[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007263897A - Calibration method and device for polarization meter, the polarization meter and exposure device equipped with the polarization meter, and measuring method of phase delay amount and wavelength plate - Google Patents

Calibration method and device for polarization meter, the polarization meter and exposure device equipped with the polarization meter, and measuring method of phase delay amount and wavelength plate Download PDF

Info

Publication number
JP2007263897A
JP2007263897A JP2006092589A JP2006092589A JP2007263897A JP 2007263897 A JP2007263897 A JP 2007263897A JP 2006092589 A JP2006092589 A JP 2006092589A JP 2006092589 A JP2006092589 A JP 2006092589A JP 2007263897 A JP2007263897 A JP 2007263897A
Authority
JP
Japan
Prior art keywords
polarization
measuring device
optical system
light
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006092589A
Other languages
Japanese (ja)
Inventor
Yasushi Mizuno
恭志 水野
Hisanori Kita
尚憲 北
Toru Fujii
藤井  透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006092589A priority Critical patent/JP2007263897A/en
Publication of JP2007263897A publication Critical patent/JP2007263897A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a calibration device which performs calibration of a polarization meter with high accuracy. <P>SOLUTION: The calibration device which performs calibration of the polarization meter 9 comprises a light source 21 which generates a linear polarized laser beam, a half-wave plate 24 which rotates the polarization direction of the laser beam, two polarization beam splitters 25A, 25B, and a polarization system 25 capable of rotation by a rotation mechanism 41. The rotation angle of the polarization system 25 is adjusted by the rotation mechanism 41, and the laser beam of a known polarization state which is emitted from the polarization system 25 is supplied to the polarization meter 9; and the known polarization state and the measured result of the polarization meter 9 are compared; and a parameter inside the polarization meter 9 is adjusted, according to the comparison results. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、入射光の偏光状態を計測するための偏光計測技術、偏光計測技術を用いる露光技術、偏光計測装置の校正技術、及び偏光計測装置の校正で使用される波長板の位相遅れ量の計測技術に関する。   The present invention relates to a polarization measurement technique for measuring the polarization state of incident light, an exposure technique using the polarization measurement technique, a calibration technique for the polarization measurement apparatus, and a phase lag amount of a wave plate used in the calibration of the polarization measurement apparatus. Related to measurement technology.

例えば半導体デバイスを製造するためのリソグラフィ工程中で、レチクル(又はフォトマスク等)のパターンを投影光学系を介してレジストが塗布されたウエハ(又はガラスプレート等)の各ショット領域に転写するために、ステッパー又はスキャニングステッパー等の露光装置が使用されている。これらの露光装置においては、解像度を高めるために露光波長が次第に短波長化して来ており、現状では露光用の照明光として主にKrFエキシマレーザ(波長247nm)、ArFエキシマレーザ(波長193nm)等のエキシマレーザ光が使用されている。   For example, in a lithography process for manufacturing a semiconductor device, a pattern of a reticle (or a photomask) is transferred to each shot area of a wafer (or a glass plate, etc.) coated with a resist via a projection optical system. An exposure apparatus such as a stepper or a scanning stepper is used. In these exposure apparatuses, the exposure wavelength is gradually shortened in order to increase the resolution. At present, KrF excimer laser (wavelength 247 nm), ArF excimer laser (wavelength 193 nm), etc. are mainly used as illumination light for exposure. Excimer laser light is used.

最近では、さらに解像度や焦点深度等の結像性能を改善するために、所定の偏光状態に制御された照明光を用いる偏光照明も提案されている。エキシマレーザ光は光源から射出される段階ではほぼ直線偏光であるため、例えば照明光学系中で所定の波長板等を用いて偏光方向を回転することによって、容易に偏光状態を制御することができる。   Recently, in order to further improve imaging performance such as resolution and depth of focus, polarization illumination using illumination light controlled to a predetermined polarization state has also been proposed. Since the excimer laser beam is almost linearly polarized when it is emitted from the light source, the polarization state can be easily controlled by rotating the polarization direction using a predetermined wave plate or the like in the illumination optical system, for example. .

露光装置において偏光照明を用いるためには、実際に照明光の偏光状態を目標とする状態に設定できるかどうかを確認しておく必要がある。そのためには、必要に応じて露光装置のウエハステージ等に、偏光計測装置を設置して、照明光の偏光状態(偏光度等)を計測することが望ましい。この場合、偏光計測装置の計測結果の信頼性を高めるためには、例えば定期的に偏光計測装置の校正(キャリブレーション)を行うことが望ましい。   In order to use polarized illumination in the exposure apparatus, it is necessary to confirm whether or not the polarization state of the illumination light can actually be set to a target state. For this purpose, it is desirable to install a polarization measuring device on the wafer stage or the like of the exposure apparatus as necessary to measure the polarization state (polarization degree, etc.) of the illumination light. In this case, in order to improve the reliability of the measurement result of the polarization measuring device, it is desirable to calibrate the polarization measuring device periodically, for example.

また、偏光計測装置には、1/4波長板等の波長板(移相板)を備え、この波長板の既知のリターデーション量(位相遅れ量)を用いて入射光の偏光状態を計算するタイプがある。このタイプの計測装置で計測精度を高めるためには、その波長板のリターデーション量を高精度に計測しておく必要がある。
本発明は、このような課題に鑑み、偏光計測装置の計測精度を高めるための校正技術を提供することを目的とする。
Further, the polarization measuring device is provided with a wave plate (phase shift plate) such as a quarter wave plate, and the polarization state of incident light is calculated using the known retardation amount (phase delay amount) of the wave plate. There are types. In order to increase the measurement accuracy with this type of measurement device, it is necessary to measure the retardation amount of the wave plate with high accuracy.
In view of such a problem, an object of the present invention is to provide a calibration technique for increasing the measurement accuracy of a polarization measuring device.

さらに本発明は、偏光計測装置の計測精度を高めるために、偏光計測装置等で使用される波長板の位相遅れ量を高精度に計測する計測技術を提供することを目的とする。
また、本発明は、その校正技術で校正された偏光計測装置、この偏光計測装置を備えた露光装置、及びその位相遅れ量の計測技術で計測された波長板を提供することをも目的とする。
Furthermore, an object of the present invention is to provide a measurement technique for measuring the phase lag amount of a wave plate used in a polarization measurement device or the like with high accuracy in order to increase the measurement accuracy of the polarization measurement device.
Another object of the present invention is to provide a polarization measuring apparatus calibrated by the calibration technique, an exposure apparatus equipped with the polarization measuring apparatus, and a wavelength plate measured by the phase delay measuring technique. .

本発明による偏光計測装置の校正方法は、入射光の偏光状態を計測する偏光計測装置(9)の校正方法において、その偏光計測装置に少なくとも1つの偏光子(25A)を介して偏光状態が既知の光束を供給する第1工程と、その偏光計測装置でその光束の偏光状態を計測する第2工程と、その第2工程の計測結果とその光束の既知の偏光状態とを比較する第3工程とを有するものである。本発明によれば、偏光状態が既知の光束を用いることで、その偏光計測装置を校正できる。   The polarization measuring device calibration method according to the present invention is a polarization measuring device (9) calibration method for measuring the polarization state of incident light. The polarization state is known to the polarization measuring device via at least one polarizer (25A). A first step of supplying the light beam, a second step of measuring the polarization state of the light beam with the polarization measuring device, and a third step of comparing the measurement result of the second step with the known polarization state of the light beam. It has. According to the present invention, the polarization measuring device can be calibrated by using a light beam whose polarization state is known.

また、本発明による偏光計測装置の校正装置は、入射光の偏光状態を計測する偏光計測装置(9)の校正装置において、光束を発生する光源(21)と、少なくとも1つの偏光子(25A)を有し、その光源から発生した光束の偏光状態を所定状態に設定してその偏光計測装置に供給する偏光光学系(25)とを備えたものである。本発明によって、本発明の偏光計測装置の校正方法を使用できる。   The polarization measuring device calibration apparatus according to the present invention includes a light source (21) that generates a light beam and at least one polarizer (25A) in the polarization measuring device (9) that measures the polarization state of incident light. And a polarization optical system (25) for setting the polarization state of the light beam generated from the light source to a predetermined state and supplying the polarization state to the polarization measuring device. According to the present invention, the calibration method of the polarimetry apparatus of the present invention can be used.

また、本発明の位相遅れ量の計測方法は、被検光学素子(35)の位相遅れ量の計測方法において、直線偏光の光束を少なくとも1つの偏光子(37A)を含む偏光光学系(37)を介して光電検出器(38)に入射させ、その光電検出器の出力が最小又は最大になるようにその光束とその偏光光学系とを相対回転する第1工程と、その光束をその被検光学素子を介してその偏光光学系に入射させ、その光電検出器の出力が最小又は最大になるときのその被検光学素子の基準回転角を求める第2工程と、その被検光学素子をその基準回転角に対して所定角度回転させ、その光束をその被検光学素子及びその偏光光学系を介してその光電検出器に供給し、その光電検出器の出力が最小又は最大になるときのその偏光光学系の回転角を求める第3工程と、その第3工程で求めた回転角に基づいてその被検光学素子の位相遅れ量を求める第4工程とを有するものである。本発明によれば、その被検光学素子の位相遅れ量を高精度に計測できる。   The phase delay amount measuring method of the present invention is a polarization optical system (37) including a linearly polarized light beam including at least one polarizer (37A) in the method of measuring the phase delay amount of the optical element (35). A first step of causing the light beam and the polarization optical system to rotate relative to each other so that the output of the photoelectric detector is minimized or maximized, and the light beam is detected. A second step of determining the reference rotation angle of the optical element to be measured when the output of the photoelectric detector is minimized or maximized by entering the polarizing optical system via the optical element; The light beam is rotated by a predetermined angle with respect to the reference rotation angle, the light beam is supplied to the photoelectric detector through the optical element to be measured and the polarization optical system, and the output of the photoelectric detector is minimized or maximized. 3rd to obtain the rotation angle of the polarization optical system Degree and, in which a fourth step of obtaining the phase delay of the test optical element based on the rotation angle determined in the third step. According to the present invention, the amount of phase delay of the optical element to be measured can be measured with high accuracy.

次に、本発明による偏光計測装置は、本発明の偏光計測値の校正方法で校正されたものである。また、本発明による露光装置は、露光ビームでパターン(M)を照明し、そのパターンを投影光学系(PL)を介して感光体(W)上に転写する露光装置において、その露光ビームの偏光状態を計測するために、本発明の校正済みの偏光計測装置(9)を備えたものである。また、本発明による波長板は、本発明の位相遅れ量の計測方法で位相遅れ量が計測されたものである。   Next, the polarimetry apparatus according to the present invention is calibrated by the polarization measurement value calibration method of the present invention. An exposure apparatus according to the present invention illuminates a pattern (M) with an exposure beam, and in the exposure apparatus that transfers the pattern onto the photoreceptor (W) via the projection optical system (PL), the exposure beam is polarized. In order to measure the state, the calibrated polarization measuring device (9) of the present invention is provided. The wave plate according to the present invention is obtained by measuring the phase lag amount by the phase lag amount measuring method of the present invention.

なお、以上の本発明の所定要素に付した括弧付き符号は、本発明の一実施形態を示す図面中の部材に対応しているが、各符号は本発明を分かり易くするために本発明の要素を例示したに過ぎず、本発明をその実施形態の構成に限定するものではない。   In addition, although the reference numerals in parentheses attached to the predetermined elements of the present invention correspond to members in the drawings showing an embodiment of the present invention, each reference numeral of the present invention is provided for easy understanding of the present invention. The elements are merely illustrative, and the present invention is not limited to the configuration of the embodiment.

以下、本発明の好ましい実施形態の一例につき図1〜図6を参照して説明する。
図1は本例の露光装置の概略構成を示し、この図1において、露光用の光源1として、発振波長が狭帯化されたArFエキシマレーザ光源(波長193nm)が使用されているが、その他にKrFエキシマレーザ光源(波長247nm)、F2 レーザ光源(波長157nm)等も使用できる。光源1から射出される照明光IL(露光ビーム)は、偏光度Vが例えば0.95以上の直線偏光のレーザビームである。偏光度Vは、光束の全強度を示すS0、水平方向の直線偏光成分の強度から鉛直方向の直線偏光成分の強度を差し引いた差分強度を示すS1、水平方向に対して45°傾斜した方向の直線偏光成分の強度からそれに直交する方向の直線偏光成分の強度を差し引いた差分強度を示すS2、及び右回りの円偏光成分の強度から左回りの円偏光成分の強度を差し引いた差分強度を示すS3よりなるストークスパラメータS0〜S3を用いて、次式で表すことができる。
Hereinafter, an example of a preferred embodiment of the present invention will be described with reference to FIGS.
FIG. 1 shows a schematic configuration of an exposure apparatus of this example. In FIG. 1, an ArF excimer laser light source (wavelength 193 nm) having a narrow oscillation wavelength is used as a light source 1 for exposure. Also, a KrF excimer laser light source (wavelength 247 nm), an F 2 laser light source (wavelength 157 nm), or the like can be used. The illumination light IL (exposure beam) emitted from the light source 1 is a linearly polarized laser beam having a polarization degree V of, for example, 0.95 or more. The degree of polarization V is S 0 indicating the total intensity of the light beam, S 1 indicating the difference intensity obtained by subtracting the intensity of the linearly polarized light component in the vertical direction from the intensity of the linearly polarized light component in the horizontal direction, and inclined by 45 ° with respect to the horizontal direction. S 2 indicating the difference intensity obtained by subtracting the intensity of the linearly polarized light component in the direction orthogonal to the intensity of the linearly polarized light component in the direction, and the difference obtained by subtracting the intensity of the counterclockwise circularly polarized light component from the intensity of the clockwise circularly polarized light component Using the Stokes parameters S 0 to S 3 composed of S 3 indicating the intensity, it can be expressed by the following equation.

V=(S1 2+S2 2+S3 21/2/S0 …(1)
光源1から射出された照明光ILは、周知のビーム送光系2を介して偏光状態可変部3に入射する。偏光状態可変部3は、後述のマスク(又はレチクル)M、ひいてはウエハWに対する照明光ILの偏光状態を変化させる機能を有する。偏光状態可変部3は、一例として回転可能な1/2波長板又は1/4波長板を含み、1/2波長板を回転することで、照明光ILの偏光方向を任意の方向に設定することができ、その代わりに用いる1/4波長板の回転角を調整することで、照明光ILを円偏光や楕円偏光にすることができる。
V = (S 1 2 + S 2 2 + S 3 2 ) 1/2 / S 0 (1)
The illumination light IL emitted from the light source 1 is incident on the polarization state variable unit 3 via the known beam transmission system 2. The polarization state varying unit 3 has a function of changing the polarization state of the illumination light IL with respect to a mask (or reticle) M, which will be described later, and consequently the wafer W. The polarization state variable unit 3 includes, as an example, a rotatable half-wave plate or quarter-wave plate, and sets the polarization direction of the illumination light IL to an arbitrary direction by rotating the half-wave plate. The illumination light IL can be made into circularly polarized light or elliptically polarized light by adjusting the rotation angle of the quarter wave plate used instead.

偏光状態可変部3により必要に応じて偏光状態の変換された照明光ILは、光束の断面形状を変化させるためのズーム光学系等を含むビーム形状可変部4を介して、マイクロフライアイレンズ(又はフライアイレンズ)5に入射する。マイクロフライアイレンズ5を構成する多数の正屈折力からなる微小レンズによってその射出面(照明光学系の瞳面)に多数の二次光源からなる面光源が形成され、その面光源からの照明光ILを重畳することで照明光ILの照度分布が均一化される。なお、マイクロフライアイレンズ5の代わりに、回折光学素子やロッドインテグレータ(内面反射型インテグレータ)等のオプティカル・インテグレータ(ホモジナイザ)を使用しても良い。また、その照明光学系の瞳面には、通常照明、輪帯照明、2極照明、変形照明等の種々の照明方式用の開口絞りを切り替えて設定するための可変開口絞り部(不図示)が設置されている。   The illumination light IL whose polarization state has been converted as necessary by the polarization state variable unit 3 passes through a beam shape variable unit 4 including a zoom optical system or the like for changing the cross-sectional shape of the light beam. (Or fly eye lens) 5. A surface light source including a large number of secondary light sources is formed on the exit surface (pupil surface of the illumination optical system) by a large number of micro lenses having positive refractive power constituting the micro fly's eye lens 5, and illumination light from the surface light source. By superimposing IL, the illuminance distribution of the illumination light IL is made uniform. Instead of the micro fly's eye lens 5, an optical integrator (homogenizer) such as a diffractive optical element or a rod integrator (internal reflection type integrator) may be used. A variable aperture stop (not shown) for switching and setting an aperture stop for various illumination methods such as normal illumination, annular illumination, dipole illumination, and modified illumination is provided on the pupil plane of the illumination optical system. Is installed.

マイクロフライアイレンズ5から射出された照明光ILは、コンデンサー光学系6を介して、マスクM上の照明領域の形状を規定するための開口部が形成されたマスクブラインド7を照明する。マスクブラインド7の開口部を通過した照明光ILは、結像光学系8及び光路折り曲げ用のミラーを介して、転写用のパターンが形成されたマスクMを均一な照度分布で照明する。ビーム送光系2から結像光学系8までの部材を含んで照明光学系が構成されている。また、光源1、偏光状態可変部3、及びビーム形状可変部4の動作は、コンピュータよりなり装置全体の動作を統括制御する主制御系11によって制御されている。さらに、例えばマイクロフライアイレンズ5とコンデンサー光学系6との間に配置されたビームスプリッタ(不図示)で分岐された照明光が光電検出器よりなるインテグレータセンサ10で受光され、インテグレータセンサ10の検出信号が主制御系11に供給されている。主制御系11はその検出信号に基づいて照明光ILの光量を制御する。   The illumination light IL emitted from the micro fly's eye lens 5 illuminates the mask blind 7 in which an opening for defining the shape of the illumination area on the mask M is formed via the condenser optical system 6. The illumination light IL that has passed through the opening of the mask blind 7 illuminates the mask M on which the transfer pattern is formed with a uniform illuminance distribution via the imaging optical system 8 and the optical path bending mirror. The illumination optical system includes members from the beam transmission system 2 to the imaging optical system 8. The operations of the light source 1, the polarization state varying unit 3, and the beam shape varying unit 4 are controlled by a main control system 11 that is composed of a computer and controls the overall operation of the apparatus. Further, for example, illumination light branched by a beam splitter (not shown) disposed between the micro fly's eye lens 5 and the condenser optical system 6 is received by an integrator sensor 10 including a photoelectric detector, and detected by the integrator sensor 10. A signal is supplied to the main control system 11. The main control system 11 controls the amount of illumination light IL based on the detection signal.

照明光ILのもとで、マスクMのパターンは投影光学系PLを介してレジストが塗布されたウエハW(感光体)上に転写露光される。マスクMは不図示のマスクステージ上に保持され、ウエハWはウエハステージWSTに保持され、ウエハステージWSTはウエハベースWB上の投影光学系PLの光軸AXに垂直な平面内で連続移動及びステップ移動を行う。また、ウエハステージWSTには、不図示のオートフォーカスセンサの計測値に基づいて、ウエハWの表面を投影光学系PLの像面に合焦させるために、ウエハWのフォーカス位置(光軸AX方向の位置)及び傾斜角を制御するフォーカス・レベリングステージも組み込まれている。   Under the illumination light IL, the pattern of the mask M is transferred and exposed onto a wafer W (photosensitive member) coated with a resist via the projection optical system PL. Mask M is held on a mask stage (not shown), wafer W is held on wafer stage WST, and wafer stage WST is continuously moved and stepped in a plane perpendicular to optical axis AX of projection optical system PL on wafer base WB. Move. Further, the wafer stage WST has a focus position (in the optical axis AX direction) of the wafer W in order to focus the surface of the wafer W on the image plane of the projection optical system PL based on a measurement value of an autofocus sensor (not shown). And a focus / leveling stage that controls the tilt angle.

露光時には、主制御系11の制御のもとで不図示のアライメント系によってマスクMとウエハWとのアライメントが行われた後、偏光状態可変部3によって照明光ILの偏光状態が所定状態に設定される。その後、光源1の発光を開始して、マスクMのパターンを一括露光方式又は走査露光方式で投影光学系PLを介してウエハW上の1つのショット領域に転写する動作と、光源1の発光を停止して、ウエハWをステップ移動する動作とを繰り返すことによって、ウエハW上の全部のショット領域にマスクMのパターンが転写される。また、本例の露光装置が国際公開第99/49504号パンフレットに示すような液浸型である場合には、投影光学系PLとウエハWとの間に不図示の液体供給機構から純水等の液体が供給される。   At the time of exposure, the mask M and the wafer W are aligned by an alignment system (not shown) under the control of the main control system 11, and then the polarization state of the illumination light IL is set to a predetermined state by the polarization state variable unit 3. Is done. Thereafter, light emission of the light source 1 is started, and an operation of transferring the pattern of the mask M to one shot area on the wafer W through the projection optical system PL by a batch exposure method or a scanning exposure method, and light emission of the light source 1 are performed. The pattern of the mask M is transferred to all the shot areas on the wafer W by repeating the operation of stopping and stepping the wafer W. When the exposure apparatus of this example is an immersion type as shown in the pamphlet of International Publication No. 99/49504, pure water or the like is provided between the projection optical system PL and the wafer W from a liquid supply mechanism (not shown). Liquid is supplied.

さて、このように偏光照明を用いる場合、照明光ILの偏光状態が目標とする状態に設定されているかどうかを計測するために、一例としてウエハステージWSTに対して着脱自在に偏光計測装置9が備えられている。なお、偏光計測装置9をマスクステージ(不図示)に設置して、照明光学系からの照明光ILの偏光状態を計測してもよい。投影光学系PLを介した照明光ILの偏光状態を計測する際には、ウエハステージWSTを駆動することによって、投影光学系PLの露光領域に偏光計測装置9の入射面が移動する。
なお、ウエハステージWSTに偏光計測装置9を常設してもよい。あるいは、例えばウエハステージWSTとは別にアライメント用の基準マーク及び投影光学系PLの結像特性計測用の計測ユニット等が設けられた計測ステージを独立して配置するような場合には、その計測ステージに偏光計測装置9を固定してもよい。
Now, in the case of using polarized illumination in this way, in order to measure whether or not the polarization state of the illumination light IL is set to a target state, the polarization measurement device 9 is detachably attached to the wafer stage WST as an example. Is provided. The polarization measuring device 9 may be installed on a mask stage (not shown) to measure the polarization state of the illumination light IL from the illumination optical system. When measuring the polarization state of the illumination light IL via the projection optical system PL, the incident surface of the polarization measuring device 9 is moved to the exposure area of the projection optical system PL by driving the wafer stage WST.
The polarization measuring device 9 may be permanently installed on the wafer stage WST. Alternatively, for example, in the case where a measurement stage provided with a reference mark for alignment and a measurement unit for measuring the imaging characteristics of the projection optical system PL separately from the wafer stage WST, the measurement stage is arranged. Alternatively, the polarization measuring device 9 may be fixed.

図2は、図1の偏光計測装置9の構成を示し、この図2において、図1の投影光学系PLからの照明光ILの偏光状態の計測時に、照明光ILはピンホール部材90のピンホール90aを通過する。ピンホール90aを通過した照明光ILは、コリメータレンズ91を介してほぼ平行光束に変換され、ミラー92で反射された後、リレーレンズ系93、1/4波長板94(移相子)、偏光ビームスプリッタ(以下、PBSと言う。)95を介して2次元CCDよりなる撮像素子96の検出面96aに入射する。1/4波長板94は、駆動部97によって光軸を中心として回転可能である。PBS95は、所定の偏光成分(ここではP偏光成分)を選択的に透過させるための偏光子を構成している。ピンホール部材90から撮像素子96までの部材を含んで偏光計測装置9が構成されている。   2 shows the configuration of the polarization measuring device 9 of FIG. 1. In FIG. 2, the illumination light IL is a pin of the pinhole member 90 when measuring the polarization state of the illumination light IL from the projection optical system PL of FIG. Pass through the hole 90a. The illumination light IL that has passed through the pinhole 90a is converted into a substantially parallel light beam through the collimator lens 91, reflected by the mirror 92, and then the relay lens system 93, the quarter wavelength plate 94 (phase shifter), and the polarization. The light is incident on a detection surface 96 a of an image sensor 96 made of a two-dimensional CCD via a beam splitter (hereinafter referred to as PBS) 95. The quarter-wave plate 94 can be rotated around the optical axis by the drive unit 97. The PBS 95 constitutes a polarizer for selectively transmitting a predetermined polarization component (here, P polarization component). The polarization measuring device 9 is configured to include members from the pinhole member 90 to the image sensor 96.

駆動部97からの1/4波長板94の回転角に関する情報及び撮像素子96の検出信号(光量分布情報)は計測部98に供給される。計測部98は、その回転角に関する情報及び光量分布情報に基づいて、例えば回転移相子法により照明光ILの偏光状態を示すストークスパラメータS0〜S3を求め、その計測結果を主制御系11に供給する。回転移相子法は、例えば鶴田著:光の鉛筆−光技術者のための応用光学(株式会社新技術コミニュケーションズ)に詳しく記載されている。具体的に、1/4波長板94の進相軸に対する遅相軸の照明光のリターデーション量(位相遅れ量)の実測値をΓ、撮像素子96の1つの画素に入射するP偏光の照明光に関するPBS95の透過率(平行透過率)の実測値をtx、当該画素に入射するS偏光の照明光に関するPBS95の透過率(垂直透過率)の実測値をtyとする。この場合、平行透過率txは0.9程度であり、垂直透過率tyは0.01程度である。また、ストークスパラメータのうちで、全強度を示すパラメータS0を1/4波長板94の回転角θに関してフーリエ変換したときの0次の係数をa0/2、sin2θの係数をb2、cos4θの係数をa4、sin4θの係数をb4とする。 Information on the rotation angle of the quarter-wave plate 94 from the drive unit 97 and the detection signal (light quantity distribution information) of the image sensor 96 are supplied to the measurement unit 98. The measuring unit 98 obtains Stokes parameters S 0 to S 3 indicating the polarization state of the illumination light IL by, for example, the rotational phase shift method based on the information about the rotation angle and the light amount distribution information, and the measurement result is obtained from the main control system. 11 is supplied. The Rotational Transition Phase Method is described in detail in, for example, Tsuruta: Optical Pencil-Applied Optics for Optical Engineers (New Technology Communications Co., Ltd.). Specifically, the measured value of the retardation amount (phase delay amount) of the slow axis illumination light with respect to the fast axis of the quarter-wave plate 94 is Γ, and the P-polarized illumination incident on one pixel of the image sensor 96 Assume that the measured value of the transmittance (parallel transmittance) of the PBS 95 related to light is tx, and the measured value of the transmittance (vertical transmittance) of the PBS 95 related to the S-polarized illumination light incident on the pixel is ty. In this case, the parallel transmittance tx is about 0.9, and the vertical transmittance ty is about 0.01. Further, among the Stokes parameters, the parameter S 0 to 1/4 a 0/2 0 order coefficient when the Fourier transform with respect to the rotation angle θ of the wave plate 94 showing the total intensity, b 2 coefficients of sin2θ, cos4θ Is a 4 and the coefficient of sin 4θ is b 4 .

このとき、係数A(=(tx2+ty2)/2)及びB(=(tx2−ty2)/2)を用いると、照明光ILのストークスパラメータS0〜S3の計測値は次のようになる。この計測値を(1)式に代入することで、照明光ILの偏光状態としての偏光度Vを求めることができる。偏光度Vの情報は計測部98から主制御系11に供給される。なお、ストークスパラメータS0〜S3自体を偏光状態とみなして、主制御系11に供給してもよい。 At this time, when the coefficients A (= (tx 2 + ty 2 ) / 2) and B (= (tx 2 −ty 2 ) / 2) are used, the measured values of the Stokes parameters S 0 to S 3 of the illumination light IL are as follows. become that way. By substituting this measurement value into equation (1), the degree of polarization V as the polarization state of the illumination light IL can be obtained. Information on the degree of polarization V is supplied from the measuring unit 98 to the main control system 11. The Stokes parameters S 0 to S 3 themselves may be regarded as the polarization state and supplied to the main control system 11.

Figure 2007263897
Figure 2007263897

偏光度Vの計算式から分かるように、偏光度Vの計測結果に影響するパラメータは、1/4波長板94(移相子)のリターデーション量Γ、1/4波長板94の進相軸の方向(回転方位)、PBS95の平行透過率tx及び垂直透過率ty、並びにPBS95の回転方位(例えば入射光とビームスプリッタ面で反射される光束とを含む面の回転角)であり、偏光計測装置9の校正時の補正対象はこれらのパラメータの値である。   As can be seen from the calculation formula of the degree of polarization V, the parameters affecting the measurement result of the degree of polarization V are the retardation amount Γ of the quarter-wave plate 94 (phase shifter) and the fast axis of the quarter-wave plate 94. Direction (rotational orientation), parallel transmittance tx and vertical transmittance ty of PBS 95, and rotational orientation of PBS 95 (for example, a rotational angle of a plane including incident light and a light beam reflected by the beam splitter surface), and polarization measurement. The correction target at the time of calibration of the device 9 is the values of these parameters.

次に、偏光計測装置9の計測値の校正方法の一例につき説明する。なお、本例の校正方法は、回転移相子法以外の偏光計測装置の校正にも使用できる。
図3は、偏光計測装置9の校正装置(キャリブレーション装置)の一例を示し、この図3において、校正装置は、図1の露光装置の光源1と同じ発振波長の光源21を備えている。従って、光源1がArFエキシマレーザ光源であれば、光源21もArFエキシマレーザ光源である。このため、図1の露光装置に装着された場合と同じ状態で偏光計測装置9の校正を行うことができる。ただし、光源21と光源1とで発振波長が異なっていてもよく、光源21はレーザ光源以外の光源であってもよい。光源21からは、偏光度が0.95以上の直線偏光のほぼ平行光束からなるレーザビームLBが射出される。
Next, an example of a method for calibrating the measurement value of the polarization measuring device 9 will be described. Note that the calibration method of this example can also be used for calibration of polarization measuring devices other than the rotational phase shifter method.
FIG. 3 shows an example of a calibration device (calibration device) of the polarization measuring device 9. In FIG. 3, the calibration device includes a light source 21 having the same oscillation wavelength as the light source 1 of the exposure apparatus of FIG. Therefore, if the light source 1 is an ArF excimer laser light source, the light source 21 is also an ArF excimer laser light source. For this reason, the polarization measuring device 9 can be calibrated in the same state as when it is mounted on the exposure apparatus of FIG. However, the light source 21 and the light source 1 may have different oscillation wavelengths, and the light source 21 may be a light source other than the laser light source. The light source 21 emits a laser beam LB composed of a linearly polarized light beam having a polarization degree of 0.95 or more.

光源21から射出されたレーザビームLBは、透過率の大きいビームスプリッタ22及び不図示の回転機構に保持された1/2波長板24を介して偏光方向が回転されて、ビームスプリッタ面が互いに平行になるように直列配置された2つのPBS(偏光ビームスプリッタ)25A,25Bからなる偏光系25に入射する。偏光系25は、不図示のコラムに固定された固定部材41bと、固定部材41b内に回転自在に収納された回転部材41aとを含む回転機構41によって光軸の回りに回転自在に保持され、偏光系25を透過したレーザビームは偏光計測装置9に入射する。偏光系25に入射する光束のうちで、PBS25A,25Bのビームスプリッタ面に対するP偏光成分が偏光系25を透過する。2つのPBS25A,25Bを直列に配置することで、偏光系25を透過する光束の偏光度を高めることができ、偏光計測装置9の校正をより高精度に行うことができる。ただし、偏光計測装置9で必要とされる計測精度が低い場合には、偏光系25を1つのPBS25Aのみから構成してもよい。逆に、計測精度をより高めたい場合には、3個以上のPBSを直列に配置してもよい。また、PBS25A,25Bの代わりに偏光板等の他の偏光子を用いてもよい。   The polarization direction of the laser beam LB emitted from the light source 21 is rotated through a beam splitter 22 having a high transmittance and a half-wave plate 24 held by a rotation mechanism (not shown), and the beam splitter surfaces are parallel to each other. Is incident on a polarization system 25 composed of two PBSs (polarization beam splitters) 25A and 25B arranged in series. The polarization system 25 is rotatably held around the optical axis by a rotating mechanism 41 including a fixing member 41b fixed to a column (not shown) and a rotating member 41a rotatably accommodated in the fixing member 41b. The laser beam transmitted through the polarization system 25 enters the polarization measuring device 9. Among the light beams incident on the polarization system 25, the P-polarized component with respect to the beam splitter surfaces of the PBSs 25 </ b> A and 25 </ b> B passes through the polarization system 25. By arranging the two PBSs 25A and 25B in series, the degree of polarization of the light beam transmitted through the polarization system 25 can be increased, and the polarization measuring device 9 can be calibrated with higher accuracy. However, when the measurement accuracy required by the polarization measuring device 9 is low, the polarization system 25 may be configured by only one PBS 25A. Conversely, when it is desired to increase the measurement accuracy, three or more PBSs may be arranged in series. Further, other polarizers such as a polarizing plate may be used instead of the PBSs 25A and 25B.

一方、ビームスプリッタ22で反射(分岐)されたレーザビームは、フォトダイオード等の光量モニタ23で受光される。光量モニタ23の検出結果が所定レベルになるように光源21の出力を制御することで、偏光計測装置9にほぼ一定の光量のレーザビームを入射させることができる。光源1、ビームスプリッタ22、光量モニタ23、1/2波長板24、及び偏光系25を含んで校正装置が構成されている。   On the other hand, the laser beam reflected (branched) by the beam splitter 22 is received by a light amount monitor 23 such as a photodiode. By controlling the output of the light source 21 so that the detection result of the light amount monitor 23 becomes a predetermined level, a laser beam having a substantially constant light amount can be incident on the polarization measuring device 9. A calibration apparatus is configured including the light source 1, the beam splitter 22, the light amount monitor 23, the half-wave plate 24, and the polarization system 25.

図3の校正装置を用いて、一例として以下のように偏光計測装置9の校正が行われる。
第1工程:回転機構41によって偏光系25の回転角を所定角度に設定する。具体的に、光源21から射出されるレーザビームLBの光軸が水平面に平行であるとして、偏光系25を透過するレーザビームLBの偏光方向が水平方向、鉛直方向、水平方向から45°傾斜した方向、又は水平方向から135°傾斜した方向等になるように、偏光系25の回転角を設定する。その後、光源21からのレーザビームLBをビームスプリッタ22、1/2波長板24、及び偏光系25を介して偏光計測装置9に供給する。この場合、偏光計測装置9に供給されるレーザビームは偏光方向が既知の直線偏光であるため、(1)式からその偏光度V1を求めることができる。
As an example, the polarization measuring device 9 is calibrated as follows using the calibration device of FIG.
First step: The rotation angle of the polarization system 25 is set to a predetermined angle by the rotation mechanism 41. Specifically, assuming that the optical axis of the laser beam LB emitted from the light source 21 is parallel to the horizontal plane, the polarization direction of the laser beam LB transmitted through the polarization system 25 is inclined 45 ° from the horizontal, vertical, and horizontal directions. The rotation angle of the polarization system 25 is set so as to be a direction or a direction inclined by 135 ° from the horizontal direction. Thereafter, the laser beam LB from the light source 21 is supplied to the polarization measuring device 9 via the beam splitter 22, the half-wave plate 24, and the polarization system 25. In this case, since the laser beam supplied to the polarization measuring device 9 is linearly polarized light whose polarization direction is known, the degree of polarization V1 can be obtained from the equation (1).

第2工程:偏光計測装置9でその供給されたレーザビームの偏光度V1’を計測する。
第3工程:偏光計測装置9で計測されたレーザビームの偏光度V1’と、第1工程で偏光計測装置9に供給されるレーザビームの既知の偏光度V1とを比較して、その差分Δ1を求める。次に、差分Δ1を小さくするように、偏光計測装置9のパラメータである図2の1/4波長板94のリターデーション量Γ、並びにPBS95の平行透過率tx及び垂直透過率ty等のいずれかの値を補正する。これによって偏光計測装置9の校正が完了する。
Second step: The polarization measuring device 9 measures the polarization degree V1 ′ of the supplied laser beam.
Third step: The degree of polarization V1 ′ of the laser beam measured by the polarization measuring device 9 is compared with the known degree of polarization V1 of the laser beam supplied to the polarization measuring device 9 in the first step, and the difference Δ1 Ask for. Next, any one of the retardation amount Γ of the quarter-wave plate 94 in FIG. 2, which is a parameter of the polarization measuring device 9, and the parallel transmittance tx and the vertical transmittance ty of the PBS 95 so as to reduce the difference Δ1. Correct the value of. Thereby, the calibration of the polarization measuring device 9 is completed.

第4工程:偏光計測装置9の計測部98(図2参照)において、補正後のパラメータを用いて偏光度V1’を再計算することで、偏光計測装置9の計測結果を補正することができる。
なお、補正すべきパラメータは5個以上であるため、偏光系25の回転角を5箇所以上に設定してそれぞれ上記の第1工程、第2工程を実行して、偏光度の差分Δ1〜Δ5等を求め、その第3工程ではそれらの差分Δ1〜Δ5等が全体として小さくなるように、最小自乗法等でリターデーション量Γ、及び透過率tx,tyの値を補正してもよい。また、偏光系25の射出面に1/4波長板を設置して円偏光の光束を偏光計測装置9に供給してもよい。これによって、偏光計測装置9の校正精度を高めることができる。
Fourth step: In the measurement unit 98 (see FIG. 2) of the polarization measuring device 9, the measurement result of the polarization measuring device 9 can be corrected by recalculating the degree of polarization V1 ′ using the corrected parameters. .
Since there are five or more parameters to be corrected, the rotation angle of the polarization system 25 is set to five or more positions, and the first step and the second step described above are executed, respectively, and the polarization degree differences Δ1 to Δ5. In the third step, the retardation value Γ and the transmittances tx and ty may be corrected by the least square method or the like so that the differences Δ1 to Δ5 are reduced as a whole. Alternatively, a quarter wavelength plate may be installed on the exit surface of the polarization system 25 to supply a circularly polarized light beam to the polarization measuring device 9. As a result, the calibration accuracy of the polarization measuring device 9 can be increased.

このように本例の校正装置によれば、偏光状態が既知のレーザビームを偏光計測装置9に供給することで、偏光計測装置9の計測結果を校正することができる。図1の露光装置に装着されている偏光計測装置9は、そのようにして校正が行われている。
なお、光源1の出力が安定しているような場合には、ビームスプリッタ22及び光量モニタ23は省略してもよい。また、1/2波長板24を用いて偏光系25に入射するレーザビームLBの偏光状態をほぼP偏光とすることによって、レーザビームLBの利用効率を高く維持できる。なお、レーザビームLBの利用効率が多少低下してもよい場合には、1/2波長板24を省略してもよい。また、光源21としては円偏光又はランダム偏光の光束を射出する光源を使用することも可能であり、この場合には、1/2波長板24を省略することができる。さらに、偏光計測装置9に円偏光の光束を供給する場合には、偏光系25と偏光計測装置9との間に1/4波長板を配置してもよい。
As described above, according to the calibration device of this example, the measurement result of the polarization measuring device 9 can be calibrated by supplying the polarization measuring device 9 with the laser beam whose polarization state is known. The polarization measuring device 9 attached to the exposure apparatus in FIG. 1 is calibrated as described above.
If the output of the light source 1 is stable, the beam splitter 22 and the light amount monitor 23 may be omitted. Further, by using the half-wave plate 24 to make the polarization state of the laser beam LB incident on the polarization system 25 substantially P-polarized light, the utilization efficiency of the laser beam LB can be maintained high. If the utilization efficiency of the laser beam LB may be somewhat reduced, the half-wave plate 24 may be omitted. As the light source 21, a light source that emits a circularly polarized light or a randomly polarized light beam can be used. In this case, the half-wave plate 24 can be omitted. Further, when a circularly polarized light beam is supplied to the polarization measuring device 9, a ¼ wavelength plate may be disposed between the polarization system 25 and the polarization measuring device 9.

なお、図1の例のように投影光学系PLを通過した照明光ILの偏光状態を計測するための偏光計測装置9の校正を行うためには、図4に示すように、偏光系25と偏光計測装置9との間にレンズ27a,27bよりなる対物レンズ系27を配置してもよい。また、偏光計測装置9に円偏光の光束を供給するために、偏光系25の射出面に点線で示すように1/4波長板28を配置してもよい。   In order to calibrate the polarization measuring device 9 for measuring the polarization state of the illumination light IL that has passed through the projection optical system PL as in the example of FIG. 1, as shown in FIG. An objective lens system 27 including lenses 27 a and 27 b may be disposed between the polarization measuring device 9. Further, in order to supply a circularly polarized light beam to the polarization measuring device 9, a quarter wavelength plate 28 may be disposed on the exit surface of the polarization system 25 as indicated by a dotted line.

図3に対応する部分に同一符号を付した図4において、偏光系25を透過したレーザビームLBは回折光学素子26及び対物レンズ系27を介して偏光計測装置9に供給される。この場合、対物レンズ系27は、リターデーションの極めて小さいレンズを使用して構成されている。また、対物レンズ系27の瞳面でのレーザビームLBの可干渉性を低くするために、回折光学素子26が使用されている。図5は、図4中の回折光学素子26から偏光計測装置9までの光路を示し、この図5において、レーザビームLBは回折光学素子26によって少なくとも3つの方向に回折され、対物レンズ系27の瞳面では、回折光学素子26上の異なる部分からの3個以上の光が集まるため、可干渉性が低下する。なお、回折光学素子26は省略することも可能である。   In FIG. 4 in which parts corresponding to those in FIG. 3 are assigned the same reference numerals, the laser beam LB transmitted through the polarization system 25 is supplied to the polarization measuring device 9 via the diffractive optical element 26 and the objective lens system 27. In this case, the objective lens system 27 is configured using a lens with extremely small retardation. In order to reduce the coherence of the laser beam LB on the pupil plane of the objective lens system 27, the diffractive optical element 26 is used. FIG. 5 shows an optical path from the diffractive optical element 26 to the polarization measuring device 9 in FIG. 4. In FIG. 5, the laser beam LB is diffracted by the diffractive optical element 26 in at least three directions. On the pupil plane, since three or more lights from different portions on the diffractive optical element 26 gather, the coherence decreases. The diffractive optical element 26 can be omitted.

また、図4の例では、レンズ27bと偏光計測装置9との間の空間を密閉するようにカバー部材47が設けられ、カバー部材47の内部に配管48を介して液体供給装置46から、図1の露光装置で液浸露光を行う際に投影光学系PLとウエハWとの間に供給されるのと同じ液体を供給できるように構成されている。本例では、レンズ27bと偏光計測装置9との間にその液体を供給することで、液浸露光を行う場合と同じ条件で偏光計測装置9の校正を行うことができる。   In the example of FIG. 4, a cover member 47 is provided so as to seal a space between the lens 27 b and the polarization measuring device 9, and the inside of the cover member 47 is connected from the liquid supply device 46 via a pipe 48. When performing immersion exposure with one exposure apparatus, the same liquid as that supplied between the projection optical system PL and the wafer W can be supplied. In this example, by supplying the liquid between the lens 27b and the polarization measuring device 9, the polarization measuring device 9 can be calibrated under the same conditions as in immersion exposure.

なお、図4の例では回折光学素子26を用いてレーザビームLBの可干渉性を低下させているが、図6に示すように、オプティカル・インテグレータを用いて可干渉性を抑制してもよい。
図6において、光源21から射出されたレーザビームLBは、フライアイレンズ29に入射し、フライアイレンズ29から射出された光束はコリメータレンズ30によって集光されて第1のピンホール板31に照射され、このピンホール板31のピンホール31aを通過した光束は、第2のピンホール板32に照射される。なお、フライアイレンズ29の代わりに、回折光学素子等の他のオプティカル・インテグレータ(ホモジナイザ)を使用してもよい。そのピンホール板32のピンホール32aを通過した光束は、ミラー33、ビームスプリッタ22を経てビームエキスパンダ34によって断面形状が拡大された後、1/2波長板24、偏光系25、及び対物レンズ系27を介して偏光計測装置9に入射する。また、ビームスプリッタ22で分岐した光束が光量モニタ23で受光されている。
In the example of FIG. 4, the diffractive optical element 26 is used to reduce the coherence of the laser beam LB. However, as shown in FIG. 6, an optical integrator may be used to suppress the coherence. .
In FIG. 6, the laser beam LB emitted from the light source 21 is incident on the fly-eye lens 29, and the light beam emitted from the fly-eye lens 29 is condensed by the collimator lens 30 and irradiated to the first pinhole plate 31. Then, the light beam that has passed through the pinhole 31 a of the pinhole plate 31 is irradiated to the second pinhole plate 32. In place of the fly-eye lens 29, another optical integrator (homogenizer) such as a diffractive optical element may be used. The light beam that has passed through the pinhole 32a of the pinhole plate 32 is enlarged in cross-section by the beam expander 34 through the mirror 33 and the beam splitter 22, and then the half-wave plate 24, the polarization system 25, and the objective lens. The light enters the polarization measuring device 9 through the system 27. Further, the light beam branched by the beam splitter 22 is received by the light amount monitor 23.

図6の校正装置では、フライアイレンズ29を構成する多数の微小レンズからの光束を重畳した光束をピンホール板31,32を介して取り出し、この光束の断面形状を大きくした光束の偏光状態を制御して偏光計測装置9に供給している。従って、レーザビームLBの可干渉性の影響を低減させて、高精度に偏光計測装置9の校正を行うことができる。
次に、本発明の実施形態の他の例につき図7及び図8を参照して説明する。上記の実施形態では、偏光状態が既知の光束を入射することで図2の偏光計測装置9の計測値の校正を行っているが、本例では偏光計測装置9の計測精度を高めるために、図2の1/4波長板94のリターデーション量(位相遅れ量)を予め高精度に計測するものとする。
In the calibration device of FIG. 6, a light beam obtained by superimposing light beams from a large number of microlenses constituting the fly-eye lens 29 is taken out via the pinhole plates 31 and 32, and the polarization state of the light beam with a larger cross-sectional shape of this light beam is obtained. Controlled and supplied to the polarization measuring device 9. Therefore, the influence of the coherence of the laser beam LB can be reduced and the polarization measuring device 9 can be calibrated with high accuracy.
Next, another example of the embodiment of the present invention will be described with reference to FIGS. In the above embodiment, the measurement value of the polarization measuring device 9 in FIG. 2 is calibrated by entering a light beam whose polarization state is known. In this example, in order to increase the measurement accuracy of the polarization measuring device 9, It is assumed that the retardation amount (phase delay amount) of the quarter wavelength plate 94 in FIG.

図7(A)は、本例のリターデーション量の計測装置を示し、この図3に対応する部分に同一符号を付した図7(A)において、光源21からのレーザビームLBは、ビームスプリッタ22、1/2波長板24、光源側の偏光系25を介して被検光学素子35に入射する。被検光学素子35の一例は、図2の1/4波長板94である。被検光学素子35を透過したレーザビームLBは、計測用の1/4波長板36を経て2つのPBS(偏光ビームスプリッタ)37A及び37Bをビームスプリッタ面が平行になるように直列配置してなる計測用の偏光系37を介してフォトダイオード等の光電センサ38で受光され、光電センサ38の検出信号が信号処理系43に供給される。なお、偏光系37も、1つのPBS37Aのみから構成してもよく、偏光板等の他の偏光子を用いて構成してもよい。   FIG. 7A shows the retardation amount measuring apparatus of this example. In FIG. 7A in which parts corresponding to those in FIG. 3 are given the same reference numerals, the laser beam LB from the light source 21 is a beam splitter. 22 and the half-wave plate 24 and the light source side polarization system 25 to enter the test optical element 35. An example of the test optical element 35 is the quarter-wave plate 94 in FIG. The laser beam LB transmitted through the optical element 35 to be measured is formed by arranging two PBSs (polarized beam splitters) 37A and 37B in series so that the beam splitter surfaces are parallel through a quarter-wave plate 36 for measurement. Light is received by a photoelectric sensor 38 such as a photodiode via a measurement polarization system 37, and a detection signal of the photoelectric sensor 38 is supplied to a signal processing system 43. Note that the polarization system 37 may also be composed of only one PBS 37A, or may be composed of another polarizer such as a polarizing plate.

また、被検光学素子35、1/4波長板36、及び偏光系37はそれぞれ光軸を中心としてこれらの部材を回転するための回転機構42A,42B,42Cに支持されている。さらに被検光学素子35及び1/4波長板36はそれぞれ不図示のXYステージによって必要に応じてレーザビームLBの光路外に待避できるように構成されている。回転機構42A,42B,42Cの回転角の情報も信号処理系43に供給されている。   The test optical element 35, the quarter-wave plate 36, and the polarization system 37 are supported by rotating mechanisms 42A, 42B, and 42C for rotating these members around the optical axis. Further, the test optical element 35 and the quarter wavelength plate 36 are configured to be retracted outside the optical path of the laser beam LB as required by an XY stage (not shown). Information on the rotation angles of the rotation mechanisms 42A, 42B, and 42C is also supplied to the signal processing system 43.

図7(A)の計測装置によって被検光学素子35のリターデーション量を計測する動作の一例につき説明する。
第1工程:被検光学素子35及び1/4波長板36を光路外に待避させた状態で、光源21を発光させ、1/2波長板24を回転して偏光系25に対してほぼP偏光となるレーザビームLBを偏光系25に供給する。この結果、偏光系25から光量の大きい、かつ偏光度の高い直線偏光(P偏光)のレーザビームLBが偏光系37に供給される。この状態で、入射するレーザビームLBが偏光系37に対してS偏光となるように、即ち光電センサ38の検出信号が最小となるように、回転機構42Cを介して偏光系37の回転角(レーザビームLBに対する相対回転角)を設定する。なお、入射するレーザビームLBが偏光系37に対してP偏光となるように、即ち光電センサ38の検出信号が最大となるように、偏光系37の回転角を設定することも可能である(以下同様)。また、光源21(レーザビームLB)側を回転することも可能である。
An example of an operation for measuring the retardation amount of the optical element 35 to be measured by the measurement apparatus of FIG.
First step: With the test optical element 35 and the quarter-wave plate 36 retracted outside the optical path, the light source 21 is caused to emit light, and the half-wave plate 24 is rotated to approximately P with respect to the polarization system 25. The polarized laser beam LB is supplied to the polarization system 25. As a result, a linearly polarized (P-polarized) laser beam LB having a large amount of light and a high degree of polarization is supplied from the polarization system 25 to the polarization system 37. In this state, the rotation angle of the polarization system 37 (via the rotation mechanism 42C) so that the incident laser beam LB becomes S-polarized light with respect to the polarization system 37, that is, the detection signal of the photoelectric sensor 38 is minimized. The relative rotation angle with respect to the laser beam LB) is set. Note that the rotation angle of the polarization system 37 can also be set so that the incident laser beam LB is P-polarized with respect to the polarization system 37, that is, the detection signal of the photoelectric sensor 38 is maximized ( The same applies below). It is also possible to rotate the light source 21 (laser beam LB) side.

第2工程:1/4波長板36を光路上に設置して、1/4波長板36の進相軸が入射するレーザビームLBの偏光方向に平行になるように、即ち光電センサ38の検出信号が最小になるように回転機構42Bによって1/4波長板36の回転角を設定する。
次に、被検光学素子35を光路上に設置して、被検光学素子35の一つの結晶軸(例えば進相軸)が入射するレーザビームLBの偏光方向に平行になるときの、即ち光電センサ38の検出信号が最小になるときの被検光学素子35の回転角(基準回転角)を求める。
Second step: The quarter-wave plate 36 is installed on the optical path so that the fast axis of the quarter-wave plate 36 is parallel to the polarization direction of the incident laser beam LB, that is, the detection by the photoelectric sensor 38. The rotation angle of the quarter wavelength plate 36 is set by the rotation mechanism 42B so that the signal is minimized.
Next, the test optical element 35 is placed on the optical path, and one crystal axis (for example, the fast axis) of the test optical element 35 is parallel to the polarization direction of the incident laser beam LB, that is, photoelectric. The rotation angle (reference rotation angle) of the test optical element 35 when the detection signal of the sensor 38 is minimized is obtained.

第3工程:被検光学素子35をその基準回転角に対して45°回転した状態で、1/4波長板36を透過したレーザビームLBの偏光方向が偏光系37に対してS偏光(消光方位)となるように、即ち光電センサ38の検出信号が最小になるときの偏光系37の回転角を求める。
第4工程:その第3工程で求めた偏光系37の回転角を2倍することで被検光学素子35のリターデーション量を求めることができる。
Third step: In a state in which the optical element 35 to be tested is rotated by 45 ° with respect to the reference rotation angle, the polarization direction of the laser beam LB transmitted through the quarter wavelength plate 36 is S-polarized (quenched) with respect to the polarization system 37 The rotation angle of the polarization system 37 when the detection signal of the photoelectric sensor 38 is minimized.
Fourth step: The retardation amount of the test optical element 35 can be obtained by doubling the rotation angle of the polarization system 37 obtained in the third step.

即ち、図7(B)に示すように、入射するレーザビームの偏光方向44に対して、被検光学素子35の進相軸35aは45°回転している。また、図7(C)に示すように、1/4波長板36の進相軸36aの方向は偏光方向44に平行であるため、被検光学素子35のリターデーション量をδとすると、1/4波長板36を透過した後のレーザビームの偏光方向は進相軸36aの方向に対してδ/2だけ回転する。この角度δ/2がその第3工程で検出される偏光系37の回転角であるため、それを2倍することで、セナルモン法によってリターデーション量δが高精度に求められる。   That is, as shown in FIG. 7B, the fast axis 35a of the test optical element 35 is rotated by 45 ° with respect to the polarization direction 44 of the incident laser beam. Further, as shown in FIG. 7C, since the direction of the fast axis 36a of the quarter wavelength plate 36 is parallel to the polarization direction 44, if the retardation amount of the test optical element 35 is δ, 1 The polarization direction of the laser beam after passing through the / 4 wavelength plate 36 rotates by δ / 2 with respect to the direction of the fast axis 36a. Since this angle δ / 2 is the rotation angle of the polarization system 37 detected in the third step, the retardation amount δ can be obtained with high accuracy by the Senarmon method by doubling it.

その被検光学素子35として図2の1/4波長板94を配置し、上記の工程で高精度にリターデーション量が計測された1/4波長板94を図2の偏光計測装置9内で使用することによって、偏光計測装置9の偏光度の計測精度が向上する。
なお、その第3工程における被検光学素子35の回転角は45°以外の所定角度であってもよい。ただし、この場合には、第3工程で求められる偏光系37の回転角と被検光学素子35のリターデーション量δとの間の変換係数が2とは異なる複雑な値になる。
The quarter-wave plate 94 of FIG. 2 is arranged as the optical element 35 to be tested, and the quarter-wave plate 94 in which the retardation amount is measured with high accuracy in the above-described process is placed in the polarization measuring device 9 of FIG. By using it, the measurement accuracy of the polarization degree of the polarization measuring device 9 is improved.
The rotation angle of the optical element 35 to be tested in the third step may be a predetermined angle other than 45 °. However, in this case, the conversion coefficient between the rotation angle of the polarization system 37 and the retardation amount δ of the optical element 35 to be obtained in the third step becomes a complex value different from 2.

また、例えばその第1工程及び第3工程において、光電センサ38の検出信号から偏光系37の透過率(透過光量)を正確に求めるために、図8に示すように、偏光系37を構成するPBS37A(又は37B)の回転角(PBS角度)θ(deg)と直線偏光の光束の透過率t(θ)との関係を予め計測して記憶しておいてもよい。この場合、偏光系37の回転角θに対して線形に変化する関数f(θ)を用いて、その回転角θに応じて光電センサ38の検出信号にf(θ)/t(θ)を乗ずることで、リニアリティ補正が可能となる。即ち、特に回転角θが小さい範囲で、光電センサ38の検出信号から偏光系37の透過率を高精度に求めることができ、その結果、偏光系37を透過する光量が最小になるときの回転角を効率的に決定することができる。   Further, for example, in the first step and the third step, in order to accurately obtain the transmittance (transmitted light amount) of the polarization system 37 from the detection signal of the photoelectric sensor 38, the polarization system 37 is configured as shown in FIG. The relationship between the rotation angle (PBS angle) θ (deg) of the PBS 37A (or 37B) and the transmittance t (θ) of the linearly polarized light beam may be measured and stored in advance. In this case, using a function f (θ) that changes linearly with respect to the rotation angle θ of the polarization system 37, f (θ) / t (θ) is used as a detection signal of the photoelectric sensor 38 according to the rotation angle θ. Multiplication enables linearity correction. In other words, the transmittance of the polarization system 37 can be obtained with high accuracy from the detection signal of the photoelectric sensor 38, particularly in a range where the rotation angle θ is small, and as a result, the rotation when the amount of light transmitted through the polarization system 37 is minimized. The corner can be determined efficiently.

なお、図8の透過率の特性は、図2のPBS95の水平透過率及び垂直透過率を計測する際にも使用することができ、これによって、PBS95の透過率の計測精度が向上し、ひいては偏光計測装置9の計測精度が向上する。
また、上記の実施形態の露光装置を用いて半導体デバイスを製造する場合、この半導体デバイスは、デバイスの機能・性能設計を行うステップ、このステップに基づいてレチクルを製造するステップ、シリコン材料からウエハを形成するステップ、上記の実施形態の投影露光装置によりアライメントを行ってレチクルのパターンをウエハに露光するステップ、エッチング等の回路パターンを形成するステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、及び検査ステップ等を経て製造される。
Note that the transmittance characteristics of FIG. 8 can also be used when measuring the horizontal transmittance and the vertical transmittance of the PBS 95 of FIG. 2, thereby improving the measurement accuracy of the transmittance of the PBS 95, and thus The measurement accuracy of the polarization measuring device 9 is improved.
Further, when a semiconductor device is manufactured using the exposure apparatus of the above-described embodiment, the semiconductor device includes a step of designing a function and performance of the device, a step of manufacturing a reticle based on this step, and a wafer from a silicon material. Forming, aligning with the projection exposure apparatus of the above embodiment to expose the pattern of the reticle onto the wafer, forming a circuit pattern such as etching, device assembly step (dicing process, bonding process, packaging process) Including) and an inspection step.

なお、本発明は、半導体デバイス製造用の露光装置への適用に限定されることなく、例えば、角型のガラスプレートに形成される液晶表示素子、若しくはプラズマディスプレイ等のディスプレイ装置用の露光装置や、撮像素子(CCD等)、マイクロマシーン、薄膜磁気ヘッド、及びDNAチップ等の各種デバイスやマスク自体を製造するための露光装置にも広く適用できる。このように本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得ることは勿論である。   The present invention is not limited to application to an exposure apparatus for manufacturing a semiconductor device. For example, an exposure apparatus for a display device such as a liquid crystal display element formed on a square glass plate or a plasma display, The present invention can also be widely applied to various devices such as an image sensor (CCD or the like), a micromachine, a thin film magnetic head, and a DNA chip, and an exposure apparatus for manufacturing a mask itself. As described above, the present invention is not limited to the above-described embodiment, and it is needless to say that various configurations can be taken without departing from the gist of the present invention.

本発明によって校正された偏光計測装置を用いることで、露光装置の偏光照明時の露光ビームの偏光状態を高精度に計測できる。従って、その結果に基づいて高精度に偏光照明を行うことが可能になり、微細パターンを高精度に製造できる。   By using the polarization measuring device calibrated according to the present invention, the polarization state of the exposure beam during polarized illumination of the exposure device can be measured with high accuracy. Therefore, it becomes possible to perform polarized illumination with high accuracy based on the result, and a fine pattern can be manufactured with high accuracy.

本発明の実施形態の一例の露光装置の概略構成を示す図である。It is a figure which shows schematic structure of the exposure apparatus of an example of embodiment of this invention. 図1中の偏光計測装置9の構成を示す図である。It is a figure which shows the structure of the polarimetry apparatus 9 in FIG. 偏光計測装置9の校正装置の一例を示す図である。It is a figure which shows an example of the calibration apparatus of the polarization measuring device. 図3の校正装置の変形例を示す図である。It is a figure which shows the modification of the calibration apparatus of FIG. 図4中の回折光学素子26の作用の説明図である。It is explanatory drawing of an effect | action of the diffractive optical element 26 in FIG. 図3の校正装置の別の変形例を示す図である。It is a figure which shows another modification of the calibration apparatus of FIG. (A)はリターデーション量の計測装置の一例を示す図、(B)は被検光学素子35を示す図、(C)は1/4波長板36を示す図である。(A) is a figure which shows an example of the measuring device of retardation amount, (B) is a figure which shows the test optical element 35, (C) is a figure which shows the quarter wavelength plate 36. 偏光ビームスプリッタの回転角と透過率との関係の一例を示す図である。It is a figure which shows an example of the relationship between the rotation angle of a polarizing beam splitter, and the transmittance | permeability.

符号の説明Explanation of symbols

9…偏光計測装置、94…1/4波長板、95…偏光ビームスプリッタ、21…光源、24…1/2波長板、25…偏光系、25A,25B…偏光ビームスプリッタ、26…回折光学素子、27…対物レンズ系、35…被検光学素子、36…1/4波長板、37…計測用の偏光系、41…回転機構
DESCRIPTION OF SYMBOLS 9 ... Polarization measuring apparatus, 94 ... 1/4 wavelength plate, 95 ... Polarization beam splitter, 21 ... Light source, 24 ... 1/2 wavelength plate, 25 ... Polarization system, 25A, 25B ... Polarization beam splitter, 26 ... Diffractive optical element 27 ... Objective lens system, 35 ... Optical element to be tested, 36 ... 1/4 wavelength plate, 37 ... Polarization system for measurement, 41 ... Rotation mechanism

Claims (13)

入射光の偏光状態を計測する偏光計測装置の校正方法において、
前記偏光計測装置に少なくとも1つの偏光子を介して偏光状態が既知の光束を供給する第1工程と、
前記偏光計測装置で前記光束の偏光状態を計測する第2工程と、
前記第2工程の計測結果と前記光束の既知の偏光状態とを比較する第3工程とを有することを特徴とする偏光計測装置の校正方法。
In a calibration method of a polarization measuring device that measures the polarization state of incident light,
A first step of supplying a light beam having a known polarization state via at least one polarizer to the polarization measuring device;
A second step of measuring the polarization state of the luminous flux with the polarization measuring device;
A calibration method for a polarization measuring device, comprising: a third step of comparing a measurement result of the second step with a known polarization state of the light beam.
前記第3工程の比較結果に応じて前記偏光計測装置を校正する第4工程をさらに有することを特徴とする請求項1に記載の偏光計測装置の校正方法。   The method of calibrating a polarization measuring device according to claim 1, further comprising a fourth step of calibrating the polarization measuring device according to a comparison result of the third step. 請求項2に記載の偏光計測値の校正方法で校正されたことを特徴とする偏光計測装置。   A polarization measuring device calibrated by the polarization measurement value calibration method according to claim 2. 露光ビームでパターンを照明し、前記パターンを投影光学系を介して感光体上に転写する露光装置において、
前記露光ビームの偏光状態を計測するために、請求項3に記載の校正済みの偏光計測装置を備えたことを特徴とする露光装置。
In an exposure apparatus that illuminates a pattern with an exposure beam and transfers the pattern onto a photoconductor via a projection optical system,
An exposure apparatus comprising the calibrated polarization measuring device according to claim 3 for measuring a polarization state of the exposure beam.
入射光の偏光状態を計測する偏光計測装置の校正装置において、
光束を発生する光源と、
少なくとも1つの偏光子を有し、前記光源から発生した光束の偏光状態を所定状態に設定して前記偏光計測装置に供給する偏光光学系とを備えたことを特徴とする偏光計測装置の校正装置。
In a polarization measuring device calibration device that measures the polarization state of incident light,
A light source that generates luminous flux;
A polarization measuring device calibration apparatus comprising: a polarization optical system that includes at least one polarizer, sets a polarization state of a light beam generated from the light source to a predetermined state, and supplies the polarization state to the polarization measuring device .
前記光源からの光束の一部を分岐するビームスプリッタと、
前記ビームスプリッタによって分岐された光束の光量を検出する光量モニタとをさらに備えたことを特徴とする請求項5に記載の偏光計測装置の校正装置。
A beam splitter for branching a part of the light beam from the light source;
6. The polarization measuring device calibration apparatus according to claim 5, further comprising a light amount monitor that detects a light amount of a light beam branched by the beam splitter.
前記光源は、直線偏光のレーザ光を発生するレーザ光源であり、
前記レーザ光源と前記偏光光学系との間に回転可能な状態で配置された1/2波長板をさらに備えたことを特徴とする請求項5又は6に記載の偏光計測装置の校正装置。
The light source is a laser light source that generates linearly polarized laser light,
The polarization measuring apparatus calibration apparatus according to claim 5, further comprising a half-wave plate disposed in a rotatable state between the laser light source and the polarization optical system.
前記偏光光学系を回転する回転機構をさらに備えたことを特徴とする請求項5から7のいずれか一項に記載の偏光計測装置の校正装置。   The calibration apparatus for a polarization measuring device according to claim 5, further comprising a rotation mechanism that rotates the polarization optical system. 前記偏光光学系と前記偏光計測装置との間に
前記光束を複数の方向に回折する回折光学素子と、前記複数の方向に回折された光束を集光する対物光学系とを配置したことを特徴とする請求項5から8のいずれか一項に記載の偏光計測装置の校正装置。
A diffractive optical element that diffracts the light beam in a plurality of directions and an objective optical system that collects the light beam diffracted in the plurality of directions are arranged between the polarization optical system and the polarization measuring device. The calibration apparatus for a polarization measuring device according to claim 5.
前記対物光学系と前記偏光計測装置との間に液体を供給する液体供給機構をさらに備えたことを特徴とする請求項9に記載の偏光計測装置の校正装置。   The polarization measuring device calibration apparatus according to claim 9, further comprising a liquid supply mechanism that supplies a liquid between the objective optical system and the polarization measuring device. 被検光学素子の位相遅れ量の計測方法において、
直線偏光の光束を少なくとも1つの偏光子を含む偏光光学系を介して光電検出器に入射させ、前記光電検出器の出力が最小又は最大になるように前記光束と前記偏光光学系とを相対回転する第1工程と、
前記光束を前記被検光学素子を介して前記偏光光学系に入射させ、前記光電検出器の出力が最小又は最大になるときの前記被検光学素子の基準回転角を求める第2工程と、
前記被検光学素子を前記基準回転角に対して所定角度回転させ、前記光束を前記被検光学素子及び前記偏光光学系を介して前記光電検出器に供給し、前記光電検出器の出力が最小又は最大になるときの前記偏光光学系の回転角を求める第3工程と、
前記第3工程で求めた回転角に基づいて前記被検光学素子の位相遅れ量を求める第4工程とを有することを特徴とする位相遅れ量の計測方法。
In the method of measuring the phase delay amount of the optical element to be tested,
A linearly polarized light beam is incident on a photoelectric detector via a polarization optical system including at least one polarizer, and the light beam and the polarization optical system are relatively rotated so that the output of the photoelectric detector is minimized or maximized. A first step of
A second step of causing the light beam to enter the polarization optical system via the test optical element and obtaining a reference rotation angle of the test optical element when the output of the photoelectric detector is minimized or maximized;
The test optical element is rotated by a predetermined angle with respect to the reference rotation angle, the light beam is supplied to the photoelectric detector via the test optical element and the polarization optical system, and the output of the photoelectric detector is minimized. Or a third step of obtaining a rotation angle of the polarizing optical system when maximizing.
And a fourth step of obtaining a phase delay amount of the optical element to be measured based on the rotation angle obtained in the third step.
前記偏光光学系の回転角と前記偏光光学系の直線偏光の入射光に対する透過率との関係を予め求めて記憶しておき、
前記第1工程及び前記第3工程において、前記関係及び前記偏光光学系の回転角とに基づいて前記光電検出器の出力を補正することを特徴とする請求項11に記載の位相遅れ量の計測方法。
The relationship between the rotation angle of the polarizing optical system and the transmittance of the polarized optical system with respect to the incident light of the linearly polarized light is obtained in advance and stored,
The phase delay amount measurement according to claim 11, wherein in the first step and the third step, the output of the photoelectric detector is corrected based on the relationship and the rotation angle of the polarization optical system. Method.
請求項11又は12に記載の位相遅れ量の計測方法で位相遅れ量が計測されたことを特徴とする波長板。
13. A wavelength plate, wherein the phase delay amount is measured by the phase delay amount measuring method according to claim 11.
JP2006092589A 2006-03-29 2006-03-29 Calibration method and device for polarization meter, the polarization meter and exposure device equipped with the polarization meter, and measuring method of phase delay amount and wavelength plate Withdrawn JP2007263897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006092589A JP2007263897A (en) 2006-03-29 2006-03-29 Calibration method and device for polarization meter, the polarization meter and exposure device equipped with the polarization meter, and measuring method of phase delay amount and wavelength plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006092589A JP2007263897A (en) 2006-03-29 2006-03-29 Calibration method and device for polarization meter, the polarization meter and exposure device equipped with the polarization meter, and measuring method of phase delay amount and wavelength plate

Publications (1)

Publication Number Publication Date
JP2007263897A true JP2007263897A (en) 2007-10-11

Family

ID=38637018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006092589A Withdrawn JP2007263897A (en) 2006-03-29 2006-03-29 Calibration method and device for polarization meter, the polarization meter and exposure device equipped with the polarization meter, and measuring method of phase delay amount and wavelength plate

Country Status (1)

Country Link
JP (1) JP2007263897A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009048051A1 (en) * 2007-10-12 2009-04-16 Nikon Corporation Illuminating optical apparatus, and exposure method and apparatus
JP2010192667A (en) * 2009-02-18 2010-09-02 Canon Inc Polarization measurement device, polarization measurement method, aligner, and method of manufacturing device
JP2011009543A (en) * 2009-06-26 2011-01-13 Nikon Corp Light intensity detecting unit, optical system, exposure apparatus, and method of manufacturing device
WO2019021382A1 (en) * 2017-07-26 2019-01-31 オリンパス株式会社 Optical scanning observation device, optical scanning observation system, and method for adjusting polarization direction for optical scanning observation device
CN111879500A (en) * 2020-04-26 2020-11-03 浙江水晶光电科技股份有限公司 Detection system and method for diffraction optical element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009048051A1 (en) * 2007-10-12 2009-04-16 Nikon Corporation Illuminating optical apparatus, and exposure method and apparatus
US8300213B2 (en) 2007-10-12 2012-10-30 Nikon Corporation Illumination optics apparatus, exposure method, exposure apparatus, and method of manufacturing electronic device
JP2010192667A (en) * 2009-02-18 2010-09-02 Canon Inc Polarization measurement device, polarization measurement method, aligner, and method of manufacturing device
JP2011009543A (en) * 2009-06-26 2011-01-13 Nikon Corp Light intensity detecting unit, optical system, exposure apparatus, and method of manufacturing device
WO2019021382A1 (en) * 2017-07-26 2019-01-31 オリンパス株式会社 Optical scanning observation device, optical scanning observation system, and method for adjusting polarization direction for optical scanning observation device
WO2019022114A1 (en) * 2017-07-26 2019-01-31 オリンパス株式会社 Optical scanning observation device, optical scanning observation system and polarization direction adjustment method for optical scanning observation device
CN111879500A (en) * 2020-04-26 2020-11-03 浙江水晶光电科技股份有限公司 Detection system and method for diffraction optical element

Similar Documents

Publication Publication Date Title
US10338401B2 (en) Illumination system, inspection apparatus including such an illumination system, inspection method and manufacturing method
JP4820870B2 (en) Active reticle tool and lithographic apparatus
KR100856976B1 (en) Exposure apparatus and device manufacturing method
US7667829B2 (en) Optical property measurement apparatus and optical property measurement method, exposure apparatus and exposure method, and device manufacturing method
US7015456B2 (en) Exposure apparatus that acquires information regarding a polarization state of light from a light source
JP2005005521A (en) Device and method for exposing, and polarization state measurement device
JP2009068922A (en) Measurement apparatus, exposure apparatus, and device fabrication method
US7573563B2 (en) Exposure apparatus and device manufacturing method
JP4798489B2 (en) Optical characteristic measuring method and apparatus, and exposure apparatus
US20080079939A1 (en) Instrument for measuring the angular distribution of light produced by an illumination system of a microlithographic projection exposure apparatus
US7995213B2 (en) Measurement method, measurement apparatus, exposure apparatus, and device fabrication method
JP2011014660A (en) Polarization state measurement apparatus, exposure apparatus, and method of fabricating device
JP2007263897A (en) Calibration method and device for polarization meter, the polarization meter and exposure device equipped with the polarization meter, and measuring method of phase delay amount and wavelength plate
TWI662375B (en) A flexible illuminator
JP2001160535A (en) Aligner and device manufacturing using the same
JP2004356193A (en) Aligner and exposure method
JP2006179660A (en) Method and device for polarization measurement, and method and device for exposure
JP2009103677A (en) Method, device and program for calculating polarization characteristics of optical system, computer readable recording medium with the program thereon, and method and device for exposure
US8139201B2 (en) Exposure apparatus and method of manufacturing device
WO2013168457A1 (en) Surface position measurement device, surface position measurement method, exposure device, and device production method
JP7418112B2 (en) Pattern forming device and article manufacturing method
JP2007057244A (en) Polarization measuring device, exposure device and exposure method
JP2010249627A (en) Method and device for polarization measurement, and method and device for exposure
JP5930350B2 (en) Method for adjusting the optical system of a microlithographic projection exposure apparatus
JP2006245152A (en) Polarization measuring equipment, polarization measuring method, exposure apparatus, and exposure method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090602