記載の磁気抵抗効果素子。
  5. 前記固定層は、前記下地磁性層および前記ホイスラー合金層を含み、
    前記固定層に含まれるホイスラー合金層は、前記固定層に含まれる下地磁性層と前記非磁性層との間に配置され、
    前記固定層は、更に、前記固定層に含まれるホイスラー合金層と前記非磁性層との間に配置された中間磁性層を含み、
    前記中間磁性層は、Feをz原子%、Coを(100−z)原子%含み、zが30以上100以下であることを特徴とする請求項1ないし4のいずれかに記載の磁気抵抗効果素子。
  6. 前記固定層は、更に、前記固定層に含まれるホイスラー合金層との間で前記固定層に含まれる下地磁性層を挟む位置に配置された非磁性中間層と、前記固定層に含まれる下地磁性層との間で前記非磁性中間層を挟む位置に配置され、磁化の方向が固定された強磁性層とを含み、
    前記固定層に含まれる下地磁性層、ホイスラー合金層および中間磁性層のそれぞれの磁化の方向は、前記強磁性層の磁化の方向とは逆方向に固定されていることを特徴とする請求項5記載の磁気抵抗効果素子。
  7. 前記フリー層は、前記下地磁性層および前記ホイスラー合金層を含み、
    前記フリー層に含まれる下地磁性層は、前記フリー層に含まれるホイスラー合金層と前記非磁性層との間に配置されていることを特徴とする請求項1ないし6のいずれかに記載の磁気抵抗効果素子。
  8. 前記非磁性層は導電材料よりなることを特徴とする請求項1ないし7のいずれかに記載の磁気抵抗効果素子。
  9. 前記非磁性層は、絶縁材料よりなるトンネルバリア層であることを特徴とする請求項1ないし7のいずれかに記載の磁気抵抗効果素子。
  10. 互いに反対側を向く第1および第2の面を有する非磁性層と、
    前記非磁性層の前記第1の面に隣接するように配置され、磁化の方向が固定された固定層と、
    前記非磁性層の前記第2の面に隣接するように配置され、外部磁界に応じて磁化の方向が変化するフリー層とを備え、
    磁気的信号検出用の電流が、前記各層の面と交差する方向に流される磁気抵抗効果素子を製造する方法であって、
    前記固定層、非磁性層、フリー層を形成する各工程を備え、
    前記固定層を形成する工程と前記フリー層を形成する工程の少なくとも一方は、体心立方構造の磁性合金層よりなる下地磁性層を形成する工程と、前記下地磁性層の上にホイスラー合金層を形成する工程とを含み、
    前記ホイスラー合金層は、Mnの含有率が25原子%より多く40原子%以下であるCoMnSi合金よりなり、且つ単位格子の体心位置にCo原子が配置され、単位格子の頂点位置にMn原子またはSi原子が不規則に配置されたB2構造の主成分を含むことを特徴とする磁気抵抗効果素子の製造方法。
  11. 更に、前記ホイスラー合金層の前記主成分の結晶構造をB2構造とするために前記ホイスラー合金層に対して熱処理を施す工程を備えたことを特徴とする請求項10記載の磁気抵抗効果素子の製造方法。
  12. 記録媒体に対向する媒体対向面と、
    前記記録媒体からの信号磁界を検出するために前記媒体対向面の近傍に配置された請求項1ないし9のいずれかに記載の磁気抵抗効果素子と、
    磁気的信号検出用の電流を、前記磁気抵抗効果素子に対して、磁気抵抗効果素子を構成する各層の面と交差する方向に流すための一対の電極と
    を備えたことを特徴とする薄膜磁気ヘッド。
  13. 請求項12記載の薄膜磁気ヘッドを含み、記録媒体に対向するように配置されるスライダと、
    前記スライダを弾性的に支持するサスペンションと
    を備えたことを特徴とするヘッドジンバルアセンブリ。
  14. 請求項12記載の薄膜磁気ヘッドを含み、記録媒体に対向するように配置されるスライダと、
    前記スライダを弾性的に支持するサスペンションと、
    前記スライダを記録媒体のトラック横断方向に移動させるためのアームと
    を備え、前記サスペンションが前記アームに取り付けられていることを特徴とするヘッドアームアセンブリ。
  15. 請求項12記載の薄膜磁気ヘッドを含み、回転駆動される記録媒体に対向するように配置されるスライダと、
    前記スライダを支持すると共に前記記録媒体に対して位置決めする位置決め装置と
    を備えたことを特徴とする磁気ディスク装置。
JP2006096310A 2006-03-31 2006-03-31 磁気抵抗効果素子およびその製造方法、ならびに薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置 Pending JP2007273657A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006096310A JP2007273657A (ja) 2006-03-31 2006-03-31 磁気抵抗効果素子およびその製造方法、ならびに薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置
US11/709,148 US7808748B2 (en) 2006-03-31 2007-02-22 Magnetoresistive element including heusler alloy layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006096310A JP2007273657A (ja) 2006-03-31 2006-03-31 磁気抵抗効果素子およびその製造方法、ならびに薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置

Publications (1)

Publication Number Publication Date
JP2007273657A true JP2007273657A (ja) 2007-10-18

Family

ID=38558566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006096310A Pending JP2007273657A (ja) 2006-03-31 2006-03-31 磁気抵抗効果素子およびその製造方法、ならびに薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置

Country Status (2)

Country Link
US (1) US7808748B2 (ja)
JP (1) JP2007273657A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034152A (ja) * 2008-07-25 2010-02-12 Toshiba Corp スピントランジスタ、リコンフィギャラブル論理回路、磁気抵抗効果素子、および磁気メモリ
JP2010140586A (ja) * 2008-12-15 2010-06-24 Hitachi Global Storage Technologies Netherlands Bv 磁気抵抗効果型磁気ヘッド
JP2010238956A (ja) * 2009-03-31 2010-10-21 Tdk Corp スピン伝導デバイス
JP2011035336A (ja) * 2009-08-06 2011-02-17 National Institute For Materials Science 電流垂直型巨大磁気抵抗(cpp−gmr)素子
JP2017004585A (ja) * 2015-06-15 2017-01-05 国立大学法人東北大学 膜面垂直通電型巨大磁気抵抗素子及び磁気デバイス
WO2018159138A1 (ja) * 2017-03-03 2018-09-07 Tdk株式会社 磁気抵抗効果素子
WO2018159129A1 (ja) * 2017-03-03 2018-09-07 Tdk株式会社 磁気抵抗効果素子

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4360998B2 (ja) * 2004-10-01 2009-11-11 Tdk株式会社 電流センサ
JP4381358B2 (ja) * 2005-08-24 2009-12-09 Tdk株式会社 磁気検出素子
JP4449951B2 (ja) * 2006-07-20 2010-04-14 Tdk株式会社 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリおよびハードディスク装置
US7957106B2 (en) * 2007-04-30 2011-06-07 Hitachi Global Storage Technologies Netherlands, B.V. Chemically disordered material used to form a free layer or a pinned layer of a magnetoresistance (MR) read element
US20110200845A1 (en) * 2010-02-16 2011-08-18 Seagate Technology Llc Current perpendicular to the plane reader with improved giant magneto-resistance
WO2019244662A1 (ja) * 2018-06-19 2019-12-26 ソニーセミコンダクタソリューションズ株式会社 磁気記憶素子、磁気ヘッド、磁気記憶装置、電子機器、及び磁気記憶素子の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3607678B2 (ja) * 2002-01-24 2005-01-05 アルプス電気株式会社 磁気検出素子
DK175007B1 (da) * 2002-09-16 2004-04-19 Scanpower V Ole Steen Seiersen Kredsløb og fremgangsmåde til forbindelse af et antal strømafgivende enheder til et fælles punkt
JP4061590B2 (ja) 2002-12-26 2008-03-19 独立行政法人科学技術振興機構 磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス
US7675129B2 (en) 2002-12-13 2010-03-09 Japan Science And Technology Agency Spin injection device, magnetic device using the same, magnetic thin film used in the same
JP2005019484A (ja) 2003-06-24 2005-01-20 Hitachi Ltd 磁気抵抗効果素子及び磁気ヘッド
JP2005116701A (ja) * 2003-10-06 2005-04-28 Alps Electric Co Ltd 磁気検出素子
JP2005228998A (ja) 2004-02-13 2005-08-25 Japan Science & Technology Agency 磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス
JP2005347418A (ja) * 2004-06-01 2005-12-15 Alps Electric Co Ltd 磁気検出素子
JP2006278386A (ja) * 2005-03-28 2006-10-12 Alps Electric Co Ltd 磁気検出素子
JP4384137B2 (ja) * 2006-06-14 2009-12-16 Tdk株式会社 Cpp−gmrヘッド用の磁界検出素子の製造方法、cpp−gmrヘッド用の磁界検出素子、積層体、ウエハ、ヘッドジンバルアセンブリ、およびハードディスク装置
US7957106B2 (en) * 2007-04-30 2011-06-07 Hitachi Global Storage Technologies Netherlands, B.V. Chemically disordered material used to form a free layer or a pinned layer of a magnetoresistance (MR) read element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034152A (ja) * 2008-07-25 2010-02-12 Toshiba Corp スピントランジスタ、リコンフィギャラブル論理回路、磁気抵抗効果素子、および磁気メモリ
JP2010140586A (ja) * 2008-12-15 2010-06-24 Hitachi Global Storage Technologies Netherlands Bv 磁気抵抗効果型磁気ヘッド
JP2010238956A (ja) * 2009-03-31 2010-10-21 Tdk Corp スピン伝導デバイス
JP2011035336A (ja) * 2009-08-06 2011-02-17 National Institute For Materials Science 電流垂直型巨大磁気抵抗(cpp−gmr)素子
JP2017004585A (ja) * 2015-06-15 2017-01-05 国立大学法人東北大学 膜面垂直通電型巨大磁気抵抗素子及び磁気デバイス
WO2018159138A1 (ja) * 2017-03-03 2018-09-07 Tdk株式会社 磁気抵抗効果素子
WO2018159129A1 (ja) * 2017-03-03 2018-09-07 Tdk株式会社 磁気抵抗効果素子
JP6438636B1 (ja) * 2017-03-03 2018-12-19 Tdk株式会社 磁気抵抗効果素子
JPWO2018159129A1 (ja) * 2017-03-03 2019-03-07 Tdk株式会社 磁気抵抗効果素子
US10505105B2 (en) 2017-03-03 2019-12-10 Tdk Corporation Magnetoresistive effect element
US10559749B2 (en) 2017-03-03 2020-02-11 Tdk Corporation Magnetoresistive effect element
US10937954B2 (en) 2017-03-03 2021-03-02 Tdk Corporation Magnetoresistive effect element
US10971679B2 (en) 2017-03-03 2021-04-06 Tdk Corporation Magnetoresistive effect element

Also Published As

Publication number Publication date
US7808748B2 (en) 2010-10-05
US20070230070A1 (en) 2007-10-04

Similar Documents

Publication Publication Date Title
JP4942445B2 (ja) 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置
JP2007273657A (ja) 磁気抵抗効果素子およびその製造方法、ならびに薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置
JP5018982B2 (ja) スペーサ層を含むcpp型磁気抵抗効果素子
JP4492604B2 (ja) 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリおよびハードディスク装置
JP2007287863A (ja) 磁気抵抗効果素子およびその製造方法、ならびに磁気抵抗効果素子集合体、薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置
JP4670890B2 (ja) Cpp構造の磁気抵抗効果素子および磁気ディスク装置
JP4449951B2 (ja) 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリおよびハードディスク装置
JP2008112880A (ja) 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリおよびハードディスク装置
JP2008130809A (ja) 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリおよびハードディスク装置
JP2007317824A (ja) 磁気抵抗効果素子およびその製造方法、ならびに薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置
JP2008047737A (ja) 磁気抵抗効果装置、薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置
JP2008004811A (ja) 磁界検出素子の製造方法、磁界検出素子、積層体、ウエハ、ヘッドジンバルアセンブリ、およびハードディスク装置
JP3865738B2 (ja) 薄膜磁気ヘッド、ヘッドジンバルアセンブリおよびハードディスク装置
JP4008456B2 (ja) 磁界検出センサ、薄膜磁気ヘッド、薄膜磁気ヘッドのウエハ、ヘッドジンバルアセンブリ、およびハードディスク装置
JP2005018950A (ja) 薄膜磁気ヘッド、ヘッドジンバルアセンブリおよびハードディスク装置
JP2008042103A (ja) 交換結合膜、磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置
JP2008227457A (ja) 磁歪低減層を含むフリー層を有する磁気抵抗効果素子および薄膜磁気ヘッド
JP3683577B1 (ja) 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリおよび磁気ディスク装置
JP3818592B2 (ja) 磁気抵抗効果装置およびその製造方法、薄膜磁気ヘッド、ヘッドジンバルアセンブリならびにハードディスク装置
JP4471020B2 (ja) Cpp構造の磁気抵抗効果素子および磁気ディスク装置
JP2008124288A (ja) 磁気抵抗効果素子およびその製造方法、ならびに薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置
JP2008021896A (ja) Cpp構造のgmr素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリおよびハードディスク装置
JP2006286669A (ja) 磁気抵抗効果素子の製造方法
JP4387923B2 (ja) 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置
JP4539876B2 (ja) 磁気抵抗効果素子の製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090608