以下に、本発明にかかるレーザ加工装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は、本発明にかかるレーザ加工装置の実施の形態1の構成を示す図である。レーザ加工装置100は、レーザ発振器1、制御装置50、ベンドミラー3、ガルバノミラー4,5、DOE6、fθレンズ7、XYテーブル12を備えている。
レーザ発振器1は、所定のタイミングでレーザビーム2を出射(放射)する。DOE(Diffractive Optical Element)6は、回折型の光学素子であり、表面に施された回折格子によって光学素子に入射するレーザビーム2を所定のパターン(分光レーザビーム11)に分光する。実施の形態1にかかるDOE6は、Z軸方向に移動可能な構成となっている。
ベンドミラー3は、レーザ発振器1から出射されるレーザビーム2を反射して、レーザビーム2を所定の光路へ導く。ガルバノミラー4,5は、分光レーザビーム11を任意の角度(XY方向)にスキャニングする。fθレンズ7は、入射する分光レーザビーム11を被加工物9に対して垂直に入射するよう補正して出射する。XYテーブル12は、被加工物9を載置するとともに、XY方向に移動する。
制御装置50は、被加工物9を加工するための加工プログラム、加工条件などに基づいて、レーザ発振器1、ガルバノミラー4,5、XYテーブル12などを制御する。制御装置50は、レーザ発振器1から出射させるレーザビーム2の出射タイミングや、ガルバノミラー4,5がスキャンする分光レーザビーム11の角度を制御する。実施の形態1にかかるレーザ加工装置100の制御装置50は、DOE6の位置(Z方向)を制御するDOE制御装置10を備えている。
ここでのDOE制御装置10は、DOE6の位置をZ方向に制御して、被加工物9に出射する分光レーザビーム11の穴間隔を加工パターンに応じた所定の間隔(寸法)に変更させる。すなわち、実施の形態1では、DOE6の光軸上での位置を移動させることにより、回折パターンの各加工点間距離(穴間隔)を変化させる加工パターンの調整機構をレーザ加工装置100内に設けている。この加工パターンの調整機構は、DOE6を光軸上で変化させた場合にDOE6とfθレンズ7の間の距離が変化するため、fθレンズ7から出射されるレーザビームのテレセントリック性が変化し、その結果として被加工物9上での加工点の位置が変化するという現象を利用したものである。
図1においてレーザ発振器1から出射されたレーザビーム2は、ベンドミラー3によって構成される所定の光路伝送系を伝ってDOE6に入射する。レーザビーム2は、DOE6によって所定の数、角度を持った複数の分光レーザビーム11に分光される。この分光レーザビーム11は、ガルバノスキャナによって保持されるガルバノミラー4,5に入射する。複数からなる分光レーザビーム11は、ガルバノミラー4,5によって任意の角度にスキャニングされ、fθレンズ7に入射する。fθレンズ7に入射した分光レーザビーム11は、fθレンズ7で被加工物9に対して垂直に入射するよう補正されて出射される。fθレンズ7から出射した分光レーザビーム11は、XYテーブル上の被加工物9に到達し、複数の加工穴8を同時に穿孔する。被加工物9の材質に対してレーザビーム2(分光レーザビーム11)の出力が十分でない場合は、数パルスのビームを一つの加工点に繰返し照射し、必要とされる深さの穴を穿孔する。
ガルバノミラー4,5によってスキャニング可能な範囲は限定されているため、その範囲内での加工が終了すると被加工物9はその未加工領域がスキャニング可能な位置となるようXYテーブル12によって移動させられ、再びガルバノミラー4,5を介して到達する分光レーザビーム11によって加工される。これにより、制御装置50に予め入力されている加工プログラムに基づいた加工パターンを被加工物9上に加工する。
つぎに、DOE制御装置10の構成について説明する。図2は、実施の形態1に係るDOE制御装置の構成を示すブロック図である。DOE制御装置10は、DOE位置制御部17、位置算出部18、穴間隔記憶部13、加工プログラム記憶部14、入力部15、位置関係記憶部16、制御部19を備えている。なお、ここでの位置算出部18が特許請求の範囲に記載の素子位置算出部に対応し、DOE位置制御部17が素子位置制御部に対応する。
加工プログラム記憶部14は、被加工物9を加工するための加工プログラムや加工条件などを記憶する。ここでの加工プログラムは、被加工物9を加工する際に設定される加工条件(例えばレーザビーム2の照射回数など)、被加工物9のサイズ(ワークサイズ)、加工を行う被加工物9の枚数(加工枚数)などに関する情報を用いて、被加工物9の加工を行うプログラムである。入力部15は、マウスやキーボードを備えて構成される情報の入力手段であり、被加工物9を加工する際に設定する加工条件、ワークサイズ、加工枚数、加工穴8の間隔(複数種類の穴間隔の寸法)に関する情報などを入力する。
穴間隔記憶部13は、入力部15から入力された加工穴8の間隔(加工穴間のピッチ)に関する情報(以下、穴間隔情報(距離情報)という)を、加工プログラムと対応付けて記憶する。
位置関係記憶部16は、穴間隔(ピッチの変動量)とDOE6のZ方向(光軸上)の位置(位置変動量)との対応関係(以下、位置関係情報という)を記憶(登録)している。なお、ここでの位置関係記憶部16が特許請求の範囲に記載の記憶部に対応する。
位置算出部18は、位置関係記憶部16が記憶している位置関係情報(対応関係情報)と、穴間隔記憶部13が記憶する穴間隔情報とに基づいて、穴間隔情報に応じたDOE6の位置を算出する。位置算出部18は、算出したDOE6の位置をDOE位置情報として、DOE位置制御部17に入力する。ここでは、加工プログラムに複数種類の穴間隔が設定されているため、位置算出部18は、穴間隔毎のDOE位置情報を算出してDOE位置制御部17に入力する。なお、複数種類のDOE6がレーザ加工装置100に配設される場合、位置関係記憶部16は各DOE6に応じた位置関係情報を記憶しておく。
DOE位置制御部17は、DOE6の位置(光軸上での位置)をZ軸方向に移動させる。DOE位置制御部17は、位置算出部18が算出したDOE位置情報に基づいてDOE6を移動させる。制御部19は、DOE位置制御部17、位置算出部18、穴間隔記憶部13、加工プログラム記憶部14、入力部15、位置関係記憶部16を制御する。
なお、制御装置50は、加工プログラム記憶部14内の加工プログラム、加工条件、加工枚数などの情報に基づいて、レーザ発振器1から出射するレーザビーム2の発振タイミング、ガルバノミラー4,5の角度、レーザビーム2の照射回数、XYテーブル12の移動などを制御する。
つぎに、実施の形態1に係るレーザ加工装置100の動作手順について説明する。図3は、実施の形態1に係るレーザ加工装置の動作手順を示すフローチャートである。レーザ加工装置100には、被加工物9をレーザ加工する際に使用するDOE(HOE)6を予め光路中に設置しておく。DOE6は、例えばレーザ発振器1とガルバノミラー4,5の間の光路中(ベンドミラー3とベンドミラー3の間)に配設される(ステップS110)。
位置算出部18は、レーザ加工装置100に配設したDOE6に応じた位置関係情報を位置関係記憶部16から呼び出す。ここでの位置関係情報は、例えば穴間隔(ピッチの変動量)とDOE6の位置との対応関係を示すパラメータシートである(ステップS120)。
加工プログラム記憶部14へは、被加工物9を加工するための第1の加工プログラムを記憶させておく。また、入力部15には、第1の加工プログラムに応じた加工条件(レーザビーム2の照射回数など)、ワークサイズ、加工枚数などの情報を入力(設定)する。入力部15に入力された加工条件などは、第1の加工プログラムと対応付けされて、所定の記憶手段(例えば加工プログラム記憶部14)内で記憶される(ステップS130)。
さらに、入力部15から第1の加工プログラムや加工条件に対応する第1の穴間隔に関する情報(第1の穴間隔情報)を入力する。この第1の穴間隔情報は第1の加工プログラムと対応付けされて、穴間隔記憶部13内で記憶される(ステップS140)。
また、加工プログラム記憶部14へは、被加工物9を加工するための第2の加工プログラムを記憶させておく。入力部15には、第2の加工プログラムに応じた加工条件(レーザビーム2の照射回数など)、ワークサイズ、加工枚数などの情報を入力(設定)する。入力部15に入力された加工条件などは、第2の加工プログラムと対応付けされて、所定の記憶手段(例えば加工プログラム記憶部14)内で記憶される(ステップS150)。
さらに、入力部15から第2の加工プログラムや加工条件に対応する第2の穴間隔に関する情報(第2の穴間隔情報)を入力する。この第2の穴間隔情報は第2の加工プログラムと対応付けされて、穴間隔記憶部13内で記憶される(ステップS160)。
この後、レーザ加工装置100によって被加工物9のレーザ加工処理を開始する。すなわち、レーザ加工装置100は、加工プログラム内の加工スケジュールに基づいた、スケジュール運転を開始する(ステップS170)。
制御装置50は、加工プログラム記憶部14に記憶している第1の加工プログラム、この第1の加工プログラムに対応する加工条件、ワークサイズ、加工枚数などの情報を読み出す(ステップS180)。
また、位置算出部18は、第1の加工プログラムと対応付けされた第1の穴間隔情報を穴間隔記憶部13から読み出すとともに、位置関係記憶部16から位置関係情報(パラメータシート)を読み出す(ステップS190)。
位置算出部18は、読み出した位置関係情報と第1の穴間隔情報とに基づいて、第1の穴間隔情報に応じたDOE6の位置(第1のDOE位置情報)を算出する。位置算出部18は、算出した第1のDOE位置情報をDOE位置制御部17に入力する。DOE位置制御部17は、第1のDOE位置情報に基づいて、DOE6をZ方向に移動させる(ステップS200)。
この後、レーザ加工装置100の基板搬送装置(図示せず)が、被加工物9(ワーク)を搬入(XYテーブル12に載置)し、第1の加工プログラム、第1の加工プログラムに応じた加工条件、ワークサイズ、加工枚数などに基づいて、被加工物9のレーザ加工を実行する(ステップS210,S220)。このとき、レーザ加工装置100の制御装置50が、加工プログラム記憶部14内の加工プログラム、加工条件、加工枚数などの情報に基づいて、レーザ発振器1から出射するレーザビーム2の発振タイミング、ガルバノミラー4,5の角度、レーザビーム2の照射回数、XYテーブル12の移動などを制御し、被加工物9のレーザ加工を行う。
レーザ加工装置100が、第1の加工プログラム等に基づいて、被加工物9のレーザ加工を1枚実行すると、基板搬送装置がXYテーブル12から被加工物9(ワーク)を搬出する(ステップS230)。
この後、制御装置50は、レーザ加工の実行された被加工物9が、第1の加工プログラムに応じた加工枚数(設定した加工枚数)に到達したか否かを判断する(ステップS240)。
制御装置50が、レーザ加工の実行された被加工物9の加工枚数は、第1の加工プログラムに応じた加工枚数に到達していないと判断した場合(ステップS240、No)、ステップS210〜S240の処理を繰り返す。
制御装置50が、レーザ加工の実行された被加工物9の加工枚数は、第1の加工プログラムに応じた加工枚数に到達したと判断した場合(ステップS240、Yes)、レーザ加工装置100は、第2の加工プログラムに基づいたレーザ加工処理を開始する。
すなわち、制御装置50は、加工プログラム記憶部14などに記憶している第2の加工プログラム、この第2の加工プログラムに対応する加工条件、ワークサイズ、加工枚数などの情報を読み出す(ステップS250)。
また、位置算出部18は、第2の加工プログラムと対応付けされた第2の穴間隔情報を穴間隔記憶部13から読み出すとともに、位置関係記憶部16から位置関係情報(パラメータシート)を読み出す(ステップS260)。
位置算出部18は、読み出した位置関係情報と第2の穴間隔情報とに基づいて、第2の穴間隔情報に応じたDOE6の位置(第2のDOE位置情報)を算出する。位置算出部18は、算出した第2のDOE位置情報をDOE位置制御部17に入力する。DOE位置制御部17は、第2のDOE位置情報に基づいて、DOE6をZ方向に移動させる(ステップS270)。
ここで位置算出部18による、穴間隔(第1の穴間隔情報、第2の穴間隔情報)に応じたDOE6の位置の算出方法について説明する。図4および図5は、DOEの位置と穴間隔の関係を説明するための図である。なお、ここでは加工穴8が被加工物9上でY軸方向に並んでいる場合について説明する。
図4に示すように、図4の左側のDOE6と右側のDOE6とではfθレンズ7に照射する分光レーザビーム11A,11Bの照射時の角度が角度θ1で同じである。ところが、図4の左側のDOE6と右側のDOE6とでは、DOE6の位置(光軸上(Z方向)の位置)が異なるため、被加工物9に到達する分光レーザビーム11A,11Bの間隔(ピッチ)が異なる。換言すると、fθレンズ7とDOE6とのZ方向の距離が異なると、被加工物9に到達する分光レーザビーム11A,11Bの間隔が異なる。
これは、fθレンズ7から遠ざかる方向に距離cだけDOE6の位置を移動させることによって、DOE6で回折された分光レーザビーム11Aと分光レーザビーム11Bはfθレンズ7を通過した後に、異なるテレセントリック性(光軸外において光軸と平行になっている光学系)の崩れ方を持つことに起因している。
例えば、図4の左側に示したDOE6とfθレンズ7の距離が、右側に示したDOE6とfθレンズ7の距離よりも距離c(c>0)だけ短い場合、左側のfθレンズ7から被加工物9に照射する分光レーザビーム11Aの照射時の角度が角度θ2であるのに対し、右側のfθレンズ7から被加工物9に照射する分光レーザビーム11Bの照射時の角度が角度θ3(θ2<θ3)である。そして、左側のDOE6およびfθレンズ7を介して被加工物9に到達する分光レーザビーム11Aの間隔は間隔aであるのに対し、右側のDOE6およびfθレンズ7を介して被加工物9に到達する分光レーザビーム11Bの間隔は間隔b(a>b)となる。すなわち、DOE6とfθレンズ7の距離を変化させることによってテレセントリック性の崩れ方が変化し、分光レーザビーム11A,11Bが照射される位置(被加工物9の加工ポイント)が変化する。
これにより、左側のDOE6およびfθレンズ7を介して被加工物9に到達する分光レーザビーム11Aは、穴間隔aの加工穴8を穿孔する。また、右側のDOE6およびfθレンズ7を介して被加工物9に到達する分光レーザビーム11Bは、穴間隔bの加工穴8を穿孔する。
図5に示すDOEの位置と穴間隔の関係では、DOE6(位置P1)がfθレンズ7との距離が距離L1の位置にあり、分光レーザビームの間隔(穴間隔)がa1である。また、DOE6(位置P2)がfθレンズ7との距離が距離L2の位置にあり、分光レーザビームの間隔(穴間隔)がa2である。例えば、穴間隔に応じたDOE6の位置は、式(1)、式(2)に基づいて算出することができる。
a1=a0−k×(L1−L0)・・・(1)
a2=a0−k×(L2−L0)・・・(2)
なお、ここでのkは、DOE6毎に決定される比例定数である。また、L0は機器(レーザ加工装置100)の構成上DOE6とfθレンズ7が最も近付いている場合の距離(DOE6の移動ストローク端)であり、a0はDOE6とfθレンズ7の距離がL0である場合の穴間隔である。例えば、DOE6毎に予めa1とL1及びa0とL0の測定を行なっておくことによってkを算出しておく。そして、穴間隔に応じたDOE6の位置を算出する際には、予め算出したkと式(1)などを用いてDOE6の位置を算出する。
このように、DOE6とfθレンズ7の距離が変化することによって、分光レーザビーム11が穿孔する穴間隔が変化する。実施の形態1では、位置算出部18が位置関係情報として例えば式(1)などを記憶しておく。また、穴間隔記憶部13は、加工プログラムから穴間隔情報として、例えば穴間隔a1や穴間隔a2を記憶する。そして、位置算出部18は、位置関係情報と穴間隔情報とに基づいて、穴間隔情報に応じたDOE6の位置(DOE位置情報)を算出している。
ここでのDOE6の位置の移動量と穴間隔の相関関係は適用されるDOE6によってそれぞれ一意的に決定されるものであるため、DOE位置制御部17がDOE6の光軸上の位置をモータ駆動などによって移動させれば、必要な加工穴8の穴間隔を得られるようDOE6の位置を自動制御することが可能となる。
DOE位置制御部17が第2のDOE位置情報に基づいてDOE6をZ方向に移動させた後、レーザ加工装置100の基板搬送装置が、被加工物9(ワーク)を搬入(XYテーブル12に載置)し、第2の加工プログラム、第2の加工プログラムに応じた加工条件、ワークサイズ、加工枚数などに基づいて、被加工物9のレーザ加工を実行する(ステップS280,S290)。このとき、レーザ加工装置100の制御装置50が、加工プログラム記憶部14内の加工プログラム、加工条件、加工枚数などの情報に基づいて、レーザ発振器1から出射するレーザビーム2の発振タイミング、ガルバノミラー4,5の角度、レーザビーム2の照射回数、XYテーブル12の移動などを制御し、被加工物9のレーザ加工を行う。
レーザ加工装置100が、第2の加工プログラム等に基づいて、被加工物9のレーザ加工を1枚実行すると、基板搬送装置がXYテーブル12から被加工物9(ワーク)を搬出する(ステップS300)。
この後、制御装置50は、レーザ加工の実行された被加工物9が、第2の加工プログラムに応じた加工枚数(設定した加工枚数)に到達したか否かを判断する(ステップS310)。
制御装置50が、レーザ加工の実行された被加工物9の加工枚数は、第1の加工プログラムに応じた加工枚数に到達していないと判断した場合(ステップS310、No)、ステップS280〜S310の処理を繰り返す。
制御装置50が、レーザ加工の実行された被加工物9の加工枚数は、第1の加工プログラムに応じた加工枚数に到達したと判断した場合(ステップS310、Yes)、レーザ加工装置100はレーザ加工処理を終了する。
なお、ここでは、レーザ加工装置100が第1の加工プログラム、第2の加工プログラムの2つの加工プログラムに基づいてレーザ加工を行なう場合について説明したが、レーザ加工装置100は1つまたは3つ以上の加工プログラムに基づいてレーザ加工を行ってもよい。この場合、レーザ加工装置100は、各加工プログラムに応じた穴間隔情報を入力部15から入力し、穴間隔情報に応じたそれぞれのDOE位置情報を算出する。そして、レーザ加工装置100は、算出した各DOE位置情報に基づいてDOE6の位置を制御し、被加工物9のレーザ加工を行なう。
なお、実施の形態1では、加工プログラム記憶部14がDOE制御装置10に含まれる場合について説明したが、加工プログラム記憶部14とDOE制御装置10を異なる構成として制御装置50が加工プログラム記憶部14を含む構成としてもよい。この場合も、DOE制御装置10は加工プログラム記憶部14内の加工プログラムに基づいて、DOE6の位置を制御する。
このように実施の形態1によれば、位置算出部18が位置関係情報と穴間隔情報とに基づいて、穴間隔情報に応じたDOE6の位置(DOE位置情報)を算出しているので、DOE位置制御部17はDOE位置情報に基づいたDOE6の位置を制御することが可能となる。これにより、1つのDOE6によって複数種類の加工パターン(複数種類の穴間隔を有する加工パターン)をレーザ加工することが可能となる。したがって、レーザ加工装置100は、簡易な構成で被加工物9に対して複数種類の穴間隔を有した加工穴8を効率良く加工処理することが可能となる。
また、1つのDOE6によって複数種類の加工パターンをレーザ加工することができるので、DOE6を製造する費用の削減や、DOE6の入れ替えに伴う生産ロス時間の削減を実現することが可能となる。
実施の形態2.
つぎに、図6〜図13を用いてこの発明の実施の形態2について説明する。実施の形態2では、光軸の中心から離れた位置に出射する分光レーザビーム11の照射位置を補正して、照射位置の位置誤差の最大値を小さくする。レーザ加工装置100は、分光レーザビーム11の照射位置の位置誤差の最大値を小さくするために、DOE6の位置を補正する。
図6は、本発明にかかるレーザ加工装置の実施の形態2の構成を示す図である。図6の各構成要素のうち図1に示す実施の形態1のレーザ加工装置100と同一機能を達成する構成要素については同一番号を付しており、重複する説明は省略する。
レーザ加工装置100は、レーザ発振器1、制御装置50、ベンドミラー3、ガルバノミラー4,5、DOE(Diffractive Optical Element)6、fθレンズ7、XYテーブル12に加えて加工位置検出装置30を備えている。
加工位置検出装置30は、被加工物9上の加工穴8の位置を検出する装置であり、加工穴8を撮像するカメラ等の撮像部31を備えている。加工位置検出装置30は、撮像部31が撮像した加工穴8の位置の情報(撮像された画像など)(以下、加工穴位置情報という)をDOE制御装置10に送信する。
ここでのDOE制御装置10は、撮像部31からの加工穴位置情報(実際に加工された穴の位置)、狙いとしていた加工穴8の位置の情報(後述の加工穴配置情報)に基づいて、実際に加工された加工穴8の位置と狙いの加工位置との位置誤差(以下、位置誤差情報という)を測定する。
図7は実施の形態2に係るDOE制御装置の構成を示す図である。図7の各構成要素のうち図2に示す実施の形態1のDOE制御装置10と同一機能を達成する構成要素については同一番号を付しており、重複する説明は省略する。
実施の形態2に係るDOE制御装置10は、DOE位置制御部17、位置算出部18、穴間隔記憶部13、加工プログラム記憶部14、入力部15、位置関係記憶部16、制御部19に加えて、補正値算出部21を備えている。なお、ここでの補正値算出部21が特許請求の範囲に記載の補正値設定部に対応する。
ここでの入力部15は、穴間隔情報とともに、加工穴8の配置(各加工穴8の座標)に関する情報(以下、加工穴配置情報という)を入力する。入力部15から入力された穴間隔情報と加工穴配置情報は、穴間隔記憶部13で記憶する。
補正値算出部21は、加工穴配置情報と、加工位置検出装置30から送られる加工穴位置情報に基づいて、分光レーザビーム11の被加工物9への照射位置を補正するための情報(回折パターンの位置ズレを補正するための情報(以下、補正情報という))を算出する。ここでの補正値算出部21は、光軸の中心から離れた位置に出射する分光レーザビーム11の被加工物9上の照射位置を補正するための情報を補正情報としてを算出する。補正値算出部21は、算出した補正値情報をDOE位置制御部17に入力する。ここでのDOE位置制御部17は、位置算出部18が算出したDOE位置情報に基づいてDOE6を移動させる際に、補正値算出部21が算出した補正値情報を用いてDOE6の位置補正を行う。
つぎに、実施の形態2に係るレーザ加工装置100の動作手順について説明する。図8は、実施の形態2に係るレーザ加工装置の動作手順を示すフローチャートである。なお、実施の形態1に係るレーザ加工装置100と同様の動作を行なう手順については、その説明を省略する。
入力部15は加工穴配置情報を入力し、穴間隔記憶部13は入力部15から入力された加工穴配置情報を記憶する。位置算出部18は、穴間隔記憶部13が記憶する加工穴配置情報を読み出す。位置算出部18は、光軸である中心位置から最も近い加工穴8(中心からの距離が最も小さい加工穴8)と、中心位置から2番目に近い加工穴8との間隔(最も中央よりの2点の加工穴間)が正規(狙い)の穴間隔となるよう、DOE6の位置(DOE位置情報)を算出する。ここでの位置算出部18は、例えば実施の形態1で説明したレーザ加工装置100と同様の処理によって、DOE位置情報を算出する。
なお、以下の説明では、説明の便宜上、被加工物9内の加工穴8のうち、光軸である中心位置に最も近い加工穴8を中心加工穴とし、中心位置から2番目に近い加工穴8を2番目加工穴とし、中心位置から最も遠い加工穴8(最も端の加工穴)を最端加工穴として説明する。また、中心加工穴と2番目加工穴の間隔が正規の間隔となるDOE6の位置を初期位置(補正前)として説明する。
位置算出部18が算出したDOE位置情報は、DOE位置制御部17に入力される。DOE位置制御部17は、DOE位置情報に基づいて、DOE6をZ方向に移動させる。これにより、加工穴8において最も中央よりの2点間が正規の間隔となるよう、DOE6の位置(高さ)が調整されることとなる(ステップS410)。
この後、レーザ加工装置100は、単発のレーザ加工を被加工物9の各加工穴8に対して1ショットで行なう(ステップS420)。レーザ加工装置100は、レーザ加工された被加工物9の各加工穴8を加工位置検出装置30の撮像部31で撮影し、各加工穴8の位置を読み取る(ステップS430)。
加工位置検出装置30は、撮像部31が読み取った各加工穴8の位置に関する情報を加工穴位置情報としてDOE制御装置10に送信する。DOE制御装置10の補正値算出部21は、加工プログラムから抽出した加工穴配置情報と、加工位置検出装置30から送られる加工穴位置情報に基づいて、各加工穴8の位置誤差情報(実際に加工された加工穴8の位置と狙いの加工位置との位置誤差)を算出する。
ここで各加工穴8の位置誤差情報の算出方法について説明する。レーザ発振器1から出射されたレーザビーム2は、回折素子であるDOE6を通過する際に所定の回折角を持つこととなる。DOE6のパターン周期をΛ、レーザビーム2の波長をλ、回折次数をnとした場合、n次の回折角は式(3)によって表せる。
θn=sin-1(nλ/Λ)・・・(3)
このn次の回折角を持つレーザビーム2を、fθレンズ7に入射させた場合、被加工物9上の加工位置は式(4)によって算出できる。
fθn=f×sin-1(nλ/Λ)・・・(4)
このため、線形性を持った理想的な被加工物9上の加工位置は、「f×sin(sin-1(nλ/Λ))=fnλ/Λ」に対して、「fθn−fsinθn」だけのズレ量(位置誤差)を持つこととなる。このズレ量はθが大きくなるほど(広域の加工パターンを持つDOE6ほど)顕著に表れる。すなわち、DOE6において回折されたレーザビーム11をfθレンズ7を介して被加工物9の加工穴8に照射させる場合、光軸から離れた位置に穿孔される加工穴ほど本来の設計における加工穴間隔からずれる傾向がある。このため、実際の加工穴8の位置は外側にずれた位置に穿孔されることとなる。
なお、位置誤差情報は、加工設定された加工穴の位置と実際に穿孔された加工穴の位置誤差に基づいて算出してもよいし、分光レーザビーム11が照射される照射位置に基づいて算出してもよい。
これにより、中心加工穴と2番目加工穴のピッチが正規の間隔となるよう、DOE6の位置(初期位置)を正確に制御して被加工物9のレーザ加工を行うと(ステップS410の処理)、最端加工穴の位置誤差が最大となり、中心加工穴の位置誤差が最小となる。
補正値算出部21は、各加工穴8の位置誤差情報を算出すると、各加工穴8のうち最端加工穴が最も大きな位置誤差であるか否かを判断する(ステップS440)。補正値算出部21が、各加工穴8のうち最端加工穴が最も大きな位置誤差でないと判断すると(ステップS440、No)、レーザ加工装置100はステップS410〜S440の処理を繰り返す。このとき、DOE位置制御部17は、中心加工穴と2番目加工穴のピッチが正規の間隔となるよう、DOE6の位置(初期位置)を再調整して被加工物9のレーザ加工を行う(ステップS410)。
一方、補正値算出部21が、各加工穴8のうち最端加工穴が最も大きな位置誤差であると判断すると(ステップS440、Yes)、DOE位置制御部17はDOE6の位置が被加工物9(ワーク)から遠ざかる位置(加工穴8の間隔が小さくなる位置)に移動するよう、DOE6の位置を制御する(ステップS450)。このとき、補正値算出部21はDOE6の移動量(補正情報)を算出するとともに、DOE位置制御部17は補正値算出部21の算出結果に基づいてDOE6の位置を制御する。
ここで位置算出部18による補正情報(回折パターンの位置ズレを補正するための情報)の算出方法について説明する。図9は、DOEの位置補正を説明するための図である。なお、ここでは加工穴8が被加工物9上でY軸方向に並んでいる場合について説明する。図9では、左側に示すDOE6がDOE6の初期位置(補正前)であり、右側に示すDOE6が補正後のDOE6の位置(補正位置)である。
左側に示すDOE6では、中心加工穴と2番目加工穴のピッチが正規の穴間隔(位置誤差が略0)となるようDOE6の初期位置が設定されているため、加工位置の位置誤差は、中心から遠い加工穴ほど大きな位置誤差(プラスの位置誤差)を有することとなる。すなわち、中心加工穴と2番目加工穴のピッチは略狙い寸法の間隔eであるのに対し、中心から遠い加工穴8では間隔eよりも大きな穴間隔で(外側の位置で)穴が加工(穿孔)されることとなる。そして、最端加工穴では、最大の穴間隔(最大の位置誤差)で穴が加工されることとなる。なお、以下では説明の便宜上、図9の右側方向への位置誤差をプラス(+)の位置誤差とし、左側への位置誤差をマイナス(−)の位置誤差として説明する。
一方、右側に示すDOE6では、DOE6の初期位置からDOE6の位置を補正している。ここでは、図9の右側に示したDOE6とfθレンズ7の距離が、左側に示したDOE6とfθレンズ7の距離よりも距離d(d>0)だけ長くなるよう、DOE6の位置を補正している。
すなわち、右側に示すDOE6では、中心加工穴と2番目加工穴のピッチが正規の間隔(位置誤差が略0)とならないよう、初期位置から補正している。これにより、右側に示すDOE6では、中心加工穴や2番目加工穴にはマイナス(−)の位置誤差(間隔eよりも短い穴間隔)が生じることとなるが、最端加工穴の位置誤差は、DOE6が初期位置であるときの最端加工穴の位置誤差よりも小さくなる。換言すると、中心付近の加工穴8の穴間隔が正規の間隔よりもわずかに短くなるが、外側に離れた位置の加工穴8の穴間隔は正規の間隔に近づくこととなる。
図10は、DOEの位置と位置誤差の関係を説明するための図である。同図に示すように、DOE6の位置が被加工物9から近い位置にある場合(DOE6が初期位置である場合)、最端加工穴が最大誤差を示す。DOE6の位置を補正することによって、DOE6の位置を被加工物9から遠ざかる方向へ移動させると、最端加工穴の位置誤差の絶対値は小さくなるが、中心加工穴に近い加工穴8などの位置誤差の絶対値は大きくなる。なお、以下の説明での誤差は中心から+Yまたは−Yの何れか一方(片側)の象限のみを用いるものとする。これは、+Y、−Yで誤差の発生方向が対称形で符号が反対となるため、誤差確認において他方の象限が不要となるからである。
すなわち、DOE6の位置を初期位置からスタートさせて被加工物9から遠ざかる方向へ移動させると、最端加工穴の位置誤差の絶対値は徐々に小さくなり、これに伴って中間の加工穴8(中心加工穴や最端加工穴以外の加工穴8)の位置誤差の絶対値が大きくなる。そして、DOE6が初期位置から補正されて所定の位置まで移動すると、最端加工穴の位置誤差の絶対値と、所定の中間の加工穴8(以下、中間加工穴という)の位置誤差の絶対値が等しくなる。
この後、DOE6の位置を被加工物9から遠ざかる方向へさらに移動させると、最端加工穴の位置誤差の絶対値はさらに小さくなり、これに伴って中間加工穴の位置誤差の絶対値がさらに大きくなる。そして、DOE6が初期位置から補正されて所定の位置まで移動すると、最端加工穴の位置誤差の絶対値が中間加工穴の位置誤差の絶対値よりも小さくなる。すなわち、DOE6の位置を被加工物9から所定の距離以上遠ざかる方向へ移動させると、中間加工穴の位置誤差の絶対値が最大となる。
最端加工穴の位置誤差の絶対値と、所定の中間加工穴の位置誤差の絶対値が等しくなるとき(図10の中段の図)、位置誤差の最大値が最も小さくなる。このため、実施の形態2では、最端加工穴の位置誤差の絶対値と、所定の中間加工穴の位置誤差の絶対値が等しくなるときのDOE6の位置を理想の補正位置とする。
DOE位置制御部17が、DOE6の位置を被加工物9から遠ざかる位置に移動するようDOE6の位置を制御した後、レーザ加工装置100は単発のレーザ加工を被加工物9の各加工穴8に対して1ショットで行なう(ステップS460)。レーザ加工装置100は、レーザ加工された被加工物9の各加工穴8を加工位置検出装置30の撮像部31で撮影し、各加工穴8の位置を読み取る(ステップS470)。
加工位置検出装置30は、撮像部31が読み取った各加工穴8の位置に関する情報を加工穴位置情報としてDOE制御装置10に送信する。DOE制御装置10の補正値算出部21は、加工穴配置情報と、加工位置検出装置30から送られる加工穴位置情報に基づいて、各加工穴8の位置誤差情報(実際に加工された加工穴8の位置と狙いの加工位置との位置誤差)を算出する。
そして、補正値算出部21は、算出した位置誤差情報に基づいて、プラス(+)方向の最大の位置誤差とマイナス(−)方向の最大の位置誤差が等しいか否かを判断する(ステップS480)。
補正値算出部21が、プラス方向の最大の位置誤差とマイナス方向の最大の位置誤差が等しいと判断した場合(ステップS480、Yes)、補正値算出部21は、最端加工穴の位置誤差が最大の位置誤差であって、且つこの最端加工穴の位置誤差と等しい位置誤差を有する中間加工穴があるか否かを判断する(ステップS485)。
補正値算出部21が、プラス方向の最大の位置誤差とマイナス方向の最大の位置誤差が等しくないと判断した場合(ステップS480、No)、中間加工穴が最大の位置誤差であるか否かを判断する。
また、補正値算出部21が、最端加工穴の位置誤差が最大の位置誤差でないと判断した場合、または最端加工穴の位置誤差と等しい位置誤差を有する中間加工穴がないと判断した場合(ステップS485、No)、中間加工穴が最も位置誤差が大きいか否かを判断する(ステップS490)。
補正値算出部21が、中間加工穴が最大の位置誤差ではないと判断した場合(ステップS490、No)、この場合は最端加工穴が最大の位置誤差であるため、ステップS450〜S485の処理を行なう。すなわち、DOE位置制御部17は、DOE6の位置を被加工物9から遠ざかる位置に移動するようDOE6の位置を制御し、補正値算出部21が、加工後の加工穴8に対して最端加工穴の位置誤差と等しい位置誤差を有する中間加工穴があるか否かを判断する。
補正値算出部21が、中間加工穴が最大の位置誤差ではないと判断する場合、補正値算出部21が、加工後の加工穴8に対して最端加工穴の位置誤差と等しい位置誤差を有する中間加工穴があると判断するまでステップS450〜S485の処理が繰り返される。
一方、補正値算出部21が、中間加工穴が最大の位置誤差であると判断した場合(ステップS490、Yes)、この場合はDOE6の補正量が大きすぎると考えられる(図10の下段に示す状態)。したがって、DOE位置制御部17は補正値算出部21の判断結果に基づいて、DOE6の位置が被加工物9に近付く位置(穴間隔が大きくなる位置)に移動するよう、DOE6の位置を制御する(ステップS500)。
この後、レーザ加工装置100は単発のレーザ加工を被加工物9の各加工穴8に対して1ショットで行なう(ステップS510)。レーザ加工装置100は、レーザ加工された被加工物9の各加工穴8を加工位置検出装置30の撮像部31で撮影し、各加工穴8の位置を読み取る(ステップS520)。
加工位置検出装置30は、撮像部31が読み取った各加工穴8の位置に関する情報を加工穴位置情報としてDOE制御装置10に送信する。DOE制御装置10の補正値算出部21は、加工穴配置情報と、加工位置検出装置30から送られる加工穴位置情報に基づいて、各加工穴8の位置誤差情報(実際に加工された加工穴8の位置と狙いの加工位置との位置誤差)を算出する。
そして、補正値算出部21は、算出した位置誤差情報に基づいて、プラス方向の最大の位置誤差とマイナス方向の最大の位置誤差が等しいか否かを判断する(ステップS530)。
補正値算出部21が、プラス(+)方向の最大の位置誤差とマイナス(−)方向の最大の位置誤差が等しいと判断した場合(ステップS530、Yes)、補正値算出部21は、最端加工穴の位置誤差が最大の位置誤差であって、且つこの最端加工穴の位置誤差と等しい位置誤差を有する中間加工穴があるか否かを判断する(ステップS485)。
補正値算出部21が、最端加工穴の位置誤差が最大の位置誤差であって、且つこの最端加工穴の位置誤差と等しい位置誤差を有する中間加工穴があると判断した場合(ステップS485、Yes)、このDOE6の位置によるレーザ加工が理想の加工位置(図10の中段に示す状態)であると判断する。そして、レーザ加工装置100は、理想と判断した位置にDOE6の位置を補正してレーザ加工処理を実行する。
ステップS530の処理において、補正値算出部21が、プラス(+)方向の最大の位置誤差とマイナス(−)方向の最大の位置誤差が等しくないと判断した場合(ステップS530、No)、中間加工穴が最も位置誤差が大きいか否かを判断する(ステップS540)。
補正値算出部21が、中間加工穴が最大の位置誤差ではないと判断した場合(ステップS540、No)、この場合は最端加工穴が最大の位置誤差であるため、ステップS450以降の処理を行なう。
一方、補正値算出部21が、中間加工穴が最大の位置誤差であると判断した場合(ステップS540、Yes)、この場合はDOE6の補正量が大きすぎると考えられる(図10の下段に示す状態)。したがって、レーザ加工装置100は、ステップS500〜S540の処理を繰り返す。
以下、補正値算出部21が、プラス方向の最大の位置誤差とマイナス方向の最大の位置誤差が等しいと判断し(ステップS480でYes、またはステップS530でYes)、さらに補正値算出部21が加工後の加工穴8に対して最端加工穴の位置誤差と等しい位置誤差を有する中間加工穴があると判断するまで(ステップS485でYes)、レーザ加工装置100はステップS450〜S470の処理またはステップS500〜S520の処理を繰り返す。
補正値算出部21が、最端加工穴の位置誤差が最大の位置誤差であって、且つこの最端加工穴の位置誤差と等しい位置誤差を有する中間加工穴があると判断した場合(ステップS485、Yes)、このDOE6の位置によるレーザ加工が理想の加工位置(図10の中段に示す状態)であると判断する。そして、レーザ加工装置100は、理想と判断した位置にDOE6の位置を補正してレーザ加工処理を実行する。
つぎに、図11〜図13を参照してDOE6の位置を補正した場合の位置誤差の効果について説明する。図11は、DOEの位置を補正した場合の位置誤差を説明するための図である。
ここでは、中心加工穴と2番目加工穴のピッチが正規の間隔となる位置にDOE6の位置を設定した場合(初期位置)(中央の加工穴8の間隔を正規のピッチとした場合)の加工後の位置誤差を黒塗りの三角印(中段)で示している。
また、最端加工穴の位置誤差の絶対値と所定の中間加工穴の位置誤差の絶対値が等しくなるようDOE6の位置を設定した場合(理想の補正位置)(加工穴8の最大誤差が最小となるようDOE6の位置を補正設定した場合)の加工後の位置誤差を黒塗りの丸印(下段)として示している。なお、ここでは位置誤差が無い場合(加工プログラム上)の加工穴8の位置(正規の加工ピッチ)を塗りつぶし無しの丸印で最上段に示している。
同図に示すように、DOE6を初期位置に設定した場合の加工穴8は(図内中段)、光軸(中心)から離れた位置に穿孔される加工穴ほど本来の設計(正規の加工ピッチ)における加工穴間隔からずれる傾向があり、実際の加工穴8の位置は外側にずれた位置に穿孔されることとなる。
一方、DOE6を理想の補正位置に設定した場合の加工穴8(図内下段)、中心加工穴や2番目加工穴の穴間隔で僅かな位置誤差(マイナスの位置誤差)が生じることとなるが、最端加工穴の位置誤差は、DOE6が初期位置であるときの最端加工穴の位置誤差よりも小さくなる。
図12はDOEの位置補正前後の位置誤差の値を示す図であり、図13は図12に示した位置誤差をグラフ化した図である。図12,13では、被加工物9の加工条件を、焦点fを100μm、DOE6のDOE6からfθレンズ7までの距離Lを70mm、加工穴8のピッチ(間隔)を0.3mm、穴数を位置補正前後で25個ずつ、パターン端(最端加工穴の中心からの位置)を7.35mm、偏向ピッチを0.2994mm、ピッチ偏向量を−0.6μmに設定した場合の位置誤差を示している。
ここでの加工穴8のピッチ(0.3mm)がDOE6の初期位置での加工ピッチであり、ピッチ偏向量(−0.6μm)がDOE6の位置補正値である。そして、偏向ピッチ(0.2994mm)が、補正後のDOE6による加工ピッチである。
図12においては、DOE6が初期位置(補正前)であるときの加工穴8の位置誤差として、狙いのスポット位置、回折角θ、fθ、Fsinθに基づいて算出した本来のピッチでのズレ量(位置誤差)を示している。この本来のピッチでのズレ量は、ピッチ偏向をかけない場合のスポット位置(狙いスポット位置)での回折角θにおける光学的なズレ量を示している。また、DOE6を理想の補正位置に設定した場合(補正後)の加工穴8の位置誤差として、狙いのスポット位置、回折角θ'、fθ'、Fsinθ'、正規のズレ量、実際の穴位置(狙いの位置)に基づいて算出したズレ量(ピッチ偏向した場合のズレ量)(位置誤差)を示している。なお、ここでの正規のズレ量は、ピッチ偏向した場合のスポット位置(偏向スポット位置)での回折角θ'における光学的なズレ量を示している。また、実際の穴位置は光学的なズレ量(正規のズレ量)にピッチ偏向によるズレ量(ピッチ偏向量)を加算した値であって、ピッチ偏向した場合に実際に加工されるスポット位置を示している。また、ピッチ偏向した場合のズレ量は、ピッチ偏向した場合の実際の穴位置と狙いスポット位置の差を示している。
図13では、図12で示した正規のズレ量とピッチ偏向した場合のズレ量を、DOE6の位置補正前後の位置誤差としてグラフ上にプロットしている。同図に示すように、正規のズレ量(絶対値)では、穴位置が中心から離れるにつれて大きくなっている。一方、ピッチ偏向した場合のズレ量(絶対値)では、穴位置が中心から離れるにつれて大きくなった後に小さくなり、一度ズレ量0を通過した後、再び大きくなっている。
図12,13に示すように、本来のピッチでのズレ量(補正前)は、マイナス方向の最大ズレ量が0μmであるのに対し、プラス方向の最大ズレ量が19.1μmであり、ズレ幅が19.1μmとなっている。
一方、ピッチ偏向した場合のズレ量は、マイナス法方向の最大ズレ量が−5.0μmであるのに対し、プラス方向の最大ズレ量が4.3μmであり、ズレ幅が9.2μmとなっている。
このように、DOE6を所定の補正位置に移動させることによって、ピッチ偏向した場合のズレ量が正規のズレ幅よりも小さくなり、精度の良いレーザ加工を行なうことが可能となる。
なお、ここではズレ幅が小さくなるようピッチ偏向する場合について説明したが、図8のフローチャートで説明したように、最端加工穴の位置誤差と中間加工穴の位置誤差が最大となるようピッチ偏向を行ってもよい。例えば、図12に示した位置補正前後の位置誤差の算出においてピッチ偏向量を0.6μに設定すると、最端加工穴の位置誤差と中間加工穴の位置誤差が最大となる。
このように実施の形態2によれば、補正値算出部21が、光軸の中心から離れた位置に出射する分光レーザビーム11の照射位置を補正するための補正情報(理想の補正位置)を算出し、DOE位置制御部17が補正情報を用いてDOE6の位置補正を行うので、DOE位置制御部17は狙いの加工位置に対して精度良く被加工物9の加工穴8をレーザ加工することが可能となる。これにより、レーザ加工装置100は、微細な加工穴8を正確にレーザ加工することが可能となる。