[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007267040A - Illumination light transmission system - Google Patents

Illumination light transmission system Download PDF

Info

Publication number
JP2007267040A
JP2007267040A JP2006089601A JP2006089601A JP2007267040A JP 2007267040 A JP2007267040 A JP 2007267040A JP 2006089601 A JP2006089601 A JP 2006089601A JP 2006089601 A JP2006089601 A JP 2006089601A JP 2007267040 A JP2007267040 A JP 2007267040A
Authority
JP
Japan
Prior art keywords
frequency
data
illumination light
transmission
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006089601A
Other languages
Japanese (ja)
Other versions
JP4609362B2 (en
Inventor
Kazufumi Nagasoe
和史 長添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2006089601A priority Critical patent/JP4609362B2/en
Publication of JP2007267040A publication Critical patent/JP2007267040A/en
Application granted granted Critical
Publication of JP4609362B2 publication Critical patent/JP4609362B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an illumination light transmission system by suppressing optical output variations in illumination light in a transmission state and a non-transmission state and preventing the variations from being conspicuously visually recognized even in the case that ordinary illumination is performed during no data transmission. <P>SOLUTION: A control circuit 2 outputs a frequency control signal to a drive circuit 5a to control an operating frequency of a lighting circuit 5 so that a frequency of a lamp current supplied from the lighting circuit 5 to a fluorescent lamp 3 when no data are superimposed (at non-transmission) is a third frequency f3 being an optical output nearly coincident with an average of optical outputs corresponding to first and second frequencies f1, f2. Since the frequency of the lamp current supplied to the fluorescent lamp 3 at non transmission is controlled to the third frequency f3 and the optical output being the third frequency f3 is nearly coincident with the average of the optical outputs corresponding to the first and second frequencies f1, f2, even when the ordinary illumination is carried out during no data transmission, optical output variations of the illumination light in the transmission state and the non transmission state are suppressed and conspicuous visual recognition of the variations can be prevented. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光源から照射する照明光にデータを重畳させて伝送する複数の照明器具と、照明光に重畳されたデータを受信する1乃至複数の受信装置とを有する照明光伝送システムに関するものである。   The present invention relates to an illumination light transmission system including a plurality of lighting fixtures that transmit data superimposed on illumination light emitted from a light source, and one or more receivers that receive data superimposed on the illumination light. is there.

従来より、照明光にデータを重畳させて伝送する複数の照明器具と、照明光に重畳されたデータを受信する受信装置とを有する照明光伝送システムが種々提案されている。   Conventionally, various illumination light transmission systems having a plurality of lighting fixtures that transmit data superimposed on illumination light and a receiving device that receives data superimposed on illumination light have been proposed.

現在、一般照明用として最も広く普及している光源は蛍光灯であり、蛍光灯を光源とする照明器具(以下、蛍光灯照明器具と呼ぶ。)を利用した照明光伝送システムが種々提案されている(例えば、特許文献1、特許文献2参照)。かかる蛍光灯照明器具は、LC共振型のインバータ回路により商用周波を高周波に変換して蛍光灯を高周波点灯する点灯装置(いわゆる蛍光灯電子安定器)を備えており、蛍光灯の点灯時におけるインバータ回路の出力特性がLC共振回路並びに蛍光灯を含めた共振系の共振周波数f0にピークを持つ山型の波形となることから(図5参照)、インバータ回路の動作周波数を定格点灯時の周波数f1(>f0)から変調周波数f2(>f1)に上昇させることでインバータ回路から蛍光灯への供給電力(ランプ電流)を減少させて光出力を低下させることができる。従って、図6に示すように送信データがLレベル(0)のときにインバータ回路の動作周波数を定格点灯時の周波数f1とし、送信データがHレベル(1)のときにインバータ回路の動作周波数を変調周波数f2に切り換えることにより、インバータ回路の動作周波数を送信データで周波数変調(FSK<周波数シフトキーイング>)して送信データを照明光に重畳することができる。なお、インバータ回路の動作周波数は、蛍光灯の発光効率やインバータ回路を構成する回路部品の寸法、発熱、ノイズ規制等の制限によって一般的に40〜100kHzに設定される。   Currently, the most widely used light source for general lighting is a fluorescent lamp, and various illumination light transmission systems using a lighting fixture using a fluorescent lamp as a light source (hereinafter referred to as a fluorescent lighting fixture) have been proposed. (For example, refer to Patent Document 1 and Patent Document 2). Such a fluorescent lamp illuminator includes a lighting device (so-called fluorescent lamp electronic ballast) that converts a commercial frequency into a high frequency by an LC resonance type inverter circuit to light the fluorescent lamp at a high frequency (so-called fluorescent lamp electronic ballast). Since the output characteristic of the circuit is a mountain-shaped waveform having a peak at the resonance frequency f0 of the resonance system including the LC resonance circuit and the fluorescent lamp (see FIG. 5), the operating frequency of the inverter circuit is the frequency f1 at rated lighting. By increasing from (> f0) to the modulation frequency f2 (> f1), the power supplied from the inverter circuit to the fluorescent lamp (lamp current) can be decreased, and the light output can be decreased. Therefore, as shown in FIG. 6, when the transmission data is at L level (0), the operating frequency of the inverter circuit is set to the frequency f1 at rated lighting, and when the transmission data is at H level (1), the operating frequency of the inverter circuit is set. By switching to the modulation frequency f2, the operating frequency of the inverter circuit is frequency-modulated with transmission data (FSK <frequency shift keying>), and the transmission data can be superimposed on the illumination light. Note that the operating frequency of the inverter circuit is generally set to 40 to 100 kHz depending on the light emission efficiency of the fluorescent lamp, the dimensions of circuit parts constituting the inverter circuit, heat generation, noise restrictions, and the like.

上述のように照明光を送信データで周波数変調する場合、蛍光灯から放射される照明光の光出力が変調によって増減する、つまり、上述の例で言えば送信データがLレベルのときの光出力に対して送信データがHレベルのときの光出力が減少する。そして、送信データにおける0と1(LレベルとHレベル)の発生頻度が何れか一方に偏ったときに照明光の光出力の変動が人の眼に許容できないほどのちらつきとして感じられることから、照明器具としての使用に実用上の問題が生じる可能性があった。特に、データ送信を行っていないときも通常の照明を行っていれば、データの非送信時にも照明光が照射されるためにデータの送信時と非送信時との照明光の光出力の変動が顕著に視認される可能性がある。   When the illumination light is frequency-modulated with the transmission data as described above, the light output of the illumination light emitted from the fluorescent lamp is increased or decreased by the modulation, that is, the light output when the transmission data is at the L level in the above example. On the other hand, the optical output decreases when the transmission data is at the H level. Then, when the frequency of occurrence of 0 and 1 (L level and H level) in the transmission data is biased to either one, the fluctuation of the light output of the illumination light is perceived as flicker that is unacceptable to human eyes. There could be practical problems in use as a lighting fixture. In particular, if normal illumination is performed even when data is not being transmitted, the illumination light is irradiated even when data is not transmitted, so fluctuations in the light output of illumination light between data transmission and non-transmission May be noticeable.

これに対して従来は、送信データをマンチェスタ符号化することで送信データにおける0と1(LレベルとHレベル)の発生頻度を一定にして照明光の光出力変動を抑制したものが提案されている(例えば、特許文献3参照)。
特開昭60−32443号公報 特開平6−20785号公報 特表2002−511727号公報
On the other hand, conventionally, the transmission data is Manchester encoded so that the occurrence frequency of 0 and 1 (L level and H level) in the transmission data is made constant and the light output fluctuation of the illumination light is suppressed. (For example, see Patent Document 3).
JP-A-60-32443 Japanese Patent Laid-Open No. 6-20785 JP-T-2002-511727

しかしながら、特許文献3に記載のものでは、データ送信時における照明光の光出力の平均はほぼ一定にできるが、上述のようにデータ送信を行っていないときも通常の照明を行う場合においては、送信データをマンチェスタ符号化しても送信時と非送信時との照明光の光出力変動を抑制することはできず、顕著に視認される可能性がある。   However, in the thing of patent document 3, although the average of the light output of the illumination light at the time of data transmission can be made substantially constant, when performing normal illumination even when data transmission is not performed as described above, Even if the transmission data is Manchester encoded, fluctuations in the light output of the illumination light during transmission and during non-transmission cannot be suppressed, and there is a possibility that the transmission data will be visually recognized.

本発明は上記事情に鑑みて為されたものであり、その目的は、データ送信を行っていないときに通常の照明を行う場合においても送信時と非送信時との照明光の光出力変動を抑制して顕著に視認されることがないようにした照明光伝送システムを提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to change the light output fluctuation of illumination light during transmission and during non-transmission even when performing normal illumination when data transmission is not performed. An object of the present invention is to provide an illumination light transmission system that is suppressed so as not to be visually recognized.

請求項1の発明は、上記目的を達成するために、光源から照射する照明光にデータを重畳させて伝送する1乃至複数の照明器具と、照明光に重畳されたデータを受信する1乃至複数の受信装置とを有する照明光伝送システムであって、照明器具は、光源と、光源を点灯する点灯手段と、点灯手段を制御して光源から照射される照明光に2値のデータを重畳するデータ重畳手段とを備え、データ重畳手段は、点灯手段から光源に供給される電流の周波数を2値のデータに対応した第1および第2の周波数に切り換えて周波数変調するとともに、データを重畳しないときは光源に供給される電流の周波数が、第1および第2の周波数に対応する光出力の平均値に略一致した光出力となる第3の周波数となるように点灯手段を制御することを特徴とする。   In order to achieve the above object, the invention of claim 1 provides one or more luminaires for transmitting data superimposed on illumination light emitted from a light source, and one or more for receiving data superimposed on illumination light. In this illumination light transmission system, the lighting apparatus superimposes binary data on illumination light emitted from the light source by controlling the lighting means and the lighting means for lighting the light source. Data superimposing means, the data superimposing means switching the frequency of the current supplied from the lighting means to the light source to the first and second frequencies corresponding to the binary data, and not modulating the data. Sometimes, the lighting means is controlled so that the frequency of the current supplied to the light source becomes the third frequency at which the light output substantially matches the average value of the light outputs corresponding to the first and second frequencies. Features and That.

請求項2の発明は、請求項1の発明において、データ重畳手段は、2値のデータの発生頻度が一定の比率となるように符号化するとともに当該比率に応じた重み付けを行って第1および第2の周波数に対応する光出力の平均値を求めることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the data superimposing means encodes the binary data so that the frequency of occurrence of the binary data is a constant ratio, and performs weighting according to the ratio, An average value of the optical output corresponding to the second frequency is obtained.

請求項1の発明によれば、データ重畳手段は、点灯手段から光源に供給される電流の周波数を2値のデータに対応した第1および第2の周波数に切り換えて周波数変調するとともに、データを重畳しないときは光源に供給される電流の周波数が、第1および第2の周波数に対応する光出力の平均値に略一致した光出力となる第3の周波数となるように点灯手段を制御するので、データを重畳しないとき(非送信時)は光源に供給される電流の周波数が第3の周波数に制御されて第1および第2の周波数に対応する光出力の平均値に略一致した光出力となるから、データ送信を行っていないときに通常の照明を行う場合においても送信時と非送信時との照明光の光出力変動を抑制して顕著に視認されるのを防ぐことができる。   According to the first aspect of the invention, the data superimposing means switches the frequency of the current supplied from the lighting means to the light source to the first and second frequencies corresponding to the binary data, and modulates the data. When not superposed, the lighting means is controlled so that the frequency of the current supplied to the light source becomes the third frequency at which the light output substantially matches the average value of the light outputs corresponding to the first and second frequencies. Therefore, when data is not superimposed (during non-transmission), the frequency of the current supplied to the light source is controlled to the third frequency, and the light substantially matches the average value of the light output corresponding to the first and second frequencies. Since it becomes an output, even when performing normal illumination when data transmission is not being performed, it is possible to prevent significant visual recognition by suppressing fluctuations in the light output of illumination light during transmission and during non-transmission. .

請求項2の発明によれば、データ重畳手段は、2値のデータの発生頻度が一定の比率となるように符号化するとともに当該比率に応じた重み付けを行って第1および第2の周波数に対応する光出力の平均値を求めるので、種々の符号化方式において送信時と非送信時との照明光の光出力変動を適切に抑制することができる。   According to the invention of claim 2, the data superimposing means encodes the binary data so that the frequency of occurrence of the binary data is a constant ratio, and performs weighting according to the ratio to the first and second frequencies. Since the average value of the corresponding light output is obtained, the light output fluctuation of the illumination light during transmission and during non-transmission can be appropriately suppressed in various encoding methods.

本実施形態の照明光伝送システムは、照明光を照射する1乃至複数台の照明器具Tと、1乃至複数台の受信装置Rとで構成される。   The illumination light transmission system of the present embodiment includes one or more lighting fixtures T that irradiate illumination light and one or more receiving devices R.

受信装置Rは、図1(b)に示すように照明器具Tの照明光を受光して電気信号に変換する光電変換回路20と、光電変換回路20から出力する電気信号(受信信号)を増幅する増幅回路21と、増幅回路21で増幅された受信信号からデータを復調する復調回路22と、復調回路22で復調されたデータ(受信データ)を処理する受信データ処理回路23とを備えている。   As shown in FIG. 1B, the receiving device R receives the illumination light from the lighting fixture T and converts it into an electrical signal, and amplifies the electrical signal (received signal) output from the photoelectric conversion circuit 20. An amplifying circuit 21, a demodulating circuit 22 for demodulating data from the received signal amplified by the amplifying circuit 21, and a receiving data processing circuit 23 for processing data demodulated by the demodulating circuit 22 (received data). .

光電変換回路20は、照明光のデータが重畳されている周波数成分を透過する光学フィルタと、光学フィルタを透過した周波数成分を電気信号に変換するPINフォトダイオードのような光電変換素子とで構成される。但し、PINフォトダイオードの代わりにフォトトランジスタや増幅器を集積したフォトICを用いてもよい。増幅回路21は汎用のオペアンプIC等で構成される差動増幅回路であるが、オペアンプICの代わりにトランジスタで構成されるものであっても構わない。但し、光電変換回路20から出力する受信信号が復調回路22で復調処理するのに十分なレベルであれば、増幅回路21を省略してもよい。   The photoelectric conversion circuit 20 includes an optical filter that transmits a frequency component on which illumination light data is superimposed, and a photoelectric conversion element such as a PIN photodiode that converts the frequency component transmitted through the optical filter into an electrical signal. The However, a photo IC in which a phototransistor and an amplifier are integrated may be used instead of the PIN photodiode. The amplifier circuit 21 is a differential amplifier circuit configured by a general-purpose operational amplifier IC or the like, but may be configured by a transistor instead of the operational amplifier IC. However, the amplifier circuit 21 may be omitted if the received signal output from the photoelectric conversion circuit 20 is at a level sufficient for the demodulation circuit 22 to perform demodulation processing.

復調回路22は、例えばバンドパスフィルタ(図示せず)と、バンドパスフィルタを通過した受信信号の信号レベルをしきい値と比較する比較回路(図示せず)とで構成される。バンドパスフィルタは、変調周波数f2の2倍の周波数を通過帯域の中心周波数とした汎用のフィルタである。但し、定格点灯時の周波数f1の2倍の周波数を通過帯域の中心周波数としてもよく、その場合は復調される受信データの論理が反転しているから受信データ処理部23でさらに反転する必要がある。比較回路はコンパレータからなり、変調周波数f2の2倍の周波数成分がバンドパスフィルタを通過したときにHレベルの信号を出力するとともにその他のときにLレベルの信号を出力することで照明器具Tから照射される照明光の受信信号より受信データを復調する。   The demodulating circuit 22 includes, for example, a bandpass filter (not shown) and a comparison circuit (not shown) that compares the signal level of the received signal that has passed through the bandpass filter with a threshold value. The bandpass filter is a general-purpose filter having a frequency that is twice the modulation frequency f2 as the center frequency of the passband. However, a frequency that is twice the frequency f1 at the time of rated lighting may be used as the center frequency of the passband. In this case, since the logic of the received data to be demodulated is inverted, it is necessary to further invert it at the received data processing unit 23. is there. The comparison circuit is composed of a comparator, which outputs an H level signal when a frequency component twice the modulation frequency f2 passes through the bandpass filter and outputs an L level signal at other times from the lighting fixture T. The received data is demodulated from the received illumination light reception signal.

受信データ処理回路23はマイコンを主構成要素とするものであって、復調回路22で復調された受信データの有効性を判断するとともに、有効と判断した受信データを他の電子機器(例えば、PDA、携帯電話機など)に伝送したり、受信データに含まれる位置情報を、別途記憶している地図情報に基づいて表示デバイスの画面上に表示したり、あるいは音声で報知する処理等を行う。   The reception data processing circuit 23 includes a microcomputer as a main component. The reception data processing circuit 23 determines the validity of the reception data demodulated by the demodulation circuit 22, and converts the reception data determined to be valid to another electronic device (for example, a PDA). Or the like, the position information included in the received data is displayed on the screen of the display device based on the separately stored map information, or is notified by voice.

照明器具Tは蛍光灯照明器具であって、図1(a)に示すように送信データを示すデータ信号(H、Lの2値をとる方形パルス信号)を出力する信号源1と、信号源1から出力するデータ信号(ベースバンド信号)をマンチェスタ符号等で符号化するとともに符号化されたデータを照明光に重畳させる制御回路2と、光源たる蛍光灯3と、商用交流電源ACを整流平滑して直流電力に変換する直流電源回路4と、直流電力を商用周波よりも高い高周波の交流電力に変換して蛍光灯3を高周波点灯する点灯回路5と、商用交流電源ACのゼロクロス点を検出するゼロクロス点検出回路6と、ゼロクロス点検出回路6がゼロクロス点を検出した時点から所定の遅延時間を計時する計時回路7とを備えている。   The lighting fixture T is a fluorescent lamp lighting fixture, and as shown in FIG. 1A, a signal source 1 for outputting a data signal (square pulse signal taking binary values of H and L) indicating transmission data, and a signal source A control circuit 2 that encodes a data signal (baseband signal) output from 1 with a Manchester code or the like and superimposes the encoded data on illumination light, a fluorescent lamp 3 as a light source, and a commercial AC power supply AC are rectified and smoothed A DC power supply circuit 4 that converts the DC power into DC power, a lighting circuit 5 that converts the DC power into high-frequency AC power higher than the commercial frequency and lights the fluorescent lamp 3 at a high frequency, and a zero cross point of the commercial AC power supply AC is detected. A zero-cross point detection circuit 6 that performs the above-described operation, and a time-counting circuit 7 that measures a predetermined delay time from the time when the zero-cross point detection circuit 6 detects the zero-cross point.

信号源1は、例えば、照明器具Tの設置場所を示す位置情報がディップスイッチやEEPROMなどで設定され、当該位置情報に対応するデータ信号を繰り返し出力している。ここで、送信データはNRZ符号であって、H、Lの2値をとる方形パルスとして信号源1から出力される(図4(a)参照)。また、信号源1が出力するデータ信号の周波数は、人間の眼が複数の光源の明暗の切換を認識可能である周波数(CFF:Critical Fusion Frequency)よりも高い周波数に設定されている。なお、CFFは年齢(高齢者は相対的に光の変化に対する応答性が低い傾向にある。)や個人差によって異なると言われているが、少なくとも120kHz以上であれば特に支障はない。何故なら、50Hz又は60Hzの商用周波で点灯する白熱灯や銅鉄安定器で点灯する蛍光灯の光出力波形の周波数が100Hz又は120Hzであり、これと同水準であればちらつきとして感じないと考えられるからである。故に、120Hzの逆数である8.3μ秒以下の周期でデータ信号を繰り返し出力すればよい。   In the signal source 1, for example, position information indicating the installation location of the lighting fixture T is set by a dip switch or an EEPROM, and a data signal corresponding to the position information is repeatedly output. Here, the transmission data is an NRZ code, and is output from the signal source 1 as a square pulse having binary values of H and L (see FIG. 4A). The frequency of the data signal output from the signal source 1 is set to a frequency higher than the frequency (CFF: Critical Fusion Frequency) at which the human eye can recognize the light / dark switching of the plurality of light sources. In addition, although it is said that CFF changes with age (the elderly person has the tendency for the responsiveness with respect to the change of light relatively low) and an individual difference, if it is at least 120 kHz or more, there will be no problem in particular. This is because the frequency of the light output waveform of the incandescent lamp that lights at a commercial frequency of 50 Hz or 60 Hz or the fluorescent lamp that lights with a copper-iron ballast is 100 Hz or 120 Hz. Because it is. Therefore, it is only necessary to repeatedly output the data signal at a cycle of 8.3 μsec or less which is the reciprocal of 120 Hz.

直流電源回路4は、交流電源電圧を全波整流するダイオードブリッジDBと、全波整流された脈流電圧を平滑する平滑コンデンサC0とで構成されている。但し、直流電源回路4の構成はこれに限らず、力率改善用の昇圧チョッパ回路と平滑コンデンサの組合せでもよいし、あるいは電池でも構わない。   The DC power supply circuit 4 includes a diode bridge DB for full-wave rectifying the AC power supply voltage and a smoothing capacitor C0 for smoothing the full-wave rectified pulsating voltage. However, the configuration of the DC power supply circuit 4 is not limited to this, and a combination of a boost chopper circuit for power factor improvement and a smoothing capacitor may be used, or a battery may be used.

点灯回路5は、従来例で説明したLC共振型のインバータ回路であって、電界効果トランジスタやバイポーラトランジスタからなる2つのスイッチング素子Q1,Q2の直列回路と、スイッチング素子Q1,Q2の接続点に一端が接続された直流カット用のコンデンサC1と、コンデンサC1と蛍光灯3の片側のフィラメントの一端との間に挿入されたインダクタL1と、蛍光灯3のフィラメントの非電源側に接続された予熱コンデンサC2とを備え、インダクタL1と予熱コンデンサC2と蛍光灯3が共振回路を構成している、いわゆるハーフブリッジ式のインバータ回路からなる。すなわち、駆動回路5aから出力する駆動信号によりスイッチング素子Q1,Q2を高周波で交互にオン/オフすることで直流電源回路4から供給される直流電力を高周波交流電力に変換して蛍光灯3を高周波点灯するものである。そして、従来技術で説明したように、蛍光灯3の点灯時における点灯回路5(インバータ回路)の出力特性が共振回路の共振周波数f0にピークを持つ山型の波形となることから(図5参照)、制御回路2から出力する周波数制御信号で駆動回路5aを制御して点灯回路5の動作周波数(スイッチング素子Q1,Q2をオン/オフする周波数)を定格点灯時の周波数(第1の周波数)f1(>f0)から変調周波数(第2の周波数)f2(>f1)に上昇させることで点灯回路5から蛍光灯3への供給電力(ランプ電流)を減少させて光出力を低下させることができ、例えば、信号源1から出力する送信データがLレベルのときに点灯回路5の動作周波数を第1の周波数f1とし、送信データがHレベルのときに点灯回路5の動作周波数を第2の周波数f2に切り換えて点灯回路5の動作周波数を送信データで周波数変調(FSK)することで送信データを照明光に重畳している。つまり、本実施形態では制御回路2がデータ重畳手段に相当する。但し、点灯回路5の構成はこれに限定されるものではなく、従来周知のフルブリッジ式や一石式のインバータ回路であってもよいし、あるいは直流電源回路4を構成する昇圧チョッパ回路とスイッチング素子等の部品を共用する構成であっても構わない。   The lighting circuit 5 is an LC resonance type inverter circuit described in the conventional example, and is connected to a series circuit of two switching elements Q1 and Q2 made of a field effect transistor or a bipolar transistor and at a connection point between the switching elements Q1 and Q2. Are connected to the non-power supply side of the filament of the fluorescent lamp 3 and the inductor C1 connected between the capacitor C1 and one end of the filament of the fluorescent lamp 3 C2 and the inductor L1, the preheating capacitor C2, and the fluorescent lamp 3 are formed of a so-called half-bridge type inverter circuit constituting a resonance circuit. That is, the switching elements Q1 and Q2 are alternately turned on / off at a high frequency by the drive signal output from the drive circuit 5a, thereby converting the DC power supplied from the DC power supply circuit 4 into the high frequency AC power, thereby causing the fluorescent lamp 3 to operate at high frequency. Lights up. As described in the prior art, the output characteristic of the lighting circuit 5 (inverter circuit) when the fluorescent lamp 3 is lit is a mountain-shaped waveform having a peak at the resonance frequency f0 of the resonance circuit (see FIG. 5). ), The drive circuit 5a is controlled by the frequency control signal output from the control circuit 2, and the operating frequency of the lighting circuit 5 (frequency at which the switching elements Q1 and Q2 are turned on / off) is the rated lighting frequency (first frequency). By increasing the frequency from f1 (> f0) to the modulation frequency (second frequency) f2 (> f1), the power supplied from the lighting circuit 5 to the fluorescent lamp 3 (lamp current) can be decreased to decrease the light output. For example, the operating frequency of the lighting circuit 5 is set to the first frequency f1 when the transmission data output from the signal source 1 is at the L level, and the operating frequency of the lighting circuit 5 is set to the first frequency when the transmission data is at the H level. Is superimposed the transmission data to the illumination light by frequency modulating (FSK) on the transmission data the operating frequency of the ballast circuit 5 is switched to the frequency f2 of the. That is, in the present embodiment, the control circuit 2 corresponds to data superimposing means. However, the configuration of the lighting circuit 5 is not limited to this, and may be a conventionally known full-bridge type or monolithic type inverter circuit, or a boost chopper circuit and a switching element constituting the DC power supply circuit 4. A configuration in which parts such as these are shared may be used.

制御回路2はマイコンを主構成要素とし、周波数制御信号によって駆動回路5aがスイッチング素子Q1,Q2を駆動する周波数(点灯回路5の動作周波数)を調整することにより、蛍光灯3の予熱、始動、点灯並びに送信データの重畳を行うものである。また制御回路2では、データ送信中における照明光の光出力変動を抑制するため、0と1(LレベルとHレベル)の発生頻度を一定とするような符号化(例えば、マンチェスタ符号化)を送信データに対して実行する。但し、蛍光灯3の予熱、始動、点灯に関する具体的な制御内容については従来周知であるから説明は省略する。なお、計時回路7は制御回路2を構成するマイコンで構成されるが、独立したタイマICで構成しても構わない。   The control circuit 2 includes a microcomputer as a main component, and adjusts the frequency (the operating frequency of the lighting circuit 5) at which the drive circuit 5a drives the switching elements Q1 and Q2 by the frequency control signal, thereby preheating, starting, Lighting and superimposition of transmission data are performed. Further, the control circuit 2 performs encoding (for example, Manchester encoding) such that the frequency of occurrence of 0 and 1 (L level and H level) is constant in order to suppress fluctuations in the light output of illumination light during data transmission. Execute on transmission data. However, specific control contents regarding preheating, starting, and lighting of the fluorescent lamp 3 are well known in the art and will not be described. The timer circuit 7 is constituted by a microcomputer constituting the control circuit 2, but may be constituted by an independent timer IC.

ゼロクロス点検出回路6は、ダイオードブリッジDBの脈流出力を分圧抵抗R1,R2で分圧した検出電圧Vxと、図示しない定電圧回路で作成された制御電圧Vccを分圧抵抗R3,R4で分圧した基準電圧VthとをコンパレータCPで比較し、検出電圧Vxが基準電圧Vthよりも低いときにHレベルのゼロクロス点検出信号を制御回路2へ出力するものである。なお、分圧抵抗R1と平滑コンデンサC0との間には平滑コンデンサC0の充電電荷が分圧抵抗R1,R2を介して放電しないようにダイオードDが挿入されている。また、分圧抵抗R2と並列に接続されているコンデンサC3によって脈流電圧に含まれる高調波成分がコンパレータCPに入力されるのを防いでいる。   The zero-cross point detection circuit 6 uses a detection voltage Vx obtained by dividing the pulsating current output of the diode bridge DB by voltage dividing resistors R1 and R2, and a control voltage Vcc created by a constant voltage circuit (not shown) by voltage dividing resistors R3 and R4. The divided reference voltage Vth is compared with the comparator CP, and when the detection voltage Vx is lower than the reference voltage Vth, an H level zero cross point detection signal is output to the control circuit 2. A diode D is inserted between the voltage dividing resistor R1 and the smoothing capacitor C0 so that the charge of the smoothing capacitor C0 is not discharged through the voltage dividing resistors R1 and R2. Further, the harmonic component contained in the pulsating voltage is prevented from being input to the comparator CP by the capacitor C3 connected in parallel with the voltage dividing resistor R2.

制御回路2では、ゼロクロス点検出回路6からゼロクロス点検出信号が入力された時点より計時回路7に所定の遅延時間STの計時を開始させ、計時回路7による遅延時間STの計時が完了したときに信号源1が出力する送信データを照明光に重畳する。   In the control circuit 2, the timing circuit 7 starts measuring the predetermined delay time ST from the time when the zero-cross point detection signal is input from the zero-crossing point detection circuit 6, and when the timing circuit 7 finishes measuring the delay time ST. The transmission data output from the signal source 1 is superimposed on the illumination light.

例えば、図2に示すように4台の照明器具T1〜T4がそれぞれ8ビットの送信データを繰り返し送信する場合において、各照明器具T1〜T4の制御回路2には互いに異なる遅延時間ST1〜ST4(ST1<ST2<ST3<ST4)が設定されているものとする。照明器具T1の制御回路2は、ゼロクロス点検出信号が入力された時点で直ちに信号源1が出力する送信データを照明光に重畳し、照明器具T2の制御回路2は、ゼロクロス点検出信号が入力された時点から遅延時間ST2が経過した時点で信号源1が出力する送信データを照明光に重畳し、照明器具T3の制御回路2は、ゼロクロス点検出信号が入力された時点から遅延時間ST3(=ST2×2)が経過した時点で信号源1が出力する送信データを照明光に重畳し、照明器具T4の制御回路2は、ゼロクロス点検出信号が入力された時点から遅延時間ST4(=ST2×3)が経過した時点で信号源1が出力する送信データを照明光に重畳して送信する。なお、照明器具T1の遅延時間ST1をゼロとしているが、必ずしもゼロである必要はない。また、遅延時間ST3,ST4をST2の2倍、3倍としているが、必ずしも倍数にする必要はなく、送信データの送信期間およびその倍数よりも長い期間であれはよい。   For example, as shown in FIG. 2, when four lighting fixtures T1 to T4 repeatedly transmit 8-bit transmission data, the control circuits 2 of the respective lighting fixtures T1 to T4 have different delay times ST1 to ST4 ( It is assumed that ST1 <ST2 <ST3 <ST4) is set. The control circuit 2 of the lighting fixture T1 immediately superimposes the transmission data output from the signal source 1 on the illumination light when the zero cross point detection signal is input, and the control circuit 2 of the lighting fixture T2 receives the zero cross point detection signal. The transmission data output from the signal source 1 is superimposed on the illumination light at the time when the delay time ST2 has elapsed from the point in time, and the control circuit 2 of the lighting fixture T3 has the delay time ST3 ( = ST2 × 2), the transmission data output from the signal source 1 is superimposed on the illumination light, and the control circuit 2 of the luminaire T4 has a delay time ST4 (= ST2) from the time when the zero-cross point detection signal is input. The transmission data output from the signal source 1 at the time when × 3) has elapsed is superimposed on the illumination light and transmitted. In addition, although delay time ST1 of lighting fixture T1 is set to zero, it does not necessarily need to be zero. Further, although the delay times ST3 and ST4 are two times and three times ST2, it is not necessarily required to be a multiple, and may be a transmission period of transmission data and a period longer than the multiple.

上述のように本実施形態では、複数台の照明器具Tが商用交流電源のゼロクロス点で同期を取りながら送信データを時分割多重伝送しているので、照明光に送信データを重畳しない期間においても通常の照明を行いつつ、複数台の照明器具Tから照明光に重畳して送信されたデータが衝突して受信装置Rで正常に受信できなくなるのを防ぐことができる。   As described above, in the present embodiment, a plurality of lighting fixtures T transmit transmission data in a time-division multiplex manner while synchronizing at the zero cross point of the commercial AC power supply. Therefore, even in a period in which the transmission data is not superimposed on the illumination light. While performing normal illumination, it is possible to prevent data received by being superimposed on illumination light from a plurality of lighting fixtures T from colliding and being unable to be normally received by the receiving device R.

次に、本発明の要旨である、データを送信しないとき(非送信時)の制御回路2による照明光の光出力制御について説明する。   Next, the light output control of illumination light by the control circuit 2 when data is not transmitted (during non-transmission), which is the gist of the present invention, will be described.

従来技術で説明したように、送信データをマンチェスタ符号化すればデータ送信時における照明光の光出力の平均はほぼ一定にできるが、データ送信を行っていないときも通常の照明を行う場合(例えば、複数台の照明器具Tがデータを時分割多重伝送する場合)においては、送信データをマンチェスタ符号化しても送信時と非送信時との照明光の光出力変動を抑制することはできない。そこで本実施形態では、データを重畳しないとき(非送信時)に点灯回路5から蛍光灯3に供給されるランプ電流の周波数が、第1の周波数f1および第2の周波数f2に対応する光出力の平均値に略一致した光出力となる第3の周波数f3(f1<f3<f2)となるように(図5参照)、制御回路2が駆動回路5aに周波数制御信号を出力して点灯回路5の動作周波数を制御している(図3参照)。このようにして非送信時における点灯回路5の動作周波数を制御回路2で制御すれば、データを重畳しないとき(非送信時)は蛍光灯3に供給されるランプ電流の周波数が第3の周波数f3に制御されて第1および第2の周波数f1,f2に対応する光出力の平均値に略一致した光出力となるから、データ送信を行っていないときに通常の照明を行う場合においても、送信時と非送信時との照明光の光出力変動を抑制して顕著に視認されるのを防ぐことができる。   As described in the prior art, if the transmission data is Manchester encoded, the average light output of the illumination light at the time of data transmission can be made almost constant, but when normal illumination is performed even when data transmission is not performed (for example, In a case where a plurality of lighting fixtures T performs time division multiplex transmission of data), even if transmission data is Manchester-encoded, fluctuations in the light output of illumination light during transmission and during non-transmission cannot be suppressed. Therefore, in the present embodiment, when the data is not superimposed (during non-transmission), the frequency of the lamp current supplied from the lighting circuit 5 to the fluorescent lamp 3 corresponds to the first frequency f1 and the second frequency f2. The control circuit 2 outputs a frequency control signal to the drive circuit 5a so that the third frequency f3 (f1 <f3 <f2) is obtained, which is a light output that substantially matches the average value of the lighting circuit. 5 is controlled (see FIG. 3). If the control circuit 2 controls the operating frequency of the lighting circuit 5 at the time of non-transmission in this way, the frequency of the lamp current supplied to the fluorescent lamp 3 is the third frequency when data is not superimposed (at the time of non-transmission). Since the light output is controlled to f3 and substantially matches the average value of the light outputs corresponding to the first and second frequencies f1 and f2, even when performing normal illumination when data transmission is not performed, The light output fluctuation of the illumination light at the time of transmission and at the time of non-transmission can be suppressed to prevent it from being visually recognized.

ここで、制御回路2で実行する符号化方式はマンチェスタ符号化(図4(g)参照)に限定されるものではなく、以下に説明するような種々の符号化方式が採用可能である。   Here, the encoding method executed by the control circuit 2 is not limited to Manchester encoding (see FIG. 4G), and various encoding methods described below can be employed.

例えば、図4(b)に示すようにビットパターン(0と1の並び方)が基本単位時間の前半をデータ信号自体に、後半をデータ信号のビットを反転したビットに符号化してもよい。但し、同一のデータ信号を繰り返し送信する場合は8.3μ秒以下を単位時間、繰り返し送信しない場合は4.1μ秒以下を単位時間とする。また、図4(c)に示すようにデータ信号における0のレベル及び1のレベルともに常に定格点灯時の周波数(第1の周波数)f1→第2の周波数f2の順で、周期がデータ信号における0のレベルが2t、1のレベルが4tとなるようにしてもよい(tは基本時間)。但し、第2の周波数f2→第1の周波数f1の順でも良い。また周期をデータ信号における0のレベルが4t、1のレベルが2tでも良い。あるいは、図4(d)に示すように1ビットあたりの時間を等しくしても構わない。この場合、送信データに関わらず送信時間が一定になり、制御回路2での時間管理が容易になる。なお、これらの符号化方式では、マンチェスタ符号化と同様に1ビット単位で第1の周波数f1と第2の周波数f2の発生比率が等しくなる。また、データ信号がクロック成分を含んでいるために信号の同期がとりやすく、かつ受信装置Rで周波数だけでなく時間幅でも確認でき、受信信頼性が高くなる。さらに、データ信号に関わらず立ち下がりから立ち下がり(第2の周波数f2→第1の周波数f1)の時間が必ず1ビットになるので、特に蛍光灯照明器具の特性として、蛍光体の蓄光現象や点灯回路5の制御応答性等により、“暗”から“明”への変化(第2の周波数f2→第1の周波数f1)と“明”から“暗”への変化(第1の周波数f1→第2の周波数f2)の時間に差が生じることがあるが、信号“10”(f1、f2、f2、f1)と“11”(f1、f2、f1、f2)の違いを判別する場合に、第2の周波数f2に対応する周波数制御信号の時間バラツキによる誤受信を軽減することができる。   For example, as shown in FIG. 4B, the bit pattern (how 0 and 1 are arranged) may be encoded with the first half of the basic unit time as the data signal itself and the second half with the bit obtained by inverting the bit of the data signal. However, when the same data signal is repeatedly transmitted, the unit time is 8.3 μsec or less, and when it is not repeatedly transmitted, the unit time is 4.1 μsec or less. Further, as shown in FIG. 4C, both the 0 level and the 1 level in the data signal are always in the order of the rated lighting frequency (first frequency) f1 → second frequency f2 in the order of the data signal. The level 0 may be 2t, and the level 1 may be 4t (t is the basic time). However, the order of the second frequency f2 → the first frequency f1 may be used. Further, the cycle may be such that 0 level in the data signal is 4t and 1 level is 2t. Alternatively, as shown in FIG. 4D, the time per bit may be made equal. In this case, the transmission time is constant regardless of the transmission data, and time management in the control circuit 2 is facilitated. In these encoding methods, the generation ratios of the first frequency f1 and the second frequency f2 are equal in units of 1 bit as in Manchester encoding. Further, since the data signal includes a clock component, it is easy to synchronize the signals, and the reception device R can check not only the frequency but also the time width, and the reception reliability is improved. Furthermore, since the time from the falling to the falling (second frequency f2 → first frequency f1) is always 1 bit regardless of the data signal, as a characteristic of a fluorescent lamp luminaire, phosphorescence phenomenon of phosphors and A change from “dark” to “bright” (second frequency f2 → first frequency f1) and a change from “bright” to “dark” (first frequency f1) due to the control response of the lighting circuit 5 and the like. → When there is a difference in the time of the second frequency f2), the difference between the signal “10” (f1, f2, f2, f1) and “11” (f1, f2, f1, f2) is discriminated. In addition, it is possible to reduce erroneous reception due to time variation of the frequency control signal corresponding to the second frequency f2.

また、図4(e)に示すようにデータ信号のスタートをに対応するビットパターンを“LHHHHHHL”、1のレベルに対応するビットパターンを “HLHH”、0のレベルに対応するビットパターンを “HHLH”とする符号化方式であってもよい(但し、Hレベルは第1の周波数f1、Lレベルを第2の周波数f2とする)。なお“H”が6個続くのはデータ信号のスタートのみでありデータ信号と判別できる。かかる符号化方式においても、マンチェスタ符号化と同様に1ビット単位で第1の周波数f1と第2の周波数f2の発生比率が等しくなる。また、データ信号がクロック成分を含んでいるために信号の同期がとりやすく、かつ受信装置Rで周波数だけでなく時間幅でも確認でき、受信信頼性が高くなる。さらに、第1の周波数f1と第2の周波数f2の比率が常に3:1であるから照明光の平均光出力が相対的に高くなり、点灯回路5を構成する部品のサイズやコスト面で有利になる。逆に、調光時の周波数を他の方式に比べて高くできるため、第1の周波数f1と第2の周波数f2との差が大きく取れるために受信信頼性が向上する。   Further, as shown in FIG. 4E, the bit pattern corresponding to the start of the data signal is “LHHHHHHL”, the bit pattern corresponding to the 1 level is “HLHH”, and the bit pattern corresponding to the 0 level is “HHLH”. May be used (where the H level is the first frequency f1, and the L level is the second frequency f2). Note that six "H" s continue only at the start of the data signal and can be distinguished from the data signal. Also in such an encoding method, the generation ratio of the first frequency f1 and the second frequency f2 is equal in units of 1 bit as in Manchester encoding. Further, since the data signal includes a clock component, it is easy to synchronize the signals, and the reception device R can check not only the frequency but also the time width, and the reception reliability is improved. Further, since the ratio between the first frequency f1 and the second frequency f2 is always 3: 1, the average light output of the illumination light becomes relatively high, which is advantageous in terms of the size and cost of the parts constituting the lighting circuit 5. become. On the contrary, since the frequency at the time of dimming can be made higher than other methods, the difference between the first frequency f1 and the second frequency f2 can be made large, so that the reception reliability is improved.

また、図4(f)に示すようにデータ信号のスタートをに対応するビットパターンを“LHHHHL”、1のレベルに対応するビットパターンを “HLH”、0のレベルに対応するビットパターンを “HHL”とする符号化方式であってもよい(但し、Hレベルは第1の周波数f1、Lレベルを第2の周波数f2とする)。なお“H”が4個続くのはデータ信号のスタートのみでありデータ信号と判別できる。かかる符号化方式においても、マンチェスタ符号化と同様に1ビット単位で第1の周波数f1と第2の周波数f2の発生比率が等しくなる。また、データ信号がクロック成分を含んでいるために信号の同期がとりやすく、かつ受信装置Rで周波数だけでなく時間幅でも確認でき、受信信頼性が高くなる。さらに、第1の周波数f1と第2の周波数f2の比率が常に2:1であるから照明光の平均光出力が相対的に高くなり、点灯回路5を構成する部品のサイズやコスト面で有利になる。逆に、調光時の周波数を他の方式に比べて高くできるため、第1の周波数f1と第2の周波数f2との差が大きく取れるために受信信頼性が向上する。   Further, as shown in FIG. 4F, the bit pattern corresponding to the start of the data signal is “LHHHLHL”, the bit pattern corresponding to the 1 level is “HLH”, and the bit pattern corresponding to the 0 level is “HHL”. May be used (where the H level is the first frequency f1, and the L level is the second frequency f2). Note that four “H” s continue only at the start of the data signal and can be distinguished from the data signal. Also in such an encoding method, the generation ratio of the first frequency f1 and the second frequency f2 is equal in units of 1 bit as in Manchester encoding. Further, since the data signal includes a clock component, it is easy to synchronize the signals, and the reception device R can check not only the frequency but also the time width, and the reception reliability is improved. Furthermore, since the ratio between the first frequency f1 and the second frequency f2 is always 2: 1, the average light output of the illumination light becomes relatively high, which is advantageous in terms of the size and cost of the parts constituting the lighting circuit 5. become. On the contrary, since the frequency at the time of dimming can be made higher than other methods, the difference between the first frequency f1 and the second frequency f2 can be made large, so that the reception reliability is improved.

なお、図4(g)に示したマンチェスタ符号化方式や図4(b)〜(d)に示した符号化方式では第1の周波数f1と第2の周波数f2の比率が常に等しくなるから、第1および第2の周波数f1,f2に対応する光出力を単純に算術平均して求めればよいが、図4(e)に示した符号化方式では第1の周波数f1と第2の周波数f2の比率が3:1であり、図4(f)に示した符号化方式では第1の周波数f1と第2の周波数f2の比率が2:1であるから、第1および第2の周波数f1,f2に対応する光出力の平均値を求める際に重み付けを行うことが望ましい。すなわち、動作周波数とランプ電流(光出力)とが比例するとみなせば、第1の周波数f1と第2の周波数f2の比率が3:1であるときに光出力の平均値に対応する第3の周波数f3はf3=f1+(f1+f2)/4で求められ、第1の周波数f1と第2の周波数f2の比率が2:1であるときに光出力の平均値に対応する第3の周波数f3はf3=f1+(f1+f2)/3で求められる。そして、このようにして求められた光出力の平均値にほぼ等しい光出力となる第3の周波数f3と、非送信時における点灯回路5の動作周波数とを一致させるように制御回路2が点灯回路5の動作周波数を制御するのである。なお、本実施形態では光源として蛍光灯を例示したが、蛍光灯以外の放電灯(例えば、HID等の高輝度放電灯や無電極放電灯など)、白熱灯、あるいは発光ダイオードや有機EL素子等の個体発光素子であってもよく、供給電力を周波数変調することでデータの重畳が可能であるとともに周波数変調に伴って光出力が変化するものであれば構わない。   In the Manchester encoding method shown in FIG. 4G and the encoding methods shown in FIGS. 4B to 4D, the ratio between the first frequency f1 and the second frequency f2 is always equal. The optical outputs corresponding to the first and second frequencies f1 and f2 may be obtained by simply arithmetically averaging, but in the encoding method shown in FIG. 4E, the first frequency f1 and the second frequency f2 are obtained. The ratio of the first frequency f1 and the second frequency f2 is 2: 1 in the encoding method shown in FIG. , F2 is preferably weighted when the average value of the optical output corresponding to f2 is obtained. That is, assuming that the operating frequency is proportional to the lamp current (light output), the third value corresponding to the average value of the light output when the ratio between the first frequency f1 and the second frequency f2 is 3: 1. The frequency f3 is obtained by f3 = f1 + (f1 + f2) / 4, and when the ratio between the first frequency f1 and the second frequency f2 is 2: 1, the third frequency f3 corresponding to the average value of the optical output is It is obtained by f3 = f1 + (f1 + f2) / 3. Then, the control circuit 2 sets the lighting circuit so that the third frequency f3, which is a light output substantially equal to the average value of the light outputs thus obtained, matches the operating frequency of the lighting circuit 5 during non-transmission. 5 is controlled. In this embodiment, a fluorescent lamp is exemplified as the light source. However, a discharge lamp other than the fluorescent lamp (for example, a high-intensity discharge lamp such as HID or an electrodeless discharge lamp), an incandescent lamp, a light emitting diode, an organic EL element, or the like. Any individual light emitting element may be used as long as it can superimpose data by frequency-modulating the supplied power and the light output changes with frequency modulation.

(a)は本実施形態における照明器具のブロック図、(b)は受信装置のブロック図である。(A) is a block diagram of the lighting fixture in this embodiment, (b) is a block diagram of a receiver. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. (a)〜(g)は同上におけるデータ信号の符号化方式の説明図である。(A)-(g) is explanatory drawing of the encoding method of the data signal in the same as the above. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 従来例の説明図である。It is explanatory drawing of a prior art example.

符号の説明Explanation of symbols

T 照明器具
R 受信装置
1 信号源
2 制御回路
3 蛍光灯
4 直流電源回路
5 点灯回路
T lighting fixture R receiver 1 signal source 2 control circuit 3 fluorescent lamp 4 DC power supply circuit 5 lighting circuit

Claims (2)

光源から照射する照明光にデータを重畳させて伝送する1乃至複数の照明器具と、照明光に重畳されたデータを受信する1乃至複数の受信装置とを有する照明光伝送システムであって、
照明器具は、光源と、光源を点灯する点灯手段と、点灯手段を制御して光源から照射される照明光に2値のデータを重畳するデータ重畳手段とを備え、
データ重畳手段は、点灯手段から光源に供給される電流の周波数を2値のデータに対応した第1および第2の周波数に切り換えて周波数変調するとともに、データを重畳しないときは光源に供給される電流の周波数が、第1および第2の周波数に対応する光出力の平均値に略一致した光出力となる第3の周波数となるように点灯手段を制御することを特徴とする照明光伝送システム。
An illumination light transmission system comprising one or more lighting fixtures that transmit data superimposed on illumination light emitted from a light source, and one or more receivers that receive data superimposed on the illumination light,
The luminaire includes a light source, a lighting unit that turns on the light source, and a data superimposing unit that controls the lighting unit to superimpose binary data on the illumination light emitted from the light source,
The data superimposing means switches the frequency of the current supplied from the lighting means to the light source to the first and second frequencies corresponding to binary data and modulates the frequency, and when the data is not superimposed, is supplied to the light source. An illumination light transmission system, wherein the lighting means is controlled so that the current frequency becomes a third frequency at which the light output substantially matches the average value of the light outputs corresponding to the first and second frequencies. .
データ重畳手段は、2値のデータの発生頻度が一定の比率となるように符号化するとともに当該比率に応じた重み付けを行って第1および第2の周波数に対応する光出力の平均値を求めることを特徴とする請求項1記載の照明光伝送システム。   The data superimposing means encodes so that the occurrence frequency of binary data is a constant ratio, and performs weighting according to the ratio to obtain an average value of the optical outputs corresponding to the first and second frequencies. The illumination light transmission system according to claim 1.
JP2006089601A 2006-03-28 2006-03-28 Illumination light transmission system Expired - Fee Related JP4609362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006089601A JP4609362B2 (en) 2006-03-28 2006-03-28 Illumination light transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006089601A JP4609362B2 (en) 2006-03-28 2006-03-28 Illumination light transmission system

Publications (2)

Publication Number Publication Date
JP2007267040A true JP2007267040A (en) 2007-10-11
JP4609362B2 JP4609362B2 (en) 2011-01-12

Family

ID=38639580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006089601A Expired - Fee Related JP4609362B2 (en) 2006-03-28 2006-03-28 Illumination light transmission system

Country Status (1)

Country Link
JP (1) JP4609362B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038303A1 (en) * 2008-10-02 2010-04-08 株式会社MERSTech Information providing system
JP2010141393A (en) * 2008-12-09 2010-06-24 Konica Minolta Holdings Inc Illumination light communication apparatus and illumination light communication system
JP2013197843A (en) * 2012-03-19 2013-09-30 Toshiba Corp Transmission system and transmission device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032443A (en) * 1983-08-03 1985-02-19 Canon Inc Data transmission system by light
JPH0620785A (en) * 1991-06-28 1994-01-28 Nec Home Electron Ltd Method and device for information transmission and discharge lamp therefor
JP2002511727A (en) * 1998-04-15 2002-04-16 トーキング ライツ エルエルシー Multi-function electronic transceiver for wireless networks
JP2005174878A (en) * 2003-12-15 2005-06-30 Matsushita Electric Works Ltd Discharge lamp lighting device
JP2005176255A (en) * 2003-12-15 2005-06-30 Matsushita Electric Works Ltd Discharge lamp lighting apparatus and optical transmission system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032443A (en) * 1983-08-03 1985-02-19 Canon Inc Data transmission system by light
JPH0620785A (en) * 1991-06-28 1994-01-28 Nec Home Electron Ltd Method and device for information transmission and discharge lamp therefor
JP2002511727A (en) * 1998-04-15 2002-04-16 トーキング ライツ エルエルシー Multi-function electronic transceiver for wireless networks
JP2005174878A (en) * 2003-12-15 2005-06-30 Matsushita Electric Works Ltd Discharge lamp lighting device
JP2005176255A (en) * 2003-12-15 2005-06-30 Matsushita Electric Works Ltd Discharge lamp lighting apparatus and optical transmission system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038303A1 (en) * 2008-10-02 2010-04-08 株式会社MERSTech Information providing system
JPWO2010038303A1 (en) * 2008-10-02 2012-02-23 株式会社MERSTech Information provision system
JP2010141393A (en) * 2008-12-09 2010-06-24 Konica Minolta Holdings Inc Illumination light communication apparatus and illumination light communication system
JP2013197843A (en) * 2012-03-19 2013-09-30 Toshiba Corp Transmission system and transmission device

Also Published As

Publication number Publication date
JP4609362B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP2007267037A (en) Illumination light transmission system
JP5171393B2 (en) Visible light communication system
JP2010232912A (en) Illumination light transmission system
CN104869690B (en) The analog- and digital- LED of double mode dimmed by line voltage
JP4506502B2 (en) Illumination light transmission system
JP5364239B2 (en) Wireless control lighting system
US9407365B2 (en) Lighting device and receiver
US8331796B2 (en) Method and device for communicating data using a light source
US9320119B2 (en) System-voltage transmission branch of an interface of an operating device for light-emitting means
JP5354995B2 (en) Visible light communication system
CN109792819B (en) Modified light-emitting diode (LED) lamp tube for realizing step-by-step dimming in multi-lamp lighting system
JP2011238564A (en) Illumination system
JP4609362B2 (en) Illumination light transmission system
JP2007251864A (en) Lighting fixture for visible light communication, and visible light communication illumination system comprising the same
JP4894320B2 (en) Illumination light transmission receiver and illumination light transmission system
JP2011129481A (en) Lighting system
JP4661763B2 (en) Optical transmission system
TWI513362B (en) Method and device for driving light-emitting diode
JP5121503B2 (en) Communication method selection method, visible light communication method, and apparatus thereof
CN112567890A (en) LED driver and LED lighting system for use with high frequency electronic ballast
JP4534474B2 (en) Discharge lamp lighting device and optical transmission system
JP6554237B2 (en) Coded light transmitter, coded light receiver, coded light transmission method, and coded light reception method
JP5376867B2 (en) Illumination lighting device, luminaire, and illumination system
JPH01292918A (en) Optical space transmitting and communicating system
JP4971076B2 (en) Lighting dimming system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081218

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees