JP2007270116A - Styrene-modified polyolefin resin particles, expandable resin particles, pre-expanded particles, and expanded molded articles - Google Patents
Styrene-modified polyolefin resin particles, expandable resin particles, pre-expanded particles, and expanded molded articles Download PDFInfo
- Publication number
- JP2007270116A JP2007270116A JP2006213681A JP2006213681A JP2007270116A JP 2007270116 A JP2007270116 A JP 2007270116A JP 2006213681 A JP2006213681 A JP 2006213681A JP 2006213681 A JP2006213681 A JP 2006213681A JP 2007270116 A JP2007270116 A JP 2007270116A
- Authority
- JP
- Japan
- Prior art keywords
- polyolefin resin
- styrene
- resin particles
- resin
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 173
- 239000011347 resin Substances 0.000 title claims abstract description 173
- 239000002245 particle Substances 0.000 title claims abstract description 162
- 229920005672 polyolefin resin Polymers 0.000 title claims abstract description 75
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims abstract description 57
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000005977 Ethylene Substances 0.000 claims abstract description 34
- 150000001336 alkenes Chemical class 0.000 claims abstract description 19
- 229920001577 copolymer Polymers 0.000 claims abstract description 12
- 239000000155 melt Substances 0.000 claims abstract description 9
- 229920001519 homopolymer Polymers 0.000 claims abstract description 8
- 239000006260 foam Substances 0.000 claims description 16
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 16
- 239000004088 foaming agent Substances 0.000 claims description 14
- 125000004432 carbon atom Chemical group C* 0.000 claims description 13
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 11
- 239000003505 polymerization initiator Substances 0.000 claims description 9
- 238000010097 foam moulding Methods 0.000 claims description 8
- 230000000379 polymerizing effect Effects 0.000 claims description 3
- 239000012736 aqueous medium Substances 0.000 claims description 2
- 229920000098 polyolefin Polymers 0.000 claims description 2
- 239000000126 substance Substances 0.000 abstract description 27
- 230000004927 fusion Effects 0.000 abstract description 22
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052799 carbon Inorganic materials 0.000 abstract 1
- 230000000704 physical effect Effects 0.000 abstract 1
- 238000006116 polymerization reaction Methods 0.000 description 52
- 239000000047 product Substances 0.000 description 43
- 229920001903 high density polyethylene Polymers 0.000 description 42
- 239000004700 high-density polyethylene Substances 0.000 description 42
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 33
- 238000010438 heat treatment Methods 0.000 description 32
- 238000004519 manufacturing process Methods 0.000 description 28
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 25
- 238000000034 method Methods 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 18
- 238000000465 moulding Methods 0.000 description 18
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 16
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 13
- 238000011049 filling Methods 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- -1 polyethylene Polymers 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000005187 foaming Methods 0.000 description 9
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 8
- 238000005481 NMR spectroscopy Methods 0.000 description 8
- 238000005470 impregnation Methods 0.000 description 8
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 8
- 229920002554 vinyl polymer Polymers 0.000 description 8
- 235000013980 iron oxide Nutrition 0.000 description 7
- 239000000178 monomer Substances 0.000 description 7
- 229920006395 saturated elastomer Polymers 0.000 description 7
- 239000003381 stabilizer Substances 0.000 description 7
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 6
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 229920001684 low density polyethylene Polymers 0.000 description 6
- 239000004702 low-density polyethylene Substances 0.000 description 6
- 229920000573 polyethylene Polymers 0.000 description 6
- 229920013716 polyethylene resin Polymers 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229920005990 polystyrene resin Polymers 0.000 description 5
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 5
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- KWLMIXQRALPRBC-UHFFFAOYSA-L hectorite Chemical compound [Li+].[OH-].[OH-].[Na+].[Mg+2].O1[Si]2([O-])O[Si]1([O-])O[Si]([O-])(O1)O[Si]1([O-])O2 KWLMIXQRALPRBC-UHFFFAOYSA-L 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 3
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- DILWDGRENJVKRY-UHFFFAOYSA-L [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2]C1C2=CC(=CC=C2C=2C=CC(=C(C1=2)C1C=CC=C1)C(C)(C)C)C(C)(C)C Chemical compound [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2]C1C2=CC(=CC=C2C=2C=CC(=C(C1=2)C1C=CC=C1)C(C)(C)C)C(C)(C)C DILWDGRENJVKRY-UHFFFAOYSA-L 0.000 description 3
- 239000007900 aqueous suspension Substances 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000002734 clay mineral Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- LDLDYFCCDKENPD-UHFFFAOYSA-N ethenylcyclohexane Chemical compound C=CC1CCCCC1 LDLDYFCCDKENPD-UHFFFAOYSA-N 0.000 description 3
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 3
- 239000002667 nucleating agent Substances 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- LMNJIRLUFGKYMP-UHFFFAOYSA-L C[Si](C)=[Zr](Cl)(Cl)(C1C=CC=C1)C1C=CC=C1 Chemical compound C[Si](C)=[Zr](Cl)(Cl)(C1C=CC=C1)C1C=CC=C1 LMNJIRLUFGKYMP-UHFFFAOYSA-L 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- JWODTHZDJZWWEU-UHFFFAOYSA-L [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2]C1C2=CC=CC=C2C=2C=CC=C(C1=2)C1C=CC=C1 Chemical compound [Cl-].[Cl-].C1(=CC=CC=C1)C(C1=CC=CC=C1)=[Zr+2]C1C2=CC=CC=C2C=2C=CC=C(C1=2)C1C=CC=C1 JWODTHZDJZWWEU-UHFFFAOYSA-L 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- XZTWHWHGBBCSMX-UHFFFAOYSA-J dimagnesium;phosphonato phosphate Chemical compound [Mg+2].[Mg+2].[O-]P([O-])(=O)OP([O-])([O-])=O XZTWHWHGBBCSMX-UHFFFAOYSA-J 0.000 description 2
- NAPSCFZYZVSQHF-UHFFFAOYSA-N dimantine Chemical compound CCCCCCCCCCCCCCCCCCN(C)C NAPSCFZYZVSQHF-UHFFFAOYSA-N 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 229910000271 hectorite Inorganic materials 0.000 description 2
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000000967 suction filtration Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- QEQBMZQFDDDTPN-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy benzenecarboperoxoate Chemical compound CC(C)(C)OOOC(=O)C1=CC=CC=C1 QEQBMZQFDDDTPN-UHFFFAOYSA-N 0.000 description 1
- PRBHEGAFLDMLAL-GQCTYLIASA-N (4e)-hexa-1,4-diene Chemical compound C\C=C\CC=C PRBHEGAFLDMLAL-GQCTYLIASA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- WOFLRNGUBXLUDD-CLFAGFIQSA-N (z)-n-[(z)-nonadec-10-enyl]nonadec-10-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCCNCCCCCCCCC\C=C/CCCCCCCC WOFLRNGUBXLUDD-CLFAGFIQSA-N 0.000 description 1
- QVLAWKAXOMEXPM-DICFDUPASA-N 1,1,1,2-tetrachloro-2,2-dideuterioethane Chemical compound [2H]C([2H])(Cl)C(Cl)(Cl)Cl QVLAWKAXOMEXPM-DICFDUPASA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- DXIJHCSGLOHNES-UHFFFAOYSA-N 3,3-dimethylbut-1-enylbenzene Chemical compound CC(C)(C)C=CC1=CC=CC=C1 DXIJHCSGLOHNES-UHFFFAOYSA-N 0.000 description 1
- OILUAKBAMVLXGF-UHFFFAOYSA-M 3,5,5-trimethylhexanoate Chemical compound [O-]C(=O)CC(C)CC(C)(C)C OILUAKBAMVLXGF-UHFFFAOYSA-M 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- FAGROGMQTOEOHP-UHFFFAOYSA-N C1(C=CC=C1)[Zr]C1=CC=CC=2C3=CC=CC=C3CC1=2 Chemical compound C1(C=CC=C1)[Zr]C1=CC=CC=2C3=CC=CC=C3CC1=2 FAGROGMQTOEOHP-UHFFFAOYSA-N 0.000 description 1
- JDTOZRCSJIXLLV-UHFFFAOYSA-L CC[Si](CC)=[Zr](Cl)(Cl)(C1C=CC=C1)C1C=CC=C1 Chemical compound CC[Si](CC)=[Zr](Cl)(Cl)(C1C=CC=C1)C1C=CC=C1 JDTOZRCSJIXLLV-UHFFFAOYSA-L 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- CUNOWIAFMVDUKZ-UHFFFAOYSA-L Cl[Zr](Cl)(C1C=CC=C1)(C1C=CC=C1)=[Si](C1=CC=CC=C1)C1=CC=CC=C1 Chemical compound Cl[Zr](Cl)(C1C=CC=C1)(C1C=CC=C1)=[Si](C1=CC=CC=C1)C1=CC=CC=C1 CUNOWIAFMVDUKZ-UHFFFAOYSA-L 0.000 description 1
- RDOFJDLLWVCMRU-UHFFFAOYSA-N Diisobutyl adipate Chemical compound CC(C)COC(=O)CCCCC(=O)OCC(C)C RDOFJDLLWVCMRU-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 229920010126 Linear Low Density Polyethylene (LLDPE) Polymers 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- IDASTKMEQGPVRR-UHFFFAOYSA-N cyclopenta-1,3-diene;zirconium(2+) Chemical compound [Zr+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 IDASTKMEQGPVRR-UHFFFAOYSA-N 0.000 description 1
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 229940031769 diisobutyl adipate Drugs 0.000 description 1
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 229960000869 magnesium oxide Drugs 0.000 description 1
- 235000012245 magnesium oxide Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- SJYNFBVQFBRSIB-UHFFFAOYSA-N norbornadiene Chemical compound C1=CC2C=CC1C2 SJYNFBVQFBRSIB-UHFFFAOYSA-N 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000012748 slip agent Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000010557 suspension polymerization reaction Methods 0.000 description 1
- DLSMLZRPNPCXGY-UHFFFAOYSA-N tert-butylperoxy 2-ethylhexyl carbonate Chemical compound CCCCC(CC)COC(=O)OOOC(C)(C)C DLSMLZRPNPCXGY-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 239000006234 thermal black Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 1
- 239000003021 water soluble solvent Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
- 229910006540 α-FeOOH Inorganic materials 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
【課題】融着率、剛性、耐衝撃性、耐薬品性等の物性が向上した発泡成形体を与えうるスチレン改質ポリオレフィン系樹脂粒子を提供することを課題とする。
【解決手段】ポリオレフィン系樹脂100重量部に対して、スチレン系樹脂を20〜600重量部含有するスチレン改質ポリオレフィン系樹脂粒子であって、ポリオレフィン系樹脂が、エチレン単独重合体又はエチレンと炭素数3以上のオレフィンとの共重合体であり、0.940g/cm3以上の密度、1.0未満0.4以上の収縮因子(g’値)及び0.15〜20g/10分の2.16kg加重時のメルトフローレートを有し、式:MS>110−100×log(MFR)(式中、MSは160℃での溶融張力(mN)、MFRはメルトフローレート)の関係を満たすことを特徴とするスチレン改質ポリオレフィン系樹脂粒子により上記課題を解決する。
【選択図】図1An object of the present invention is to provide styrene-modified polyolefin resin particles capable of providing a foamed molded article having improved physical properties such as fusion rate, rigidity, impact resistance, and chemical resistance.
SOLUTION: A styrene-modified polyolefin resin particle containing 20 to 600 parts by weight of a styrene resin with respect to 100 parts by weight of a polyolefin resin, wherein the polyolefin resin is an ethylene homopolymer or ethylene and carbon number. A copolymer with 3 or more olefins, a density of 0.940 g / cm 3 or more, a shrinkage factor (g ′ value) of less than 1.0 and 0.4 or more, and 0.15 to 20 g / 10/2. It has a melt flow rate with a load of 16 kg and satisfies the relationship of the formula: MS> 110-100 × log (MFR) (where MS is the melt tension (mN) at 160 ° C., MFR is the melt flow rate). The above problem is solved by styrene-modified polyolefin resin particles characterized by the following.
[Selection] Figure 1
Description
本発明は、スチレン改質ポリオレフィン系樹脂粒子、発泡性樹脂粒子、予備発泡粒子及び発泡成形体に関する。 The present invention relates to styrene-modified polyolefin resin particles, expandable resin particles, pre-expanded particles, and a foam-molded product.
従来から、ポリスチレン系樹脂からなる予備発泡粒子を型内に充填し、次いで加熱することで発泡させて得られる発泡成形体は、剛性、断熱性、軽量性、耐水性及び発泡成形性に優れていることが知られている。そのため、この発泡成形体は、緩衝材や建材用断熱材として広く用いられている。しかし、ポリスチレン系樹脂からなる発泡成形体は、耐薬品性及び耐衝撃性が劣るという課題があった。 Conventionally, foamed molded articles obtained by filling pre-expanded particles made of polystyrene resin into a mold and then foaming by heating are excellent in rigidity, heat insulation, light weight, water resistance and foam moldability. It is known that Therefore, this foaming molding is widely used as a buffer material or a heat insulating material for building materials. However, the foamed molded body made of polystyrene resin has a problem of poor chemical resistance and impact resistance.
一方、ポリエチレンやポリプロピレン等のポリオレフィン系樹脂からなる発泡成形体は、耐薬品性及び耐衝撃性に優れていることが知られている。そのため、この発泡成形体は、自動車関連部品に使用されている。しかし、ポリオレフィン系樹脂は、発泡剤の保持性が劣ることから、発泡成形条件を精密に制御する必要がある。そのため製造コストが高くつくという課題があった。加えて、この発泡成形体は、ポリスチレン系樹脂からなる発泡成形体に比べて、剛性が劣るという課題もあった。 On the other hand, it is known that a foam molded article made of a polyolefin resin such as polyethylene or polypropylene is excellent in chemical resistance and impact resistance. Therefore, this foaming molding is used for automobile-related parts. However, since polyolefin-based resins have poor foaming agent retention properties, it is necessary to precisely control foam molding conditions. Therefore, there is a problem that the manufacturing cost is high. In addition, the foam molded body has a problem that the rigidity is inferior to that of a foam molded body made of polystyrene resin.
上記ポリスチレン系樹脂及びポリオレフィン系樹脂からなる発泡成形体の課題を解決するために、ポリスチレン系樹脂とポリオレフィン系樹脂とを混合した粒子から得られた発泡成形体が報告されている。この発泡成形体は、ポリスチレン系樹脂の優れた剛性及び発泡成形性と、ポリオレフィン系樹脂の優れた耐薬品性及び耐衝撃性とを兼ね備えている。 In order to solve the problem of the foamed molded article composed of the polystyrene resin and the polyolefin resin, a foamed molded article obtained from particles obtained by mixing a polystyrene resin and a polyolefin resin has been reported. This foam molded article combines the excellent rigidity and foam moldability of polystyrene-based resins with the excellent chemical resistance and impact resistance of polyolefin-based resins.
ところで、自動車関連部品は、ガソリン、灯油、ブレーキオイル、塩化ビニルのような可塑剤等の薬品に接触したり、強い衝撃を受けたりすることがある。そのためこの用途に使用される発泡成形体には、高い耐薬品性及び耐衝撃性が要求されているが、上記発泡成形体では不十分であった。 By the way, automobile-related parts may come into contact with chemicals such as plasticizers such as gasoline, kerosene, brake oil, and vinyl chloride, and may receive a strong impact. Therefore, high chemical resistance and impact resistance are required for the foam molded article used in this application, but the above foam molded article is insufficient.
そこで、上記要求を満たす方法として、ポリオレフィン系樹脂にエチレン−酢酸ビニル共重合体(EVA)、分岐状低密度ポリエチレン(LDPE)又は直鎖状低密度ポリエチレン(LLDPE)の粒子を、ポリスチレン系樹脂で改質し、改質粒子から発泡成形体を得る方法が提案されている(特開2005−97555号公報:特許文献1)。
上記公報に記載の方法では、高い耐薬品性及び耐衝撃性を有する発泡成形体が得られる。しかし、例えば、高温に晒されるようなより厳しい条件下での用途では、耐熱性や加熱寸法安定性を更に改善した発泡成形体の提供が望まれていた。 In the method described in the above publication, a foamed molded article having high chemical resistance and impact resistance can be obtained. However, for applications under more severe conditions such as exposure to high temperatures, it has been desired to provide a foamed molded article with further improved heat resistance and heat dimensional stability.
本発明の発明者等は、耐熱性や加熱寸法安定性を更に改善するために、発泡成形体の原料を見直した結果、特定の性質を有するポリオレフィン系樹脂を使用すれば、耐熱性や加熱寸法安定性を更に改善できることを見い出し、本発明に至った。 The inventors of the present invention have reviewed the raw material of the foamed molded product in order to further improve the heat resistance and heating dimensional stability, and as a result, if a polyolefin-based resin having specific properties is used, the heat resistance and heating dimension are improved. The inventors have found that the stability can be further improved and have reached the present invention.
かくして本発明によれば、ポリオレフィン系樹脂100重量部に対して、スチレン系樹脂を20〜600重量部含有するスチレン改質ポリオレフィン系樹脂粒子であって、ポリオレフィン系樹脂が、エチレン単独重合体又はエチレンと炭素数3以上のオレフィンとの共重合体であり、0.940g/cm3以上の密度、1.0未満0.4以上の収縮因子(g’値)及び0.15〜20g/10分の2.16kg加重時のメルトフローレートを有し、式:MS>110−100×log(MFR)(式中、MSは160℃での溶融張力(mN)、MFRはメルトフローレート)の関係を満たすことを特徴とするスチレン改質ポリオレフィン系樹脂粒子が提供される。 Thus, according to the present invention, styrene-modified polyolefin resin particles containing 20 to 600 parts by weight of styrene resin with respect to 100 parts by weight of polyolefin resin, wherein the polyolefin resin is an ethylene homopolymer or ethylene And a olefin having 3 or more carbon atoms, a density of 0.940 g / cm 3 or more, a shrinkage factor (g ′ value) of less than 1.0 and 0.4 or more, and 0.15 to 20 g / 10 minutes The relationship of the formula: MS> 110-100 × log (MFR) (where MS is the melt tension (mN) at 160 ° C., MFR is the melt flow rate) Styrene-modified polyolefin resin particles characterized by satisfying the above are provided.
更に、本発明によれば、上記スチレン改質ポリオレフィン系樹脂粒子100重量部と、揮発性発泡剤5〜25重量部とからなることを特徴とする発泡性樹脂粒子が提供される。
また、本発明によれば、上記スチレン改質ポリオレフィン系発泡性樹脂粒子を予備発泡させて得られた嵩密度0.01〜0.2g/cm3の予備発泡粒子が提供される。
更にまた、上記予備発泡粒子を型内発泡成形させて得られた密度0.01〜0.2g/cm3の発泡成形体が提供される。
Furthermore, according to the present invention, there is provided expandable resin particles comprising 100 parts by weight of the styrene-modified polyolefin resin particles and 5 to 25 parts by weight of a volatile foaming agent.
The present invention also provides pre-expanded particles having a bulk density of 0.01 to 0.2 g / cm 3 obtained by pre-expanding the styrene-modified polyolefin-based expandable resin particles.
Furthermore, a foamed molded article having a density of 0.01 to 0.2 g / cm 3 obtained by in-mold foam molding of the pre-expanded particles is provided.
本発明によれば、特定の性質を有するポリオレフィン系樹脂を使用したスチレン改質ポリオレフィン系樹脂粒子により、耐熱性や加熱寸法安定性が更に改善された発泡成形体を得ることができる。 ADVANTAGE OF THE INVENTION According to this invention, the foaming molding by which heat resistance and heating dimensional stability were further improved can be obtained with the styrene modified polyolefin resin particle using the polyolefin resin which has a specific property.
(スチレン改質ポリオレフィン系樹脂粒子)
まず、本発明のスチレン改質ポリオレフィン系樹脂粒子(以下、改質樹脂粒子と称する)中のポリオレフィン系樹脂は、以下の性質
(1)エチレン単独重合体又はエチレンと炭素数3以上のオレフィンとの共重合体であり、
(2)0.940g/cm3以上の密度
(3)1.0未満0.4以上の収縮因子(g’値)
(4)0.15〜20g/10分の2.16kg加重時のメルトフローレート
(5)式:MS>110−100×log(MFR)(式中、MSは160℃での溶融張力(mN)、MFRはメルトフローレート)の関係
を有する樹脂である。
(Styrene modified polyolefin resin particles)
First, the polyolefin resin in the styrene modified polyolefin resin particles (hereinafter referred to as modified resin particles) of the present invention has the following properties (1) ethylene homopolymer or ethylene and an olefin having 3 or more carbon atoms. A copolymer,
(2) Density of 0.940 g / cm 3 or more (3) Contraction factor (g ′ value) of less than 1.0 and 0.4 or more
(4) Melt flow rate at a load of 2.16 kg from 0.15 to 20 g / 10/10 (5) Formula: MS> 110-100 × log (MFR) (where MS is the melt tension at 160 ° C. (mN ), MFR is a resin having a relationship of melt flow rate).
(1)について
ポリオレフィン系樹脂は、エチレン単独重合体又はエチレンと炭素数3以上のオレフィンとの共重合体からなる。
上記炭素数3以上のオレフィンとしては、プロピレン、1−ブテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン、3−メチル−1−ブテン、ビニルシクロアルカン(例えば、ビニルシクロペンタン、ビニルシクロヘキサン)、環状オレフィン(例えば、ノルボルネン、ノルボルナジエン)、ジエン(例えば、ブタジエン、1,4−ヘキサジエン)等が挙げられる。炭素数3以上のオレフィン由来の成分が、ポリオレフィン系樹脂に占める割合は、特に限定されないが、50重量%以下であることが好ましく、20重量%以下であることがより好ましい。
なお、発明を阻害しない範囲で、スチレンをエチレンと共重合させてもよい。
(1) The polyolefin resin is composed of an ethylene homopolymer or a copolymer of ethylene and an olefin having 3 or more carbon atoms.
Examples of the olefin having 3 or more carbon atoms include propylene, 1-butene, 1-hexene, 1-octene, 4-methyl-1-pentene, 3-methyl-1-butene, vinylcycloalkane (for example, vinylcyclopentane, Vinylcyclohexane), cyclic olefins (eg, norbornene, norbornadiene), dienes (eg, butadiene, 1,4-hexadiene) and the like. The proportion of the component derived from an olefin having 3 or more carbon atoms in the polyolefin-based resin is not particularly limited, but is preferably 50% by weight or less, and more preferably 20% by weight or less.
Styrene may be copolymerized with ethylene as long as the invention is not impaired.
(2)について
密度が、0.940g/cm3未満の場合、発泡体の耐熱性が不足するので好ましくない。密度は、0.944〜0.964g/cm3であることが好ましく、0.950〜0.960g/cm3であることがより好ましい。
(3)について
収縮因子は、樹脂中の長鎖分岐の程度を表すパラメータであり、重量平均分子量(Mw)の3倍の絶対分子量における固有粘度と、分岐が全くない高密度ポリエチレンの同じ絶対分子量における固有粘度との比を意味する。収縮因子が1.0の場合、発泡性が不良となるので好ましくなく、0.4未満の場合、発泡倍率が低下するので好ましくない。収縮因子は、0.80〜0.95であることがより好ましい。
(2) When the density is less than 0.940 g / cm 3 , the heat resistance of the foam is insufficient, which is not preferable. Density is preferably 0.944~0.964g / cm 3, more preferably 0.950~0.960g / cm 3.
Regarding (3) The shrinkage factor is a parameter that represents the degree of long-chain branching in the resin. The intrinsic viscosity at an absolute molecular weight three times the weight average molecular weight (Mw) and the same absolute molecular weight of a high-density polyethylene having no branching. The ratio to the intrinsic viscosity in When the shrinkage factor is 1.0, the foamability becomes poor, which is not preferable. When the shrinkage factor is less than 0.4, the expansion ratio decreases, which is not preferable. The contraction factor is more preferably 0.80 to 0.95.
(4)について
次に、2.16kg加重時のMFRが、0.15g/10分未満及び20g/10分より大きい場合、発泡成形を行うことが困難であり、均一な気泡を有する発泡成形体を得られないことがあるので好ましくない。MFRは、0.2〜18g/10分であることが好ましく、2〜10g/10分であることがより好ましい。
Regarding (4) Next, when the MFR under 2.16 kg load is less than 0.15 g / 10 min and greater than 20 g / 10 min, it is difficult to perform foam molding, and the foam molded product has uniform cells. Is not preferable because it may not be obtained. The MFR is preferably 0.2 to 18 g / 10 minutes, and more preferably 2 to 10 g / 10 minutes.
(5)について
また、式:MS>110−100×log(MFR)の関係を満たさない場合、気泡の保持力が低下することがあるため好ましくない。この結果、発泡倍率を高めることが困難であり、均一な気泡を有する発泡成形体を得られないことがある。ここで、図1に、実施例で使用した種々のポリエチレン系樹脂のMSを縦軸に、MFRを横軸にプロットしたグラフを示す。図中、実線は、MS=110−100×log(MFR)を意味する。図中、■はMS>110−100×log(MFR)の関係及び密度を満たす樹脂(HDPE)であり、●は密度を満たすが前記関係を満たさない樹脂(HDPE)であり、▲は前記関係を満たすが密度を満たさない樹脂(LDPE)である。MS>110−100×log(MFR)の関係を満たす樹脂は、実施例にも示されているように、気泡の保持力が良好であり、均一な気泡を有し、耐熱性や加熱寸法安定性が更に改善された発泡体を得ることができる。なお、上記関係は、MS>130−100×log(MFR)であることがより好ましい。また、×は(4)のMFRのみ満たさない樹脂(HDPE)である。
About (5) Moreover, when the relationship of formula: MS> 110-100 * log (MFR) is not satisfy | filled, since the retention strength of a bubble may fall, it is unpreferable. As a result, it is difficult to increase the expansion ratio, and a foamed molded article having uniform bubbles may not be obtained. Here, FIG. 1 shows a graph in which MS of various polyethylene resins used in Examples is plotted on the vertical axis and MFR is plotted on the horizontal axis. In the figure, the solid line means MS = 110-100 × log (MFR). In the figure, ■ is a resin (HDPE) satisfying the relationship and density of MS> 110-100 × log (MFR), ● is a resin (HDPE) satisfying the density but not satisfying the relationship, and ▲ is the relationship A resin (LDPE) that satisfies the above but does not satisfy the density. Resins satisfying the relationship of MS> 110-100 × log (MFR) have good air bubble retention, uniform air bubbles, heat resistance and stable heating dimensions, as shown in the examples. A foam having further improved properties can be obtained. The above relationship is more preferably MS> 130-100 × log (MFR). Moreover, x is resin (HDPE) which does not satisfy only MFR of (4).
また、MSの上限は、240であることが好ましく、180であることがより好ましい。240を超える場合、発泡倍率が低下する場合があるので好ましくない。
更に、本発明に使用するポリオレフィン系樹脂は、直鎖状ポリエチレン換算で、40000〜120000の重量平均分子量(Mw)を有することが好ましい。Mwが、40000未満の場合、発泡成形体の強度が低くなる場合があるので好ましくない。120000より大きい場合、ポリオレフィン系樹脂の粘度が高くなり、発泡成形が困難になる場合があるので好ましくない。
The upper limit of MS is preferably 240, and more preferably 180. If it exceeds 240, the expansion ratio may decrease, which is not preferable.
Furthermore, the polyolefin resin used in the present invention preferably has a weight average molecular weight (Mw) of 40,000 to 120,000 in terms of linear polyethylene. When Mw is less than 40000, the strength of the foamed molded product may be low, which is not preferable. When it is larger than 120,000, the viscosity of the polyolefin resin becomes high and foam molding may be difficult, which is not preferable.
また、ポリオレフィン系樹脂は、Mwと数平均分子量(Mn)との比(Mw/Mn)が、3.5〜10であることが好ましい。この範囲であることで、ポリオレフィン系樹脂の分子量分布を狭くできるので、性質にばらつきの少ない発泡成形体を得ることができる。なお、Mnは、直鎖状ポリエチレン換算の値を意味する。 Moreover, it is preferable that ratio (Mw / Mn) of Mw and a number average molecular weight (Mn) is 3.5-10. By being in this range, the molecular weight distribution of the polyolefin-based resin can be narrowed, so that a foamed molded product with little variation in properties can be obtained. In addition, Mn means the value of linear polyethylene conversion.
ポリオレフィン系樹脂は、架橋していても架橋していなくてもよい。架橋していない場合、リサイクルが容易であるという利点がある。架橋の有無は、ゲル分率を測定することにより判断でき、値が大きい場合、架橋が多く、小さい場合、架橋が少ないことを意味する。 The polyolefin resin may or may not be crosslinked. When not crosslinked, there is an advantage that recycling is easy. The presence or absence of crosslinking can be determined by measuring the gel fraction. When the value is large, the crosslinking is large, and when the value is small, the crosslinking is small.
ポリオレフィン系樹脂は、上記性質を有しさえすれば、特に限定されず、種々の樹脂を使用できる。例えば、ポリオレフィン系樹脂は、以下の方法により得られた樹脂を使用できる。
すなわち、ポリオレフィン系樹脂は、マクロモノマーの存在下に、オレフィンを重合させることで得られた樹脂であることが好ましい。
The polyolefin resin is not particularly limited as long as it has the above properties, and various resins can be used. For example, as the polyolefin resin, a resin obtained by the following method can be used.
That is, the polyolefin resin is preferably a resin obtained by polymerizing an olefin in the presence of a macromonomer.
ここで、マクロモノマーは、末端にビニル基を有するエチレンの単独重合体又は末端にビニル基を有するエチレンと炭素数3以上のオレフィンとの共重合体であり、2000以上のMnと、2〜5のMw/Mnとを有していることが好ましい。炭素数3以上のオレフィンとしては、プロピレン、1−ブテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン、3−メチル−1−ブテン、ビニルシクロアルカン(例えば、ビニルシクロペンタン、ビニルシクロヘキサン)等が挙げられる。これらオレフィンは、単独でも、2種以上の組み合わせでもよい。 Here, the macromonomer is a homopolymer of ethylene having a vinyl group at the terminal or a copolymer of ethylene having a vinyl group at the terminal and an olefin having 3 or more carbon atoms, Mn of 2000 or more, and 2 to 5 It is preferable to have Mw / Mn. Examples of the olefin having 3 or more carbon atoms include propylene, 1-butene, 1-hexene, 1-octene, 4-methyl-1-pentene, 3-methyl-1-butene, vinylcycloalkane (for example, vinylcyclopentane, vinyl Cyclohexane) and the like. These olefins may be used alone or in combination of two or more.
マクロモノマーのMnは、5000以上であることがより好ましく、10000以上であることが更に好ましい。上限は、100000であることが好ましい。また、Mw/Mnは、2〜4であることがより好ましく、2〜3.5であることが更に好ましい。 The Mn of the macromonomer is more preferably 5000 or more, and further preferably 10,000 or more. The upper limit is preferably 100,000. Further, Mw / Mn is more preferably 2 to 4, and further preferably 2 to 3.5.
更に、マクロモノマーの主鎖であるメチレン炭素1000個当たりのビニル末端数をX、マクロモノマーの主鎖であるメチレン炭素1000個当たりの飽和末端数をYとした場合、式Z=X/[(X+Y)×2]で表されるZが0.5〜1であることが好ましい。Zは0.25〜1であることがより好ましい。なお、ビニル末端及び飽和末端は、1H−NMR、13C−NMR又はFT−IRによりその数を測定できることは、当業者によく知られている。例えば、13C−NMRの場合、ビニル末端は114ppmと139ppmに、飽和末端は32.3ppm、22.9ppm及び14.1ppmにピークを有し、このピークからその数を測定できる。 Furthermore, when the number of vinyl ends per 1000 methylene carbons as the main chain of the macromonomer is X and the number of saturated ends per 1000 methylene carbons as the main chain of the macromonomer is Y, the formula Z = X / [(( X represented by (X + Y) × 2] is preferably 0.5 to 1. Z is more preferably 0.25 to 1. It is well known to those skilled in the art that the number of vinyl ends and saturated ends can be measured by 1 H-NMR, 13 C-NMR or FT-IR. For example, in the case of 13 C-NMR, vinyl ends have peaks at 114 ppm and 139 ppm, and saturated ends have peaks at 32.3 ppm, 22.9 ppm, and 14.1 ppm, and the number can be measured from these peaks.
上記マクロモノマーとオレフィンとを共重合させることで、本発明の使用に好適なポリオレフィン系樹脂が得られる。ここで、マクロモノマー以外の新たな樹脂の全樹脂に対する割合は、1〜99重量%が好ましく、5〜90重量%がより好ましく、30〜80重量%が更に好ましい。新たな樹脂の割合の測定は、樹脂のGPCチャートを、マクロモノマーのGPCチャートと比較することにより行うことができる。具体的には、両チャートの比較により新たな樹脂に由来するピークを決定し、そのピークの面積の全ピークの面積に対する割合が、新たな樹脂の割合に相当する。
より具体的には、ポリオレフィン系樹脂は、例えば、特開2004−346304号公報や特開2006−248013号公報に記載の方法に準じて製造することができる。
By copolymerizing the macromonomer and the olefin, a polyolefin resin suitable for use in the present invention can be obtained. Here, the ratio of the new resin other than the macromonomer to the total resin is preferably 1 to 99% by weight, more preferably 5 to 90% by weight, and still more preferably 30 to 80% by weight. The ratio of the new resin can be measured by comparing the GPC chart of the resin with the GPC chart of the macromonomer. Specifically, a peak derived from a new resin is determined by comparing both charts, and the ratio of the area of the peak to the area of all peaks corresponds to the ratio of the new resin.
More specifically, the polyolefin resin can be produced in accordance with, for example, the methods described in JP-A Nos. 2004-346304 and 2006-248013.
以下で上記方法の概略を記載する。まず、2つのシクロペンタジエニル基が架橋基で架橋されている架橋型ビスシクロペンタジエニルジルコニウム錯体と有機化合物で処理された粘土鉱物とからなる触媒の存在下、エチレンを重合させる、又はエチレンと炭素数3以上のオレフィンとを共重合させることで、マクロモノマーを製造する。上記錯体としては、ジメチルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロライド、ジエチルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロライド、ジフェニルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロライド等が挙げられる。 An outline of the above method is described below. First, ethylene is polymerized in the presence of a catalyst comprising a crosslinked biscyclopentadienyl zirconium complex in which two cyclopentadienyl groups are crosslinked by a crosslinking group and a clay mineral treated with an organic compound, or ethylene And a olefin having 3 or more carbon atoms are copolymerized to produce a macromonomer. Examples of the complex include dimethylsilanediylbis (cyclopentadienyl) zirconium dichloride, diethylsilanediylbis (cyclopentadienyl) zirconium dichloride, diphenylsilanediylbis (cyclopentadienyl) zirconium dichloride, and the like.
また、粘土鉱物としては、ヘクトライトを通常使用できる。更に、有機化合物としては、N,N−ジメチル−オクタデシルアミン、N,N−ジオレイルメチルアミン等のアミン系化合物が挙げられる。
次に、架橋型(シクロペンタジエニル)(フルオレニル)ジルコニウム錯体の存在下、マクロモノマーとオレフィンとを共重合させることでポリオレフィン系樹脂を得ることができる。上記錯体としては、ジフェニルメチレン(1−シクロペンタジエニル)(2,7−ジ−tert−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド等が挙げられる。
Moreover, hectorite can be normally used as a clay mineral. Furthermore, examples of the organic compound include amine compounds such as N, N-dimethyl-octadecylamine and N, N-dioleylmethylamine.
Next, a polyolefin-based resin can be obtained by copolymerizing a macromonomer and an olefin in the presence of a crosslinked (cyclopentadienyl) (fluorenyl) zirconium complex. Examples of the complex include diphenylmethylene (1-cyclopentadienyl) (2,7-di-tert-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride. Etc.
マクロモノマーと共重合させるオレフィンとしては、炭素数2以上のオレフィンを使用できる。具体的には、エチレン、プロピレン、1−ブテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン、3−メチル−1−ブテン、ビニルシクロアルカン(例えば、ビニルシクロペンタン、ビニルシクロヘキサン)等が挙げられる。これらオレフィンは、単独でも、2種以上の組み合わせでもよい。 As the olefin copolymerized with the macromonomer, an olefin having 2 or more carbon atoms can be used. Specifically, ethylene, propylene, 1-butene, 1-hexene, 1-octene, 4-methyl-1-pentene, 3-methyl-1-butene, vinylcycloalkane (for example, vinylcyclopentane, vinylcyclohexane) Etc. These olefins may be used alone or in combination of two or more.
ポリオレフィン系樹脂は、本発明の目的を逸脱しない限りにおいて、他の樹脂を含んでいてもよい。他の樹脂としては、上記(1)〜(5)の性質を少なくとも1つ備えていない他のポリオレフィン系樹脂が好ましい。他のポリオレフィン系樹脂としては、炭素数2〜20のα−オレフィン単独重合体及び共重合体が挙げられる。具体的には、高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、ポリプロピレン、ポリ1−ブテン、ポリ(4−メチル−1−ペンテン)、ポリ1−ペンテン、エチレン/ブロピレン共重合体、エチレン/1−ブテン共重合体、プロピレン/1−ブテン共重合体、エチレン/プロピレン/1−ブテン共重合体、4−メチル−1−ペンテン/エチレン共重合体、エチレン/プロピレン/ポリエン共重合体、種々のプロピレン系ブロック共重合体やプロピレン系ランダム共重合体等が挙げられる。
これら他の樹脂の配合割合は、全ポリオレフィン系樹脂量に対して、50重量%以下が好ましく、5〜30重量%がより好ましい。
The polyolefin resin may contain other resins without departing from the object of the present invention. As other resins, other polyolefin resins not having at least one of the above properties (1) to (5) are preferable. Examples of other polyolefin-based resins include α-olefin homopolymers and copolymers having 2 to 20 carbon atoms. Specifically, high density polyethylene, low density polyethylene, linear low density polyethylene, polypropylene, poly 1-butene, poly (4-methyl-1-pentene), poly 1-pentene, ethylene / propylene copolymer, Ethylene / 1-butene copolymer, propylene / 1-butene copolymer, ethylene / propylene / 1-butene copolymer, 4-methyl-1-pentene / ethylene copolymer, ethylene / propylene / polyene copolymer And various propylene block copolymers and propylene random copolymers.
The blending ratio of these other resins is preferably 50% by weight or less, and more preferably 5 to 30% by weight with respect to the total amount of polyolefin resin.
ポリオレフィン系樹脂には、必要に応じて、着色剤、安定剤、充填材(補強材)、高級脂肪酸金属塩、難燃剤、帯電防止剤、滑剤、天然又は合成油、ワックス、紫外線吸収剤、耐候安定剤、防曇剤、坑ブロッキング剤、スリップ剤、被覆剤、中性子遮蔽剤等の添加剤が含まれていてもよい。この内、着色剤としては、無機及び有機の着色剤(顔料又は染料)をいずれも使用できる。特に、酸化鉄、カーボンブラック等の無機着色剤が好ましい。 For polyolefin resins, colorants, stabilizers, fillers (reinforcing materials), higher fatty acid metal salts, flame retardants, antistatic agents, lubricants, natural or synthetic oils, waxes, UV absorbers, weather resistance, as necessary. Additives such as stabilizers, anti-fogging agents, anti-blocking agents, slip agents, coating agents, and neutron shielding agents may be included. Among these, as the colorant, both inorganic and organic colorants (pigments or dyes) can be used. In particular, inorganic colorants such as iron oxide and carbon black are preferred.
酸化鉄としては、黄色系統のものとしてα−FeOOH(含水結晶)、赤色系統のものとしてα−Fe2O3、黒色系統のものとして(FeO)x(Fe2O3)y等が挙げられる。これら酸化鉄は、Feの一部が、Zn、Mg等の他の金属で置き換えられていてもよい。更に、これら酸化鉄は、所望の色を得るために、混合して用いてもよい。この内、黒色系統の(FeO)x(Fe2O3)yに含まれるFe3O4であることが好ましい。 Examples of the iron oxide include α-FeOOH (hydrous crystal) as a yellow type, α-Fe 2 O 3 as a red type, and (FeO) x (Fe 2 O 3 ) y as a black type. . In these iron oxides, part of Fe may be replaced with other metals such as Zn and Mg. Further, these iron oxides may be mixed and used in order to obtain a desired color. Among them, the black line (FeO) x (Fe 2 O 3) is preferably Fe 3 O 4 contained to y.
酸化鉄は、0.1〜1μmの平均粒径を有していることが好ましく、0.2〜0.8μmがより好ましい。平均粒径は、レーザー回折式粒度分布計(日本電子社製ロドス)により測定できる。 The iron oxide preferably has an average particle size of 0.1 to 1 μm, and more preferably 0.2 to 0.8 μm. The average particle size can be measured with a laser diffraction particle size distribution meter (Rodos manufactured by JEOL Ltd.).
酸化鉄は、ポリオレフィン系樹脂中、1.5〜70重量%の範囲で含まれていることが好ましく、5〜40重量%の範囲がより好ましく、10〜30重量%の範囲が更に好ましい。1.5重量%未満であれば、ポリオレフィン系樹脂が十分着色されない場合があるため好ましくない。70重量%より多い場合、ポリオレフィン系樹脂中に混合することが困難となり易く好ましくない。加えて、酸化鉄の比重がポリオレフィン樹脂より大きいため、ポリオレフィン系樹脂粒子が重くなり、スチレン系モノマーを均一に含浸させることが困難となり易く好ましくない。 The iron oxide is preferably contained in the range of 1.5 to 70% by weight in the polyolefin resin, more preferably in the range of 5 to 40% by weight, and still more preferably in the range of 10 to 30% by weight. If it is less than 1.5% by weight, the polyolefin-based resin may not be sufficiently colored, which is not preferable. When the amount is more than 70% by weight, it is difficult to mix in the polyolefin resin, which is not preferable. In addition, since the specific gravity of iron oxide is larger than that of the polyolefin resin, the polyolefin resin particles become heavy, and it is difficult to uniformly impregnate the styrene monomer, which is not preferable.
カーボンブラックとしては、ファーネスブラック、チャンネルブラック、サーマルブラック、アセチレンブラック、黒鉛、炭素繊維等が挙げられる。
カーボンブラックは、ポリオレフィン系樹脂中、1〜50重量%の範囲で含まれていることが好ましく、2〜30重量%の範囲がより好ましい。1重量%未満であれば、ポリオレフィン系樹脂が十分着色されない場合があるため好ましくない。50重量%より多い場合、ポリオレフィン系樹脂中に混合することが困難となり易く好ましくない。
Examples of carbon black include furnace black, channel black, thermal black, acetylene black, graphite, and carbon fiber.
Carbon black is preferably contained in the range of 1 to 50% by weight in the polyolefin resin, and more preferably in the range of 2 to 30% by weight. If it is less than 1% by weight, the polyolefin-based resin may not be sufficiently colored, which is not preferable. When it is more than 50% by weight, it is difficult to mix it in the polyolefin resin, which is not preferable.
安定剤は、酸化劣化や熱劣化等を防止する役割を果たし、公知物をいずれも使用できる。例えば、フェノール系安定剤、有機ホスファイト系安定剤、チオエーテル系安定剤、ビンダードアミン系安定剤等が挙げられる。
充填材としては、タルク、ガラス等が挙げられ、その形状は球状、板状、繊維状等特に限定されない。
A stabilizer plays the role which prevents oxidation deterioration, thermal deterioration, etc., and can use all well-known things. For example, a phenol type stabilizer, an organic phosphite type stabilizer, a thioether type stabilizer, a binderd amine type stabilizer, etc. are mentioned.
Examples of the filler include talc and glass, and the shape is not particularly limited, such as a spherical shape, a plate shape, or a fiber shape.
高級脂肪族金属塩としては、ステアリン酸、オレイン酸、ラウリン酸等の高級脂肪酸と、アルカリ土類金属(マグネシウム、カルシウム、バリウム等)やアルカリ金属(ナトリウム、カリウム、リチウム等)との塩が挙げられる。 Examples of higher aliphatic metal salts include salts of higher fatty acids such as stearic acid, oleic acid, and lauric acid with alkaline earth metals (magnesium, calcium, barium, etc.) and alkali metals (sodium, potassium, lithium, etc.). It is done.
スチレン系樹脂としては、例えば、スチレン、α−メチルスチレン、p−メチルスチレン、t−ブチルスチレン等のスチレン系モノマーに由来する樹脂が挙げられる。更に、スチレン系樹脂は、スチレン系モノマーと、スチレン系モノマーと共重合可能な他のモノマーとの共重合体からなる成分であってもよい。他のモノマーとしては、ジビニルベンゼンのような多官能性モノマーや、(メタ)アクリル酸ブチルのような構造中にベンゼン環を含まない(メタ)アクリル酸アルキルエステル等が例示される。これら他のモノマーを、スチレン系樹脂に対して5重量%を超えない範囲で使用してもよい。 Examples of the styrene resin include resins derived from styrene monomers such as styrene, α-methylstyrene, p-methylstyrene, and t-butylstyrene. Further, the styrene resin may be a component composed of a copolymer of a styrene monomer and another monomer copolymerizable with the styrene monomer. Examples of other monomers include polyfunctional monomers such as divinylbenzene, and (meth) acrylic acid alkyl esters that do not contain a benzene ring in the structure such as butyl (meth) acrylate. You may use these other monomers in the range which does not exceed 5 weight% with respect to a styrene resin.
スチレン系樹脂の量は、ポリオレフィン系樹脂100重量部に対して20〜600重量部、好ましくは100〜550重量部、より好ましくは130〜500重量部である。また、600重量部を超える場合、発泡成形体の耐薬品性及び耐衝撃性が低下するため好ましくない。20重量部より少ない場合、発泡成形体の剛性が低下するため好ましくない。 The amount of the styrene resin is 20 to 600 parts by weight, preferably 100 to 550 parts by weight, and more preferably 130 to 500 parts by weight with respect to 100 parts by weight of the polyolefin resin. Moreover, when it exceeds 600 weight part, since the chemical resistance and impact resistance of a foaming molding fall, it is unpreferable. When it is less than 20 parts by weight, the rigidity of the foamed molded product is lowered, which is not preferable.
改質樹脂粒子は、粒子の長さをL、平均径をDとした場合のL/Dが0.6〜1.6である円筒状、略球状ないしは球状であり、平均粒径が0.3〜3.0mmであることが好ましい。
L/Dが0.6より小さくないしは1.6より大きく扁平度が大きい場合は、改質樹脂粒子から得られる予備発泡粒子を、金型に充填して発泡成形体を得る際に、金型への充填性が悪くなるため好ましくない。
また形状は、充填性をよくするには略球状ないしは球状がより好ましい。
The modified resin particles have a cylindrical shape, a substantially spherical shape or a spherical shape having an L / D of 0.6 to 1.6 when the particle length is L and the average diameter is D, and the average particle size is 0.00. It is preferable that it is 3-3.0 mm.
When L / D is smaller than 0.6 or larger than 1.6 and the flatness is large, the mold is filled with the pre-foamed particles obtained from the modified resin particles to obtain a foamed molded product. This is not preferable because the filling property of the resin becomes worse.
Further, the shape is more preferably approximately spherical or spherical in order to improve the filling property.
平均粒径は0.3mm未満の場合、発泡性樹脂粒子に使用する場合、発泡剤の保持性が低くなり、低密度化が困難となり易く好ましくない。3.0mmを超える場合、充填性が悪くなり易く、発泡成形体の薄肉化も困難となり易いので好ましくない。 When the average particle size is less than 0.3 mm, when used for expandable resin particles, the retention of the foaming agent is lowered, and it is difficult to reduce the density, which is not preferable. If it exceeds 3.0 mm, the filling property tends to be poor, and it is difficult to make the foamed molded product thinner, which is not preferable.
(発泡性樹脂粒子)
発泡性樹脂粒子は、上記改質樹脂粒子に発泡剤を含浸させた粒子である。
発泡剤としては、例えば、プロパン、n−ブタン、イソブタン、ペンタン、イソペンタン、シクロペンタン、ヘキサン、ジメチルエーテル等の揮発性発泡剤が挙げられる。これら発泡剤は、単独もしくは2種以上混合して用いることができる。
(Expandable resin particles)
Expandable resin particles are particles obtained by impregnating the modified resin particles with a foaming agent.
Examples of the foaming agent include volatile foaming agents such as propane, n-butane, isobutane, pentane, isopentane, cyclopentane, hexane, and dimethyl ether. These foaming agents can be used alone or in admixture of two or more.
発泡剤の含有量は、改質樹脂粒子100重量部に対して、5〜25重量部であることが好ましい。
発泡性樹脂粒子のL/D及び平均粒径は、上記改質樹脂粒子と同程度とすることができる。また形状は、充填性をよくするには略球状ないしは球状がより好ましい。
The content of the foaming agent is preferably 5 to 25 parts by weight with respect to 100 parts by weight of the modified resin particles.
The L / D and average particle diameter of the expandable resin particles can be set to the same level as the modified resin particles. Further, the shape is more preferably approximately spherical or spherical in order to improve the filling property.
(予備発泡粒子)
予備発泡粒子は、上記発泡性樹脂粒子を予備発泡させて得られた粒子である。
予備発泡粒子は、0.01〜0.2g/cm3の嵩密度を有する。好ましい嵩密度は、0.014〜0.15g/cm3である。嵩密度が0.01g/cm3より小さい場合、発泡させたときに独立気泡率が低下して、予備発泡粒子から得られる発泡成形体の強度が低下するため好ましくない。一方、0.2g/cm3より大きい場合、得られる発泡成形体の重量が増加するため好ましくない。嵩密度の測定法は、実施例の欄に記載する。
(Pre-expanded particles)
Pre-expanded particles are particles obtained by pre-expanding the expandable resin particles.
The pre-expanded particles have a bulk density of 0.01 to 0.2 g / cm 3 . A preferred bulk density is 0.014 to 0.15 g / cm 3 . When the bulk density is less than 0.01 g / cm 3 , the closed cell ratio is reduced when foamed, and the strength of the foamed molded product obtained from the pre-expanded particles is not preferable. On the other hand, when it is larger than 0.2 g / cm 3 , the weight of the obtained foamed molded article increases, which is not preferable. The method for measuring the bulk density is described in the column of Examples.
(発泡成形体)
発泡成形体は、上記予備発泡粒子を型内発泡成形させて得られた成形体である。
発泡成形体は、0.01〜0.2g/cm3の密度を有する。好ましい密度は、0.014〜0.15g/cm3である。嵩密度が0.01g/cm3より小さい場合、独立気泡率が多くなるため、強度が低下するため好ましくない。一方、0.2g/cm3より大きい場合、重量が増加するため好ましくない。密度の測定法は、実施例の欄に記載する。
(Foamed molded product)
The foam molded article is a molded article obtained by subjecting the above pre-expanded particles to in-mold foam molding.
The foamed molded product has a density of 0.01 to 0.2 g / cm 3 . A preferred density is 0.014 to 0.15 g / cm 3 . When the bulk density is less than 0.01 g / cm 3 , the closed cell ratio increases, which is not preferable because the strength decreases. On the other hand, when it is larger than 0.2 g / cm 3 , the weight increases, which is not preferable. The method for measuring the density is described in the column of Examples.
発泡成形体は、耐薬品性、衝撃強度及び剛性が優れていることに加えて、耐熱性や加熱寸法安定性が更に改善されている。
本発明の発泡成形体は、種々の用途に使用できるが、バンパーの芯材、ドア内装緩衝材等の車両用緩衝材、電子部品、各種工業資材、食品の搬送容器等の各種用途に使用できる。特に、車両用緩衝材に好適に使用できる。
In addition to excellent chemical resistance, impact strength, and rigidity, the foamed molded article has further improved heat resistance and heat dimensional stability.
The foamed molded product of the present invention can be used for various applications, but can be used for various applications such as bumper core materials, vehicle cushioning materials such as door interior cushioning materials, electronic parts, various industrial materials, food transport containers, etc. . In particular, it can be suitably used for a vehicle cushioning material.
(改質樹脂粒子、発泡性樹脂粒子、予備発泡粒子及び発泡成形体の製造方法)
まず、改質樹脂粒子は、例えば、以下のように製造できる。
すなわち、水性懸濁液中に、上記ポリオレフィン系樹脂の粒子100重量部と、スチレン系モノマー20〜600重量部と、重合開始剤とを分散させる。なお、スチレン系モノマーと重合開始剤とを予め混合して用いてもよい。
(Modified resin particles, expandable resin particles, pre-expanded particles, and foamed molded body production method)
First, the modified resin particles can be produced, for example, as follows.
That is, 100 parts by weight of the polyolefin resin particles, 20 to 600 parts by weight of a styrene monomer, and a polymerization initiator are dispersed in an aqueous suspension. A styrene monomer and a polymerization initiator may be mixed and used in advance.
ポリオレフィン系樹脂の粒子は、公知の方法により得ることができる。例えば、ポリオレフィン系樹脂を、必要に応じて無機核剤と添加剤と共に、押出機中で溶融混練して押出すことでストランドを得、得られたストランドを、空気中でカット、水中でカット、加熱しつつカットすることで、造粒する方法が挙げられる。 The polyolefin resin particles can be obtained by a known method. For example, a polyolefin resin is melt-kneaded in an extruder together with an inorganic nucleating agent and additives as necessary to obtain a strand, and the obtained strand is cut in air, cut in water, The method of granulating by cutting while heating is mentioned.
ポリオレフィン系樹脂の粒子は、粒子の長さをL、平均径をDとした場合のL/Dが0.6〜1.6である円筒状、略球状ないしは球状であり、平均粒径が0.2〜1.5mmであることが好ましい。L/Dが0.6より小さくないしは1.6より大きく扁平度が大きい場合は、発泡性樹脂粒子として予備発泡させ、金型に充填して発泡成形体を得る際に、金型への充填性が悪くなり易く好ましくない。また形状は、充填性をよくするには略球状ないしは球状がより好ましい。平均粒径は0.2mm未満の場合、発泡剤の保持性が低くなり、低密度化が困難となり易いので好ましくない。1.5mmを超える場合、充填性が悪くなるだけでなく発泡成形体の薄肉化も困難となり易く好ましくない。 The polyolefin resin particles are cylindrical, substantially spherical or spherical with L / D of 0.6 to 1.6, where L is the particle length and D is the average diameter, and the average particle size is 0. It is preferable that it is 2-1.5 mm. When L / D is smaller than 0.6 or larger than 1.6 and the flatness is large, pre-foaming is performed as expandable resin particles, and filling the mold to obtain a foamed molded product, filling the mold It is not preferable because the properties tend to deteriorate. Further, the shape is more preferably approximately spherical or spherical in order to improve the filling property. When the average particle size is less than 0.2 mm, the retention of the foaming agent is lowered, and it is difficult to reduce the density, which is not preferable. When it exceeds 1.5 mm, not only is the filling property worsened, but it is also difficult to make the foamed molded product thinner, which is not preferable.
無機核剤としては、例えば、タルク、二酸化珪素、マイカ、クレー、ゼオライト、炭酸カルシウム等が挙げられる。
無機核剤の使用量は、ポリオレフィン系樹脂100重量部に対して、2重量部以下が好ましく、0.2〜1.5重量部がより好ましい。
水性懸濁液を構成する水性媒体としては、水、水と水溶性溶媒(例えば、低級アルコール)との混合媒体が挙げられる。
Examples of the inorganic nucleating agent include talc, silicon dioxide, mica, clay, zeolite, calcium carbonate and the like.
The amount of the inorganic nucleating agent used is preferably 2 parts by weight or less, more preferably 0.2 to 1.5 parts by weight with respect to 100 parts by weight of the polyolefin resin.
Examples of the aqueous medium constituting the aqueous suspension include water and a mixed medium of water and a water-soluble solvent (for example, lower alcohol).
重合開始剤としては、一般にスチレン系モノマーの懸濁重合用の開始剤として用いられているものが使用できる。例えば、ベンゾイルパーオキサイド、ジt−ブチルパーオキサイド、t−ブチルパーオキシベンゾエート、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ−t−ブチルパーオキシヘキサン、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチル−パーオキシ−2−エチルヘキシルカーボネート等の有機化過酸化物である。これらの重合開始剤は単独もしくは2種以上を併用してもよい。 As the polymerization initiator, those generally used as an initiator for suspension polymerization of a styrene monomer can be used. For example, benzoyl peroxide, di-t-butyl peroxide, t-butylperoxybenzoate, dicumyl peroxide, 2,5-dimethyl-2,5-di-t-butylperoxyhexane, t-butylperoxy- Organic peroxides such as 3,5,5-trimethylhexanoate and t-butyl-peroxy-2-ethylhexyl carbonate. These polymerization initiators may be used alone or in combination of two or more.
重合開始剤の使用量は、スチレン系モノマー100重量部に対して、0.1〜0.9重量部が好ましく、0.2〜0.5重量部がより好ましい。0.1重量部未満ではスチレン系モノマーの重合に時間がかかり過ぎることがあるので好ましくない。0.9重量部を超える重合開始剤の使用は、スチレン系樹脂の分子量が低くなることがあるので好ましくない。 0.1-0.9 weight part is preferable with respect to 100 weight part of styrene-type monomers, and, as for the usage-amount of a polymerization initiator, 0.2-0.5 weight part is more preferable. If it is less than 0.1 part by weight, polymerization of the styrene monomer may take too much time, which is not preferable. Use of a polymerization initiator exceeding 0.9 parts by weight is not preferable because the molecular weight of the styrene resin may be lowered.
水系懸濁液には、必要に応じて分散剤を添加してもよい。分散剤としては、特に限定されず、公知のものをいずれも使用することができる。具体的には、リン酸カルシウム、ピロリン酸マグネシウム、ピロリン酸ナトリウム、酸化マグネシウム等の難溶性無機物が挙げられる。更に、ドデシルベンゼンスルホン酸ソーダのような界面活性剤を使用してもよい。 A dispersant may be added to the aqueous suspension as necessary. The dispersant is not particularly limited, and any known dispersant can be used. Specific examples include hardly soluble inorganic substances such as calcium phosphate, magnesium pyrophosphate, sodium pyrophosphate, magnesium oxide. Further, a surfactant such as sodium dodecylbenzenesulfonate may be used.
次に、得られた分散液をスチレン系モノマーが実質的に重合しない温度に加熱してスチレン系モノマーをポリオレフィン系樹脂粒子に含浸させる。
ポリオレフィン系樹脂粒子内部にスチレン系モノマーを含浸させる時間は、30分〜2時間が適当である。十分に含浸させる前に重合が進行するとスチレン系樹脂の重合体粉末を生成してしまうからである。前記モノマーが実質的に重合しない温度とは、高い方が含浸速度を速めるには有利であるが、重合開始剤の分解温度を考慮して決定する必要がある。
Next, the obtained dispersion is heated to a temperature at which the styrene monomer is not substantially polymerized to impregnate the polyolefin resin particles with the styrene monomer.
The time for impregnating the polyolefin resin particles with the styrene monomer is suitably from 30 minutes to 2 hours. This is because if the polymerization proceeds before sufficient impregnation, a polymer powder of styrene resin is produced. The higher the temperature at which the monomer is not substantially polymerized, the more advantageous is to increase the impregnation rate, but it is necessary to determine it in consideration of the decomposition temperature of the polymerization initiator.
次いで、スチレン系モノマーの重合を行う。重合は、特に限定されないが、115〜140℃で、1.5〜5時間行うことが好ましい。重合は、通常、加圧可能な密閉容器中で行われる。
なお、スチレン系モノマーの含浸と重合を複数回に分けて行ってもよい。複数回に分けることで、ポリスチレンの重合体粉末の発生を極力少なくできる。
上記工程により改質樹脂粒子を得ることができる。
Next, the styrene monomer is polymerized. Although superposition | polymerization is not specifically limited, It is preferable to carry out at 115-140 degreeC for 1.5 to 5 hours. The polymerization is usually carried out in an airtight container that can be pressurized.
The impregnation and polymerization of the styrene monomer may be performed in a plurality of times. By dividing into multiple times, the generation of polystyrene polymer powder can be minimized.
The modified resin particles can be obtained by the above process.
次に、発泡性樹脂粒子は、上記重合中もしくは重合終了後の改質樹脂粒子に発泡剤を含浸することで得ることができる。この含浸は、それ自体公知の方法により行うことができる。例えば、重合中での含浸は、重合反応を密閉式の容器中で行い、容器中に発泡剤を圧入することにより行うことができる。重合終了後の含浸は、密閉式の容器中で、発泡剤を圧入することにより行われる。 Next, the expandable resin particles can be obtained by impregnating the modified resin particles during or after the polymerization with a foaming agent. This impregnation can be performed by a method known per se. For example, the impregnation during the polymerization can be performed by performing the polymerization reaction in a sealed container and press-fitting a foaming agent into the container. The impregnation after the completion of the polymerization is performed by press-fitting a foaming agent in a sealed container.
更に、予備発泡粒子は、上記発泡性樹脂粒子を、公知の方法で所定の嵩密度に予備発泡させることで得ることができる。
更に、発泡成形体は、予備発泡粒子を発泡成形機の金型内に充填し、再度加熱して予備発泡粒子を発泡させながら、発泡粒同士を熱融着させることで得ることができる。加熱用の媒体は水蒸気が好適に使用できる。
Further, the pre-expanded particles can be obtained by pre-expanding the expandable resin particles to a predetermined bulk density by a known method.
Further, the foam molded body can be obtained by filling the foamed particles with heat while fusing the pre-foamed particles by filling the pre-foamed particles into a mold of a foam molding machine and heating the foamed pre-foamed particles again. Water vapor can be suitably used as the heating medium.
以下、実施例により本発明を具体的に説明するが、本発明はこれに限定されるものではない。なお、以下の実施例におけるポリオレフィン系樹脂の密度、収縮因子、MS、MFR、Mn及びMw、マクロモノマーのビニル末端数及び飽和末端数、嵩密度、発泡成形体の密度、融着率、加熱寸法変化率、耐薬品性の測定法を下記する。 EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, the density of polyolefin resin in the following examples, shrinkage factor, MS, MFR, Mn and Mw, the number of vinyl terminals and the number of saturated terminals of the macromonomer, the bulk density, the density of the foamed molded product, the fusion rate, the heating dimension The method for measuring the rate of change and chemical resistance is described below.
(ポリオレフィン系樹脂の密度)
ポリオレフィン系樹脂の密度は、JIS K6922−1:1998に準拠して、密度勾配管法で測定する。
(Polyolefin resin density)
The density of the polyolefin resin is measured by the density gradient tube method in accordance with JIS K6922-1: 1998.
(収縮因子)
収縮因子は、GPCによって分別したポリオレフィン系樹脂の[η]を測定する手法で求めたMwの3倍の絶対分子量における[η]を、分岐が全くないHDPEの同一分子量における[η]で除した値である。測定に使用したGPC装置は、東ソー社製HLC−8121GPC/HTであり、カラムとして東ソー社製TSKgel GMHhr−H(20)HTを用い、カラム温度を45℃に設定し、溶離液として1,2,4−トリクロロベンゼンを用いる。測定試料は、2.0mg/mlの濃度に調整し、GPC装置への注入量を0.3mlとする。また、粘度計には、Viscotek社製キャピラリー差圧粘度計210R+を使用する。
(Shrink factor)
The shrinkage factor was obtained by dividing [η] at an absolute molecular weight three times Mw obtained by the method of measuring [η] of a polyolefin resin fractionated by GPC by [η] at the same molecular weight of HDPE having no branching. Value. The GPC apparatus used for the measurement was HLC-8121GPC / HT manufactured by Tosoh Corporation, TSKgel GMHhr-H (20) HT manufactured by Tosoh Corporation was used as the column, the column temperature was set at 45 ° C., and 1,2 as the eluent. , 4-trichlorobenzene is used. The measurement sample is adjusted to a concentration of 2.0 mg / ml, and the amount injected into the GPC device is 0.3 ml. As a viscometer, a capillary differential pressure viscometer 210R + manufactured by Viscotek is used.
(MS)
MSは、バレル直径9.55mmの毛管粘度計(東洋精機製作所社製キャピログラフ)に、長さ(L)が8mm、直径(D)が2.095mm、流入角が90°のダイを装着することにより測定する。試料温度を160℃に設定し、ピストン降下速度を10mm/分、延伸比を47に設定し、この設定下での引き取りに必要な荷重(mN)をMSとする。
(MS)
MS is equipped with a capillary viscometer (capillograph manufactured by Toyo Seiki Seisakusho Co., Ltd.) with a barrel diameter of 9.55 mm and a die with a length (L) of 8 mm, a diameter (D) of 2.095 mm, and an inflow angle of 90 °. Measure with The sample temperature is set to 160 ° C., the piston lowering speed is set to 10 mm / min, the stretch ratio is set to 47, and the load (mN) required for taking-up under this setting is MS.
(MFR)
MFRは、JIS K6922−1:1998に準拠して、190℃、2.16kg荷重で測定する。
(MFR)
MFR is measured at 190 ° C. and a 2.16 kg load in accordance with JIS K6922-1: 1998.
(Mn及びMw)
測定に使用したGPC装置は、東ソー社製HLC−8121GPC/HTであり、カラムとして東ソー社製TSKgel GMHhr−H(20)HTを用い、カラム温度を140℃に設定し、溶離液として1,2,4−トリクロロベンゼンを用いる。測定試料は、1.0mg/mlの濃度に調整し、GPC装置への注入量を0.3mlとする。各分子量の検量線は、分子量既知のポリエチレン試料を用いて校正する。Mn及びMwは、直鎖状ポリエチレン換算値として求める。
(Mn and Mw)
The GPC apparatus used for the measurement was HLC-8121GPC / HT manufactured by Tosoh Corporation, TSKgel GMHhr-H (20) HT manufactured by Tosoh Corporation was used as the column, the column temperature was set to 140 ° C., and 1,2 as the eluent. , 4-trichlorobenzene is used. The measurement sample is adjusted to a concentration of 1.0 mg / ml, and the amount injected into the GPC device is 0.3 ml. The calibration curve for each molecular weight is calibrated using a polyethylene sample with a known molecular weight. Mn and Mw are determined as linear polyethylene equivalent values.
(マクロモノマーのビニル末端数及び飽和末端数)
マクロモノマーの末端構造は、日本電子社製JNM−ECA400型核磁気共鳴装置を用いて、13C−NMRによって確認する。溶媒には、テトラクロロエタン−d2を使用する。ビニル末端数(X)は、主鎖メチレン炭素(化学シフト:30ppm)1000個当たりの個数として、114ppmと139ppmのピークの平均値から求める。一方、飽和末端数(Y)は、ビニル末端基数と同様に、32.3ppm、22.9ppm及び14.1ppmピークの平均値から求める。得られたビニル末端数Xと飽和末端数Yとから、式Z=X/[(X+Y)×2]により、Zを求める。
(Number of vinyl ends and saturated ends of macromonomer)
The terminal structure of the macromonomer is confirmed by 13 C-NMR using a JNM-ECA400 nuclear magnetic resonance apparatus manufactured by JEOL. The solvent used tetrachloroethane -d 2. The number of vinyl ends (X) is determined from the average value of the peaks at 114 ppm and 139 ppm as the number per 1000 main chain methylene carbons (chemical shift: 30 ppm). On the other hand, the number of saturated terminals (Y) is determined from the average values of 32.3 ppm, 22.9 ppm, and 14.1 ppm peaks, similarly to the number of vinyl terminal groups. From the obtained vinyl terminal number X and saturated terminal number Y, Z is determined by the formula Z = X / [(X + Y) × 2].
(結晶化度)
結晶化度はDSCの測定により求める。具体的には、ポリオレフィン系樹脂のサンプルを50℃で1分間保持する。次いで、200℃/分の速度で180℃まで昇温し、180℃で5分間保持する。更に、10℃/分で50℃まで降温し、50℃で5分間保持する。この後、10℃/分で180℃まで昇温する。その際に得られる融解曲線において、60℃から145℃に基線を引く。この基線と融解曲線とから融解エンタルピー(ΔH(J/g))を算出する。融解エンタルピーを以下の式に代入することで、結晶化度X(%)を算出する。
X=ΔH×100/293
(Crystallinity)
The crystallinity is determined by DSC measurement. Specifically, a polyolefin resin sample is held at 50 ° C. for 1 minute. Next, the temperature is raised to 180 ° C. at a rate of 200 ° C./min and held at 180 ° C. for 5 minutes. Further, the temperature is lowered to 50 ° C. at 10 ° C./min, and held at 50 ° C. for 5 minutes. Thereafter, the temperature is raised to 180 ° C. at 10 ° C./min. In the melting curve obtained at that time, a baseline is drawn from 60 ° C to 145 ° C. The melting enthalpy (ΔH (J / g)) is calculated from this baseline and the melting curve. The crystallinity X (%) is calculated by substituting the melting enthalpy into the following equation.
X = ΔH × 100/293
(嵩密度)
予備発泡粒子の嵩密度は、下記の要領で測定する。
まず、予備発泡粒子をメスシリンダに500cm3の目盛りまで充填する。但し、メスシリンダを水平方向から目視し、予備発泡粒子が一粒でも500cm3の目盛りに達していれば、充填を終了する。次に、メスシリンダ内に充填した予備発泡粒子の重量を小数点以下2位の有効数字で秤量し、その重量をW(g)とする。次式により予備発泡粒子の嵩密度を算出する。
嵩密度(g/cm3)=W/500
(The bulk density)
The bulk density of the pre-expanded particles is measured as follows.
First, pre-expanded particles are filled in a measuring cylinder to a scale of 500 cm 3 . However, the graduated cylinder is visually observed from the horizontal direction, and if at least one pre-expanded particle reaches the scale of 500 cm 3 , the filling is finished. Next, the weight of the pre-expanded particles filled in the graduated cylinder is weighed with two significant figures after the decimal point, and the weight is defined as W (g). The bulk density of the pre-expanded particles is calculated by the following formula.
Bulk density (g / cm 3 ) = W / 500
(発泡成形体の密度)
発泡成形体の密度は、JIS A 9511:1995「発泡プラスチック保温板」記載の方法で測定する。
(Density of foam molding)
The density of the foamed molded product is measured by the method described in JIS A 9511: 1995 “Foamed plastic heat insulating plate”.
(融着率)
縦400mm×横300mmの上面を有し、厚み30mmの直方体形状の発泡成形体の上面に、カッターで横方向に沿って長さ300mm、深さ約5mmの切り込み線を入れ、この切り込み線に沿って発泡成形体を二分割する。そして、二分割された発泡成形体の破断面の発泡粒子について、発泡粒子内で破断している発泡粒子数(a)と、発泡粒子間の界面で破断している発泡粒子数(b)を測定し、下記式に基づいて融着率を算出する。
融着率(%)=100×(a)/〔(a)+(b)〕
(Fusion rate)
The upper surface of 400 mm long × 300 mm wide has a rectangular parallelepiped shaped foam molded body with a thickness of 30 mm. A cutting line with a length of 300 mm and a depth of about 5 mm is put along the horizontal direction with a cutter. Then divide the foamed molded product into two parts. And about the expanded particle of the fractured surface of the divided foamed product, the number of expanded particles broken in the expanded particle (a) and the number of expanded particles broken at the interface between the expanded particles (b) Measure and calculate the fusing rate based on the following formula.
Fusing rate (%) = 100 × (a) / [(a) + (b)]
(加熱寸法変化率)
加熱寸法変化率は、JIS K6767:1999「発泡プラスチック−ポリエチレン−試験方法」記載のB法にて測定する。発泡成形体から縦150mm×横150mmの上面を有し、厚み50mmの試験片を切り出す。この試験片の上面の中央部に縦及び横方向に沿ってそれぞれ互いに平行に3本の直線を50mm間隔になるように記入する。そして、試験片を90℃の熱風循環式乾燥機の中に22時間置いた後に取り出し、標準状態(20±2℃、湿度65±5%)の場所に1時間放置後、縦及び横線の寸法を測定する。加熱前の直線の長さの平均値をL1、加熱後の直線の長さの平均値をL0とし、下記式に基づいて加熱寸法変化率を算出する。
加熱寸法変化率S=100×(L1−L0)/L0
加熱寸法変化率の評価は以下の通り
○:0≦S<3;寸法変化率が低く、寸法の安定性が良好であった。
△:3≦S<7;寸法の変化が見られるものの、実用上使用可能であった。
×:S≧7;寸法の変化が著しく見られ、実用上使用不可能であった。
(Heating dimensional change rate)
The heating dimensional change rate is measured by the B method described in JIS K6767: 1999 “Foamed Plastics—Polyethylene Test Method”. A test piece having a top surface of 150 mm in length and 150 mm in width and having a thickness of 50 mm is cut out from the foam molded article. Three straight lines are written in the center of the upper surface of the test piece in parallel with each other along the vertical and horizontal directions so as to have an interval of 50 mm. Then, the test piece is placed in a 90 ° C hot air circulating dryer for 22 hours and then taken out and left in a standard state (20 ± 2 ° C, humidity 65 ± 5%) for 1 hour, then the vertical and horizontal line dimensions. Measure. The average value of the length of the straight line before heating is L1, the average value of the length of the straight line after heating is L0, and the heating dimensional change rate is calculated based on the following formula.
Heating dimensional change rate S = 100 × (L1-L0) / L0
The evaluation of the heating dimensional change rate was as follows: ○: 0 ≦ S <3; the dimensional change rate was low, and the dimensional stability was good.
Δ: 3 ≦ S <7; Although a dimensional change was observed, it was practically usable.
X: S ≧ 7; dimensional change was remarkably seen, and practical use was impossible.
(耐薬品性)
発泡成形体から縦100mm×横100mm×厚み20mmの平面長方形状の板状試験片を切り出し、23℃、湿度50%の条件で24時間放置する。なお、試験片の上面全面が発泡成形体の表面から形成されるように試験片を発泡成形体から切り出す。
次に、試験片の上面にガソリン1gを均一に塗布し、23℃、湿度50%の条件で60分放置する。その後、試験片の上面から薬品を拭き取り、試験片の上面を目視観察して下記基準に基づいて判断する。
○:良好 変化なし
△:やや悪い 表面軟化
×:悪い 表面陥没(収縮)
(chemical resistance)
A flat rectangular plate-shaped test piece having a length of 100 mm, a width of 100 mm, and a thickness of 20 mm is cut out from the foamed molded article and left to stand at 23 ° C. and a humidity of 50% for 24 hours. In addition, a test piece is cut out from a foaming molding so that the upper surface whole surface of a test piece may be formed from the surface of a foaming molding.
Next, 1 g of gasoline is uniformly applied to the upper surface of the test piece, and left for 60 minutes under the conditions of 23 ° C. and 50% humidity. Then, the chemical | medical agent is wiped off from the upper surface of a test piece, the upper surface of a test piece is visually observed, and it judges based on the following reference | standard.
○: Good No change △: Slightly bad Surface softening ×: Bad Surface depression (shrinkage)
製造例
以下に実施例及び比較例で使用する樹脂A〜Kの製造例を記載する。以下の製造例は、不活性ガス雰囲気下で行った。また、各製造例に使用した原料や溶媒は、公知の方法で、予め精製、乾燥、脱酸素を行ったものを使用した。成分a及び成分cは公知の方法により合成したものを使用した。また、トリイソブチルアルミニウムのヘキサン溶液(0.714M)は東ソーファインケム社製を用いた。
Production Examples Production examples of resins A to K used in Examples and Comparative Examples are described below. The following production examples were performed under an inert gas atmosphere. Moreover, the raw material and solvent which were used for each manufacture example used what was refine | purified previously, dried, and deoxygenated by the well-known method. As component a and component c, those synthesized by a known method were used. Moreover, the Tosoh Finechem company make was used for the hexane solution (0.714M) of triisobutylaluminum.
製造例1
[有機化合物で処理された粘土鉱物(成分b)の調整]
水3リットルに、エタノール3リットルと37%濃塩酸250mlとを加えた。得られた溶液に、N,N−ジメチル−オクタデシルアミン330g(1.1mol)を添加した後、溶液を60℃に加熱した。この加熱により、上記アミンが塩酸塩化された。得られた溶液にヘクトライトを1kg加えることで、懸濁液を得た。この懸濁液を60℃で3時間攪拌し、次いで上澄液を除去した後、60℃の水5リットルで洗浄した。更に、60℃、10-3torr(約0.13Pa)で24時間乾燥させ、ジエットミルで粉砕することにより、平均粒径4.5μmの変性ヘクトライト(成分b)を得ることができた。
Production Example 1
[Preparation of clay mineral (component b) treated with organic compound]
To 3 liters of water, 3 liters of ethanol and 250 ml of 37% concentrated hydrochloric acid were added. After adding 330 g (1.1 mol) of N, N-dimethyl-octadecylamine to the resulting solution, the solution was heated to 60 ° C. By this heating, the amine was converted into hydrochloric acid. A suspension was obtained by adding 1 kg of hectorite to the obtained solution. The suspension was stirred at 60 ° C. for 3 hours, and after removing the supernatant, it was washed with 5 liters of water at 60 ° C. Furthermore, the modified hectorite (component b) having an average particle diameter of 4.5 μm could be obtained by drying at 60 ° C. and 10 −3 torr (about 0.13 Pa) for 24 hours and pulverizing with a jet mill.
[マクロモノマー製造触媒の調整]
ジメチルシランジイルビス(シクロペンタジエニル)ジルコニムジクロリド(成分a)6.97g(20mmol)をヘキサン2.07リットルに懸濁させた。得られた懸濁液に、トリイソブチルアルミニウムのヘキサン溶液(0.714M)2.93リットルを添加することで、成分aとトリイソブチルアルミニウムとの接触生成物を得た。この接触生成物を含む溶液に、上記変性ヘクトライト(成分b)を500g添加した。得られた溶液を60℃で3時間攪拌した後、静置し、次いで上澄液を除し、残存物をトリイソブチルアルミニウムのヘプタン溶液(0.03M)で洗浄した。更に、洗浄物に、トリエチルアルミニウムのヘキサン溶液(0.15M)を添加して触媒スラリー(100g/リットル)を得た。
[Adjustment of macromonomer production catalyst]
6.97 g (20 mmol) of dimethylsilanediylbis (cyclopentadienyl) zirconium dichloride (component a) was suspended in 2.07 liters of hexane. A contact product of component a and triisobutylaluminum was obtained by adding 2.93 liters of a hexane solution (0.714M) of triisobutylaluminum to the obtained suspension. 500 g of the modified hectorite (component b) was added to the solution containing the contact product. The resulting solution was stirred at 60 ° C. for 3 hours, then allowed to stand, then the supernatant was removed, and the residue was washed with a heptane solution of triisobutylaluminum (0.03M). Further, a hexane solution (0.15 M) of triethylaluminum was added to the washed product to obtain a catalyst slurry (100 g / liter).
[マクロモノマーの製造]
50リットルのオートクレーブに、ヘキサン30リットルとトリイソブチルアルミニウムのヘキサン溶液(0.714mol/リットル)25mlを入れた後、オートクレーブの内温を90℃に昇温した。このオートクレーブに、上記触媒スラリーを125ml添加し、エチレンをその分圧が1.2MPaになるまで導入した後、重合を開始した。重合中、エチレンの分圧が1.2MPaに保たれるようにエチレンを連続的に導入した。また、重合温度を90℃とした。
[Manufacture of macromonomer]
After putting 30 liters of hexane and 25 ml of a hexane solution of triisobutylaluminum (0.714 mol / liter) into a 50 liter autoclave, the internal temperature of the autoclave was raised to 90 ° C. 125 ml of the catalyst slurry was added to the autoclave, ethylene was introduced until the partial pressure reached 1.2 MPa, and then polymerization was started. During the polymerization, ethylene was continuously introduced so that the partial pressure of ethylene was maintained at 1.2 MPa. The polymerization temperature was 90 ° C.
重合開始16分後に、内温を50℃まで降温し、オートクレーブの内圧が0.1MPaまで脱圧した後、内圧が0.6MPaになるまで窒素を導入した。この操作を5回繰り返すことでマクロモノマーを得た。
マクロモノマーのMnは9000、Mw/Mnは2.3であった。NMRによりマクロモノマーの末端構造を解析したところ、Zは0.57であった。
Sixteen minutes after the start of polymerization, the internal temperature was lowered to 50 ° C., the internal pressure of the autoclave was depressurized to 0.1 MPa, and then nitrogen was introduced until the internal pressure reached 0.6 MPa. This operation was repeated 5 times to obtain a macromonomer.
The Mn of the macromonomer was 9000 and Mw / Mn was 2.3. When the terminal structure of the macromonomer was analyzed by NMR, Z was 0.57.
[ポリオレフィン系樹脂の製造]
上記マクロモノマーを含む50リットルのオートクレーブに、トリイソブチルアルミニウムのヘキサン溶液(0.714mol/リットル)25mLを導入した後、オートクレーブの内温を85℃に上げた。この温度を保ちながら、30分間攪拌した後、オートクレーブに、ジフェニルメチレン(1−シクロペンタジエニル)(2,7−ジ−tert−ブチル−9−フルオレニル)ジルコニウムジクリド(成分c)0.25mmolのトルエン溶液0.5リットルを添加した。添加後、温度を保ちながら1時間攪拌した。
[Manufacture of polyolefin resin]
After introducing 25 mL of a hexane solution of triisobutylaluminum (0.714 mol / liter) into a 50 liter autoclave containing the macromonomer, the internal temperature of the autoclave was raised to 85 ° C. After stirring for 30 minutes while maintaining this temperature, the autoclave was charged with diphenylmethylene (1-cyclopentadienyl) (2,7-di-tert-butyl-9-fluorenyl) zirconium dichloride (component c) 0.25 mmol. 0.5 liter of toluene solution was added. After the addition, the mixture was stirred for 1 hour while maintaining the temperature.
次いで、オートクレーブに、エチレンをその分圧が0.1MPaになるまで導入して重合を開始した。重合中、分圧が0.1MPaに保たれるようにエチレンを連続的に導入した。重合温度は85℃に維持した。重合開始から180分後に、オートクレーブの内圧を脱圧した。内容物を吸引ろ過して取り出し、得られたロ塊を乾燥させることで、3.3kgの高密度ポリエチレン樹脂Dを得た。 Next, ethylene was introduced into the autoclave until the partial pressure reached 0.1 MPa to initiate polymerization. During the polymerization, ethylene was continuously introduced so that the partial pressure was maintained at 0.1 MPa. The polymerization temperature was maintained at 85 ° C. 180 minutes after the start of polymerization, the internal pressure of the autoclave was released. The contents were removed by suction filtration, and the resulting loaf was dried to obtain 3.3 kg of high-density polyethylene resin D.
得られた樹脂のMwは133000であり、Mw/Mnは10.9であり、全樹脂量に対する新たに生成した樹脂量の割合は、28重量%であった。また、得られた樹脂のMFR、密度、結晶化度、MS、110−100×logMFR、収縮因子を測定し、結果を表1に示す。 Mw of the obtained resin was 133000, Mw / Mn was 10.9, and the ratio of the newly produced resin amount to the total resin amount was 28% by weight. Further, MFR, density, crystallinity, MS, 110-100 × log MFR and shrinkage factor of the obtained resin were measured, and the results are shown in Table 1.
製造例2
[マクロモノマーの製造]
50リットルのオートクレーブに、ヘキサン30リットルと、ブテン−1を120gと、トリイソブチルアルミニウムのヘキサン溶液(0.714mol/リットル)25mlを入れた後、オートクレーブの内温を90℃に昇温した。このオートクレーブに、上記触媒スラリーを125ml添加し、水素/エチレン混合ガス(0.63mmol/mo1)をその分圧が1.2MPaになるまで導入した後、重合を開始した。重合中、エチレンの分圧が1.2MPaに保たれるように水素/エチレン混合ガスを連続的に導入した。また、重合温度を90℃とした。
Production Example 2
[Manufacture of macromonomer]
A 50 liter autoclave was charged with 30 liters of hexane, 120 g of butene-1 and 25 ml of a hexane solution of triisobutylaluminum (0.714 mol / liter), and then the internal temperature of the autoclave was raised to 90 ° C. 125 ml of the catalyst slurry was added to the autoclave and a hydrogen / ethylene mixed gas (0.63 mmol / mo1) was introduced until the partial pressure reached 1.2 MPa, and then polymerization was started. During the polymerization, a hydrogen / ethylene mixed gas was continuously introduced so that the partial pressure of ethylene was maintained at 1.2 MPa. The polymerization temperature was 90 ° C.
重合開始25分後に、内温を50℃まで降温し、オートクレーブの内圧が0.1MPaまで脱圧した後、内圧が0.6MPaになるまで窒素を導入した。この操作を5回繰り返すことでマクロモノマーを得た。
マクロモノマーのMnは8500、Mw/Mnは2.2であった。NMRによりマクロモノマーの末端構造を解析したところ、Zは0.60であった。
25 minutes after the start of polymerization, the internal temperature was lowered to 50 ° C., the internal pressure of the autoclave was depressurized to 0.1 MPa, and then nitrogen was introduced until the internal pressure reached 0.6 MPa. This operation was repeated 5 times to obtain a macromonomer.
The Mn of the macromonomer was 8500 and Mw / Mn was 2.2. When the terminal structure of the macromonomer was analyzed by NMR, Z was 0.60.
[ポリオレフィン系樹脂の製造]
上記マクロモノマーを含む50リットルのオートクレーブに、トリイソブチルアルミニウムのヘキサン溶液(0.714mol/リットル)25mL導入した後、オートクレーブの内温を85℃に上げた。この温度を保ちながら、30分間攪拌した後、オートクレーブに、ジフェニルメチレン(1−シクロペンタジエニル)(2,7−ジ−tert−ブチル−9−フルオレニル)ジルコニウムジクリド(成分c)0.25mmolのトルエン溶液0.5リットルを添加した。添加後、温度を保ちながら1時間攪拌した。
[Manufacture of polyolefin resin]
After introducing 25 mL of a hexane solution of triisobutylaluminum (0.714 mol / L) into a 50 liter autoclave containing the macromonomer, the internal temperature of the autoclave was raised to 85 ° C. After stirring for 30 minutes while maintaining this temperature, the autoclave was charged with diphenylmethylene (1-cyclopentadienyl) (2,7-di-tert-butyl-9-fluorenyl) zirconium dichloride (component c) 0.25 mmol. 0.5 liter of toluene solution was added. After the addition, the mixture was stirred for 1 hour while maintaining the temperature.
次いで、オートクレーブに、ブテン−1を10g添加すると共に、水素/エチレン混合ガス(0.63mmol/mo1)をその分圧が0.1MPaになるまで導入して重合を開始した。重合中、分圧が0.1MPaに保たれるように水素/エチレン混合ガスを連続的に導入した。重合温度は85℃に維持した。重合開始から180分後に、オートクレーブの内圧を脱圧した。内容物を吸引ろ過して取り出し、得られたロ塊を乾燥させることで、4.2kgの高密度ポリエチレン樹脂Cを得た。 Next, 10 g of butene-1 was added to the autoclave, and a hydrogen / ethylene mixed gas (0.63 mmol / mo1) was introduced until the partial pressure reached 0.1 MPa to initiate polymerization. During the polymerization, a hydrogen / ethylene mixed gas was continuously introduced so that the partial pressure was maintained at 0.1 MPa. The polymerization temperature was maintained at 85 ° C. 180 minutes after the start of polymerization, the internal pressure of the autoclave was released. The contents were removed by suction filtration, and the resulting loaf was dried to obtain 4.2 kg of high-density polyethylene resin C.
得られた樹脂のMwは64000であり、Mw/Mnは6.8であり、全樹脂量に対する新たに生成した樹脂量の割合は、11重量%であった。また、得られた樹脂のMFR、密度、結晶化度、MS、110−100×logMFR、収縮因子を測定し、結果を表1に示す。 Mw of the obtained resin was 64000, Mw / Mn was 6.8, and the ratio of the newly generated resin amount to the total resin amount was 11% by weight. Further, MFR, density, crystallinity, MS, 110-100 × log MFR and shrinkage factor of the obtained resin were measured, and the results are shown in Table 1.
製造例3
重合開始後35分後に脱圧したこと以外は製造例1と同様にしてマクロモノマーを得た。マクロモノマーのMnは9000、Mw/Mnは2.3であった。NMRによりマクロモノマーの末端構造を解析したところ、Zは0.57であった。
上記マクロモノマーを使用し、ジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクリド(成分c)を使用したこと以外は製造例1と同様にして重合を行うことで4.5kgの高密度ポリエチレン樹脂Eを得た。
Production Example 3
A macromonomer was obtained in the same manner as in Production Example 1 except that the pressure was released 35 minutes after the initiation of polymerization. The Mn of the macromonomer was 9000 and Mw / Mn was 2.3. When the terminal structure of the macromonomer was analyzed by NMR, Z was 0.57.
4.5 kg by polymerizing in the same manner as in Production Example 1 except that the above macromonomer was used and diphenylmethylene (1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride (component c) was used. High density polyethylene resin E was obtained.
得られた樹脂のMwは63000であり、Mw/Mnは6.3であり、全樹脂量に対する新たに生成した樹脂量の割合は、14重量%であった。また、得られた樹脂のMFR、密度、結晶化度、MS、110−100×logMFR、収縮因子を測定し、結果を表1に示す。 Mw of the obtained resin was 63000, Mw / Mn was 6.3, and the ratio of the newly generated resin amount to the total resin amount was 14% by weight. Further, MFR, density, crystallinity, MS, 110-100 × log MFR and shrinkage factor of the obtained resin were measured, and the results are shown in Table 1.
製造例4
ブテン−1を135g使用し、重合温度を75℃とし、0.68mmol/mo1の水素/エチレン混合ガスを使用し、重合開始90分後に脱圧したこと以外は製造例3と同様にしてマクロモノマーを得た。マクロモノマーのMnは8300、Mw/Mnは2.2であった。NMRによりマクロモノマーの末端構造を解析したところ、Zは0.62であった。
Production Example 4
A macromonomer was prepared in the same manner as in Production Example 3, except that 135 g of butene-1 was used, the polymerization temperature was 75 ° C., a hydrogen / ethylene mixed gas of 0.68 mmol / mol was used, and the pressure was released 90 minutes after the start of polymerization. Got. The Mn of the macromonomer was 8300 and Mw / Mn was 2.2. When the terminal structure of the macromonomer was analyzed by NMR, Z was 0.62.
上記マクロモノマーを使用し、ブテン−1を11g使用し、0.68mmol/mo1の水素/エチレン混合ガスを使用すること以外は製造例2と同様にして重合を行うことで4.7kgの高密度ポリエチレン樹脂Gを得た。
得られた樹脂のMwは75000であり、Mw/Mnは6.1であり、全樹脂量に対する新たに生成した樹脂量の割合は、20重量%であった。また、得られた樹脂のMFR、密度、結晶化度、MS、110−100×logMFR、収縮因子を測定し、結果を表1に示す。
A high density of 4.7 kg is obtained by performing polymerization in the same manner as in Production Example 2 except that 11 g of butene-1 is used and a hydrogen / ethylene mixed gas of 0.68 mmol / mo1 is used. Polyethylene resin G was obtained.
Mw of the obtained resin was 75000, Mw / Mn was 6.1, and the ratio of the newly generated resin amount to the total resin amount was 20% by weight. Further, MFR, density, crystallinity, MS, 110-100 × log MFR and shrinkage factor of the obtained resin were measured, and the results are shown in Table 1.
製造例5
ブテン−1を290g使用し、重合温度を75℃とし、0.65mmol/mo1の水素/エチレン混合ガスを使用し、重合開始90分後に脱圧したこと以外は製造例2と同様にしてマクロモノマーを得た。マクロモノマーのMnは8000、Mw/Mnは2.1であった。NMRによりマクロモノマーの末端構造を解析したところ、Zは0.70であった。
Production Example 5
A macromonomer was prepared in the same manner as in Production Example 2, except that 290 g of butene-1 was used, the polymerization temperature was 75 ° C., a hydrogen / ethylene mixed gas of 0.65 mmol / mol was used, and the pressure was released 90 minutes after the start of polymerization. Got. The Mn of the macromonomer was 8000, and Mw / Mn was 2.1. When the terminal structure of the macromonomer was analyzed by NMR, Z was 0.70.
上記マクロモノマーを使用し、ブテン−1を25g使用し、0.65mmol/mo1の水素/エチレン混合ガスを使用すること以外は製造例2と同様にして重合を行うことで4.2kgの高密度ポリエチレン樹脂Aを得た。
得られた樹脂のMwは88000であり、Mw/Mnは5.0であり、全樹脂量に対する新たに生成した樹脂量の割合は、23重量%であった。また、得られた樹脂のMFR、密度、結晶化度、MS、110−100×logMFR、収縮因子を測定し、結果を表1に示す。
A high density of 4.2 kg is obtained by performing polymerization in the same manner as in Production Example 2 except that the above macromonomer is used, 25 g of butene-1 is used, and a hydrogen / ethylene mixed gas of 0.65 mmol / mo1 is used. Polyethylene resin A was obtained.
Mw of the obtained resin was 88000, Mw / Mn was 5.0, and the ratio of the newly generated resin amount to the total resin amount was 23% by weight. Further, MFR, density, crystallinity, MS, 110-100 × log MFR and shrinkage factor of the obtained resin were measured, and the results are shown in Table 1.
製造例6
ブテン−1を135g使用し、重合温度を75℃とし、0.48mmol/mo1の水素/エチレン混合ガスを使用し、重合開始90分後に脱圧したこと以外は製造例3と同様にしてマクロモノマーを得た。マクロモノマーのMnは8500、Mw/Mnは2.2であった。NMRによりマクロモノマーの末端構造を解析したところ、Zは0.60であった。
Production Example 6
A macromonomer was prepared in the same manner as in Production Example 3, except that 135 g of butene-1 was used, the polymerization temperature was 75 ° C., a hydrogen / ethylene mixed gas of 0.48 mmol / mol was used, and the pressure was released 90 minutes after the start of polymerization. Got. The Mn of the macromonomer was 8500 and Mw / Mn was 2.2. When the terminal structure of the macromonomer was analyzed by NMR, Z was 0.60.
上記マクロモノマーを使用し、ブテン−1を11g使用し、0.48mmol/mo1の水素/エチレン混合ガスを使用すること以外は製造例2と同様にして重合を行うことで4.7kgの高密度ポリエチレン樹脂Hを得た。
得られた樹脂のMwは97000であり、Mw/Mnは5.6であり、全樹脂量に対する新たに生成した樹脂量の割合は、25重量%であった。また、得られた樹脂のMFR、密度、結晶化度、MS、110−100×logMFR、収縮因子を測定し、結果を表1に示す。
A high density of 4.7 kg is obtained by performing polymerization in the same manner as in Production Example 2 except that 11 g of butene-1 is used and a hydrogen / ethylene mixed gas of 0.48 mmol / mo1 is used. Polyethylene resin H was obtained.
Mw of the obtained resin was 97000, Mw / Mn was 5.6, and the ratio of the newly generated resin amount to the total resin amount was 25% by weight. Further, MFR, density, crystallinity, MS, 110-100 × log MFR and shrinkage factor of the obtained resin were measured, and the results are shown in Table 1.
製造例7
重合温度を70℃とし、重合開始90分後に脱圧したこと以外は製造例1と同様にしてマクロモノマーを得た。マクロモノマーのMnは9000、Mw/Mnは2.3であった。NMRによりマクロモノマーの末端構造を解析したところ、Zは0.57であった。
Production Example 7
A macromonomer was obtained in the same manner as in Production Example 1 except that the polymerization temperature was 70 ° C. and the pressure was released 90 minutes after the start of polymerization. The Mn of the macromonomer was 9000 and Mw / Mn was 2.3. When the terminal structure of the macromonomer was analyzed by NMR, Z was 0.57.
上記マクロモノマーを使用すること以外は製造例1と同様にして重合を行うことで4.7kgの高密度ポリエチレン樹脂Iを得た。
得られた樹脂のMwは94000であり、Mw/Mnは5.5であり、全樹脂量に対する新たに生成した樹脂量の割合は、27重量%であった。また、得られた樹脂のMFR、密度、結晶化度、MS、110−100×logMFR、収縮因子を測定し、結果を表1に示す。
Polymerization was conducted in the same manner as in Production Example 1 except that the above macromonomer was used to obtain 4.7 kg of high-density polyethylene resin I.
Mw of the obtained resin was 94000, Mw / Mn was 5.5, and the ratio of the newly generated resin amount to the total resin amount was 27% by weight. Further, MFR, density, crystallinity, MS, 110-100 × log MFR and shrinkage factor of the obtained resin were measured, and the results are shown in Table 1.
表中、樹脂種BはLDPE(東ソー社製ペトロセン225)、樹脂種F、J及びKはHDPEであり、それぞれ東ソー社製ニポロンハード2300、2400及び8500である。 In the table, resin type B is LDPE (Tosoh Petrocene 225), and resin types F, J, and K are HDPE, which are Tosoh Nipolon Hard 2300, 2400, and 8500, respectively.
実施例1
高密度ポリエチレン樹脂A100重量部を押出機に供給して溶融混練して水中カット方式により造粒して楕円球状(卵状)の高密度ポリエチレン樹脂粒子を得た。この樹脂粒子の平均重量は0.6mgであった。
次に、攪拌機付の5リットルのオートクレーブに、ピロリン酸マグネシウム10g、ドデシルベンゼンスルホン酸ソーダ0.5gを純水2kgに分散させて分散用媒体を得た。
Example 1
100 parts by weight of high-density polyethylene resin A was supplied to an extruder, melted and kneaded, and granulated by an underwater cutting method to obtain elliptical (egg-like) high-density polyethylene resin particles. The average weight of the resin particles was 0.6 mg.
Next, 10 g of magnesium pyrophosphate and 0.5 g of sodium dodecylbenzenesulfonate were dispersed in 2 kg of pure water in a 5 liter autoclave equipped with a stirrer to obtain a dispersion medium.
分散用媒体に30℃で上記高密度ポリエチレン樹脂粒子600gを分散させて10分間保持し、次いで60℃に昇温して懸濁液を得た。
更に、この懸濁液に、重合開始剤としてジクミルパーオキサイドを0.5g溶解させたスチレンモノマー0.26kgを30分かけて滴下した。滴下後、30分間保持することで、高密度ポリエチレン樹脂粒子中にスチレン系モノマーを含浸させた。含浸後、140℃に昇温し、この温度で2時間重合(第1重合)させた。
600 g of the above high-density polyethylene resin particles were dispersed in a dispersion medium at 30 ° C. and held for 10 minutes, and then heated to 60 ° C. to obtain a suspension.
Further, 0.26 kg of a styrene monomer in which 0.5 g of dicumyl peroxide was dissolved as a polymerization initiator was added dropwise to this suspension over 30 minutes. After dropping, the styrene monomer was impregnated in the high density polyethylene resin particles by holding for 30 minutes. After impregnation, the temperature was raised to 140 ° C., and polymerization was carried out at this temperature for 2 hours (first polymerization).
次に、125℃に下げた懸濁液中に、ジクミルパーオキサイドを4g溶解させたスチレンモノマー1.14kgを4時間かけて滴下した。滴下後、125℃で1時間保持することで、高密度ポリエチレン樹脂粒子中にスチレン系モノマーを含浸させた。含浸後、140℃に昇温し、この温度で2時間30分間保持して重合(第2重合)させた。この重合の結果、改質樹脂粒子を得ることができた。 Next, 1.14 kg of a styrene monomer in which 4 g of dicumyl peroxide was dissolved was dropped into the suspension lowered to 125 ° C. over 4 hours. After dropping, the high-density polyethylene resin particles were impregnated with a styrene monomer by holding at 125 ° C. for 1 hour. After impregnation, the temperature was raised to 140 ° C., and this temperature was maintained for 2 hours and 30 minutes for polymerization (second polymerization). As a result of this polymerization, modified resin particles could be obtained.
次いで、常温(約23℃)まで冷却し、オートクレーブから改質樹脂粒子を取り出した。改質樹脂粒子2kgと水2リットルとを、5リットルの攪拌機付オートクレーブに入れた。更に、可塑剤としてジイソブチルアジペート10g、発泡剤としてブタン520ml(300g)をオートクレーブに入れた。この後、70℃に昇温し、4時間攪拌を続けることで発泡性樹脂粒子を得ることができた。 Subsequently, it cooled to normal temperature (about 23 degreeC), and took out the modified resin particle from the autoclave. 2 kg of modified resin particles and 2 liters of water were placed in a 5 liter autoclave with a stirrer. Furthermore, 10 g of diisobutyl adipate as a plasticizer and 520 ml (300 g) of butane as a foaming agent were placed in an autoclave. Thereafter, the temperature was raised to 70 ° C. and the stirring was continued for 4 hours to obtain expandable resin particles.
その後、常温まで冷却して、発泡性樹脂粒子をオートクレーブから取り出し、脱水乾燥させた。
次いで、得られた発泡性樹脂粒子を嵩密度0.025g/cm3に予備発泡させることで、予備発泡粒子を得た。得られた予備発泡粒子を1日間室温(23℃)に放置した後、400mm×300mm×30mmの大きさの成形用金型に入れた。その後、0.2MPaの水蒸気を50秒間導入して加熱し、次いで、発泡成形体の最高面圧が0.001MPaに低下するまで冷却することで、密度0.025g/cm3の発泡成形体を得た。得られた発泡成形体の外観及び融着は共に良好であった。得られた発泡成形体の融着率、加熱寸法変化率、耐薬品性を測定した。その結果を表2に示す。
Thereafter, the mixture was cooled to room temperature, and the expandable resin particles were taken out from the autoclave and dehydrated and dried.
Next, pre-expanded particles were obtained by pre-expanding the obtained expandable resin particles to a bulk density of 0.025 g / cm 3 . The obtained pre-expanded particles were allowed to stand at room temperature (23 ° C.) for 1 day, and then placed in a molding die having a size of 400 mm × 300 mm × 30 mm. Thereafter, 0.2 MPa of water vapor is introduced for 50 seconds and heated, and then cooled until the maximum surface pressure of the foamed molded product is reduced to 0.001 MPa, whereby a foamed molded product having a density of 0.025 g / cm 3 is obtained. Obtained. Both the appearance and fusion of the obtained foamed molded article were good. The fusion molding rate, heating dimensional change rate, and chemical resistance of the obtained foamed molded product were measured. The results are shown in Table 2.
実施例2
高密度ポリエチレン樹脂Aを1000g使用し、第1重合において、ジクミルパーオキサイドを0.8g、スチレンモノマーを0.43kg使用し、第2重合において、ジクミルパーオキサイドを3g、スチレンモノマーを0.57kg使用し、滴下時間を3時間とすること以外は、実施例1と同様にして、改質樹脂粒子及び発泡性樹脂粒子を得た。
Example 2
1000 g of high density polyethylene resin A is used, 0.8 g of dicumyl peroxide and 0.43 kg of styrene monomer are used in the first polymerization, and 3 g of dicumyl peroxide and 0. Modified resin particles and expandable resin particles were obtained in the same manner as in Example 1 except that 57 kg was used and the dropping time was 3 hours.
次いで、得られた発泡性樹脂粒子を嵩密度0.033g/cm3に予備発泡させることで、予備発泡粒子を得た。また、実施例1と同様にして密度0.033g/cm3の発泡成形体を得た。得られた発泡成形体の外観及び融着は共に良好であった。得られた発泡成形体の融着率、加熱寸法変化率、耐薬品性を測定した。その結果を表2に示す。 Next, pre-expanded particles were obtained by pre-expanding the obtained expandable resin particles to a bulk density of 0.033 g / cm 3 . Further, a foamed molded article having a density of 0.033 g / cm 3 was obtained in the same manner as in Example 1. Both the appearance and fusion of the obtained foamed molded article were good. The fusion molding rate, heating dimensional change rate, and chemical resistance of the obtained foamed molded product were measured. The results are shown in Table 2.
実施例3
高密度ポリエチレン樹脂Aを340g使用し、第1重合において、ジクミルパーオキサイドを0.3g、スチレンモノマーを0.15kg使用し、第2重合において、ジクミルパーオキサイドを5g、スチレンモノマーを1.51kg使用し、滴下時間を5時間とすること以外は、実施例1と同様にして、改質樹脂粒子及び発泡性樹脂粒子を得た。
Example 3
In the first polymerization, 340 g of high-density polyethylene resin A was used, 0.3 g of dicumyl peroxide and 0.15 kg of styrene monomer were used, and in the second polymerization, 5 g of dicumyl peroxide and 1. Modified resin particles and expandable resin particles were obtained in the same manner as in Example 1 except that 51 kg was used and the dropping time was 5 hours.
次いで、得られた発泡性樹脂粒子を嵩密度0.020g/cm3に予備発泡させることで、予備発泡粒子を得た。また、実施例1と同様にして密度0.020g/cm3の発泡成形体を得た。得られた発泡成形体の外観及び融着は共に良好であった。得られた発泡成形体の融着率、加熱寸法変化率、耐薬品性を測定した。その結果を表2に示す。 Next, pre-expanded particles were obtained by pre-expanding the obtained expandable resin particles to a bulk density of 0.020 g / cm 3 . Further, a foamed molded product having a density of 0.020 g / cm 3 was obtained in the same manner as in Example 1. Both the appearance and fusion of the obtained foamed molded article were good. The fusion molding rate, heating dimensional change rate, and chemical resistance of the obtained foamed molded product were measured. The results are shown in Table 2.
実施例4
高密度ポリエチレン樹脂Aを1400g使用し、第1重合において、ジクミルパーオキサイドを0.4g、スチレンモノマーを0.20kg使用し、第2重合において、ジクミルパーオキサイドを2g、スチレンモノマーを0.50kg使用し、滴下時間を2.5時間とすること以外は、実施例1と同様にして、改質樹脂粒子及び発泡性樹脂粒子を得た。
Example 4
1400 g of high density polyethylene resin A is used, 0.4 g of dicumyl peroxide and 0.20 kg of styrene monomer are used in the first polymerization, and 2 g of dicumyl peroxide and 0.2 g of styrene monomer are used in the second polymerization. Modified resin particles and expandable resin particles were obtained in the same manner as in Example 1 except that 50 kg was used and the dropping time was 2.5 hours.
次いで、得られた発泡性樹脂粒子を嵩密度0.050g/cm3に予備発泡させることで、予備発泡粒子を得た。また、実施例1と同様にして密度0.050g/cm3の発泡成形体を得た。得られた発泡成形体の外観及び融着は共に良好であった。得られた発泡成形体の融着率、加熱寸法変化率、耐薬品性を測定した。その結果を表2に示す。 Next, the foamable resin particles obtained were prefoamed to a bulk density of 0.050 g / cm 3 to obtain prefoamed particles. Further, a foamed molded article having a density of 0.050 g / cm 3 was obtained in the same manner as in Example 1. Both the appearance and fusion of the obtained foamed molded article were good. The fusion molding rate, heating dimensional change rate, and chemical resistance of the obtained foamed molded product were measured. The results are shown in Table 2.
実施例5
高密度ポリエチレン樹脂Aに代えて高密度ポリエチレン樹脂Cを使用すること以外は、実施例1と同様に、改質樹脂粒子、発泡性樹脂粒子、予備発泡粒子(嵩密度0.025g/cm3)、発泡成形体(密度0.025g/cm3)を得た。得られた発泡成形体の外観及び融着は共に良好であった。得られた発泡成形体の融着率、加熱寸法変化率、耐薬品性を測定した。その結果を表2に示す。
Example 5
Modified resin particles, expandable resin particles, pre-expanded particles (bulk density 0.025 g / cm 3 ), as in Example 1, except that high-density polyethylene resin C is used instead of high-density polyethylene resin A A foamed molded product (density 0.025 g / cm 3 ) was obtained. Both the appearance and fusion of the obtained foamed molded article were good. The fusion molding rate, heating dimensional change rate, and chemical resistance of the obtained foamed molded product were measured. The results are shown in Table 2.
実施例6
高密度ポリエチレン樹脂Aに代えて高密度ポリエチレン樹脂Dを使用すること以外は、実施例1と同様に、改質樹脂粒子、発泡性樹脂粒子、予備発泡粒子(嵩密度0.1g/cm3)、発泡成形体(密度0.1g/cm3)を得た。得られた発泡成形体の外観及び融着は共に良好であった。得られた発泡成形体の融着率、加熱寸法変化率、耐薬品性を測定した。その結果を表2に示す。
Example 6
Modified resin particles, expandable resin particles, pre-expanded particles (bulk density 0.1 g / cm 3 ), as in Example 1, except that high-density polyethylene resin D is used instead of high-density polyethylene resin A A foamed molded product (density 0.1 g / cm 3 ) was obtained. Both the appearance and fusion of the obtained foamed molded article were good. The fusion molding rate, heating dimensional change rate, and chemical resistance of the obtained foamed molded product were measured. The results are shown in Table 2.
実施例7
高密度ポリエチレン樹脂Aに代えて高密度ポリエチレン樹脂Eを使用すること以外は、実施例1と同様に、改質樹脂粒子、発泡性樹脂粒子、予備発泡粒子(嵩密度0.12g/cm3)、発泡成形体(密度0.12g/cm3)を得た。得られた発泡成形体の外観及び融着は共に良好であった。得られた発泡成形体の融着率、加熱寸法変化率、耐薬品性を測定した。その結果を表2に示す。
Example 7
Modified resin particles, expandable resin particles, pre-expanded particles (bulk density 0.12 g / cm 3 ), as in Example 1, except that high-density polyethylene resin E is used instead of high-density polyethylene resin A A foamed molded product (density 0.12 g / cm 3 ) was obtained. Both the appearance and fusion of the obtained foamed molded article were good. The fusion molding rate, heating dimensional change rate, and chemical resistance of the obtained foamed molded product were measured. The results are shown in Table 2.
実施例8
高密度ポリエチレン樹脂Aに代えて高密度ポリエチレン樹脂Iを使用すること以外は、実施例1と同様に、改質樹脂粒子、発泡性樹脂粒子、予備発泡粒子(嵩密度0.033g/cm3)、発泡成形体(密度0.033g/cm3)を得た。得られた発泡成形体の外観及び融着は共に良好であった。得られた発泡成形体の融着率、加熱寸法変化率、耐薬品性を測定した。その結果を表2に示す。
Example 8
Modified resin particles, expandable resin particles, pre-expanded particles (bulk density 0.033 g / cm 3 ), as in Example 1, except that high-density polyethylene resin I is used instead of high-density polyethylene resin A A foamed molded article (density 0.033 g / cm 3 ) was obtained. Both the appearance and fusion of the obtained foamed molded article were good. The fusion molding rate, heating dimensional change rate, and chemical resistance of the obtained foamed molded product were measured. The results are shown in Table 2.
比較例1
高密度ポリエチレン樹脂Aに代えて低密度ポリエチレン樹脂Bを使用すること以外は、実施例1と同様に、改質樹脂粒子、発泡性樹脂粒子、予備発泡粒子(嵩密度0.025g/cm3)、発泡成形体(密度0.025g/cm3)を得た。得られた発泡成形体の融着率、加熱寸法変化率、耐薬品性を測定した。その結果を表3に示す。
Comparative Example 1
Modified resin particles, expandable resin particles, pre-expanded particles (bulk density 0.025 g / cm 3 ), as in Example 1, except that low-density polyethylene resin B is used instead of high-density polyethylene resin A A foamed molded product (density 0.025 g / cm 3 ) was obtained. The fusion molding rate, heating dimensional change rate, and chemical resistance of the obtained foamed molded product were measured. The results are shown in Table 3.
比較例2
高密度ポリエチレン樹脂Aに代えて高密度ポリエチレン樹脂Fを使用すること以外は、実施例1と同様に、改質樹脂粒子、発泡性樹脂粒子を得た。得られた発泡性樹脂粒子を予備発泡させたが、ほとんど発泡せず、発泡可能な予備発泡粒子は得られなかった。
Comparative Example 2
Modified resin particles and expandable resin particles were obtained in the same manner as in Example 1 except that high-density polyethylene resin F was used instead of high-density polyethylene resin A. The obtained expandable resin particles were pre-expanded, but hardly expanded, and no expandable pre-expanded particles were obtained.
比較例3
高密度ポリエチレン樹脂Aを250g使用し、第1重合において、ジクミルパーオキサイドを0.2g、スチレンモノマーを0.1kg使用し、第2重合において、ジクミルパーオキサイドを5g、スチレンモノマーを1.65kg使用し、滴下時間を5時間とすること以外は、実施例1と同様にして、改質樹脂粒子及び発泡性樹脂粒子を得た。
Comparative Example 3
250 g of high-density polyethylene resin A is used, 0.2 g of dicumyl peroxide and 0.1 kg of styrene monomer are used in the first polymerization, and 5 g of dicumyl peroxide and 1. g of styrene monomer are used in the second polymerization. Modified resin particles and expandable resin particles were obtained in the same manner as in Example 1 except that 65 kg was used and the dropping time was 5 hours.
次いで、得られた発泡性樹脂粒子を嵩密度0.020g/cm3に予備発泡させることで、予備発泡粒子を得た。また、実施例1と同様にして密度0.020g/cm3の発泡成形体を得た。得られた発泡成形体の外観及び融着は共に良好であった。得られた発泡成形体の融着率、加熱寸法変化率、耐薬品性を測定した。その結果を表3に示す。 Next, pre-expanded particles were obtained by pre-expanding the obtained expandable resin particles to a bulk density of 0.020 g / cm 3 . Further, a foamed molded product having a density of 0.020 g / cm 3 was obtained in the same manner as in Example 1. Both the appearance and fusion of the obtained foamed molded article were good. The fusion molding rate, heating dimensional change rate, and chemical resistance of the obtained foamed molded product were measured. The results are shown in Table 3.
比較例4
高密度ポリエチレン樹脂Aを1750g使用し、第1重合において、ジクミルパーオキサイドを0.1g、スチレンモノマーを0.06kg使用し、第2重合において、ジクミルパーオキサイドを1g、スチレンモノマーを0.2kg使用し、滴下時間を1.5時間とすること以外は、実施例1と同様にして、改質樹脂粒子及び発泡性樹脂粒子を得た。得られた発泡性樹脂粒子を予備発泡させたが、ほとんど発泡せず、発泡可能な予備発泡粒子は得られなかった。
Comparative Example 4
1750 g of high density polyethylene resin A is used, 0.1 g of dicumyl peroxide and 0.06 kg of styrene monomer are used in the first polymerization, and 1 g of dicumyl peroxide and 0.1 g of styrene monomer are used in the second polymerization. Modified resin particles and expandable resin particles were obtained in the same manner as in Example 1 except that 2 kg was used and the dropping time was 1.5 hours. The obtained expandable resin particles were pre-expanded, but hardly expanded, and no expandable pre-expanded particles were obtained.
比較例5
高密度ポリエチレン樹脂Aに代えて高密度ポリエチレン樹脂Gを使用すること以外は、実施例1と同様に、改質樹脂粒子、発泡性樹脂粒子を得た。得られた発泡性樹脂粒子を予備発泡させたが、ほとんど発泡せず、発泡可能な予備発泡粒子は得られなかった。
Comparative Example 5
Modified resin particles and expandable resin particles were obtained in the same manner as in Example 1 except that high-density polyethylene resin G was used instead of high-density polyethylene resin A. The obtained expandable resin particles were pre-expanded, but hardly expanded, and no expandable pre-expanded particles were obtained.
比較例6
高密度ポリエチレン樹脂Aに代えて高密度ポリエチレン樹脂Hを使用すること以外は、実施例1と同様に、改質樹脂粒子、発泡性樹脂粒子を得た。得られた発泡性樹脂粒子を予備発泡させたが、ほとんど発泡せず、発泡可能な予備発泡粒子は得られなかった。
Comparative Example 6
Modified resin particles and expandable resin particles were obtained in the same manner as in Example 1 except that high-density polyethylene resin H was used instead of high-density polyethylene resin A. The obtained expandable resin particles were pre-expanded, but hardly expanded, and no expandable pre-expanded particles were obtained.
比較例7
高密度ポリエチレン樹脂Aに代えて高密度ポリエチレン樹脂Jを使用すること以外は、実施例1と同様に、改質樹脂粒子、発泡性樹脂粒子を得た。得られた発泡性樹脂粒子を予備発泡させたが、ほとんど発泡せず、発泡可能な予備発泡粒子は得られなかった。
Comparative Example 7
Modified resin particles and expandable resin particles were obtained in the same manner as in Example 1 except that high-density polyethylene resin J was used instead of high-density polyethylene resin A. The obtained expandable resin particles were pre-expanded, but hardly expanded, and no expandable pre-expanded particles were obtained.
比較例8
高密度ポリエチレン樹脂Aに代えて高密度ポリエチレン樹脂Kを使用すること以外は、実施例1と同様に、改質樹脂粒子、発泡性樹脂粒子を得た。得られた発泡性樹脂粒子を予備発泡させたが、ほとんど発泡せず、発泡可能な予備発泡粒子は得られなかった。
Comparative Example 8
Modified resin particles and expandable resin particles were obtained in the same manner as in Example 1 except that high-density polyethylene resin K was used instead of high-density polyethylene resin A. The obtained expandable resin particles were pre-expanded, but hardly expanded, and no expandable pre-expanded particles were obtained.
表2及び3から、以下のことがわかる。
実施例1と比較例1により、特定の性質を有する高密度ポリエチレン樹脂を使用すれば、加熱寸法変化率の向上した発泡成形体を得られることがわかる。
実施例1〜8により、収縮因子が特定の範囲であることで、加熱寸法変化率及び耐薬品性の両方が優れた発泡成形体を得られることがわかる。比較例7及び8により、収縮因子が特定の範囲外の場合、発泡成形体を得ること自体が困難であることがわかる。
Tables 2 and 3 show the following.
It can be seen from Example 1 and Comparative Example 1 that if a high-density polyethylene resin having specific properties is used, a foamed molded article having an improved heating dimensional change rate can be obtained.
It can be seen from Examples 1 to 8 that a foamed molded article excellent in both the heating dimensional change rate and the chemical resistance can be obtained when the shrinkage factor is in a specific range. It can be seen from Comparative Examples 7 and 8 that when the shrinkage factor is outside a specific range, it is difficult to obtain the foamed molded product itself.
実施例1〜8により、MFRが特定の範囲であることで、加熱寸法変化率及び耐薬品性の両方が優れた発泡成形体を得られることがわかる。比較例5及び6により、MFRが特定の範囲外の場合、発泡成形体を得ること自体が困難であることがわかる。 By Examples 1-8, it turns out that the foaming molding which was excellent in both the heating dimensional change rate and chemical-resistance can be obtained because MFR is a specific range. From Comparative Examples 5 and 6, it can be seen that it is difficult to obtain a foamed molded product itself when the MFR is outside a specific range.
実施例1〜8により、MS>110−100×log(MFR)の関係を有することで、加熱寸法変化率及び耐薬品性の両方が優れた発泡成形体を得られることがわかる。比較例2、7及び8により、MS≦110−100×log(MFR)の関係を有する場合、発泡成形体を得ること自体が困難であることがわかる。 It can be seen from Examples 1 to 8 that a foamed molded article excellent in both the heating dimensional change rate and the chemical resistance can be obtained by having a relationship of MS> 110-100 × log (MFR). From Comparative Examples 2, 7, and 8, it is found that it is difficult to obtain a foamed molded product itself when it has a relationship of MS ≦ 110-100 × log (MFR).
実施例1〜8と比較例3及び4により、スチレン系樹脂の使用量が特定の範囲であることで、加熱寸法変化率及び耐薬品性の両方が優れた発泡成形体を得られることがわかる。 From Examples 1 to 8 and Comparative Examples 3 and 4, it can be seen that a foamed molded article excellent in both the heating dimensional change rate and chemical resistance can be obtained when the amount of the styrene resin used is in a specific range. .
なお、図1に実施例及び比較例で使用した種々のポリエチレン系樹脂のMSを縦軸に、MFRを横軸にプロットしたグラフを示す。このグラフ中、比較例2、7及び8は公知の高密度ポリエチレン系樹脂を使用しており、プロットがほぼMS=110−100×log(MFR)の関係を有することが分かる。また、実施例に使用した高密度ポリエチレン系樹脂はいずれも、MS>110−100×log(MFR)の関係を有することが分かる。更に、比較例5及び6は、MS>110−100×log(MFR)の関係を有していても、MFRが本発明の範囲を外れていれば、特性が優れないことを示す例である。 FIG. 1 shows a graph in which MS of various polyethylene resins used in Examples and Comparative Examples is plotted on the vertical axis and MFR is plotted on the horizontal axis. In this graph, Comparative Examples 2, 7, and 8 use known high-density polyethylene-based resins, and it can be seen that the plot has a relationship of approximately MS = 110-100 × log (MFR). Moreover, it turns out that all the high density polyethylene-type resin used for the Example has the relationship of MS> 110-100 * log (MFR). Further, Comparative Examples 5 and 6 are examples showing that the characteristics are not excellent if the MFR is out of the range of the present invention even if the relationship of MS> 110-100 × log (MFR) is satisfied. .
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006213681A JP4809730B2 (en) | 2006-03-10 | 2006-08-04 | Styrene-modified polyolefin resin particles, expandable resin particles, pre-expanded particles, and expanded molded articles |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006066533 | 2006-03-10 | ||
JP2006066533 | 2006-03-10 | ||
JP2006213681A JP4809730B2 (en) | 2006-03-10 | 2006-08-04 | Styrene-modified polyolefin resin particles, expandable resin particles, pre-expanded particles, and expanded molded articles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007270116A true JP2007270116A (en) | 2007-10-18 |
JP4809730B2 JP4809730B2 (en) | 2011-11-09 |
Family
ID=38673230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006213681A Expired - Fee Related JP4809730B2 (en) | 2006-03-10 | 2006-08-04 | Styrene-modified polyolefin resin particles, expandable resin particles, pre-expanded particles, and expanded molded articles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4809730B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010024353A (en) * | 2008-07-18 | 2010-02-04 | Sekisui Plastics Co Ltd | Styrene-modified polyolefin resin particle, expandable resin particle, pre-expansion particle and foamed molding |
WO2011030732A1 (en) * | 2009-09-08 | 2011-03-17 | 積水化成品工業株式会社 | Foam-molded articles and process for production thereof |
WO2011030731A1 (en) * | 2009-09-08 | 2011-03-17 | 積水化成品工業株式会社 | Process for production of expandable resin particles, pre-expanded beads, and products of expansion molding |
JP2013181074A (en) * | 2012-02-29 | 2013-09-12 | Sekisui Plastics Co Ltd | Styrene-modified polyethylene resin particles, foamable composite resin particles, preliminary foamable particles, foaming molded product, and method of producing the preliminary foamable particles |
WO2013147040A1 (en) * | 2012-03-30 | 2013-10-03 | 積水化成品工業株式会社 | Composite resin particles, expandable composite resin particles, pre-expanded particles, molded foam, and core material for bumper |
KR20160132815A (en) | 2014-03-12 | 2016-11-21 | 세키스이가세이힝코교가부시키가이샤 | Composite resin particles, foamable particles, pre-foamed particles, and foam molded body |
JP2018115295A (en) * | 2017-01-20 | 2018-07-26 | 株式会社ジェイエスピー | Method for producing polystyrene-based resin extrusion foam plate |
WO2023243583A1 (en) * | 2022-06-15 | 2023-12-21 | 積水化成品工業株式会社 | Seed particles, composite resin particles, foam particles, molded foam, and method for producing composite resin particles |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004346304A (en) * | 2003-04-28 | 2004-12-09 | Tosoh Corp | Polyethylene and method for producing the same |
JP2005097555A (en) * | 2003-08-29 | 2005-04-14 | Sekisui Plastics Co Ltd | Olefin-modified polystyrene resin pre-expanded particles, method for producing the same, and expanded molded article |
JP2005290329A (en) * | 2004-04-05 | 2005-10-20 | Sekisui Plastics Co Ltd | Ethylene resin foam sheet, molded article, and method for producing ethylene resin foam sheet |
-
2006
- 2006-08-04 JP JP2006213681A patent/JP4809730B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004346304A (en) * | 2003-04-28 | 2004-12-09 | Tosoh Corp | Polyethylene and method for producing the same |
JP2005097555A (en) * | 2003-08-29 | 2005-04-14 | Sekisui Plastics Co Ltd | Olefin-modified polystyrene resin pre-expanded particles, method for producing the same, and expanded molded article |
JP2005290329A (en) * | 2004-04-05 | 2005-10-20 | Sekisui Plastics Co Ltd | Ethylene resin foam sheet, molded article, and method for producing ethylene resin foam sheet |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010024353A (en) * | 2008-07-18 | 2010-02-04 | Sekisui Plastics Co Ltd | Styrene-modified polyolefin resin particle, expandable resin particle, pre-expansion particle and foamed molding |
WO2011030732A1 (en) * | 2009-09-08 | 2011-03-17 | 積水化成品工業株式会社 | Foam-molded articles and process for production thereof |
WO2011030731A1 (en) * | 2009-09-08 | 2011-03-17 | 積水化成品工業株式会社 | Process for production of expandable resin particles, pre-expanded beads, and products of expansion molding |
JP5713908B2 (en) * | 2009-09-08 | 2015-05-07 | 積水化成品工業株式会社 | Method for producing expandable resin particles, pre-expanded particles, and expanded molded body |
JP5713909B2 (en) * | 2009-09-08 | 2015-05-07 | 積水化成品工業株式会社 | Foam molded body and method for producing the same |
JP2013181074A (en) * | 2012-02-29 | 2013-09-12 | Sekisui Plastics Co Ltd | Styrene-modified polyethylene resin particles, foamable composite resin particles, preliminary foamable particles, foaming molded product, and method of producing the preliminary foamable particles |
WO2013147040A1 (en) * | 2012-03-30 | 2013-10-03 | 積水化成品工業株式会社 | Composite resin particles, expandable composite resin particles, pre-expanded particles, molded foam, and core material for bumper |
KR20160132815A (en) | 2014-03-12 | 2016-11-21 | 세키스이가세이힝코교가부시키가이샤 | Composite resin particles, foamable particles, pre-foamed particles, and foam molded body |
US9988511B2 (en) | 2014-03-12 | 2018-06-05 | Sekisui Plastics Co., Ltd. | Composite resin particles, foamable particles, pre-foamed particles, and foam molded body |
JP2018115295A (en) * | 2017-01-20 | 2018-07-26 | 株式会社ジェイエスピー | Method for producing polystyrene-based resin extrusion foam plate |
WO2023243583A1 (en) * | 2022-06-15 | 2023-12-21 | 積水化成品工業株式会社 | Seed particles, composite resin particles, foam particles, molded foam, and method for producing composite resin particles |
Also Published As
Publication number | Publication date |
---|---|
JP4809730B2 (en) | 2011-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100974989B1 (en) | Styrene-modified polypropylene-based resin particles, expandable styrene-modified polypropylene-based resin particles, styrene-modified polypropylene-based resin foamed particles, styrene-modified polypropylene-based resin foamed moldings and methods for producing the same | |
JP4809730B2 (en) | Styrene-modified polyolefin resin particles, expandable resin particles, pre-expanded particles, and expanded molded articles | |
JP4461172B2 (en) | Foam molded body having voids | |
JP4072553B2 (en) | Styrene-modified linear low-density polyethylene-based expandable resin particles, method for producing the same, pre-expanded particles, and expanded molded article | |
US9902828B2 (en) | High-density polyethylene mixed resin particles, composite resin particles, foamed particles and foamed molded body | |
KR100865205B1 (en) | Styrene-modified linear low density polyethylene resin particles, styrene-modified linear low density polyethylene foam particles, their production method, pre-expanded foam and molded foam | |
JP2012197373A (en) | Foamed molded product and its use | |
JP6251103B2 (en) | Linear low density polyethylene resin particles, composite resin particles, expanded particles, and expanded molded articles | |
JP5503123B2 (en) | Styrene-modified polyolefin resin particles, expandable resin particles, pre-expanded particles, and expanded molded articles | |
JP6298326B2 (en) | Composite resin particles, expandable particles, pre-expanded particles, and expanded molded articles | |
JP5722564B2 (en) | Automotive exterior materials | |
JP4721680B2 (en) | Styrene-modified polyethylene-based resin particles, styrene-modified polyethylene-based expandable resin particles, methods for producing them, pre-expanded particles, and foamed molded products | |
JP5731428B2 (en) | Styrene-modified polyethylene resin particles, expandable composite resin particles, pre-expanded particles, foam-molded article and method for producing pre-expanded particles | |
WO2013147040A1 (en) | Composite resin particles, expandable composite resin particles, pre-expanded particles, molded foam, and core material for bumper | |
JP2010275499A (en) | Pre-expanded particles comprising a polypropylene resin composition, method for producing the same, and in-mold foam molded article | |
JP5581138B2 (en) | Parts packing material | |
WO2015137353A1 (en) | Composite resin particles, foamable particles, pre-foamed particles, and foam molded body | |
JP5546002B2 (en) | Method for producing styrene-modified polyethylene-based resin particles, method for producing styrene-modified polyethylene-based expandable resin particles | |
JP2012025908A (en) | Automotive interior material | |
WO2024012575A1 (en) | Reversible crosslinked foam article and process | |
JP6211958B2 (en) | Composite resin particles, expandable particles, pre-expanded particles, and expanded molded articles | |
JP2012026551A (en) | Shock absorber | |
JP2012025477A (en) | Refrigerated transport container | |
JP5825071B2 (en) | Polyethylene resin composition, foam and method for producing the same | |
JP2008101226A (en) | Styrene-modified linear low-density polyethylene-based expandable resin particles, pre-expanded particles, and expanded molded articles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090309 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110715 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110726 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110819 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140826 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4809730 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |