[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007263451A - Water supply equipment - Google Patents

Water supply equipment Download PDF

Info

Publication number
JP2007263451A
JP2007263451A JP2006088700A JP2006088700A JP2007263451A JP 2007263451 A JP2007263451 A JP 2007263451A JP 2006088700 A JP2006088700 A JP 2006088700A JP 2006088700 A JP2006088700 A JP 2006088700A JP 2007263451 A JP2007263451 A JP 2007263451A
Authority
JP
Japan
Prior art keywords
water
heat
receiving tank
heat recovery
water receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006088700A
Other languages
Japanese (ja)
Inventor
Masayuki Ushio
雅之 牛尾
Mitsutaka Okamoto
光崇 岡本
Tsutomu Kubota
力 久保田
Takeshi Nanbu
剛 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINWA TEKKU KK
Osaka Gas Co Ltd
Original Assignee
SHINWA TEKKU KK
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINWA TEKKU KK, Osaka Gas Co Ltd filed Critical SHINWA TEKKU KK
Priority to JP2006088700A priority Critical patent/JP2007263451A/en
Publication of JP2007263451A publication Critical patent/JP2007263451A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/18Domestic hot-water supply systems using recuperated or waste heat

Landscapes

  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide water supply equipment, suitably heating water in a water receiving tank even in an intermediate period when the temperature of the water receiving tank becomes higher while avoiding increase in quantity of water in the water receiving tank. <P>SOLUTION: This water supply equipment includes an exhaust heat recovery and heating means K for recovering heat generated in a power generation means G and heating the water in the water receiving tank 3, wherein the exhaust heat recovery and heating means K includes a heat recovery side circulating means Kg for recovering the generated heat of the power generation means G and circulating a heat medium for exhaust heat recovery to supply heat to a buffer tank 21 storing the heat medium; and a receiving tank side circulating means Kr for circulating the water in the water receiving tank 3 to heat water in the water receiving tank 3 by heat supplied to the buffer tank 21 by the heat recovery side circulating means Kg, and the heat medium for exhaust heat recovery circulated by the heat recovery side circulating means Kg and water in the water receiving tank 3 circulated by the water receiving tank circulating means Kr is circulated in the non-mixed state. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、地域又は集合住宅に含まれる複数の住戸を対象として、上水道から供給される水を貯留する受水槽と、
その受水槽の水を給水路を通じて前記複数の住戸の夫々に供給する給水手段と、
前記地域又は前記集合住宅を電力供給対象として発電する発電手段と、
その発電手段にて発生する熱を回収して前記受水槽の水を加熱する排熱回収加熱手段とが設けられた給水設備に関する。
The present invention is directed to a plurality of dwelling units included in an area or an apartment house, and a water receiving tank that stores water supplied from a water supply,
A water supply means for supplying water from the water receiving tank to each of the plurality of dwelling units through a water supply channel;
Power generation means for generating power in the region or the housing complex as a power supply target;
The present invention relates to a water supply facility provided with exhaust heat recovery heating means for recovering heat generated by the power generation means and heating the water in the water receiving tank.

かかる給水設備は、受水槽にて上水道から供給される水を貯留して、その受水槽の水を、給水手段にて給水路を通じて地域又は集合住宅に含まれる複数の住戸(以下、供給対象住戸群と称する場合がある)に供給し、又、発電手段にて発電した電力を地域又は集合住宅に供給するように構成したものである。
そして、排熱回収加熱手段により、発電手段にて発生する熱を回収して受水槽の水を加熱することにより、使用者に冷水感を与えるのを抑制可能な給水を行うことができるようになっている。
Such a water supply facility stores water supplied from a water supply in a water receiving tank, and the water in the water receiving tank is supplied to a plurality of dwelling units (hereinafter referred to as supply target dwelling units) included in a region or an apartment house through a water supply channel. The power generated by the power generation means may be supplied to the area or the apartment house.
Then, the exhaust heat recovery heating means recovers the heat generated by the power generation means and heats the water in the water receiving tank so that water can be supplied that can suppress giving a feeling of cold water to the user. It has become.

このような給水設備において、従来は、前記排熱回収加熱手段を、発電手段の発生熱を回収した排熱回収用熱媒を受水槽側熱交換器を通して循環させる熱源側循環手段と、受水槽の水を前記受水槽側熱交換器を通して循環させる受水槽水循環手段とを備えて構成して、前記受水槽側熱交換器において、前記受水槽水循環手段にて循環される受水槽の水を前記熱源側循環手段にて循環される排熱回収用熱媒により加熱することにより、受水槽の水を加熱するように構成していた(例えば、特許文献1参照。)。   In such a water supply facility, conventionally, the exhaust heat recovery and heating means has a heat source side circulation means for circulating the exhaust heat recovery heat medium recovered from the heat generated by the power generation means through the water tank side heat exchanger, and a water reception tank. Water receiving tank water circulating means for circulating the water through the water receiving tank side heat exchanger, and in the water receiving tank side heat exchanger, the water in the water receiving tank circulated by the water receiving tank water circulating means is It was configured to heat the water in the water receiving tank by heating with a heat medium for exhaust heat recovery circulated by the heat source side circulation means (see, for example, Patent Document 1).

ちなみに、前記特許文献1では、前記発電手段はエンジン駆動式の発電機にて構成し、前記熱源側循環手段は、エンジンの冷却水をエンジン側熱交換器を通して循環させるエンジン側循環手段と、排熱回収用熱媒を前記エンジン側熱交換器及び前記受水槽側熱交換器を通して循環させる排熱回収用循環手段とを備えて構成して、前記エンジン側熱交換器において、エンジンの冷却水にて排熱回収用熱媒を加熱し、その排熱回収用熱媒を受水槽側熱交換器において受水槽の水に対して加熱作用させる構成となっていた。   Incidentally, in Patent Document 1, the power generation means is constituted by an engine-driven generator, and the heat source side circulation means includes engine side circulation means for circulating engine cooling water through the engine side heat exchanger, And a waste heat recovery circulation means for circulating the heat recovery heat medium through the engine side heat exchanger and the water receiving tank side heat exchanger. In the engine side heat exchanger, in the engine cooling water, Then, the heat medium for exhaust heat recovery is heated, and the heat medium for exhaust heat recovery is configured to heat the water in the water receiving tank in the water receiving tank side heat exchanger.

特開2004−316974号公報JP 2004-316974 A

ところで、従来の給水設備では、上述したように、受水槽側熱交換器において排熱回収用熱媒を受水槽の水に対して加熱作用させることから、受水槽側熱交換器を通流する排熱回収用熱媒の保有熱量に対する受水槽側熱交換器を通流する受水槽の水の加熱容量の比率が小さいので、受水槽側熱交換器を通過する受水槽の水の温度の上昇率が大きくなる。つまり、受水槽側熱交換器に流入する水の温度と受水槽側熱交換器から流出する水の温度との差が大きくなる。   By the way, in the conventional water supply equipment, since the heat medium for exhaust heat recovery is heated against the water in the water receiving tank in the water receiving tank side heat exchanger as described above, the water receiving tank side heat exchanger is passed through. The ratio of the heating capacity of the water in the water receiving tank that flows through the water receiving tank side heat exchanger to the amount of heat stored in the heat medium for exhaust heat recovery is small, so the temperature of the water in the receiving tank that passes through the water receiving tank side heat exchanger increases. The rate increases. That is, the difference between the temperature of the water flowing into the water receiving tank side heat exchanger and the temperature of the water flowing out of the water receiving tank side heat exchanger increases.

一方、受水槽側熱交換器において受水槽の水を加熱し過ぎると、受水槽内の水の温度が冷水感のない快適な温度よりも高くなって、使用者にぬるま湯感を与える虞があり、又、受水槽側熱交換器を通過する水に含まれていた塩素が消失する虞もある。   On the other hand, if the water in the water receiving tank is heated excessively in the water receiving tank side heat exchanger, the temperature of the water in the water receiving tank becomes higher than a comfortable temperature without a feeling of cold water, which may give the user a feeling of warm water. Moreover, the chlorine contained in the water passing through the water receiving tank side heat exchanger may be lost.

従って、従来の給水設備では、受水槽側熱交換器を通過する受水槽の水の温度の上昇率が大きいので、受水槽の水の温度が高くなる中間期等においては、受水槽側熱交換器において受水槽の水を加熱し過ぎる虞があるので、発電手段の発生熱を受水槽の水の加熱に使用し難いという問題があった。   Therefore, in the conventional water supply equipment, the rate of increase in the temperature of the water in the water receiving tank passing through the water receiving tank side heat exchanger is large, so in the intermediate period when the temperature of the water in the water receiving tank becomes high, etc. Since there is a possibility that the water in the water receiving tank is heated too much in the vessel, there is a problem that it is difficult to use the heat generated by the power generation means for heating the water in the water receiving tank.

ちなみに、受水槽側熱交換器を通過する受水槽の水の温度の上昇率を小さくするために、受水槽側熱交換器を通して受水槽の水を循環させる循環ポンプを高能力化して、受水槽側熱交換器を通流する排熱回収用熱媒の保有熱量に対する受水槽側熱交換器を通流する受水槽の水の加熱容量の比率を大きくすることが想定されるが、循環ポンプの消費電力が多くなってランニングコストが高くなるので、好ましくない。   By the way, in order to reduce the temperature increase rate of the water in the water receiving tank passing through the water receiving tank side heat exchanger, the capacity of the circulating pump that circulates the water in the water receiving tank through the water receiving tank side heat exchanger is increased, and the water receiving tank It is assumed that the ratio of the heating capacity of the water in the water receiving tank flowing through the water receiving tank side heat exchanger to the amount of heat retained by the heat medium for exhaust heat recovery flowing through the side heat exchanger will be increased. Since the power consumption increases and the running cost increases, it is not preferable.

本発明は、かかる実情に鑑みてなされたものであり、その目的は、受水槽の水の循環量の増大化を回避しながら、受水槽の水の温度が高くなる中間期等においても受水槽の水を適切に加熱し得る給水設備を提供することにある。   The present invention has been made in view of such a situation, and its purpose is to avoid an increase in the circulation amount of water in the water receiving tank, while also in the intermediate period when the temperature of the water in the water receiving tank becomes high. It is providing the water supply equipment which can heat the water of this.

本発明の給水設備は、地域又は集合住宅に含まれる複数の住戸を対象として、上水道から供給される水を貯留する受水槽と、
その受水槽の水を給水路を通じて前記複数の住戸の夫々に供給する給水手段と、
前記地域又は前記集合住宅を電力供給対象として発電する発電手段と、
その発電手段にて発生する熱を回収して前記受水槽の水を加熱する排熱回収加熱手段とが設けられたものであって、
第1特徴構成は、前記排熱回収加熱手段が、
前記発電手段の発生熱を回収し且つ熱媒を貯留するバッファ槽に熱を供給するように排熱回収用熱媒を循環させる熱回収側循環手段と、前記熱回収側循環手段により前記バッファ槽に供給された熱にて前記受水槽の水を加熱するように前記受水槽の水を循環させる受水槽側循環手段とを、前記熱回収側循環手段にて循環される排熱回収用熱媒と前記受水槽側循環手段にて循環される前記受水槽の水とを非混合状態にて循環させる形態で設けて構成されている点を特徴とする。
The water supply facility of the present invention is intended for a plurality of dwelling units included in an area or an apartment house, and a water receiving tank that stores water supplied from a water supply,
A water supply means for supplying water from the water receiving tank to each of the plurality of dwelling units through a water supply channel;
Power generation means for generating power in the region or the housing complex as a power supply target;
An exhaust heat recovery heating means for recovering the heat generated by the power generation means and heating the water in the water receiving tank;
In the first characteristic configuration, the exhaust heat recovery heating means includes:
Heat recovery side circulation means for recovering heat generated by the power generation means and circulating heat medium for exhaust heat recovery so as to supply heat to the buffer tank for storing the heat medium; and the buffer tank by the heat recovery side circulation means A heat receiving tank side circulating means for circulating the water in the water receiving tank so as to heat the water in the water receiving tank with the heat supplied to the heat recovery heat medium for exhaust heat recovery circulated by the heat recovery side circulating means And the water in the water receiving tank circulated by the water receiving tank side circulation means are provided in a form of being circulated in an unmixed state.

即ち、熱回収側循環手段により、排熱回収用熱媒を、発電手段の発生熱を回収し且つ熱媒を貯留するバッファ槽に熱を供給するように循環させ、受水槽側循環手段により、受水槽の水を、熱回収側循環手段にて循環される排熱回収用熱媒と非混合状態にて、その熱回収側循環手段によりバッファ槽に供給された熱にて受水槽の水を加熱するように循環させる。   That is, the heat recovery side circulation means circulates the exhaust heat recovery heat medium so as to collect heat generated by the power generation means and supply heat to the buffer tank storing the heat medium, and the water receiving tank side circulation means. The water in the water receiving tank is unmixed with the heat medium for exhaust heat recovery circulated by the heat recovery side circulation means, and the water in the water reception tank is heated by the heat supplied to the buffer tank by the heat recovery side circulation means. Circulate to heat.

つまり、発電手段の発生熱を回収してバッファ槽に貯留される熱媒を加熱することにより、発電手段の発生熱をバッファ槽に供給し、且つ、そのようにバッファ槽に供給された熱にて受水槽の水を加熱するように受水槽の水を循環させる形態で、受水槽の水を加熱することになる。
そして、バッファ槽は、多量の熱媒を貯留することができて、熱回収側循環手段によりバッファ層に供給される熱量に対するバッファ層に貯留される熱媒の加熱容量の比率を大きくすることができるので、バッファ槽の熱媒の温度の上昇率が小さくなる状態でそのバッファ層に熱が供給されることになり、そのようにバッファ層に供給される熱にて加熱するように受水槽の水を循環するに当たって、その受水槽の水の循環量の増大化を回避しながらも、バッファ層に供給される熱にて加熱される受水槽の水の温度の上昇率を小さくすることができる。
That is, by recovering the heat generated by the power generation means and heating the heat medium stored in the buffer tank, the heat generated by the power generation means is supplied to the buffer tank, and the heat thus supplied to the buffer tank is supplied. Thus, the water in the water receiving tank is heated in such a form that the water in the water receiving tank is circulated so as to heat the water in the water receiving tank.
The buffer tank can store a large amount of heat medium, and can increase the ratio of the heating capacity of the heat medium stored in the buffer layer to the amount of heat supplied to the buffer layer by the heat recovery side circulation means. Therefore, heat is supplied to the buffer layer in a state where the rate of increase in the temperature of the heat medium in the buffer tank is small, and the water receiving tank is heated so as to be heated by the heat supplied to the buffer layer. In circulating the water, it is possible to reduce the rate of increase in the temperature of the water in the water receiving tank heated by the heat supplied to the buffer layer while avoiding an increase in the amount of water circulating in the water receiving tank. .

又、熱回収側循環手段にて循環される排熱回収用熱媒と受水槽側循環手段にて循環される受水槽の水とは、非混合状態にて循環されることから、例えば、熱回収側循環手段にて水が熱媒として循環されるにしても、発電手段の発生熱の回収により高温に加熱されて塩素が消失した水が、受水槽側循環手段にて循環される受水槽の水に混合されることがないので、受水槽の水の塩素の含有率の低下を防止することができる。   Further, since the heat medium for exhaust heat recovery circulated by the heat recovery side circulation means and the water in the water reception tank circulated by the water reception tank side circulation means are circulated in an unmixed state, for example, heat Even if water is circulated as a heat medium in the recovery-side circulation means, the water receiving tank in which water that has been heated to a high temperature by recovery of the heat generated by the power generation means and has lost chlorine is circulated in the water-receiving tank-side circulation means. Therefore, it is possible to prevent a decrease in the chlorine content of the water in the water receiving tank.

従って、受水槽の水の温度が高くなる中間期等においても、使用者にぬるま湯感を与えないように、又、塩素の含有率を低下させないように、受水槽の水を適切に加熱することができる。
要するに、受水槽の水の循環量の増大化を回避しながら、受水槽の水の温度が高くなる中間期等においても受水槽の水を適切に加熱し得る給水設備を提供することができるようになった。
Therefore, even in the intermediate period when the temperature of the water in the water receiving tank becomes high, the water in the water receiving tank should be appropriately heated so as not to give the user a feeling of lukewarm water and not to reduce the chlorine content. Can do.
In short, it is possible to provide a water supply facility that can appropriately heat the water in the water receiving tank even in an intermediate period where the temperature of the water in the water receiving tank becomes high while avoiding an increase in the circulation amount of the water in the water receiving tank. Became.

第2特徴構成は、上記第1特徴構成に加えて、
前記熱回収側循環手段が前記バッファ槽内に設けられた放熱用熱媒通路を通して排熱回収用熱媒を循環させるように設けられ、且つ、前記受水槽側循環手段が前記受水槽の水を前記バッファ槽内を通して循環させるように設けられている点を特徴とする。
In addition to the first feature configuration, the second feature configuration is
The heat recovery side circulation means is provided so as to circulate the exhaust heat recovery heat medium through the heat dissipation heat medium passage provided in the buffer tank, and the water receiving tank side circulation means supplies the water of the water receiving tank. It is characterized by being provided to circulate through the buffer tank.

即ち、熱回収側循環手段により、排熱回収用熱媒をバッファ槽内に設けられた放熱用熱媒通路を通して循環させ、受水槽側循環手段により、受水槽の水をバッファ槽内を通して循環させる。
つまり、バッファ槽内に、受水槽側循環手段にて循環される水を熱媒として貯留して、放熱用熱媒通路を通流する排熱回収用熱媒によりバッファ槽内の水を加熱しながら、受水槽の水をバッファ槽内を通して循環させることから、放熱用熱媒通路を通流する排熱回収用熱媒によりバッファ槽内の多量の水を加熱することになって、そのように加熱される水の温度の上昇率を小さくすることができるので、受水槽の水の循環量の増大化を回避しながらも、受水槽の水を適切に加熱することができる。
そして、放熱用熱媒通路を通流させる排熱回収用熱媒の温度を高くしても、バッファ層内の水の温度の上昇率を小さくすることができることから、その放熱用熱媒通路を通流する排熱回収用熱媒とバッファ槽内の水との温度差を大きくすることができるので、排熱回収用熱媒と水との熱交換効率が高くなって、受水槽の水の加熱効率を向上することができる。
That is, the heat recovery side circulation means circulates the heat medium for exhaust heat recovery through the heat dissipation heat medium passage provided in the buffer tank, and the water reception tank side circulation means circulates the water in the water reception tank through the buffer tank. .
That is, the water circulated in the water receiving tank side circulation means is stored as a heat medium in the buffer tank, and the water in the buffer tank is heated by the heat recovery heat medium flowing through the heat dissipation heat medium passage. However, since the water in the water receiving tank is circulated through the buffer tank, a large amount of water in the buffer tank is heated by the exhaust heat recovery heat medium flowing through the heat dissipation heat medium passage. Since the rate of increase in the temperature of the heated water can be reduced, it is possible to appropriately heat the water in the water receiving tank while avoiding an increase in the circulation rate of the water in the water receiving tank.
And even if the temperature of the exhaust heat recovery heat medium flowing through the heat dissipation heat medium passage is increased, the rate of increase in the temperature of the water in the buffer layer can be reduced. Since the temperature difference between the exhaust heat recovery heat medium flowing through and the water in the buffer tank can be increased, the heat exchange efficiency between the exhaust heat recovery heat medium and the water is increased, and the water in the water receiving tank is increased. Heating efficiency can be improved.

ちなみに、熱回収側循環手段を、発電手段の発生熱の回収により加熱された排熱回収用熱媒をバッファ槽内を通して循環させるように設け、受水槽側循環手段を、バッファ層内に設けられた加熱用水通路を通して循環させるように設ける場合が想定される。
この場合、発電手段の発生熱の回収により高温に加熱された排熱回収用熱媒がバッファ層内の多量の排熱回収用熱媒に混合されることから、そのバッファ層内の排熱回収用熱媒の温度の上昇率を小さくすることができるので、加熱用水通路を通過して加熱される受水槽の水の温度の上昇率も小さくすることができる。
しかしながら、加熱用水通路を通過する受水槽の水を高温に加熱しないようにするには、バッファ層内の排熱回収用熱媒の温度を低くする必要があって、バッファ層内の排熱回収用熱媒と加熱用水通路を通流する水との温度差が小さくなるので、それらの間の熱交換効率が低下して、受水槽の水の加熱効率が低下する。
従って、受水槽の水の加熱効率を向上する上で、好適な手段を提供することができるようになった。
Incidentally, the heat recovery side circulation means is provided so that the heat medium for exhaust heat recovery heated by the recovery of the heat generated by the power generation means is circulated through the buffer tank, and the water receiving tank side circulation means is provided in the buffer layer. It is assumed that it is provided to circulate through the heating water passage.
In this case, the exhaust heat recovery heat medium heated to a high temperature by the recovery of the heat generated by the power generation means is mixed with a large amount of the exhaust heat recovery heat medium in the buffer layer. Since the rate of increase in the temperature of the heating medium can be reduced, the rate of increase in the temperature of the water in the water receiving tank heated through the heating water passage can also be reduced.
However, in order not to heat the water in the water receiving tank that passes through the heating water passage to a high temperature, it is necessary to lower the temperature of the heat medium for exhaust heat recovery in the buffer layer, and the exhaust heat recovery in the buffer layer. Since the temperature difference between the heating medium and the water flowing through the heating water passage becomes small, the heat exchange efficiency between them decreases, and the heating efficiency of the water in the water receiving tank decreases.
Therefore, it is possible to provide a suitable means for improving the heating efficiency of water in the water receiving tank.

第3特徴構成は、上記第2特徴構成に加えて、
運転を制御する運転制御手段が、前記バッファ槽内の水の温度が設定上限給水温度以下になるように、前記熱回収側循環手段による熱媒循環状態を調節するように構成されている点を特徴とする。
The third feature configuration is in addition to the second feature configuration,
The operation control means for controlling the operation is configured to adjust the heat medium circulation state by the heat recovery side circulation means so that the temperature of the water in the buffer tank is equal to or lower than the set upper limit water supply temperature. Features.

即ち、運転制御手段により、バッファ槽内の水の温度が設定上限給水温度以下になるように、熱回収側循環手段による熱媒循環状態が調節されるので、受水槽の水が設定上限給水温度以下になるように加熱される。
そして、前記設定上限給水温度として、使用者がぬるま湯感を感じる温度よりも低い温度に設定することにより、使用者にぬるま湯感を与えるのをより一層抑制することができ、又、前記設定上限給水温度として、水に含まれる塩素が消失することのない温度に設定することにより、受水槽の水の塩素含有率の低下をより一層抑制することができる。
従って、使用者にぬるま湯感を与えるのをより一層抑制する、又は、受水槽の水の塩素含有率の低下をより一層抑制する上で、好ましい手段を提供することができるようになった。
That is, the operation control means adjusts the heat medium circulation state by the heat recovery side circulation means so that the temperature of the water in the buffer tank is equal to or lower than the set upper limit water supply temperature. Heated to be:
And, by setting the set upper limit water supply temperature to a temperature lower than the temperature at which the user feels warm water, it is possible to further suppress giving the user a warm water feeling, and the set upper limit water supply By setting the temperature to a temperature at which chlorine contained in the water does not disappear, the decrease in the chlorine content of the water in the water receiving tank can be further suppressed.
Accordingly, it has become possible to provide a preferable means for further suppressing the user from giving lukewarm water feeling or further suppressing the decrease in the chlorine content of the water in the water receiving tank.

第4特徴構成は、上記第3特徴構成に加えて、
前記運転制御手段が、前記熱回収側循環手段による熱媒の循環を断続することにより、前記熱媒循環状態を調節するように構成されている点を特徴とする。
In addition to the third feature configuration, the fourth feature configuration is
The operation control means is configured to adjust the heat medium circulation state by intermittently circulating the heat medium by the heat recovery side circulation means.

即ち、熱回収側循環手段による熱媒の循環が断続される形態にて、熱媒循環状態が調節されることにより、バッファ槽内の水の温度が設定上限給水温度以下になるように管理される。
そして、熱回収側循環手段による熱媒の循環を断続する構成としては、熱媒を循環させる循環ポンプをオンオフする構成、あるいは、熱媒を循環させる循環路に開閉弁を設けて、その開閉弁を開閉する構成等、簡単な構成を採用することができる。
That is, the temperature of the water in the buffer tank is controlled to be equal to or lower than the set upper limit water supply temperature by adjusting the heat medium circulation state in such a manner that the heat medium circulation by the heat recovery side circulation means is intermittent. The
As a configuration for intermittently circulating the heat medium by the heat recovery side circulation means, a structure for turning on or off a circulation pump for circulating the heat medium, or an open / close valve provided in a circulation path for circulating the heat medium, A simple configuration such as a configuration for opening and closing can be employed.

ちなみに、熱媒循環状態を調節する形態として、熱回収側循環手段による熱媒の循環量を調節する形態が考えられるが、この形態を採用すると、熱媒を循環させる循環ポンプの回転速度を変更調節したり、熱媒の循環量を調節する比例弁を設けて、その比例弁の開度を変更調節する必要があって、構成が複雑となるので、給水設備の価格が高くなる。
従って、給水設備の低廉化を図りながら、使用者にぬるま湯感を与えるのをより一層抑制する、又は、受水槽の水の塩素含有率の低下をより一層抑制することができるようになった。
By the way, as a form to adjust the heat medium circulation state, a form to adjust the circulation amount of the heat medium by the heat recovery side circulation means can be considered, but if this form is adopted, the rotation speed of the circulation pump that circulates the heat medium is changed. It is necessary to provide a proportional valve for adjusting or adjusting the circulation amount of the heat medium, and to change and adjust the opening degree of the proportional valve, and the configuration becomes complicated, so the price of the water supply equipment increases.
Accordingly, it is possible to further suppress the user from giving lukewarm hot water feeling while reducing the cost of the water supply facility, or to further suppress the decrease in the chlorine content of the water in the water receiving tank.

第5特徴構成は、上記第1〜第4特徴構成のいずれかに加えて、
運転を制御する運転制御手段が、前記バッファ槽の熱媒の温度が前記受水槽の水の温度以上である条件で、前記受水槽側循環手段による前記受水槽の水の循環を行うように構成されている点を特徴とする。
In addition to any of the first to fourth feature configurations described above, the fifth feature configuration is
The operation control means for controlling the operation is configured such that the water in the water receiving tank is circulated by the water receiving tank side circulation means on the condition that the temperature of the heat medium in the buffer tank is equal to or higher than the temperature of the water in the water receiving tank. It is characterized by that.

即ち、運転制御手段により、バッファ槽の熱媒の温度が受水槽の水の温度以上である条件で、受水槽側循環手段による受水槽の水の循環が行われるので、受水槽の水が冷却されるのを防止することが可能となる。   That is, the operation control means circulates the water in the water receiving tank by the water receiving tank side circulation means on the condition that the temperature of the heat medium in the buffer tank is equal to or higher than the temperature of the water in the water receiving tank. Can be prevented.

例えば、発電手段を1日のうちの一部の時間帯において運転する断続運転が行われる場合がある。又、通常は、バッファ槽の容量を受水槽の容量よりも小さくするので、バッファ槽に発電手段の熱が供給されない状態では、バッファ槽の熱媒の方が受水槽の水よりも温度が低下し易い。
そして、断続運転が行われる場合に、発電手段の運転を開始する起動時は、バッファ槽の熱媒の温度が受水槽の水の温度よりも低くなっている場合があるが、そのような場合でも、バッファ槽の熱媒の温度が受水槽の水の温度以上になってから、受水槽側循環手段による水の循環が行われるようになる。
従って、受水槽側循環手段による受水槽の水の循環が行われることにより受水槽の水が冷却されるのを防止することができるので、使用者に冷水感を与えるのをより一層抑制可能な状態で給水を行うことができるようになった。
For example, an intermittent operation may be performed in which the power generation unit is operated in a part of a day. In addition, since the capacity of the buffer tank is usually smaller than the capacity of the water receiving tank, the temperature of the heat medium of the buffer tank is lower than that of the water of the water receiving tank when the heat of the power generation means is not supplied to the buffer tank. Easy to do.
And, when intermittent operation is performed, at the time of starting to start the operation of the power generation means, the temperature of the heat medium in the buffer tank may be lower than the temperature of the water in the water receiving tank, but in such a case However, after the temperature of the heat medium in the buffer tank becomes equal to or higher than the temperature of the water in the water receiving tank, the water is circulated by the water receiving tank side circulation means.
Therefore, since the water in the water receiving tank can be prevented from being cooled by circulating the water in the water receiving tank by the water receiving tank side circulation means, it is possible to further suppress giving the user a feeling of cold water. It became possible to supply water in the state.

第6特徴構成は、上記第1〜第5特徴構成のいずれかに加えて、
前記受水槽側循環手段が、前記受水槽の水を前記バッファ槽に供給された熱にて加熱するように循環させる受水槽加熱状態と、前記受水槽の水を前記バッファ槽に供給された熱にて加熱した後、前記受水槽を迂回する給湯路を通して前記地域又は集合住宅に供給する給湯状態とに切り換え自在なように構成されている点を特徴とする。
In addition to any of the first to fifth feature configurations described above, the sixth feature configuration is
The water receiving tank side circulation means circulates the water in the water receiving tank so as to be heated by the heat supplied to the buffer tank, and the heat supplied to the buffer tank. It is characterized by the point that it can be switched to a hot water supply state to be supplied to the area or the apartment house through a hot water supply path that bypasses the water receiving tank after heating.

即ち、受水槽側循環手段を受水槽加熱状態に切り換えると、受水槽の水がバッファ槽に供給された熱にて加熱されるように循環されるので、受水槽の水が加熱される。
一方、受水槽側循環手段を給湯状態に切り換えると、受水槽の水がバッファ槽に供給された熱にて加熱された後、受水槽を迂回する給湯路を通して地域又は集合住宅に供給されるので、受水槽の水をバッファ槽に供給された熱にて前記設定上限給水温度よりも高い温度に加熱することにより、例えば、浴用等に好ましい温度の湯を地域又は集合住宅に供給することが可能となる。
That is, when the water receiving tank side circulation means is switched to the water receiving tank heating state, the water in the water receiving tank is circulated so as to be heated by the heat supplied to the buffer tank, so that the water in the water receiving tank is heated.
On the other hand, when the water tank side circulation means is switched to the hot water supply state, the water in the water tank is heated by the heat supplied to the buffer tank, and then supplied to the region or the apartment house through the hot water supply path that bypasses the water tank. By heating the water in the water receiving tank to a temperature higher than the set upper limit water supply temperature by the heat supplied to the buffer tank, it is possible to supply hot water having a temperature preferable for bathing or the like to the area or the apartment house, for example. It becomes.

つまり、夏期等、上水道から供給される水の温度が高い時期は、上水道から供給される水を加熱することなく給水しても、使用者に冷水感を与えることを防止することができるので、受水槽側循環手段を受水槽加熱状態に切り換えた状態での運転は不要となる。
そこで、上水道から供給される水の温度が高くて、上水道から供給される水を加熱することなく給水しても使用者に冷水感を与えることを防止することができる時期に、受水槽側循環手段を給湯状態に切り換えた状態での運転を行うようにすると、給水設備を年間を通して有効に使用することが可能となる。
従って、年間を通して有効に使用することが可能な給水設備を提供することができるようになった。
In other words, when the temperature of the water supplied from the water supply is high, such as in summer, even if water is supplied without heating the water supplied from the water supply, it is possible to prevent the user from feeling cold. Operation with the water tank side circulation means switched to the water tank heating state is not required.
Therefore, when the temperature of the water supplied from the water supply is high and the water supplied from the water supply can be prevented from giving a feeling of cold water to the user even if the water is supplied without heating, circulation in the water receiving tank side If the operation is performed with the means switched to the hot water supply state, the water supply equipment can be used effectively throughout the year.
Therefore, it has become possible to provide a water supply facility that can be used effectively throughout the year.

以下、図面に基づいて、本発明の実施の形態を説明する。
図1に示すように、給水設備は、集合住宅に含まれる複数の住戸Hを給水対象として、上水道1から受水路2を通じて供給される水を貯留する受水槽3と、その受水槽3の水を給水路4を通じて複数の住戸Hの夫々に供給する給水手段としての給水ポンプ5と、集合住宅を電力供給対象として発電する発電手段としての発電装置Gと、その発電装置Gにて発生する熱を回収して前記受水槽3の水を加熱する排熱回収加熱手段としての排熱回収加熱部Kと、給水設備の運転を制御する運転制御手段としての運転制御部6とを備えて構成してある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the water supply facility is configured to supply water to a plurality of dwelling units H included in an apartment house, and receive water supplied from a water supply 1 through a water receiving channel 2, and water in the water receiving tank 3. Is supplied to each of the plurality of dwelling units H through the water supply channel 4, a water supply pump 5 as a water supply means, a power generation apparatus G as a power generation means for generating electricity for the apartment house as a power supply target, and heat generated in the power generation apparatus G And a waste heat recovery heating unit K as a waste heat recovery heating unit for heating the water in the water receiving tank 3 and an operation control unit 6 as an operation control unit for controlling the operation of the water supply equipment. It is.

前記受水槽3には、その水位が所定の設定水位よりも低いときは開弁し、前記設定水位以上のときは閉弁するようにフロート弁(図示省略)を設け、そのフロート弁に前記受水路2を接続してあり、受水槽3に前記設定水位になるように受水路2を通じて水が供給されるように構成してある。
又、前記受水槽3には、その受水槽1内の水の温度(以下、受水槽温度と記載する場合がある)を検出する受水槽温度センサT1を設けてある。
The water receiving tank 3 is provided with a float valve (not shown) that opens when the water level is lower than a predetermined set water level, and closes when the water level is higher than the set water level. The water channel 2 is connected, and water is supplied to the water receiving tank 3 through the water receiving channel 2 so as to reach the set water level.
The water receiving tank 3 is provided with a water receiving tank temperature sensor T1 for detecting the temperature of the water in the water receiving tank 1 (hereinafter sometimes referred to as the water receiving tank temperature).

前記給水路4は複数の分岐給水路4bに分岐して、各分岐給水路4bにて各住戸Hに受水槽3の水を供給するようになっている。説明を加えると、前記分岐給水路4bは、各住戸Hの流し台、洗濯機、トイレ等の給水箇所の夫々に対応して設けられる複数の止水栓7と、供給される水を加熱して給湯箇所に供給する熱源機8とに分岐接続してある。
図示は省略するが、前記給水路4及び分岐給水路4bは断熱材にて覆って保温してある。
The water supply channel 4 is branched into a plurality of branch water supply channels 4b, and the water in the water receiving tank 3 is supplied to each dwelling unit H through each branch water supply channel 4b. In other words, the branch water supply channel 4b heats the supplied water and a plurality of stop cocks 7 provided corresponding to each of the water supply points such as a sink, a washing machine, and a toilet of each dwelling unit H. It is branched and connected to a heat source unit 8 that supplies the hot water supply location.
Although illustration is omitted, the water supply channel 4 and the branch water supply channel 4b are covered with a heat insulating material and kept warm.

前記熱源機8は、周知であるので詳細な説明及び図示は省略して、簡単に説明すると、分岐給水路4bを通じて供給される水を加熱する給湯用熱交換器、追焚用循環路を通じて循環される浴槽の湯水を加熱する追焚用熱交換器、それら給湯用熱交換器と追焚用熱交換器を加熱するガスバーナ等を備えて構成してあり、給水路4からの水をリモコン操作部等により設定される設定給湯温度になるように加熱して、流し台、浴室等の給湯箇所の夫々に対応して設けられる給湯栓9に供給したり、浴槽を追焚したりするように構成してある。   Since the heat source unit 8 is well known, detailed description and illustration are omitted, and in brief, the heat source unit 8 is circulated through a hot water supply heat exchanger for heating water supplied through the branch water supply channel 4b and a recirculation circuit. It is configured with a heat exchanger for remedy that heats the hot water in the bathtub, a gas burner that heats the heat exchanger for hot water supply and the heat exchanger for remedy, and operates the water from the water supply channel 4 by remote control. Heated to a set hot water temperature set by a section, etc., and supplied to hot water taps 9 provided corresponding to each of hot water supply points such as a sink, bathroom, etc. It is.

前記発電装置Gは、発電機10と、その発電機10を駆動するガスエンジン11とを備えて構成してある。ちなみに、前記ガスエンジン11を作動させることにより、前記発電装置Gを作動させ、前記ガスエンジン11を停止させることにより、前記発電装置Gを停止させることになる。   The power generator G includes a power generator 10 and a gas engine 11 that drives the power generator 10. Incidentally, by operating the gas engine 11, the power generation device G is operated, and by stopping the gas engine 11, the power generation device G is stopped.

更に、この給水設備には、商用電源12からの商用電力を前記集合住宅を電力供給対象として一括して受電する受変電設備13と、前記発電機10を前記商用電源12と系統連系させる連系装置14とを設け、発電機10及び商用電源12からの電力を、共用部における電力消費機器15や、供給対象住戸群の各住戸Hの電力消費機器16に供給するように給電線17を配線してある。   Further, the water supply facility includes a power receiving / transforming facility 13 that collectively receives commercial power from a commercial power source 12 with the apartment house serving as a power supply target, and a system that interconnects the generator 10 with the commercial power source 12. The power supply line 17 is provided so as to supply the power from the generator 10 and the commercial power supply 12 to the power consuming device 15 in the common part and the power consuming device 16 of each dwelling unit H of the supply target dwelling group. It is wired.

都市ガスが供給されるガス供給管18には、前記ガスエンジン11等の共用部のガス消費機器にガス燃料を供給する共用部用ガス供給路19、及び、複数の住戸Hの夫々にガス燃料を供給する住戸用ガス供給路20を接続してある。前記住戸用ガス供給路20は、複数の分岐ガス供給路20bに分岐して、各分岐ガス供給路20bにて各住戸Hの前記熱源機8等にガス燃料を供給するように構成してある。   The gas supply pipe 18 to which city gas is supplied includes a gas supply path 19 for supplying gas fuel to the gas consuming equipment of the shared part such as the gas engine 11 and the like, and gas fuel to each of the plurality of dwelling units H. Is connected to a gas supply path 20 for dwelling units. The gas supply path 20 for dwelling units is configured to branch into a plurality of branch gas supply paths 20b and supply gas fuel to the heat source unit 8 and the like of each dwelling unit H through each branch gas supply path 20b. .

次に、前記排熱回収加熱部Kについて説明を加えると、この排熱回収加熱部Kは、前記発電装置Gの発生熱を回収し且つ熱媒を貯留するバッファ槽21に熱を供給するように排熱回収用熱媒を循環させる熱回収側循環手段としての熱回収側循環部Kgと、その熱回収側循環部Kgによりバッファ槽21に供給された熱にて受水槽3の水を加熱するように受水槽3の水を循環させる受水槽側循環手段としての受水槽側循環部Krとを、熱回収側循環部Kgにて循環される排熱回収用熱媒と受水槽側循環部Krにて循環される受水槽3の水とを非混合状態にて循環させる形態で設けて構成してある。   Next, the exhaust heat recovery heating unit K will be described. The exhaust heat recovery heating unit K recovers heat generated by the power generation apparatus G and supplies heat to the buffer tank 21 that stores the heat medium. The heat recovery side circulation part Kg as a heat recovery side circulation means for circulating the heat medium for exhaust heat recovery to the heat, and the water in the water receiving tank 3 is heated by the heat supplied to the buffer tank 21 by the heat recovery side circulation part Kg The heat receiving tank side circulation part Kr as the water receiving tank side circulation means for circulating the water in the water receiving tank 3 so that the heat recovery heat medium and the water receiving tank side circulation part are circulated in the heat recovery side circulation part Kg. The water in the water receiving tank 3 circulated by Kr is provided in a form of being circulated in an unmixed state.

前記バッファ槽21は、熱媒として水を満水状態で貯留する密閉式に構成してあり、そのバッファ槽21には、その内部の水の温度(以下、バッファ槽温度と記載する場合がある)を検出するバッファ槽温度センサT2を設けてある。
更に、バッファ槽21の頂部には、そのバッファ槽21内の圧力を設定上限圧力以下に維持する圧力逃がし弁22を設けてある。
ちなみに、バッファ槽21の容量は、受水槽3の容量よりも小さく設定する。例えば、受水槽3の容量が75トンの場合、バッファ槽21の容量は1〜2トン程度に設定する。
The said buffer tank 21 is comprised by the airtight type which stores water in a full state as a heat medium, The temperature of the water inside the buffer tank 21 (Hereinafter, it may describe as buffer tank temperature.) Is provided with a buffer tank temperature sensor T2.
Furthermore, a pressure relief valve 22 is provided at the top of the buffer tank 21 to maintain the pressure in the buffer tank 21 below the set upper limit pressure.
Incidentally, the capacity of the buffer tank 21 is set smaller than the capacity of the water receiving tank 3. For example, when the capacity of the water receiving tank 3 is 75 tons, the capacity of the buffer tank 21 is set to about 1 to 2 tons.

この実施形態においては、前記熱回収側循環部Kgを、前記バッファ槽21内に設けた放熱用熱媒通路23を通して排熱回収用熱媒を循環させるように設け、且つ、前記受水槽側循環部Krを、前記受水槽3の水をバッファ槽21内を通して循環させるように設けてある。   In this embodiment, the heat recovery side circulation section Kg is provided so as to circulate the exhaust heat recovery heat medium through the heat dissipation heat medium passage 23 provided in the buffer tank 21, and the water reception tank side circulation. The portion Kr is provided to circulate the water in the water receiving tank 3 through the buffer tank 21.

前記受水槽側循環部Krについて、説明を加えると、この受水槽側循環部Krは、受水槽3とバッファ槽21とにわたって水を循環させる受水槽側循環路24と、その受水槽側循環路24に設けた受水槽側循環ポンプ25とを備えて構成してある。
前記受水槽側循環路24における受水槽3からバッファ槽21に水を供給する往き路部分24fを、受水槽3の底部とバッファ槽21の底部とを接続するように設けると共に、その往き路部分24fに、前記受水槽側循環ポンプ25を、受水槽3の底部から吸引した水をバッファ槽21の底部に供給するように設け、受水槽側循環路24におけるバッファ槽21から受水槽3に水を戻す戻り路部分24bをバッファ槽21の頂部と受水槽3の上下方向の中間部とを接続するように設けてある。
つまり、受水槽側循環ポンプ25の通流作用により、バッファ槽21を満水状態にする状態で、受水槽3の水をバッファ槽21内を通して循環させるように構成してある。
The water receiving tank side circulation section Kr will be described. The water receiving tank side circulation section Kr includes a water receiving tank side circulation path 24 that circulates water between the water receiving tank 3 and the buffer tank 21, and the water receiving tank side circulation path. 24 is provided with a water-receiving tank side circulation pump 25 provided at 24.
An outgoing path portion 24f for supplying water from the water receiving tank 3 to the buffer tank 21 in the water receiving tank side circulation path 24 is provided so as to connect the bottom of the water receiving tank 3 and the bottom of the buffer tank 21, and the outgoing path portion. 24f, the water tank circulator pump 25 is provided so as to supply water sucked from the bottom of the water tank 3 to the bottom of the buffer tank 21, and water is supplied from the buffer tank 21 to the water tank 3 in the water tank side circulation path 24. The return path portion 24b is provided so as to connect the top of the buffer tank 21 and the middle part of the water receiving tank 3 in the vertical direction.
In other words, the water in the water receiving tank 3 is circulated through the buffer tank 21 while the buffer tank 21 is in a full state by the flow action of the water receiving tank side circulation pump 25.

前記受水槽側循環路24の戻り路部分24bから、給湯路26を分岐させて、その給湯路26を前記共用部に設置された共用浴槽27に接続し、前記戻り路部分24bにおける前記給湯路26の分岐箇所よりも下流側の部分に通流状態切換用の開閉弁28を設けてある。
つまり、開閉弁28を開弁した状態で、前記受水側循環ポンプ25を作動させることにより、受水槽3の水をバッファ槽21に供給された熱にて加熱するように循環させる受水槽加熱状態となり、開閉弁28を閉弁した状態で、受水側循環ポンプ25を作動させることにより、受水槽3の水をバッファ槽21に供給された熱にて加熱した後、受水槽3を迂回する前記給湯路26を通して集合住宅に供給する給湯状態となる。
要するに、前記受水側循環部Krを、前記受水槽加熱状態と前記給湯状態とに切り換え自在に構成してある。
The hot water supply path 26 is branched from the return path portion 24b of the water tank side circulation path 24, and the hot water supply path 26 is connected to a shared bathtub 27 installed in the shared section, and the hot water supply path in the return path portion 24b. An opening / closing valve 28 for switching the flow state is provided in a portion downstream of the 26 branching points.
That is, the water receiving tank heating which circulates so that the water of the water receiving tank 3 is heated by the heat supplied to the buffer tank 21 by operating the water receiving side circulation pump 25 with the on-off valve 28 opened. The water tank 3 is heated by the heat supplied to the buffer tank 21 by operating the water-receiving-side circulation pump 25 with the open / close valve 28 closed, and then bypasses the water-receiving tank 3. The hot water supply state to be supplied to the housing complex through the hot water supply passage 26 is established.
In short, the water receiving side circulation section Kr is configured to be switchable between the water receiving tank heating state and the hot water supply state.

次に、前記熱回収側循環部Kgについて、説明を加えると、この熱回収側循環部Kgは、前記ガスエンジン11のエンジン冷却水を循環させる冷却水循環路29、その冷却水循環路29に設けた冷却水循環ポンプ30、前記放熱用熱媒通路23を通して排熱回収用熱媒を循環させる排熱回収用熱媒循環路31、その排熱回収用熱媒循環路31に設けた排熱回収用熱媒循環ポンプ32、及び、前記冷却水循環路29を通流するエンジン冷却水と前記排熱回収用熱媒循環路31を通流する排熱回収用熱媒とを熱交換させる排熱回収用熱交換器33等を備えて構成してある。   Next, the heat recovery side circulation part Kg will be described. The heat recovery side circulation part Kg is provided in the cooling water circulation path 29 for circulating the engine cooling water of the gas engine 11 and the cooling water circulation path 29. Exhaust heat recovery heat medium circulation path 31 for circulating the exhaust heat recovery heat medium through the cooling water circulation pump 30, the heat dissipation heat medium passage 23, and the exhaust heat recovery heat provided in the exhaust heat recovery heat medium circulation path 31 Exhaust heat recovery heat for exchanging heat between the medium circulation pump 32 and the engine coolant flowing through the cooling water circulation path 29 and the exhaust heat recovery heat medium flowing through the exhaust heat recovery heat medium circulation path 31 An exchange 33 and the like are provided.

前記放熱用熱媒通路23は、図2に示すように、外周面がバッファ槽21内の水と接するようにバッファ槽21内に設けられる外筒23aと、その外筒23a内にその外筒23aの内周面と間隙を有する状態で配設され且つ内部を排熱回収用熱媒を通流させる内筒23bとを備えた二重管式に構成してある。
そして、このように放熱用熱媒通路23を二重管式に構成することにより、万が一、外筒23aと内筒23bとのいずれか一方に穴があいたとしても、バッファ槽21内の水に内筒23a内を通流する排熱回収用熱媒が混合することを防止することができる。
As shown in FIG. 2, the heat-dissipating heat medium passage 23 includes an outer cylinder 23a provided in the buffer tank 21 so that an outer peripheral surface thereof is in contact with water in the buffer tank 21, and an outer cylinder in the outer cylinder 23a. The inner tube 23b is disposed in a state having a gap with the inner peripheral surface of the tube 23a and has an inner cylinder 23b through which the heat medium for exhaust heat recovery flows.
And by configuring the heat-dissipating heat medium passage 23 in the double tube type in this way, even if there is a hole in either the outer cylinder 23a or the inner cylinder 23b, the water in the buffer tank 21 It is possible to prevent the exhaust heat recovery heat medium flowing through the inner cylinder 23a from being mixed.

又、図1に示すように、エンジン冷却水を前記排熱回収用熱交換器33を迂回させて循環させるように、放熱用冷却水通路34を前記冷却水循環路29に接続すると共に、その接続部分に、冷却水を排熱回収用熱交換器33に通流させる排熱回収状態と、冷却水を排熱回収用熱交換器33を迂回させて放熱用冷却水通路34に通流させる放熱状態とに切り換える三方弁35を設け、更に、放熱用冷却水通路34にラジエータ36を設けてある。   Further, as shown in FIG. 1, the cooling water passage 34 for heat radiation is connected to the cooling water circulation passage 29 so as to circulate the engine cooling water by bypassing the exhaust heat recovery heat exchanger 33, and the connection The exhaust heat recovery state in which the cooling water is passed through the exhaust heat recovery heat exchanger 33 and the heat dissipation that bypasses the exhaust heat recovery heat exchanger 33 and passes the cooling water through the heat dissipation cooling water passage 34. A three-way valve 35 for switching to a state is provided, and a radiator 36 is provided in the cooling water passage 34 for heat dissipation.

そして、この給水設備では、前記運転制御部6を、発電装置Gにて発生する熱を回収して受水槽3の水を加熱する受水槽加熱運転、発電装置Gにて発生する熱を前記ラジエータ36にて放熱させる放熱運転、受水槽3の水の循環を停止した状態で、バッファ槽21内の水をバッファ槽21に供給された熱にて加熱する予備加熱運転、及び、受水槽3の水をバッファ槽21に供給された熱にて加熱した後、受水槽3を迂回する前記給湯路26を通して前記共用浴槽27に供給する給湯運転を実行可能なように構成してある。   And in this water supply equipment, the said operation control part 6 collects the heat which generate | occur | produces in the electric power generating apparatus G, the water receiving tank heating operation which heats the water of the water receiving tank 3, and the heat which generate | occur | produces in the electric power generating apparatus G is said radiator The heat radiation operation for radiating the water in 36, the preheating operation for heating the water in the buffer tank 21 with the heat supplied to the buffer tank 21 in the state where the circulation of the water in the water receiving tank 3 is stopped, After the water is heated by the heat supplied to the buffer tank 21, the hot water supply operation of supplying the shared bathtub 27 through the hot water supply path 26 that bypasses the water receiving tank 3 can be executed.

以下、上記の各運転について説明を加える。
前記運転制御部6は、前記受水槽加熱運転では、前記受水側循環ポンプ25を作動させ、前記開閉弁28を開弁して前記受水槽側循環部Krを前記受水槽加熱状態に切り換え、前記三方弁35を前記排熱回収状態に切り換え、前記冷却水循環ポンプ30及び前記排熱回収用熱媒循環ポンプ32を作動させ、前記ラジエータ36を停止させる。
この受水槽加熱運転では、以下に説明するように、発電装置Gにて発生する熱を回収して受水槽3内の水を加熱することができる。
Hereinafter, description will be added for each of the above operations.
In the water receiving tank heating operation, the operation control unit 6 operates the water receiving side circulation pump 25, opens the on-off valve 28, and switches the water receiving tank side circulation unit Kr to the water receiving tank heating state. The three-way valve 35 is switched to the exhaust heat recovery state, the cooling water circulation pump 30 and the exhaust heat recovery heat medium circulation pump 32 are operated, and the radiator 36 is stopped.
In this water tank heating operation, as described below, the heat generated in the power generation device G can be recovered to heat the water in the water tank 3.

つまり、排熱回収用熱交換器33にて、冷却水循環路29を通流するエンジン冷却水と排熱回収用熱媒循環路31を通流する排熱回収用熱媒との間で熱交換されて、排熱回収用熱媒循環路31を通流する排熱回収用熱媒にガスエンジン11からの発生熱が回収され、そのガスエンジン11からの発生熱を回収した排熱回収用熱媒がバッファ槽21内に設けられた放熱用熱媒通路23を通って循環することにより、放熱用熱媒通路23にて排熱回収用熱媒からバッファ槽21内の水に放熱され、受水槽3の水がバッファ槽21内を通流して加熱される状態で循環することになり、受水槽3内の水が加熱される。   That is, heat exchange is performed between the engine cooling water flowing through the cooling water circulation path 29 and the exhaust heat recovery heat medium flowing through the exhaust heat recovery heat medium circulation path 31 in the exhaust heat recovery heat exchanger 33. Then, the heat generated from the gas engine 11 is recovered in the exhaust heat recovery heat medium flowing through the exhaust heat recovery heat medium circulation path 31, and the heat generated in the exhaust heat recovery is recovered from the generated heat from the gas engine 11. As the medium circulates through the heat dissipation heat medium passage 23 provided in the buffer tank 21, the heat is dissipated from the exhaust heat recovery heat medium to the water in the buffer tank 21 through the heat dissipation heat medium path 23. The water in the water tank 3 circulates in a state where it flows through the buffer tank 21 and is heated, and the water in the water receiving tank 3 is heated.

要するに、上述したように、前記熱回収側熱交換部Kgを、発電装置Gの発生熱を回収し且つ熱媒を貯留するバッファ槽21に熱を供給するように排熱回収用熱媒を循環させるべく構成し、前記受水槽側循環部Krを、前記熱回収側循環部Kgによりバッファ槽21に供給された熱にて受水槽3の水を加熱するように受水槽3の水を循環させるように構成して、前記排熱回収加熱部Kを、前記熱回収側熱交換部Kgと受水槽側循環部Krとを、熱回収側循環部Kgにて循環される排熱回収用熱媒と受水槽側循環部Krにて循環される受水槽3の水とを非混合状態にて循環させる形態で設けて構成してある。   In short, as described above, the heat recovery side heat exchange section Kg circulates the heat medium for exhaust heat recovery so as to supply heat to the buffer tank 21 that recovers the generated heat of the power generation apparatus G and stores the heat medium. The water receiving tank 3 is circulated in the water receiving tank 3 so that the water in the water receiving tank 3 is heated by the heat supplied to the buffer tank 21 by the heat recovery side circulating unit Kg. The exhaust heat recovery heating unit K is configured as described above, and the heat recovery heat recovery medium that is circulated in the heat recovery side circulation unit Kg between the heat recovery side heat exchange unit Kg and the water receiving tank side circulation unit Kr. And the water in the water receiving tank 3 circulated in the water receiving tank side circulation section Kr are provided in a form of being circulated in an unmixed state.

前記運転制御部6は、前記放熱運転では、前記受水側循環ポンプ25及び前記排熱回収用熱媒循環ポンプ32を停止させ、前記三方弁35を前記放熱状態に切り換え、前記冷却水循環ポンプ30を作動させ、前記ラジエータ36を作動させる。   In the heat radiation operation, the operation control unit 6 stops the water-receiving side circulation pump 25 and the exhaust heat recovery heat medium circulation pump 32, switches the three-way valve 35 to the heat radiation state, and the cooling water circulation pump 30. And the radiator 36 is operated.

この放熱運転では、バッファ槽21内を通しての受水槽3の水の循環、放熱用熱媒通路23を通しての排熱回収用熱媒の循環、及び、排熱回収用熱交換器33を通してのエンジン冷却水の循環が停止されて、エンジン冷却水が前記ラジエータ36を通して循環されるので、ガスエンジン11の発生熱による受水槽3の水の加熱が停止されて、ガスエンジン11の発生熱がラジエータ36において放熱される。   In this heat radiation operation, the water in the water receiving tank 3 is circulated through the buffer tank 21, the exhaust heat recovery heat medium is circulated through the heat dissipation heat medium passage 23, and the engine is cooled through the exhaust heat recovery heat exchanger 33. Since the water circulation is stopped and the engine cooling water is circulated through the radiator 36, the heating of the water in the water receiving tank 3 by the heat generated by the gas engine 11 is stopped, and the heat generated by the gas engine 11 is generated in the radiator 36. Heat is dissipated.

前記運転制御部6は、前記予備加熱運転では、前記受水側循環ポンプ25を停止させ、前記開閉弁28を閉弁し、前記三方弁35を前記排熱回収状態に切り換え、前記冷却水循環ポンプ30及び前記排熱回収用熱媒循環ポンプ32を作動させ、前記ラジエータ36を停止させる。   In the preliminary heating operation, the operation control unit 6 stops the water-receiving side circulation pump 25, closes the open / close valve 28, switches the three-way valve 35 to the exhaust heat recovery state, and supplies the cooling water circulation pump. 30 and the exhaust heat recovery heat medium circulation pump 32 are operated, and the radiator 36 is stopped.

この予備加熱運転では、バッファ槽21内を通しての受水槽3の水の循環を停止した状態で、ガスエンジン11からの発生熱を回収した排熱回収用熱媒がバッファ槽21内に設けられた放熱用熱媒通路23を通って循環するので、バッファ槽21内の水をより高温に加熱することができる。   In this preheating operation, the heat medium for exhaust heat recovery that recovered the heat generated from the gas engine 11 is provided in the buffer tank 21 while the circulation of the water in the water receiving tank 3 through the buffer tank 21 is stopped. Since it circulates through the heat dissipation medium passage 23, the water in the buffer tank 21 can be heated to a higher temperature.

前記運転制御部6は、前記給湯運転では、前記受水側循環ポンプ25を作動させ、前記開閉弁28を閉弁して前記受水槽側循環部Krを前記給湯状態に切り換え、前記三方弁35を前記排熱回収状態に切り換えた状態で前記冷却水循環ポンプ30を作動させると共に、前記排熱回収用熱媒循環ポンプ32を作動させ、前記ラジエータ36を停止させる。   In the hot water supply operation, the operation control unit 6 operates the water-receiving side circulation pump 25, closes the on-off valve 28, switches the water-receiving tank side circulation unit Kr to the hot water supply state, and the three-way valve 35 The cooling water circulation pump 30 is operated in a state in which is switched to the exhaust heat recovery state, the exhaust heat recovery heat medium circulation pump 32 is operated, and the radiator 36 is stopped.

この給湯運転では、ガスエンジン11からの発生熱を回収した排熱回収用熱媒がバッファ槽21内に設けられた放熱用熱媒通路23を通って循環することにより、放熱用熱媒通路23にて排熱回収用熱媒からバッファ槽21内の水に放熱されて、受水槽3の水が加熱される。
そして、受水側循環ポンプ25により受水槽3の水がバッファ槽21内に供給されることにより、バッファ槽21内の湯が押し出されて、給湯路26を通って共用浴槽27に供給され、又、バッファ槽21内に供給された受水槽3の水もバッファ槽21内にて加熱されて、給湯路26を通って共用浴槽27に供給されることになり、共用浴槽27に給湯される。
In this hot water supply operation, the heat medium for exhaust heat recovery that recovers the heat generated from the gas engine 11 circulates through the heat medium path 23 for heat dissipation provided in the buffer tank 21, so that the heat dissipation heat medium path 23. The heat is recovered from the exhaust heat recovery heat medium to the water in the buffer tank 21 to heat the water in the water receiving tank 3.
Then, when the water in the water receiving tank 3 is supplied into the buffer tank 21 by the water receiving side circulation pump 25, the hot water in the buffer tank 21 is pushed out and supplied to the shared bathtub 27 through the hot water supply path 26. Further, the water in the water receiving tank 3 supplied into the buffer tank 21 is also heated in the buffer tank 21 and supplied to the shared bathtub 27 through the hot water supply path 26, and is supplied to the shared bathtub 27. .

次に、前記運転制御部6の制御動作について、説明する。
尚、運転制御部6に各種制御情報を指令する操作盤37を設けてあり、その操作盤37には、図示を省略するが、給水設備の運転開始及び運転停止を指令する運転スイッチ、給湯開始及び給湯停止を指令する給湯スイッチ、並びに、給湯目標温度を設定する給湯温度設定部を設けてある。
又、設定上限給水温度、及び、その設定上限給水温度よりも低い設定加熱開始温度を予め設定して、運転制御部6に記憶させてある。ちなみに、前記設定上限給水温度は、使用者にぬるま湯感を感じさせないと共に、水に含まれる塩素の消失を防止できる温度に設定するものであり、例えば20°Cに設定する。又、前記設定加熱開始温度は、例えば18°Cに設定する。
Next, the control operation of the operation control unit 6 will be described.
The operation control unit 6 is provided with an operation panel 37 for instructing various control information. Although not shown, the operation panel 37 includes an operation switch for instructing operation start and operation stop of the water supply equipment, and hot water supply start. And a hot water supply switch for instructing stoppage of hot water supply, and a hot water supply temperature setting unit for setting a hot water supply target temperature.
Further, the set upper limit water supply temperature and the set heating start temperature lower than the set upper limit water supply temperature are set in advance and stored in the operation control unit 6. Incidentally, the set upper limit water supply temperature is set to a temperature at which the user does not feel lukewarm water and can prevent the disappearance of chlorine contained in water, and is set to 20 ° C., for example. The set heating start temperature is set to 18 ° C., for example.

運転制御部6は、前記バッファ槽21内の水の温度が設定上限給水温度以下になるように、前記熱回収側循環部Kgによる熱媒循環状態を調節するように構成してある。
そして、この実施形態では、運転制御部6は、熱回収側循環部Kgによる熱媒の循環を断続することにより、前記熱媒循環状態を調節するように構成してある。
The operation control unit 6 is configured to adjust the heat medium circulation state by the heat recovery side circulation unit Kg so that the temperature of the water in the buffer tank 21 is equal to or lower than the set upper limit water supply temperature.
In this embodiment, the operation control unit 6 is configured to adjust the heat medium circulation state by intermittently circulating the heat medium by the heat recovery side circulation unit Kg.

又、運転制御部6は、前記バッファ槽21の熱媒(この実施形態では水)の温度が前記受水槽3の水の温度以上である条件で、前記受水槽側循環部Krよる受水槽3の水の循環を行うように構成してある。   Further, the operation control unit 6 is configured such that the temperature of the heat medium (water in this embodiment) of the buffer tank 21 is equal to or higher than the temperature of the water of the water receiving tank 3 and the water receiving tank 3 by the water receiving tank side circulation unit Kr. The water is circulated.

以下、図3に示すフローチャートに基づいて、前記運転制御部6の制御動作について、説明を加える。
前記運転制御部6は、運転開始指令が指令されると(ステップ#1)、発電装置Gを作動させ(ステップ#2)、給湯指令が指令されると、前記給湯路26を通して給湯するための給湯処理を実行し(ステップ#3,5)、給湯指令が指令されていないとき、又は、給湯処理の実行中に給湯停止が指令されると、前記受水槽3内の水を加熱するための受水槽加熱処理を実行し(ステップ#3,4)、受水槽加熱処理又は給湯処理の実行中に運転停止指令が指令されると(ステップ#6)、発電装置Gを停止させて(ステップ#7)、リターンする。
Hereinafter, the control operation of the operation control unit 6 will be described based on the flowchart shown in FIG.
When the operation start command is instructed (step # 1), the operation control unit 6 operates the power generator G (step # 2). When the hot water supply command is instructed, the operation control unit 6 supplies hot water through the hot water supply passage 26. When hot water supply processing is executed (steps # 3 and 5) and no hot water supply command is instructed, or when hot water supply stop is instructed during execution of hot water supply processing, the water in the water receiving tank 3 is heated. The water receiving tank heating process is executed (steps # 3 and 4). When an operation stop command is issued during the execution of the water receiving tank heating process or the hot water supply process (step # 6), the power generator G is stopped (step #). 7) Return.

以下、前記受水槽加熱処理及び前記給湯処理について、説明を加える。
尚、以下の説明では、バッファ槽温度センサT2にて検出されるバッファ槽温度を、単にバッファ槽温度と記載し、受水槽温度センサT1にて検出される受水槽温度を単に受水槽温度と記載する。
前記運転制御部6は、前記受水槽加熱処理の開始時においては、バッファ槽温度が受水槽温度以上のときは、直ちに受水槽加熱運転を実行し、バッファ槽温度が受水槽温度よりも低いときは、先ず、予備加熱運転を実行して、バッファ槽温度が受水槽温度以上になると、予備加熱運転を停止して受水槽加熱運転を実行する。
Hereinafter, the water tank heating process and the hot water supply process will be described.
In the following description, the buffer tank temperature detected by the buffer tank temperature sensor T2 is simply described as the buffer tank temperature, and the water receiving tank temperature detected by the water receiving tank temperature sensor T1 is simply described as the water receiving tank temperature. To do.
When the buffer tank temperature is equal to or higher than the water tank temperature, the operation control unit 6 immediately executes the water tank heating operation when the buffer tank temperature is equal to or higher than the water tank temperature, and the buffer tank temperature is lower than the water tank temperature. First, the preheating operation is executed, and when the buffer tank temperature becomes equal to or higher than the water receiving tank temperature, the preheating operation is stopped and the water receiving tank heating operation is executed.

つまり、バッファ槽温度が受水槽温度よりも低いときは、受水槽側循環部Krによる受水槽3の水の循環が停止され、バッファ槽温度が受水槽温度以上のときに、受水槽側循環部Krによる受水槽3の水の循環が行われることになり、上述したように、運転制御部6を、前記バッファ槽21の熱媒の温度が前記受水槽3の水の温度以上である条件で、前記受水槽側循環部Krよる受水槽3の水の循環を行うように構成してある。   That is, when the buffer tank temperature is lower than the water receiving tank temperature, the circulation of the water in the water receiving tank 3 by the water receiving tank side circulation section Kr is stopped, and when the buffer tank temperature is equal to or higher than the water receiving tank temperature, the water receiving tank side circulation section. Circulation of the water in the water receiving tank 3 by Kr is performed, and as described above, the operation control unit 6 is operated under the condition that the temperature of the heat medium in the buffer tank 21 is equal to or higher than the temperature of the water in the water receiving tank 3. The water in the water receiving tank 3 is circulated by the water receiving tank side circulation section Kr.

又、前記運転制御部6は、前記受水槽加熱処理においては、受水槽加熱運転の実行中にバッファ槽温度が設定上限給水温度以上になると、その受水槽加熱運転を停止して放熱運転を実行し、その放熱運転の実行中にバッファ槽温度が設定加熱開始温度以下になると、その放熱運転を停止して受水槽加熱運転を実行する形態で、受水槽加熱運転と放熱運転とを繰り返し実行することになり、バッファ槽21内の温度が設定上限給水温度以下に維持されるので、受水槽3内の水の温度も設定上限温度以下に維持されることになる。   Further, in the water tank heating process, the operation control unit 6 stops the water tank heating operation and performs a heat radiation operation when the buffer tank temperature becomes equal to or higher than the set upper limit water supply temperature during the water tank heating operation. When the buffer tank temperature falls below the preset heating start temperature during the heat radiation operation, the water tank heating operation and the heat radiation operation are repeatedly executed in such a form that the heat radiation operation is stopped and the water tank heating operation is performed. As a result, the temperature in the buffer tank 21 is maintained below the set upper limit water supply temperature, so the temperature of the water in the water receiving tank 3 is also maintained below the set upper limit temperature.

つまり、受水槽加熱運転では、熱回収側循環部Kgにより、排熱回収用熱媒が放熱用熱媒通路23を通して循環され、放熱運転では、熱回収側循環部Kgによる排熱回収用熱媒の循環が停止されることになり、上述したように、運転制御部3を、バッファ槽21内の水の温度が設定上限給水温度以下になるように、熱回収側循環部Kgによる熱媒の循環を断続することにより、熱回収側循環部Kgによる熱媒循環状態を調節するように構成してある。   That is, in the water tank heating operation, the heat recovery side circulation unit Kg circulates the exhaust heat recovery heat medium through the heat dissipation heat medium passage 23, and in the heat dissipation operation, the heat recovery side circulation unit Kg exhaust heat recovery heat medium. As described above, the operation control unit 3 causes the heat recovery side circulation unit Kg to change the temperature of the water in the buffer tank 21 to be equal to or lower than the set upper limit water supply temperature. By repeating the circulation, the heat medium circulation state by the heat recovery side circulation part Kg is adjusted.

又、前記運転制御部6は、前記受水槽加熱処理においては、受水槽加熱運転の実行中に、バッファ槽温度が受水槽温度よりも低くなると、受水槽加熱運転を停止して予備加熱運転を実行し、その予備加熱運転の実行中に、バッファ槽温度が受水槽温度以上になると、予備加熱運転を停止して受水槽加熱運転を実行する。   Further, in the water tank heating process, the operation control unit 6 stops the water tank heating operation and performs the preheating operation when the buffer tank temperature becomes lower than the water tank temperature during the water tank heating operation. When the buffer tank temperature becomes equal to or higher than the water receiving tank temperature during the preheating operation, the preheating operation is stopped and the water receiving tank heating operation is executed.

運転制御部6は、前記給湯処理においては、バッファ槽温度が前記給湯温度設定部にて設定された給湯目標温度に達するまでは、前記予備加熱運転を実行し、バッファ槽温度が前記給湯温度設定部にて設定された給湯目標温度に達すると、予備加熱運転を停止して給湯運転を実行する。
従って、前記給湯温度設定部にて設定された給湯目標温度の湯が、共用浴槽27に供給される。
In the hot water supply process, the operation control unit 6 performs the preliminary heating operation until the buffer tank temperature reaches the hot water supply target temperature set by the hot water supply temperature setting unit, and the buffer tank temperature is set to the hot water supply temperature setting. When the hot water supply target temperature set in the section is reached, the preheating operation is stopped and the hot water supply operation is executed.
Accordingly, the hot water at the hot water supply target temperature set by the hot water supply temperature setting unit is supplied to the shared bathtub 27.

〔別実施形態〕
次に別実施形態を説明する。
(イ) 前記熱回収側循環部Kg及び前記受水槽側循環部Kr夫々の具体構成は、上記の実施形態において例示した構成に限定されるものではない。
例えば、図4に示すように、前記熱回収側循環部Kgを、前記排熱回収用熱交換器33と前記バッファ槽21内とを通して排熱回収用熱媒を循環させるように設け、前記受水槽側循環部Krを、前記バッファ槽21内に設けた加熱用水通路38を通して前記受水槽3の水を循環させるように構成しても良い。
又、図5に示すように、前記熱回収側循環部Kgを、前記バッファ槽21内に設けた放熱用熱媒通路23を通して排熱回収用熱媒を循環させるように設け、前記受水槽側循環部Krを、前記バッファ槽21内に設けた加熱用水通路38を通して前記受水槽3の水を循環させるように構成しても良い。
[Another embodiment]
Next, another embodiment will be described.
(A) Specific configurations of the heat recovery side circulation unit Kg and the water receiving tank side circulation unit Kr are not limited to the configurations exemplified in the above embodiment.
For example, as shown in FIG. 4, the heat recovery side circulation unit Kg is provided so as to circulate the heat medium for exhaust heat recovery through the heat exchanger 33 for exhaust heat recovery and the inside of the buffer tank 21, and You may comprise the water tank side circulation part Kr so that the water of the said water receiving tank 3 may be circulated through the water passage 38 for heating provided in the said buffer tank 21. FIG.
Further, as shown in FIG. 5, the heat recovery side circulation section Kg is provided so as to circulate the exhaust heat recovery heat medium through the heat dissipation heat medium passage 23 provided in the buffer tank 21, and the water reception tank side. The circulation unit Kr may be configured to circulate the water in the water receiving tank 3 through the heating water passage 38 provided in the buffer tank 21.

(ロ) 熱回収側循環部Kgによる熱媒循環状態を調節する形態として、熱回収側循環部Kgによる熱媒の循環を断続する形態に代えて、熱回収側循環部Kgによる熱媒の循環量を調節する形態を採用することができる。
この場合、前記排熱回収用循環ポンプ32の回転速度を変更調節自在に構成して、排熱回収用熱媒循環ポンプ32の回転速度の変更調節により熱媒の循環量を調節する。あるいは、排熱回収用熱媒循環路31に比例弁を設けて、その比例弁の開度の変更調節により熱媒の循環量を調節する。
(B) As a form of adjusting the heat medium circulation state by the heat recovery side circulation part Kg, instead of the form of intermittent circulation of the heat medium by the heat recovery side circulation part Kg, circulation of the heat medium by the heat recovery side circulation part Kg A form of adjusting the amount can be adopted.
In this case, the rotational speed of the exhaust heat recovery circulation pump 32 can be changed and adjusted, and the circulation amount of the heat medium is adjusted by changing and adjusting the rotation speed of the exhaust heat recovery heat medium circulation pump 32. Alternatively, a proportional valve is provided in the heat medium circulation path 31 for exhaust heat recovery, and the circulation amount of the heat medium is adjusted by adjusting the opening of the proportional valve.

(ハ) 前記受水槽側循環ポンプ25の回転速度を変更調節自在に構成して、前記給湯運転においては、受水槽側循環ポンプ25の回転速度を遅くすることにより、バッファ槽21内を通流する水の流量を少なくして、高温の湯を連続して給湯路26を通して供給できるように構成しても良い。 (C) The rotational speed of the water receiving tank side circulation pump 25 is configured to be freely adjustable, and in the hot water supply operation, the rotational speed of the water receiving tank side circulation pump 25 is slowed down to flow through the buffer tank 21. The flow rate of water to be used may be reduced so that hot water can be continuously supplied through the hot water supply passage 26.

(ニ) 前記給湯路26を複数の住戸H夫々に分岐接続して、給湯運転において、給湯路26を通して複数の住戸H夫々に給湯できるように構成しても良い。 (D) The hot water supply path 26 may be branched and connected to each of the plurality of dwelling units H so that the hot water supply operation can supply hot water to each of the plurality of dwelling units H through the hot water supply path 26.

(ホ) 前記排熱回収用熱媒循環路31、排熱回収用熱交換器33及び前記排熱回収用熱媒循環ポンプ32を省略して、前記冷却水循環路29を前記放熱用熱媒通路23に接続し、熱回収側循環部Kgを、エンジン冷却水を排熱回収用熱媒として循環させるように構成しても良い。 (E) The exhaust heat recovery heat medium circulation path 31, the exhaust heat recovery heat exchanger 33, and the exhaust heat recovery heat medium circulation pump 32 are omitted, and the cooling water circulation path 29 is connected to the heat dissipation heat medium path. The heat recovery side circulation unit Kg may be configured to circulate the engine coolant as a heat medium for exhaust heat recovery.

(ヘ) 給水設備を運転する運転時間帯を1日のうちの所定の一部の時間帯に設定して、その運転時間帯のあいだ給水設備を自動的に運転するように構成しても良い。 (F) The operation time zone for operating the water supply equipment may be set to a predetermined part of the day, and the water supply equipment may be automatically operated during the operation time period. .

(ト) 上記の実施形態のように、発電装置Gを、発電機10とその発電機10を駆動するガスエンジン11とを備えたエンジン駆動式にて構成する場合、前記排熱回収加熱部Kにて回収する発電装置Gの発生熱としては、上記の実施形態において例示したエンジン冷却水の保有熱以外に、ガスエンジン11の排ガスの保有熱や、エンジン冷却水及び排ガスの両方の保有熱でも良い。
尚、発電装置Gをエンジン駆動式にて構成する場合、エンジンとしては、上記の実施形態において例示した都市ガスを燃料とするガスエンジン11以外に、LPガス、ガソリン等種々の燃料を用いるものを使用することができる。
又、発電装置Gは、上記の実施形態において例示した如きエンジン駆動式にて構成する以外に、ガスタービンにて駆動するガスタービン駆動式にて構成しても良い。発電装置Gをガスタービン駆動式にて構成する場合、前記排熱回収加熱部Kにて回収する発電装置Gの発生熱は、ガスタービンの排ガスの保有熱になる。
又、発電装置Gとしては、上記のエンジン駆動式やガスタービン駆動式に限定されるのではなく、例えば、各種の燃料電池にて構成することができる。発電装置Gを燃料電池にて構成する場合は、前記排熱回収加熱部Kにて回収する発電装置Gの発生熱は、燃料電池の冷却水の保有熱になる。
(G) When the power generation device G is configured as an engine drive type including the generator 10 and the gas engine 11 that drives the generator 10 as in the above embodiment, the exhaust heat recovery heating unit K As the generated heat of the power generation device G recovered at the above, in addition to the retained heat of the engine cooling water exemplified in the above embodiment, the retained heat of the exhaust gas of the gas engine 11 and the retained heat of both the engine cooling water and the exhaust gas good.
When the power generation device G is configured as an engine drive type, the engine uses various fuels such as LP gas and gasoline in addition to the gas engine 11 that uses city gas as a fuel exemplified in the above embodiment. Can be used.
Further, the power generation apparatus G may be configured by a gas turbine drive type that is driven by a gas turbine, in addition to the engine drive type as exemplified in the above embodiment. When the power generator G is configured by a gas turbine drive type, the generated heat of the power generator G recovered by the exhaust heat recovery heating unit K becomes the retained heat of the exhaust gas of the gas turbine.
In addition, the power generation device G is not limited to the above-described engine drive type or gas turbine drive type, and may be configured by various fuel cells, for example. When the power generation device G is constituted by a fuel cell, the heat generated by the power generation device G recovered by the exhaust heat recovery heating unit K becomes the retained heat of the cooling water of the fuel cell.

実施形態に係る給水設備の全体構成を示すブロック図The block diagram which shows the whole structure of the water supply equipment which concerns on embodiment 実施形態に係る給水設備の放熱用熱媒通路を示す図The figure which shows the heat-medium channel | path for heat radiation of the water supply equipment which concerns on embodiment 実施形態に係る給水設備の制御動作のフローチャートを示す図The figure which shows the flowchart of control operation | movement of the water supply equipment which concerns on embodiment 別実施形態に係る給水設備の排熱回収加熱部を示すブロック図The block diagram which shows the waste heat recovery heating part of the water supply equipment which concerns on another embodiment 別実施形態に係る給水設備の排熱回収加熱部を示すブロック図The block diagram which shows the waste heat recovery heating part of the water supply equipment which concerns on another embodiment

符号の説明Explanation of symbols

1 上水道
3 受水槽
4 給水路
5 給水手段
6 運転制御手段
21 バッファ槽
23 放熱用熱媒通路
26 給湯路
G 発電手段
H 住戸
K 排熱回収加熱部
Kg 熱回収側循環手段
Kr 受水槽側循環手段
DESCRIPTION OF SYMBOLS 1 Water supply 3 Water receiving tank 4 Water supply path 5 Water supply means 6 Operation control means 21 Buffer tank 23 Heat-dissipation heat medium path 26 Hot water supply path G Electric power generation means H Dwelling unit K Waste heat recovery heating part Kg Heat recovery side circulation means Kr Receiving tank side circulation means

Claims (6)

地域又は集合住宅に含まれる複数の住戸を対象として、上水道から供給される水を貯留する受水槽と、
その受水槽の水を給水路を通じて前記複数の住戸の夫々に供給する給水手段と、
前記地域又は前記集合住宅を電力供給対象として発電する発電手段と、
その発電手段にて発生する熱を回収して前記受水槽の水を加熱する排熱回収加熱手段とが設けられた給水設備であって、
前記排熱回収加熱手段が、
前記発電手段の発生熱を回収し且つ熱媒を貯留するバッファ槽に熱を供給するように排熱回収用熱媒を循環させる熱回収側循環手段と、前記熱回収側循環手段により前記バッファ槽に供給された熱にて前記受水槽の水を加熱するように前記受水槽の水を循環させる受水槽側循環手段とを、前記熱回収側循環手段にて循環される排熱回収用熱媒と前記受水槽側循環手段にて循環される前記受水槽の水とを非混合状態にて循環させる形態で設けて構成されている給水設備。
A water receiving tank for storing water supplied from the water supply for a plurality of dwelling units included in an area or apartment house,
A water supply means for supplying water from the water receiving tank to each of the plurality of dwelling units through a water supply channel;
Power generation means for generating power for the area or the apartment house as a power supply target;
A water supply facility provided with exhaust heat recovery heating means for recovering heat generated by the power generation means and heating the water in the water receiving tank,
The exhaust heat recovery heating means,
Heat recovery side circulation means for circulating the heat medium for exhaust heat recovery so as to recover heat generated by the power generation means and supply heat to the buffer tank for storing the heat medium, and the buffer tank by the heat recovery side circulation means A heat receiving tank side circulating means for circulating the water in the water receiving tank so as to heat the water in the water receiving tank with the heat supplied to the heat recovery heat medium for exhaust heat recovery circulated by the heat recovery side circulating means And water supply equipment configured to circulate in a non-mixed state with water in the water receiving tank circulated by the water receiving tank side circulation means.
前記熱回収側循環手段が前記バッファ槽内に設けられた放熱用熱媒通路を通して排熱回収用熱媒を循環させるように設けられ、且つ、前記受水槽側循環手段が前記受水槽の水を前記バッファ槽内を通して循環させるように設けられている請求項1記載の給水設備。   The heat recovery side circulation means is provided so as to circulate the exhaust heat recovery heat medium through the heat dissipation heat medium passage provided in the buffer tank, and the water receiving tank side circulation means supplies the water of the water receiving tank. The water supply equipment according to claim 1, wherein the water supply equipment is provided so as to circulate through the buffer tank. 運転を制御する運転制御手段が、前記バッファ槽内の水の温度が設定上限給水温度以下になるように、前記熱回収側循環手段による熱媒循環状態を調節するように構成されている請求項2記載の給水設備。   The operation control means for controlling the operation is configured to adjust the heat medium circulation state by the heat recovery side circulation means so that the temperature of the water in the buffer tank is equal to or lower than a set upper limit water supply temperature. 2. Water supply equipment according to 2. 前記運転制御手段が、前記熱回収側循環手段による熱媒の循環を断続することにより、前記熱媒循環状態を調節するように構成されている請求項3記載の給水設備。   The water supply equipment according to claim 3, wherein the operation control means is configured to adjust the heat medium circulation state by intermittently circulating the heat medium by the heat recovery side circulation means. 運転を制御する運転制御手段が、前記バッファ槽の熱媒の温度が前記受水槽の水の温度以上である条件で、前記受水槽側循環手段による前記受水槽の水の循環を行うように構成されている請求項1〜4のいずれか1項に記載の給水設備。   The operation control means for controlling the operation is configured such that the water in the water receiving tank is circulated by the water receiving tank side circulation means on the condition that the temperature of the heat medium in the buffer tank is equal to or higher than the temperature of the water in the water receiving tank. The water supply equipment according to any one of claims 1 to 4. 前記受水槽側循環手段が、前記受水槽の水を前記バッファ槽に供給された熱にて加熱するように循環させる受水槽加熱状態と、前記受水槽の水を前記バッファ槽に供給された熱にて加熱した後、前記受水槽を迂回する給湯路を通して前記地域又は集合住宅に供給する給湯状態とに切り換え自在なように構成されている請求項1〜5のいずれか1項に記載の給水設備。   The water receiving tank side circulation means circulates the water in the water receiving tank so as to be heated by the heat supplied to the buffer tank, and the heat supplied to the buffer tank. The water supply of any one of Claims 1-5 comprised so that it can switch to the hot-water supply state supplied to the said area or a housing complex through the hot-water supply path which detours the said water-receiving tank after heating in water Facility.
JP2006088700A 2006-03-28 2006-03-28 Water supply equipment Pending JP2007263451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006088700A JP2007263451A (en) 2006-03-28 2006-03-28 Water supply equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006088700A JP2007263451A (en) 2006-03-28 2006-03-28 Water supply equipment

Publications (1)

Publication Number Publication Date
JP2007263451A true JP2007263451A (en) 2007-10-11

Family

ID=38636609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006088700A Pending JP2007263451A (en) 2006-03-28 2006-03-28 Water supply equipment

Country Status (1)

Country Link
JP (1) JP2007263451A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017719A (en) * 2014-07-10 2016-02-01 三菱電機株式会社 Heat pump hot water supply system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211120A (en) * 1998-01-27 1999-08-06 Inax Corp Method for controlling circulating pump of hot water supply device
JP2003056905A (en) * 2001-08-09 2003-02-26 Denso Corp Water heater
JP2004316974A (en) * 2003-04-14 2004-11-11 Osaka Gas Co Ltd Water supply equipment
JP2004361074A (en) * 2003-05-30 2004-12-24 Seek Young Jeong Boiler system for heating and hot water supply using solar heat
JP2005337550A (en) * 2004-05-25 2005-12-08 Mitsubishi Electric Corp Heat pump water heater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211120A (en) * 1998-01-27 1999-08-06 Inax Corp Method for controlling circulating pump of hot water supply device
JP2003056905A (en) * 2001-08-09 2003-02-26 Denso Corp Water heater
JP2004316974A (en) * 2003-04-14 2004-11-11 Osaka Gas Co Ltd Water supply equipment
JP2004361074A (en) * 2003-05-30 2004-12-24 Seek Young Jeong Boiler system for heating and hot water supply using solar heat
JP2005337550A (en) * 2004-05-25 2005-12-08 Mitsubishi Electric Corp Heat pump water heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017719A (en) * 2014-07-10 2016-02-01 三菱電機株式会社 Heat pump hot water supply system

Similar Documents

Publication Publication Date Title
JP5141293B2 (en) Hot water storage hot water system, control method for hot water storage hot water system
JP2005061711A (en) Exhaust heat recovering water heater
JP2007298226A (en) Heat pump type water heater and its hot water supply method
JP4670491B2 (en) Water heater
JP2008164191A (en) Cogeneration system
JP2007113836A (en) Heat pump type water heater
JP4981468B2 (en) Hot water storage water heater
JP2007132612A (en) Cogeneration system, its control method, and program
JP2007032904A (en) Cogeneration system
JP2007263451A (en) Water supply equipment
JP2003056910A (en) Heat recovery apparatus and cogeneration system
JP4091046B2 (en) Cogeneration system
JP4656994B2 (en) Hot water storage hot water supply device
JP5982636B2 (en) Heat pump water heater
JP4487140B2 (en) Hot water supply system
JP2005076932A (en) Storage type hot water supply system
JP2006105546A (en) Hot water storage type hot water supply device using photovoltaic power generation panel
JP2009250542A (en) Water heater
JP2005009859A (en) Multifunctional water heater
JP6403631B2 (en) Hot water storage unit
JP4408770B2 (en) Hot water storage heat recovery system
JP6403630B2 (en) Hot water storage unit
JP2007127373A (en) Exhaust heat recovery equipment
JP2005156156A (en) Multifunctional water heater
JP2007132613A (en) Cogeneration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120119