[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007255614A - Water lubricating guide bearing device and water turbine mounted with the same - Google Patents

Water lubricating guide bearing device and water turbine mounted with the same Download PDF

Info

Publication number
JP2007255614A
JP2007255614A JP2006081909A JP2006081909A JP2007255614A JP 2007255614 A JP2007255614 A JP 2007255614A JP 2006081909 A JP2006081909 A JP 2006081909A JP 2006081909 A JP2006081909 A JP 2006081909A JP 2007255614 A JP2007255614 A JP 2007255614A
Authority
JP
Japan
Prior art keywords
water
bearing
bearing device
pad
guide bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006081909A
Other languages
Japanese (ja)
Inventor
Koji Aizawa
宏二 会沢
Ryoichi Tomobe
亮一 友部
Yoshimoto Otsuka
吉元 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering and Services Co Ltd
Original Assignee
Hitachi Engineering and Services Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering and Services Co Ltd filed Critical Hitachi Engineering and Services Co Ltd
Priority to JP2006081909A priority Critical patent/JP2007255614A/en
Publication of JP2007255614A publication Critical patent/JP2007255614A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attain high wear resistance to bearing pads using a resin material for a sliding surface used in a water lubricating guide bearing device, to constitute the water lubricating guide device by incorporating the bearing pads therein, and to provide a water turbine using such a water lubricating guide bearing device. <P>SOLUTION: In this water lubricating guide bearing device for supporting a rotary shaft of a rotary machine, the resin material is used for the sliding surface, the resin material is made to protrude by a few millimeters to the sliding surface side than a metal case, and a plurality of the bearing pads stored and fixed in the metal case are disposed around the rotary shaft. The size relation of an inner peripheral side chord length (B) and an outer peripheral side chord length (b) of the metal case of the bearing pads is set to B≥b, or both end faces in the circumferential direction of the metal case are made to be inclined. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水潤滑ガイド軸受装置及びそれを搭載した水車に関するものである。   The present invention relates to a water-lubricated guide bearing device and a water wheel equipped with the same.

水車の回転軸を支持する軸受としては、油潤滑軸受装置が主に用いられている。しかし、油流出等による河川汚染の心配から、水潤滑ガイド軸受装置が最近注目されてきている。この水潤滑ガイド軸受装置にはセラミックスを用いたものがあるがセラミックスは割れ易いことや高価なことからあまり使用されていない。   An oil-lubricated bearing device is mainly used as a bearing for supporting the rotating shaft of the water turbine. However, water lubricated guide bearing devices have recently attracted attention due to concerns about river pollution due to oil spills and the like. Some of these water-lubricated guide bearing devices use ceramics, but ceramics are rarely used because they are easily broken and expensive.

一方、スーパーエンジニアリングプラスチックスの中でセラミックスよりも低コストで水潤滑特性に優れたポリエーテルエーテルケトン樹脂,ポリフェニレンサルファイド樹脂やフッ素樹脂をガイド軸受装置の摺接面に適用する試みが見られる。ところが、樹脂材料は異物に対する耐摩耗性が十分でないため、異物を混入した潤滑水中では使用できない。したがって、一般的には潤滑水から異物を排除し清浄度を維持した清水に近い潤滑水を軸受水槽に常時供給して使用されている。   On the other hand, among super engineering plastics, attempts are made to apply polyether ether ketone resin, polyphenylene sulfide resin, and fluorine resin, which are lower in cost than ceramics and superior in water lubrication characteristics, to the sliding contact surface of the guide bearing device. However, since the resin material does not have sufficient wear resistance against foreign matter, it cannot be used in lubricating water mixed with foreign matter. Accordingly, in general, lubricating water close to clean water, which is free from foreign matters from the lubricating water and maintains cleanliness, is always supplied to the bearing water tank.

しかし、水潤滑軸受では補機の簡素化や冷却水廃止の観点から、潤滑水の清浄度を維持するような給水設備を設置せずに単に清水を組立終了後に水槽に貯水し、その後は蒸発減量分を適宜補給する簡便な給水方法で運転できることが望まれている。   However, in the case of water-lubricated bearings, from the viewpoint of simplification of auxiliary equipment and the elimination of cooling water, fresh water is simply stored in the water tank after assembly without installing a water supply facility that maintains the cleanliness of the lubricating water, and then evaporated. It is desired to be able to operate with a simple water supply method of appropriately replenishing the weight loss.

そこで、本発明の発明者らは水車の主軸受を対象に、水潤滑ガイド軸受装置を製作して前述した簡便な給水方法で軸受性能試験を実施した。試験終了後、樹脂材料で構成した摺接面を観察したところ周方向に深い条痕が確認された。これは、軸受装置組込み時においては軸受装置や部品への付着,水槽内の残存等により取込まれた異物による摩耗損傷が原因と推定された。   Therefore, the inventors of the present invention manufactured a water-lubricated guide bearing device for the main bearing of a water turbine and conducted a bearing performance test by the simple water supply method described above. After the test, when the sliding contact surface made of the resin material was observed, deep streaks in the circumferential direction were confirmed. This was presumed to be caused by wear damage due to foreign matter taken in due to adhesion to the bearing device and parts, remaining in the water tank, etc. when the bearing device was incorporated.

このように、軸受装置組込み時においては軸受装置や部品への付着,水槽内の残存等により異物を水槽内に取り込む可能性があることが分った。取り込んだ異物により摺接面の摩耗損傷が発生すると、軸受負荷容量が低下し長期信頼性を十分に確保できない。   Thus, it has been found that when the bearing device is incorporated, foreign matter may be taken into the water tank due to adhesion to the bearing device or parts, remaining in the water tank, or the like. If wear damage occurs on the sliding contact surface due to the foreign matter taken in, the bearing load capacity decreases and long-term reliability cannot be secured sufficiently.

よって、高信頼性化のために一時的な異物の潤滑水への混入に対して摺接面の損傷を確実に防止できる軸受装置が不可欠である。摺接面の摩耗損傷は軸受パッド入口部の半径隙間に相当する異物が噛み込んだ場合は更に激しい損傷となる。このため、軸受パッド入口部に半径隙間に相当する異物の滞留を回避し、半径方向に流過させることができれば軸受パッド摺接面の摩耗損傷は防止できる。また、水槽内に混入した異物は停止時(1回/日)に水槽底部に沈殿させ、再起動で沈殿した異物の再浮上が防止できれば耐摩耗性が向上するので長寿命の軸受装置が達成できる。   Therefore, in order to achieve high reliability, a bearing device that can reliably prevent damage to the sliding contact surface against temporary contamination of foreign matter into the lubricating water is indispensable. The abrasion damage on the sliding contact surface becomes more severe damage when a foreign object corresponding to the radial gap at the bearing pad inlet is caught. For this reason, if the foreign matter corresponding to the radial gap is prevented from staying at the bearing pad inlet and can be allowed to flow in the radial direction, wear damage of the bearing pad sliding contact surface can be prevented. In addition, foreign matter mixed in the water tank is settled at the bottom of the water tank at the time of stopping (once / day), and if the foreign matter precipitated by restarting can be prevented from rising again, the wear resistance is improved, so a long-life bearing device is achieved. it can.

水車ではその回転軸を支持する軸受装置として摺接面が樹脂材料で形成され、潤滑剤を水とする水潤滑セグメント型軸受装置が特許文献1に開示されている。特許文献1の水潤滑セグメント型軸受装置は回転軸に装着されたスリーブ,スリーブの外周に配置された軸受ケース、それぞれがスリーブに摺接するようにしてスリーブと軸受ケースの間でスリーブの周方向に沿ってセグメント化して複数配設された軸受、および軸受の摺接面をスリーブの摺接面に弾性的に押接させる弾性的押圧機構Pを有し、さらに、軸受の摺接面を樹脂部で形成するとともに、樹脂部の樹脂材料にポリフェニレンサルファイド系樹脂またはフッ素系樹脂を用いるようにしている。   In a water turbine, a water-lubricated segment type bearing device in which a sliding contact surface is formed of a resin material and uses a lubricant as water as a bearing device for supporting the rotating shaft is disclosed in Patent Document 1. The water-lubricated segment type bearing device disclosed in Patent Document 1 includes a sleeve mounted on a rotating shaft, a bearing case disposed on the outer periphery of the sleeve, and a sleeve in the circumferential direction between the sleeve and the bearing case so as to be in sliding contact with the sleeve. A plurality of bearings that are segmented along the surface, and an elastic pressing mechanism P that elastically presses the sliding contact surface of the bearing against the sliding contact surface of the sleeve; And a polyphenylene sulfide-based resin or a fluorine-based resin is used for the resin material of the resin portion.

このため、セラミックス材料と比べて耐衝撃性とコストで優れることから、軸受装置の分解組立作業時における取扱い性の向上を図れ、また軸受装置の低コスト化も図れる。一方、軸受パッドは、扇形状をしているので、万一水槽内に異物が混入した場合、軸受パッド入口部に異物が滞留し、軸受摺接面に噛み込む可能性がある。   For this reason, since it is excellent in impact resistance and cost compared with a ceramic material, the handling property at the time of disassembling and assembling the bearing device can be improved, and the cost of the bearing device can be reduced. On the other hand, since the bearing pad has a fan shape, in the unlikely event that foreign matter is mixed in the water tank, there is a possibility that the foreign matter stays at the bearing pad inlet and bites into the bearing sliding contact surface.

また、水潤滑式軸受として、パッドを有するセグメンタル形の水車主軸受が特許文献2に開示されている。この水車主軸受は主軸と軸受胴との間に複数個に分割されたパッドを有し、面積がパッド背面面積の40%以上、厚さが軸受径の0.02〜0.2倍の弾性体を前記パッドの背面に配置している。弾性体は金属製パッドと同等の調心能力を持ち、パッドは自由に傾いて主軸との間には適正なくさび状の水膜が形成される。このような水車主軸受であると、潤滑を水で行うことが可能となり、油を必要としない水車プラントの実用化を計ることができる。このセグメンタル形パッドは、扇形状を示しており潤滑用の水がパッド入口側で滞留し、半径方向に流れ難いことが予測できる。   Further, Patent Document 2 discloses a segmental type water turbine main bearing having a pad as a water-lubricated bearing. This water turbine main bearing has a pad divided into a plurality of parts between the main shaft and the bearing body, and the area is 40% or more of the pad back surface area, and the thickness is 0.02 to 0.2 times the bearing diameter. The body is placed on the back of the pad. The elastic body has a centering ability equivalent to that of a metal pad, and the pad tilts freely, and an appropriate wedge-shaped water film is formed between the main body and the elastic body. With such a turbine main bearing, lubrication can be performed with water, and a turbine plant that does not require oil can be put to practical use. This segmental pad has a fan shape, and it can be predicted that lubricating water stays on the pad inlet side and hardly flows in the radial direction.

また、水潤滑を可能とする軸受装置として、回転体の荷重を支持するガイドセクタを備えた回転電機のガイド軸受装置が特許文献3に開示されている。このガイド軸受装置は、ガイドセクタの摺動面材料として、高分子材料ポリエーテルエーテルケトンに繊維材料を充填した材料を用い、回転体とガイドセクタ間にタービン油より低粘度の水等の潤滑流体を満たし、ガイドセクタを回転体に押し付けた状態で据え付けている構成とされている。このようなガイド軸受装置では運転時に回転体に過大な振動が発生することなく、ガイドセクタの摺動面材料が回転体と接触したとしても、損傷は軽微に抑えることができ、回転電機の運転を継続することができる。また、タービン油より低粘度の潤滑流体を使用しているので、ガイド軸受装置内で発生する損失を低減することができる。   Further, Patent Document 3 discloses a guide bearing device for a rotating electrical machine having a guide sector that supports the load of a rotating body as a bearing device that enables water lubrication. This guide bearing device uses a material in which a polymer material polyether ether ketone is filled with a fiber material as a sliding surface material of a guide sector, and a lubricating fluid such as water having a viscosity lower than that of turbine oil between the rotating body and the guide sector. And the guide sector is installed in a state of being pressed against the rotating body. In such a guide bearing device, excessive vibration is not generated in the rotating body during operation, and even if the sliding surface material of the guide sector comes into contact with the rotating body, damage can be suppressed to a minimum, and the operation of the rotating electrical machine can be suppressed. Can continue. Further, since a lubricating fluid having a viscosity lower than that of the turbine oil is used, loss generated in the guide bearing device can be reduced.

一方、油潤滑軸受装置として、ティルティングパッド軸受が特許文献4に開示されている。このティルティングパッド軸受は回転軸を支持する複数個の軸受パッドをハウジングに固着されたピボットにより傾斜自由に支持されている。このパッド間には、潤滑油を供給する給油ノズルを回転軸に対し接線方向に設置し、またパッドの前縁部と回転軸との間の隙間開口部に向けて接近して設置した。このようにすることにより軸受隙間開口部には冷却された新しい油が豊富に供給されるので、軸受の冷却効率が著しくあがり、軸受の温度上昇,変動が防止でき軸受の潤滑機能を大幅に向上させる効果がある。   On the other hand, a tilting pad bearing is disclosed in Patent Document 4 as an oil lubricated bearing device. In this tilting pad bearing, a plurality of bearing pads for supporting a rotating shaft are supported in a freely tilting manner by a pivot fixed to a housing. Between these pads, an oil supply nozzle for supplying lubricating oil was installed in a tangential direction with respect to the rotary shaft, and was installed close to the gap opening between the front edge of the pad and the rotary shaft. In this way, a lot of new cooled oil is supplied to the bearing gap opening, so the cooling efficiency of the bearing is remarkably increased, and the bearing temperature rise and fluctuation can be prevented, greatly improving the lubrication function of the bearing. There is an effect to make.

さらに、特許文献5にも油潤滑のティルティングパッド軸受装置が開示されている。このティルティングパッド軸受装置は各ティルティングパッドの外周面あるいはそれに対向する前記ハウジングの内周面に複数の周方向の溝を有し、同溝あるいは前記外周面に直接潤滑油を噴出する複数の小径オリフィスを前記ハウジングあるいは周方向に隣合う前記各ティルティングパッドの間に設置された給油片に配置して構成した。このように構成することで、ティルティングガイド軸受装置における供給潤滑油を効率的に利用し、温度上昇を防止して安定した高特性を有する軸受を提供することができる。   Further, Patent Document 5 discloses an oil-lubricated tilting pad bearing device. This tilting pad bearing device has a plurality of circumferential grooves on the outer peripheral surface of each tilting pad or the inner peripheral surface of the housing facing the tilting pad, and a plurality of lubricant oils are directly ejected to the grooves or the outer peripheral surface. A small-diameter orifice is arranged on the oil supply piece installed between the housing or the respective tilting pads adjacent in the circumferential direction. By comprising in this way, the supply lubricating oil in a tilting guide bearing apparatus can be used efficiently, a temperature rise can be prevented, and the bearing which has the stable high characteristic can be provided.

特開2005−249030号公報JP 2005-249030 A 特開平8−86268号公報JP-A-8-86268 特開2003−28146号公報JP 2003-28146 A 特開平5−26230号公報JP-A-5-26230 特開平7−293554号公報JP-A-7-293554

水車では、そのガイド軸受装置における潤滑剤として水を利用できる構造であることが、油流出等による河川汚染を防止,補機の簡素化,冷却水の廃止という点で望ましい。しかしながら、ガイド軸受装置の潤滑剤を油から水に変更する場合には、摺接面に用いた樹脂材料の異物に対する高耐摩耗性を有することが求められる。   In a water turbine, it is desirable that water be used as a lubricant in the guide bearing device in terms of preventing river contamination due to oil spills, simplifying auxiliary equipment, and eliminating cooling water. However, when the lubricant of the guide bearing device is changed from oil to water, it is required to have high wear resistance against foreign matters of the resin material used for the sliding contact surface.

特許文献1には、摺接面が樹脂材料で形成された水潤滑軸受装置が開示されている。摺接面に樹脂材料を適用した軸受パッドであるため、潤滑水に清水を用いた場合は安定した軸受性能が長期間維持できる。しかし、軸受組込み時において、万一、異物等が水槽内に混入したりすると、運転中に異物が潤滑水中に浮上混入し摺接面に噛み込む可能性がある。その結果、摺接面の摩耗損傷による軸受負荷容量の低下が懸念され、長期信頼性に対する十分な配慮がされていない。   Patent Document 1 discloses a water-lubricated bearing device in which a sliding contact surface is formed of a resin material. Since the bearing pad is made of a resin material applied to the sliding surface, stable bearing performance can be maintained for a long time when clean water is used as the lubricating water. However, if a foreign object or the like is mixed in the water tank when the bearing is assembled, the foreign object may float in the lubricating water during operation and bite into the sliding contact surface. As a result, there is a concern about a decrease in bearing load capacity due to wear damage on the sliding contact surface, and sufficient consideration is not given to long-term reliability.

また、水潤滑式軸受として、パッドを有するセグメンタル形の水車主軸受が特許文献2に開示されている。この水車主軸受に使用されているパッドは金属製パッドと同等の調心能力を持ち、パッドは自由に傾いて主軸との間には適正なくさび状の水膜を形成するので、安定した軸受性能が維持できる。一方、河川などの水を潤滑水として利用することを前提とした場合、万一異物が混入したりすると、セグメンタル形パッドは、扇形状を示しているためパッド入口側に異物も滞留しやすくなり、パッドの摺動面に浸入する確率が高くなる。その結果、異物による損傷が回避できない可能性がある。そのため、河川などの水に万一にも異物が混入したりするような潤滑条件での使用に対しては十分に考慮がされていない。   Further, Patent Document 2 discloses a segmental type water turbine main bearing having a pad as a water-lubricated bearing. The pad used in this water turbine main bearing has the same aligning ability as a metal pad, and the pad tilts freely and forms an appropriate wedge-shaped water film between the main shaft and stable bearing. Performance can be maintained. On the other hand, assuming that water from rivers is used as lubricating water, if foreign matter is mixed in, the segmental pad shows a fan shape, so foreign matter can easily stay on the pad inlet side. This increases the probability of entering the sliding surface of the pad. As a result, damage due to foreign matter may not be avoided. Therefore, sufficient consideration is not given to use under lubrication conditions in which foreign matter should be mixed into water such as rivers.

また、水潤滑を可能とする軸受装置として、回転体の荷重を支持するガイドセクタを備えた回転電機のガイド軸受装置が特許文献3に開示されている。このガイド軸受装置は、ガイドセクタの摺動面材料として、高分子材料ポリエーテルエーテルケトンに繊維材料を充填した材料を用い、回転体とガイドセクタ間にタービン油より低粘度の水等の潤滑流体を満たし、ガイドセクタを回転体に押し付けた状態で据え付けている構成とされている。このガイドセクタを用いた軸受装置では、摺動面材料にポリエーテルエーテルケトンに繊維材料を充填した樹脂材料を適用しているので、水に万一異物等が混入した場合は十分な耐摩耗性が得られない可能性がある。したがって、万一の潤滑水への異物混入に対する樹脂材料について十分な配慮がされていない。   Further, Patent Document 3 discloses a guide bearing device for a rotating electrical machine having a guide sector that supports the load of a rotating body as a bearing device that enables water lubrication. This guide bearing device uses a material in which a polymer material polyether ether ketone is filled with a fiber material as a sliding surface material of a guide sector, and a lubricating fluid such as water having a viscosity lower than that of turbine oil between the rotating body and the guide sector. And the guide sector is installed in a state of being pressed against the rotating body. In this bearing device using a guide sector, a resin material in which a polyether ether ketone is filled with a fiber material is used as the sliding surface material, so that sufficient wear resistance should be provided if foreign matter is mixed into the water. May not be obtained. Therefore, sufficient consideration is not given to the resin material against foreign matter mixing into the lubricating water.

一方、油潤滑軸受装置として、ティルティングパッド軸受が特許文献4に開示されている。このティルティングパッド軸受は回転軸を支持する複数個の軸受パッドをハウジングに固着されたピボットにより傾斜自由に支持されている。このパッド間には、潤滑油を供給する給油ノズルを回転軸に対し接線方向に設置し、またパッドの前縁部と回転軸との間の隙間開口部に向けて接近して設置した。このようにすることにより軸受の冷却効率が著しくあがり、軸受の温度上昇,変動が防止でき軸受の潤滑機能を大幅に向上できる。しかし、このようなパッド形状であると、外部から万一異物が浸入したりすると異物を含む油がパッド入口部に滞留しやすくなり、異物が摺動面に浸入する確率が高くなる。このため、外部からの万一の異物の浸入に対する損傷防止については十分に考慮されていない。   On the other hand, a tilting pad bearing is disclosed in Patent Document 4 as an oil lubricated bearing device. In this tilting pad bearing, a plurality of bearing pads for supporting a rotating shaft are supported in a freely tilting manner by a pivot fixed to a housing. Between these pads, an oil supply nozzle for supplying lubricating oil was installed in a tangential direction with respect to the rotary shaft, and was installed close to the gap opening between the front edge of the pad and the rotary shaft. By doing so, the cooling efficiency of the bearing is remarkably increased, the temperature rise and fluctuation of the bearing can be prevented, and the lubricating function of the bearing can be greatly improved. However, with such a pad shape, if foreign matter enters from the outside, oil containing the foreign matter tends to stay at the pad inlet, and the probability that the foreign matter will enter the sliding surface increases. For this reason, sufficient consideration has not been given to preventing damage to the entry of foreign matter from the outside.

また、特許文献5にも油潤滑のティルティングパッド軸受装置が開示されている。このティルティングパッド軸受装置では、供給潤滑油を効率的に利用し、温度上昇を防止して安定した高特性を有する軸受を提供することができるが、供給潤滑油に万一異物が混入したりするような条件下では安定した高特性が得られない可能性がある。したがって、外部からの万一の異物の混入に対する特性の安定化については十分に考慮されていない。   Patent Document 5 also discloses an oil-lubricated tilting pad bearing device. In this tilting pad bearing device, it is possible to provide a bearing having a stable and high characteristic by efficiently using the supplied lubricating oil and preventing a temperature rise. Under such conditions, stable high characteristics may not be obtained. Therefore, sufficient consideration has not been given to the stabilization of characteristics against external contamination by foreign matters.

以上のように、公知例では水環境下で使用するガイド軸受装置において、組立時等の万一の異物混入においても安定した軸受性能を維持するための摺接面の耐摩耗性向上について十分に考慮されていない。   As described above, in the known example, in the guide bearing device used in the water environment, sufficient improvement in the wear resistance of the sliding contact surface is required to maintain stable bearing performance even in the event of foreign matter contamination during assembly. Not considered.

本発明の目的は、水環境下で使用する摺接面に樹脂材料を用いた軸受パッドに対して、万一の異物混入においても摺接面の摩耗損傷を防止し、安定した軸受性能を長期間維持することが可能な水潤滑ガイド軸受装置及びそれを搭載した水車を提供することにある。   The object of the present invention is to prevent wear damage to the sliding contact surface even if foreign matter is mixed in with the bearing pad using a resin material for the sliding contact surface to be used in a water environment, and to maintain stable bearing performance. It is an object of the present invention to provide a water-lubricated guide bearing device that can be maintained for a period of time and a water turbine equipped with the same.

上記目的は回転機械の回転軸を支持する水潤滑ガイド軸受装置において、摺接面に樹脂材料を用い、この樹脂材料を金属ケースより摺接面側に数ミリ突出させて金属ケースに格納固定した軸受パッドを回転軸の周囲に複数個配置するとともに、前記軸受パッドの金属ケースの内周側弦長さ(B)と、外周側弦長さ(b)との寸法関係をB≧bに設定したことにより達成される。   The above-mentioned purpose is to use a resin material for the sliding contact surface in a water-lubricated guide bearing device that supports the rotating shaft of a rotating machine, and this resin material protrudes several millimeters from the metal case to the sliding contact side and is stored and fixed in the metal case. A plurality of bearing pads are arranged around the rotating shaft, and the dimensional relationship between the inner chord length (B) and the outer chord length (b) of the metal case of the bearing pad is set to B ≧ b. Is achieved.

また上記目的は、前記金属ケースの周方向両端面を傾斜させたことにより達成される。   Moreover, the said objective is achieved by inclining the circumferential direction both end surfaces of the said metal case.

また上記目的は、金属製台金の摺接面側に樹脂材料を接合した軸受パッドを回転軸の周囲に複数個配置するとともに、前記軸受パッドの内周側弦長さ(B)と、外周側弦長さ
(b)との寸法関係を、B≧bに設定したことにより達成される。
Further, the object is to arrange a plurality of bearing pads each having a resin material joined to the sliding surface side of the metal base metal around the rotating shaft, and to determine the inner chord length (B) of the bearing pad and the outer circumference. This is achieved by setting the dimensional relationship with the side chord length (b) to B ≧ b.

また上記目的は、前記軸受パッドの周方向両端面を傾斜させたことにより達成される。   Further, the above object is achieved by inclining both end faces in the circumferential direction of the bearing pad.

本発明によれば摺接面の摩耗損傷を防止し、安定した軸受性能を長期間維持することが可能な水潤滑ガイド軸受装置及びそれを搭載した水車を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the water lubrication guide bearing apparatus which can prevent the abrasion damage of a slidable contact surface, and can maintain the stable bearing performance for a long period of time, and a water turbine carrying the same can be provided.

以下、本発明の各実施例について図を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

第2実施例以降の実施例においては第1実施例と共通する構成の重複する説明を省略するし、各実施例の図における同一符号は同一物又は相当物を示す。なお、本発明は、軸受パッドの周方向両端面形状について工夫を施したものであるため、ここでは軸受パッドについて詳細に説明し、水潤滑ガイド軸受装置,水車の構成については図6,図7と図9を参照して説明する。   In the second and subsequent embodiments, the redundant description of the configuration common to the first embodiment is omitted, and the same reference numerals in the drawings of the respective embodiments indicate the same or equivalent. In the present invention, the shape of both end surfaces in the circumferential direction of the bearing pad is devised, so the bearing pad will be described in detail here, and the configurations of the water-lubricated guide bearing device and the water wheel are shown in FIGS. And with reference to FIG.

図1は本実施1の形態に係る軸受パッドAの形状を示す図である。
図1において、軸受パッドAは摺接面に樹脂材料1を用い、この樹脂材料1を主軸スリーブ2より摺接面側に数ミリ突出させて主軸スリーブ2に格納固定し、主軸スリーブ2の周方向両端面A1,A2を傾斜させている。このように、傾斜させることにより主軸スリーブ2の入口側A3の部分で異物は周方向両端面A1側に流過してしまい、この付近に異物は滞留し難くなる。よって、従来例のような傾斜していない場合に比較して、摺接面への異物の噛み込みが防止できる。傾斜面の角度A4は主軸スリーブの周速,軸受パッドの大きさで決まるものであり特に限定しない。
FIG. 1 is a view showing the shape of a bearing pad A according to the first embodiment.
In FIG. 1, the bearing pad A uses a resin material 1 on the sliding contact surface, and protrudes several millimeters from the spindle sleeve 2 toward the sliding contact surface side, and is stored and fixed on the spindle sleeve 2. Both direction end surfaces A1 and A2 are inclined. In this way, the slanting causes foreign matter to flow to the circumferential end surface A1 side at the inlet side A3 portion of the spindle sleeve 2, and it is difficult for the foreign matter to stay in this vicinity. Therefore, it is possible to prevent the foreign matter from getting into the sliding contact surface as compared with the case where it is not inclined as in the conventional example. The angle A4 of the inclined surface is determined by the peripheral speed of the spindle sleeve and the size of the bearing pad, and is not particularly limited.

図2は本実施に係る軸受パッドA〜Hを主軸スリーブ6の周囲に複数個(ここでは8個)配置した状況を示す図である。
図2において、この場合、A〜Hの各軸受パッドは潤滑水中に浸漬した状態で設置されている。主軸スリーブ2は、回転軸4の外周面に固定され、回転軸4と同期して回転する。また、回転軸4に作用する荷重は主軸スリーブ6を介して軸受パッドA〜Hで支持される。A〜Hの各軸受パッドの周方向両端面は摺接面側から径方向に一定角度で傾斜させ、その傾斜面はある位置から外側(径方向)では傾斜していない。このような形状を有する軸受パッドが異物を混入した潤滑水中に水没した状態で主軸スリーブ6が反時計回りに回転した場合の異物の動きについて軸受パッドAに注目して説明する。
FIG. 2 is a view showing a state in which a plurality (eight in this case) of bearing pads A to H according to the present embodiment are arranged around the spindle sleeve 6.
In FIG. 2, in this case, the bearing pads A to H are installed in a state of being immersed in the lubricating water. The main shaft sleeve 2 is fixed to the outer peripheral surface of the rotating shaft 4 and rotates in synchronization with the rotating shaft 4. The load acting on the rotary shaft 4 is supported by the bearing pads A to H via the main shaft sleeve 6. Both end surfaces in the circumferential direction of the bearing pads A to H are inclined at a constant angle in the radial direction from the sliding contact surface side, and the inclined surfaces are not inclined outward (radial direction) from a certain position. The movement of the foreign matter when the spindle sleeve 6 rotates counterclockwise in a state where the bearing pad having such a shape is submerged in the lubricating water mixed with the foreign matter will be described by paying attention to the bearing pad A.

軸受パッドAの入口側の周方向両端面A1,出口側の周方向両端面A2とすると、軸受パッドAの入口側の部分では潤滑水に含有する異物の滞留が解消でき、異物の大半が周方向両端面A1を介して流過し半径方向に飛散していく。また、出口側の周方向両端面A2では次の軸受パットBでの入口側の半径方向流れに引きずられて潤滑水が移動する。A〜Hの各軸受パッド入口側の周方向両端面A1〜H1でも同様の流れが発生し、異物の大半が各傾斜面を介して流過し半径方向に飛散していく。   When the circumferential end surfaces A1 on the inlet side of the bearing pad A1 and the circumferential end surfaces A2 on the outlet side are defined, the retention of foreign matter contained in the lubricating water can be eliminated at the inlet side portion of the bearing pad A, and most of the foreign matter is peripheral. It flows through the direction end faces A1 and scatters in the radial direction. Further, the lubricating water moves by being dragged by the radial flow on the inlet side of the next bearing pad B at the circumferential end surfaces A2 on the outlet side. A similar flow also occurs on the circumferential end surfaces A1 to H1 on the bearing pad inlet side of A to H, and most of the foreign material flows through the inclined surfaces and scatters in the radial direction.

したがって、各軸受パッドの摺接面に噛み込む異物は激減するので、摺接面の摩耗損傷が防止でき、長期間にわたって安定した軸受性能が維持できる水潤滑ガイド軸受装置を提供できる。   Accordingly, since the foreign matter biting into the sliding contact surface of each bearing pad is drastically reduced, it is possible to provide a water-lubricated guide bearing device that can prevent wear damage on the sliding contact surface and maintain stable bearing performance for a long period of time.

前述のように、軸受パッドの周方向両端面を傾斜させることにより、入口側では傾斜面での流速が増大することで、また、出口側の傾斜面では次の軸受パットでの入口側の半径方向流れに引きずられて潤滑水の移動が発生するので、それぞれの傾斜面での熱伝達率が改善され放熱性が向上する。その結果、摺接面での摩擦熱が効率良く放熱できるので摺接面の潤滑水の粘度が向上し、負荷容量の改善が計れる。負荷容量が改善できるので、軸受パッドの高面圧化ができパッドの小形化が可能となる。軸受パッドの小形化によりガイド軸受装置の低コスト化が達成できる。さらに、軸受パッド入口側付近での潤滑水の異物含有濃度が下げられるので、軸受摺接面の異物に起因するエロージョンも軽減され、軸受パッドの長寿命化に有効である。   As described above, by inclining both end faces in the circumferential direction of the bearing pad, the flow velocity on the inclined surface increases on the inlet side, and the radius on the inlet side in the next bearing pad on the inclined surface on the outlet side. Since the lubricating water moves by being dragged by the directional flow, the heat transfer coefficient at each inclined surface is improved and the heat dissipation is improved. As a result, the frictional heat on the sliding contact surface can be efficiently dissipated, so the viscosity of the lubricating water on the sliding contact surface is improved and the load capacity can be improved. Since the load capacity can be improved, the bearing pad can be increased in surface pressure and the pad can be downsized. The cost of the guide bearing device can be reduced by reducing the size of the bearing pad. Furthermore, since the concentration of foreign matter contained in the lubricating water in the vicinity of the bearing pad inlet side is reduced, erosion caused by foreign matter on the bearing sliding contact surface is reduced, which is effective for extending the life of the bearing pad.

図3は第2の実施例による軸受パッドAの形状を示す図である。
図3において、本実施形態の軸受パッドは基本的には第1の実施形態における軸受パッドAと同様であるが、相違点は金属ケースの周方向両端面に形成する傾斜面を半径方向全面に設置し、内周側弦長さ(B)と外周側弦長さ(b)との寸法関係を、B>bに設定したことにある。ここでは、軸受パッドAに形成した傾斜面の寸法関係を、B>bに設定しているが、傾斜面の機能を考えると、B=bの条件でも半径方向への流れが発生し、異物を流過させる機能を満足できるのでB≧bにとることが望ましい。
FIG. 3 is a view showing the shape of the bearing pad A according to the second embodiment.
In FIG. 3, the bearing pad of the present embodiment is basically the same as the bearing pad A of the first embodiment, except that the inclined surfaces formed on both end surfaces in the circumferential direction of the metal case are all over the radial direction. This is because the dimensional relationship between the inner chord length (B) and the outer chord length (b) is set to B> b. Here, the dimensional relationship of the inclined surface formed on the bearing pad A is set to B> b. However, considering the function of the inclined surface, a flow in the radial direction occurs even under the condition of B = b, and the foreign matter Therefore, it is desirable to satisfy B ≧ b.

この実施例においては、傾斜面の加工が容易にできるので軸受パッドの低コスト化が計れる。その他の構成は第1の実施形態の場合と同様なので上記の効果を奏することができる。   In this embodiment, since the inclined surface can be easily processed, the cost of the bearing pad can be reduced. Since the other configuration is the same as that of the first embodiment, the above effect can be obtained.

図4は第2の実施例に係る軸受パッドA〜Hを主軸スリーブ6の周囲に複数個(ここでは8個)配置した状況を示す図である。
図4において、この場合、A〜Hの各軸受パッドは潤滑水中に浸漬した状態で設置されている。主軸スリーブ2は、回転軸4の外周面に固定され、回転軸4と同期して回転する。また、回転軸4に作用する荷重は主軸スリーブ6を介して軸受パッドA〜Hで支持される。A〜Hの各軸受パッドの周方向両端面に形成する傾斜面は半径方向全面に設置し、内周側弦長さ(B)と外周側弦長さ(b)との寸法関係を、B>bに設定したことにある。
FIG. 4 is a view showing a state in which a plurality (eight in this case) of bearing pads A to H according to the second embodiment are arranged around the spindle sleeve 6.
In FIG. 4, in this case, the bearing pads A to H are installed in a state of being immersed in the lubricating water. The main shaft sleeve 2 is fixed to the outer peripheral surface of the rotating shaft 4 and rotates in synchronization with the rotating shaft 4. The load acting on the rotary shaft 4 is supported by the bearing pads A to H via the main shaft sleeve 6. The inclined surfaces formed on both end surfaces in the circumferential direction of the bearing pads A to H are installed over the entire radial direction, and the dimensional relationship between the inner chord length (B) and the outer chord length (b) is represented by B > B.

このような形状を有する軸受パッドが、異物を混入した潤滑水中に水没した状態で主軸スリーブ6が反時計回りに回転した場合の異物の動きについて軸受パッドAに注目して説明する。軸受パッドAの入口側の周方向両端面A1,出口側の周方向両端面A2とすると、軸受パッドAの入口側の部分では潤滑水に含有する異物の滞留が解消でき、異物が周方向両端面A1を介して流過し半径方向に飛散していく。また、出口側の周方向両端面A2では次の軸受パットBでの入口側の半径方向流れに引きずられて潤滑水が内側に移動する。A〜Hの各軸受パッド入口側の周方向両端面A1〜H1でも同様の流れが発生し、異物が各傾斜面を介して流過し半径方向に飛散していく。この実施例においては、傾斜面の加工が容易にできる軸受パッドを配置しているので、低コストのガイド軸受装置が提供できる。その他の構成は第2の実施形態の場合と同様なので上記の効果を奏することができる。   The movement of the foreign matter when the spindle sleeve 6 rotates counterclockwise in a state where the bearing pad having such a shape is submerged in the lubricating water mixed with the foreign matter will be described by paying attention to the bearing pad A. When the circumferential end surfaces A1 on the inlet side of the bearing pad A1 and the circumferential end surfaces A2 on the outlet side are defined, the retention of foreign matter contained in the lubricating water can be eliminated at the inlet side portion of the bearing pad A, and the foreign matter is removed at both ends in the circumferential direction. It flows through the surface A1 and scatters in the radial direction. Further, at both end surfaces A2 in the circumferential direction on the outlet side, the lubricating water moves inwardly by being dragged by the radial flow on the inlet side in the next bearing pad B. A similar flow also occurs on the circumferential end surfaces A1 to H1 on the inlet side of the bearing pads A to H, and foreign matter flows through the inclined surfaces and scatters in the radial direction. In this embodiment, since the bearing pad that can easily process the inclined surface is disposed, a low-cost guide bearing device can be provided. Since the other configuration is the same as that of the second embodiment, the above effect can be obtained.

図5は第3の実施例による軸受パッドの形状を示す図である。
図5において、本実施形態の軸受パッドは基本的には第2の実施形態における軸受パッドと同様であるが、相違点は金属製台金の摺接面側に樹脂材料を接合して製造したことにある。樹脂材料の接合方法については、高信頼性が達成できる方法であれば、特に限定するものではない。この実施例においては、金属製台金の摺接面側に樹脂材料を接合しているので、金属製台金摺接面側全域に樹脂材料を適用でき、軸受パッドの摺接面積を拡大でき軸受負荷容量向上に寄与する。その他の構成は第1の実施形態の場合と同様なので上記の効果を奏することができる。
FIG. 5 is a view showing the shape of the bearing pad according to the third embodiment.
In FIG. 5, the bearing pad of this embodiment is basically the same as the bearing pad in the second embodiment, but the difference is that the resin material is joined to the sliding surface side of the metal base metal. There is. The bonding method of the resin material is not particularly limited as long as it can achieve high reliability. In this embodiment, since the resin material is bonded to the sliding surface side of the metal base metal, the resin material can be applied to the entire area of the metallic base metal sliding surface, and the sliding contact area of the bearing pad can be increased. Contributes to improved bearing load capacity. Since the other configuration is the same as that of the first embodiment, the above effect can be obtained.

次に、本発明の軸受パッドを適用した水潤滑ガイド軸受装置について説明する。
図6は水潤滑ガイド軸受装置の縦断面図である。
図6において、水潤滑ガイド軸受装置30はスリーブ6,軸受ケース8,軸受パッドA,弾性的押圧機構P,弾性支持機構S、及び潤滑水貯水枠体Wを主な要素としている。スリーブ6は、スカート部5を有しており、このスカート部5を介して回転軸4に固定的に装着され、軸受パッドAによる回転軸4の摺接支持を受けるのに機能する。またスリーブ6は、スカート部5の周囲にそって二分割できる筒構造とされ、その分割された半円筒部材はリーマボルト7により締結されている。スリーブ材質はSUS403で摺接面を焼入れ処理している。
Next, a water lubrication guide bearing device to which the bearing pad of the present invention is applied will be described.
FIG. 6 is a longitudinal sectional view of the water-lubricated guide bearing device.
In FIG. 6, the water lubrication guide bearing device 30 includes a sleeve 6, a bearing case 8, a bearing pad A, an elastic pressing mechanism P, an elastic support mechanism S, and a lubricating water storage frame W as main elements. The sleeve 6 has a skirt portion 5. The sleeve 6 is fixedly attached to the rotating shaft 4 via the skirt portion 5 and functions to receive sliding contact support of the rotating shaft 4 by the bearing pad A. The sleeve 6 has a cylindrical structure that can be divided into two along the periphery of the skirt portion 5, and the divided semi-cylindrical member is fastened by a reamer bolt 7. As for the sleeve material, the sliding contact surface is quenched by SUS403.

軸受ケース8は筒形をなしており、スリーブ6の外周に配置される。また、その軸方向の下端に下プレート8aが、また上端に上プレート8bが取付けられ、これら下プレート8aと上プレート8bで軸受パッドAの上下両端面を囲むようにされている。   The bearing case 8 has a cylindrical shape and is disposed on the outer periphery of the sleeve 6. Further, a lower plate 8a is attached to the lower end in the axial direction, and an upper plate 8b is attached to the upper end. The lower plate 8a and the upper plate 8b surround the upper and lower end surfaces of the bearing pad A.

軸受パッドAは図1に示すように、摺接面Aaに樹脂材料を用い、この樹脂材料を主軸スリーブ2より摺接面側に数ミリ突出させて主軸スリーブ2に格納固定し、さらに、主軸スリーブ2の周方向両端面A1,A2を傾斜させている。この軸受パッドAがスリーブ6と軸受ケース8の間でスリーブ6の周方向に沿って複数個がそれぞれスリーブ6に摺接するよう配設される。   As shown in FIG. 1, the bearing pad A uses a resin material for the sliding contact surface Aa, protrudes several millimeters from the spindle sleeve 2 to the sliding contact surface side, and is stored and fixed to the spindle sleeve 2, and further, the spindle Both end surfaces A1, A2 in the circumferential direction of the sleeve 2 are inclined. A plurality of bearing pads A are disposed between the sleeve 6 and the bearing case 8 so as to be in sliding contact with the sleeve 6 along the circumferential direction of the sleeve 6.

このように、軸受パッドAの両端面を傾斜させることにより、主軸スリーブ2の入口側
A3の部分で異物は周方向両端面A1側に流過してしまい、この付近に異物は滞留し難くなる。よって、従来例のような傾斜していない軸受パッドに比較して、摺接面への異物の噛み込みが防止でき、耐摩耗性向上が計れるので、長期間安定した軸受性能が維持できる。また、軸受パッドAの摺接面Aaにカーボン繊維含有PPS樹脂を用いているので、安定した摺動特性が発揮できる。
In this way, by inclining the both end faces of the bearing pad A, the foreign matter flows to the circumferential end faces A1 at the inlet side A3 portion of the spindle sleeve 2, and the foreign matter does not easily stay in the vicinity. . Therefore, in comparison with a bearing pad that is not inclined as in the conventional example, it is possible to prevent foreign matter from getting into the sliding contact surface and to improve wear resistance, so that stable bearing performance can be maintained for a long time. Further, since the carbon fiber-containing PPS resin is used for the sliding contact surface Aa of the bearing pad A, stable sliding characteristics can be exhibited.

弾性的押圧機構Pは軸受パッドAを回転軸4の径方向で弾性的に支持する。そのために弾性的押圧機構Pは軸受パッドAをスリーブ7に対して回転軸4の径方向に弾性的に付勢する圧縮コイルばね10とこの圧縮コイルばね10のばね力を調整する調整体11を主な要素としてなっている。   The elastic pressing mechanism P elastically supports the bearing pad A in the radial direction of the rotating shaft 4. For this purpose, the elastic pressing mechanism P includes a compression coil spring 10 that elastically biases the bearing pad A with respect to the sleeve 7 in the radial direction of the rotary shaft 4 and an adjustment body 11 that adjusts the spring force of the compression coil spring 10. It is a main element.

圧縮コイルばね10は軸受パッドAの外周面にたがいに対向するように突設させた一対の対向壁12,12とこの対向壁12,12の間で軸受パッドAの外周面を適切な深さに切削して形成した溝13とが形成する空間に保持された状態で、その一端を溝13の底で軸受パッドAに押接させ、その他端が板ばね14を介して調整体11に押圧支持せれるように設けられている。   The compression coil spring 10 has a suitable depth between the pair of opposing walls 12 and 12 projecting so as to face the outer peripheral surface of the bearing pad A and the opposing walls 12 and 12. One end of the groove 13 is pressed against the bearing pad A at the bottom of the groove 13 and the other end is pressed against the adjusting body 11 via the leaf spring 14 in a state where the groove 13 formed by cutting is held in the space formed. It is provided to be supported.

調整体11は、軸受ケース8に径方向で貫通するように形成したねじ孔15に螺合させたボルト構造で形成されており、ねじ孔15への捻込み状態を調整することで板ばね14を介した圧縮コイルばね10に対する押圧力を調整できるようにされ、その捻込み状態をナット17で固定できるようにされている。また調整体11は、その先端面がわずかに球面状とされており、この球面状先端面で板ばね14の中心部に押接するようにされている。ここで、圧縮コイルばね10と調整体11の間に介在する板ばね14は、軸受パッドAの調心機能を負っており、圧縮コイルばね10を図6の状態で上下に挟むようにして対にして設けられているピボット18,18により両端部を支持され、また上述のように調整体11の球面状先端面で中心部を押接支持されている。   The adjusting body 11 is formed with a bolt structure screwed into a screw hole 15 formed so as to penetrate the bearing case 8 in the radial direction, and the leaf spring 14 is adjusted by adjusting the screwed state into the screw hole 15. The pressing force applied to the compression coil spring 10 via the screw can be adjusted, and the screwed state can be fixed by the nut 17. The adjustment body 11 has a slightly spherical tip surface, and is pressed against the central portion of the leaf spring 14 with the spherical tip surface. Here, the leaf spring 14 interposed between the compression coil spring 10 and the adjusting body 11 bears the alignment function of the bearing pad A, and the compression coil spring 10 is paired so as to be sandwiched vertically in the state of FIG. Both ends are supported by the pivots 18 and 18 provided, and the center is pressed and supported by the spherical tip surface of the adjustment body 11 as described above.

以上のような弾性的押圧機構Pによる軸受パッドの弾性的支持には2つの機能がある。一つは、軸受パッドの摺接面Aaを回転軸の停止時にスリーブの摺接面6aに押接させるようにすることで、潤滑水に含まれる硬い粒子が軸受パッドの摺接面Aaとスリーブの摺接面6aの間に入り込むのを防止する機能である。他の一つは、軸受パッドの摺接面Aaが摩耗するようなことが仮にあった場合に、その摩耗で摺接面Aaと摺接面6aの隙間が拡大するのを回避して潤滑用の水膜を形成するのに適した隙間に維持する機能である。このように弾性的押圧機構Pを設けることにより摺接面の摩耗問題に効果的に対処できるようになる。また、軸受パッドの摺接面にカーボン繊維含有PPS樹脂を用いているので、水潤滑という条件で安定した摺動特性が得られる。   The elastic support of the bearing pad by the elastic pressing mechanism P as described above has two functions. One is that the sliding contact surface Aa of the bearing pad is pressed against the sliding contact surface 6a of the sleeve when the rotary shaft is stopped, so that hard particles contained in the lubricating water are brought into contact with the sliding contact surface Aa of the bearing pad and the sleeve. It is a function which prevents entering between the sliding contact surfaces 6a. The other is that if there is a case where the sliding contact surface Aa of the bearing pad is worn, the gap between the sliding contact surface Aa and the sliding contact surface 6a is prevented from expanding due to the wear. This is a function of maintaining a gap suitable for forming a water film. Thus, by providing the elastic pressing mechanism P, it becomes possible to effectively cope with the problem of wear of the sliding contact surface. In addition, since the carbon fiber-containing PPS resin is used for the sliding contact surface of the bearing pad, stable sliding characteristics can be obtained under the condition of water lubrication.

弾性支持機構Sは、軸受ケース8の下プレート8aと軸受パッドの下端面の間にもうけられたコイルばね19により形成されており、軸受ケースが軸受パッドを弾性的に支持する機能を負っている。このような弾性支持機構Sで軸受パッドAを弾性的に支持させるようにしたことにより、弾性的押圧機構Pにおける圧縮コイルばねによる適切な付勢力をより安定的に軸受パッドに働かせることができるようになる。この結果、軸受パッドの追従性が改善されるとともに、回転軸4の回転中における摺接面6aと摺接面Aaの隙間での水膜形成がより安定的になり、したがって、反負荷側の軸受パッドの片当りによる損傷なども効果的に防止できる。なお、コイルばね19は軸受パッドの弾性的支持をより安定的なものとするには2本以上設けるのが好ましい。   The elastic support mechanism S is formed by a coil spring 19 provided between the lower plate 8a of the bearing case 8 and the lower end surface of the bearing pad, and the bearing case has a function of elastically supporting the bearing pad. . Since the bearing pad A is elastically supported by the elastic support mechanism S, an appropriate biasing force by the compression coil spring in the elastic pressing mechanism P can be applied to the bearing pad more stably. become. As a result, the followability of the bearing pad is improved, and the water film formation in the gap between the sliding contact surface 6a and the sliding contact surface Aa during the rotation of the rotating shaft 4 becomes more stable. It is possible to effectively prevent damage caused by contact of the bearing pads. Two or more coil springs 19 are preferably provided in order to make the elastic support of the bearing pad more stable.

潤滑水貯水枠体Wは、摺接面6aと摺接面Aaの潤滑に用いる水を貯水させるためのもので、それぞれ軸受ケース8に取付けられた内カバー31,外カバー32、および図9における天板部43で桝状に囲って形成され、その上部には潤滑水の飛散を防止する上板
33が設けられている。
The lubricating water storage frame W is for storing water used for lubrication of the sliding contact surface 6a and the sliding contact surface Aa. The inner cover 31 and the outer cover 32 attached to the bearing case 8 respectively, and FIG. A top plate portion 43 is formed so as to be enclosed in a bowl shape, and an upper plate 33 for preventing scattering of lubricating water is provided on the upper portion thereof.

以上説明したように、本発明の軸受パッドを適用した水潤滑ガイド軸受装置であると、安定した摺動特性と、万一の異物混入しても十分な耐摩耗性を提供できる。   As described above, the water-lubricated guide bearing device to which the bearing pad of the present invention is applied can provide stable sliding characteristics and sufficient wear resistance even if foreign matter is mixed.

軸受パッドの摺接面への異物の噛み込みを防止する構造について説明してきたが、さらなる耐摩耗性向上の観点から、軸受ケースの底部に一旦沈殿した異物の再浮上を防止する発明について述べる。   The structure for preventing the foreign matter from getting into the sliding contact surface of the bearing pad has been described. From the viewpoint of further improving the wear resistance, the invention for preventing the re-floating of the foreign matter once deposited on the bottom of the bearing case will be described.

図7は本発明の軸受パッドを適用し、さらに、軸受ケースの下プレートの上面に沈殿した異物の再浮上を防止するための旋回流抑止手段を付加したガイド軸受装置の縦断面図である。
図8は旋回流抑止手段を示すリング状の部材を説明する図である。
図7,図8において、旋回流抑止手段50は軸受パッドAの下面Ab,軸受ケース8の下プレート8aの上面51と板ばね14のサポート台52の内面53とで囲む隙間に設置されている。旋回流抑止手段50は図8に示すようにリング状の部材で、内板50a,底板50b,外板50c,天板50d及び制止板50eで構成されている。この中で、内板50a,外板50cと制止板50eはSUS304のプレートである。底板50bと天板50dは穴孔鋼板(SUS304製)である。制止板50eは周方向に複数枚設置されている。図7で異物の挙動について説明する。回転軸が停止すると、潤滑水中に分散していた異物は時間経過とともに、沈降し旋回流抑止手段50を構成する天板を通過し、底板
50bの上面に堆積する。旋回流抑止手段50の内部にある潤滑水は回転軸が回転しても、内板50aで仕切られているので潤滑水は旋回せずほぼ静止した状態にあり異物を攪拌することが防止される。その結果、異物の再浮上が回避でき、潤滑水に含まれる異物は徐々に減少していくので、摺接面の樹脂材料の摩耗損傷が軽減できる。したがって、軸受パッドの両端面を傾斜させ、さらに旋回流抑止手段を付加することで、万一水槽内に混入した異物があっても摺接面近傍の潤滑水中から排除できるので、水潤滑ガイド軸受装置の高信頼性化に寄与できる。
FIG. 7 is a longitudinal cross-sectional view of a guide bearing device to which the bearing pad of the present invention is applied and in which a swirl flow restraining means for preventing re-floating of foreign matters deposited on the upper surface of the lower plate of the bearing case is added.
FIG. 8 is a diagram for explaining a ring-shaped member showing the swirl flow suppressing means.
7 and 8, the swirl flow restraining means 50 is installed in a gap surrounded by the lower surface Ab of the bearing pad A, the upper surface 51 of the lower plate 8a of the bearing case 8 and the inner surface 53 of the support base 52 of the leaf spring 14. . As shown in FIG. 8, the swirl flow restraining means 50 is a ring-shaped member, and includes an inner plate 50a, a bottom plate 50b, an outer plate 50c, a top plate 50d, and a stop plate 50e. Among these, the inner plate 50a, the outer plate 50c, and the stop plate 50e are SUS304 plates. The bottom plate 50b and the top plate 50d are holed steel plates (made of SUS304). A plurality of stop plates 50e are installed in the circumferential direction. The behavior of the foreign matter will be described with reference to FIG. When the rotating shaft stops, the foreign matter dispersed in the lubricating water settles with time, passes through the top plate constituting the swirl flow restraining means 50, and accumulates on the upper surface of the bottom plate 50b. Even if the rotating shaft rotates, the lubricating water inside the swirling flow restraining means 50 is partitioned by the inner plate 50a, so that the lubricating water does not swirl and is almost stationary and prevents foreign matter from being stirred. . As a result, the re-floating of the foreign matter can be avoided and the foreign matter contained in the lubricating water is gradually reduced, so that the wear damage of the resin material on the sliding contact surface can be reduced. Therefore, by inclining both end faces of the bearing pad and adding swirl flow suppression means, even if there is a foreign matter mixed in the water tank, it can be removed from the lubricating water near the sliding contact surface. It can contribute to the high reliability of the device.

図9は水潤滑ガイド軸受装置30を適用した水車を説明する図である。
図9において、水車は回転軸4と、回転軸4の下部に固定されたランナ41と、ランナ41の上部に配置され、回転軸4を挿通する固定体42と、固定体42に回転軸4を回転自在に支承する本実施例の水潤滑ガイド樹脂軸受装置30とを有している。固定体42は中空形状をなしており、その天板部43に水潤滑ガイド樹脂軸受装置30を介し回転軸4を支承すると共に、上カバー44と回転軸4間に軸封装置45を設けている。また、固定体42の上カバー44と下カバー46とでケーシング47が形成され、ケーシング47からランナ41に流入する水の流量が、ガイドベーン48によって調整される。ガイドベーン48はケーシング47上に設けられたガイドリング49と連結され、油圧サーボ(図示せず)により駆動される。そして、水潤滑ガイド樹脂軸受装置30は、大別すると、スリーブ6と、軸受ケース8と、軸受パッド9と、弾性的押圧機構Pと、弾性支持機構Sとを備えている。このように水潤滑ガイド軸受装置を搭載しているので、河川汚染の心配が全くなく、環境に優しい水車が達成できる。また、水潤滑方式であるため、従来軸受のように潤滑油の定期的交換が不要となり、保守費用が節約できる。
FIG. 9 is a view for explaining a water turbine to which the water lubrication guide bearing device 30 is applied.
In FIG. 9, the water wheel is a rotating shaft 4, a runner 41 fixed to the lower portion of the rotating shaft 4, a fixed body 42 that is disposed above the runner 41, and passes through the rotating shaft 4. And a water-lubricated guide resin bearing device 30 of this embodiment. The fixed body 42 has a hollow shape. The rotary shaft 4 is supported on the top plate portion 43 via the water-lubricated guide resin bearing device 30, and a shaft seal device 45 is provided between the upper cover 44 and the rotary shaft 4. Yes. A casing 47 is formed by the upper cover 44 and the lower cover 46 of the fixed body 42, and the flow rate of water flowing from the casing 47 into the runner 41 is adjusted by the guide vane 48. The guide vane 48 is connected to a guide ring 49 provided on the casing 47 and is driven by a hydraulic servo (not shown). The water-lubricating guide resin bearing device 30 includes a sleeve 6, a bearing case 8, a bearing pad 9, an elastic pressing mechanism P, and an elastic support mechanism S, when roughly classified. Since the water-lubricated guide bearing device is mounted in this way, there is no concern about river pollution, and an environmentally friendly water wheel can be achieved. Further, since it is a water lubrication system, it is not necessary to periodically replace the lubricating oil as in the case of a conventional bearing, and maintenance costs can be saved.

本発明の軸受パッドを適用した水潤滑ガイド軸受装置は水車などのように水が関与する回転機械における回転軸の支持用として好適に用いることができるものである。このような軸受パッドの高耐摩耗性の改善を図る本発明は水が関与する回転機械の分野に有効なものとして利用することができる。   The water-lubricated guide bearing device to which the bearing pad of the present invention is applied can be suitably used for supporting a rotating shaft in a rotating machine in which water is involved such as a water wheel. The present invention for improving the high wear resistance of such a bearing pad can be used as an effective tool in the field of rotating machinery involving water.

以上のごとく本発明によれば、水潤滑ガイド軸受装置を構成している軸受パッドを摺接面に樹脂材料を用い、この樹脂材料を金属ケースより摺接面側に数ミリ突出させて金属ケースに格納固定し、該軸受パッドの金属ケースの内周側弦長さ(B)と外周側弦長さ(b)との寸法関係を、B≧bに設定するか、軸受パッドの周方向両端面を傾斜させている。このようにして構成した軸受パッドであると、軸受入口部での潤滑水の滞留が解消でき、異物の大半は傾斜面を介して流過し半径方向に飛散していく。その結果、軸受パッドの摺接面に噛み込む異物は激減するので摺接面の摩耗損傷が防止でき、長期間にわたって安定した軸受性能が維持できる水潤滑ガイド軸受装置を提供できる。   As described above, according to the present invention, the resin pad is used for the sliding contact surface of the bearing pad constituting the water-lubricated guide bearing device, and the resin material is protruded several millimeters from the metal case to the sliding contact side. The dimensional relationship between the inner chord length (B) and the outer chord length (b) of the metal case of the bearing pad is set to B ≧ b or both ends of the bearing pad in the circumferential direction are stored. The surface is inclined. With the bearing pad configured in this manner, the retention of lubricating water at the bearing inlet can be eliminated, and most of the foreign matter flows through the inclined surface and scatters in the radial direction. As a result, the foreign matter biting into the sliding contact surface of the bearing pad is drastically reduced, so that it is possible to provide a water-lubricated guide bearing device capable of preventing wear damage on the sliding contact surface and maintaining stable bearing performance over a long period of time.

本発明の実施例1に係る軸受パッドの形状を示す説明図である。It is explanatory drawing which shows the shape of the bearing pad which concerns on Example 1 of this invention. 本発明の実施例1に係る軸受パッドの配置状況を示す説明図である。It is explanatory drawing which shows the arrangement | positioning condition of the bearing pad which concerns on Example 1 of this invention. 本発明の実施例2に係る軸受パッドの形状を示す説明図である。It is explanatory drawing which shows the shape of the bearing pad which concerns on Example 2 of this invention. 本発明の実施例2に係る軸受パッドの配置状況を示す説明図である。It is explanatory drawing which shows the arrangement | positioning condition of the bearing pad which concerns on Example 2 of this invention. 本発明の実施例3に係る軸受パッドの形状を示す説明図である。It is explanatory drawing which shows the shape of the bearing pad which concerns on Example 3 of this invention. 本発明の水潤滑ガイド軸受装置を示す断面図である。It is sectional drawing which shows the water-lubrication guide bearing apparatus of this invention. 本発明の別の水潤滑ガイド軸受装置を示す断面図である。It is sectional drawing which shows another water lubrication guide bearing apparatus of this invention. 本発明の旋回流抑止手段を示すリング状部材の説明図である。It is explanatory drawing of the ring-shaped member which shows the swirl | vortex flow suppression means of this invention. 本発明の水潤滑ガイド軸受装置を搭載した水車を示す断面図である。It is sectional drawing which shows the water turbine carrying the water lubrication guide bearing apparatus of this invention.

符号の説明Explanation of symbols

1…樹脂材料、2…主軸スリーブ、4…回転軸、6…スリーブ、8…軸受ケース、
10…圧縮コイルばね、11…調整体、12…対向壁、14…板ばね、19…コイルばね、22…金属製台金、31…内カバー、32…外カバー、33…上板、41…ランナ、
42…固定体、43…天板部、44…上カバー、46…下カバー、47…ケーシング、
50…旋回流抑止手段、A〜H…軸受パッド、A1,A2…周方向両端面、P…弾性的押圧機構、S…弾性支持機構、W…潤滑水貯水枠体。


DESCRIPTION OF SYMBOLS 1 ... Resin material, 2 ... Main shaft sleeve, 4 ... Rotary shaft, 6 ... Sleeve, 8 ... Bearing case,
DESCRIPTION OF SYMBOLS 10 ... Compression coil spring, 11 ... Adjustment body, 12 ... Opposite wall, 14 ... Plate spring, 19 ... Coil spring, 22 ... Metal base metal, 31 ... Inner cover, 32 ... Outer cover, 33 ... Upper plate, 41 ... Lanna,
42 ... a fixed body, 43 ... a top plate part, 44 ... an upper cover, 46 ... a lower cover, 47 ... a casing,
DESCRIPTION OF SYMBOLS 50 ... Swirling flow suppression means, AH ... Bearing pad, A1, A2 ... Circumferential end surface, P ... Elastic pressing mechanism, S ... Elastic support mechanism, W ... Lubricating water storage frame.


Claims (5)

回転機械の回転軸を支持する水潤滑ガイド軸受装置において、
摺接面に樹脂材料を用い、この樹脂材料を金属ケースより摺接面側に数ミリ突出させて金属ケースに格納固定した軸受パッドを回転軸の周囲に複数個配置するとともに、前記軸受パッドの金属ケースの内周側弦長さ(B)と、外周側弦長さ(b)との寸法関係をB≧bに設定したことを特徴とする水潤滑ガイド軸受装置。
In the water-lubricated guide bearing device that supports the rotating shaft of the rotating machine,
A resin material is used for the slidable contact surface, and a plurality of bearing pads are provided around the rotating shaft so that the resin material protrudes several millimeters from the metal case to the slidable contact surface side and is fixed in the metal case. A water-lubricated guide bearing device characterized in that a dimensional relationship between an inner circumferential chord length (B) and an outer circumferential chord length (b) of the metal case is set to B ≧ b.
請求項1記載の水潤滑ガイド軸受装置において、
前記金属ケースの周方向両端面を傾斜させたことを特徴とする水潤滑ガイド軸受装置。
The water-lubricated guide bearing device according to claim 1,
A water-lubricated guide bearing device characterized in that both end surfaces in the circumferential direction of the metal case are inclined.
回転機械の回転軸を支持する水潤滑ガイド軸受装置において、
金属製台金の摺接面側に樹脂材料を接合した軸受パッドを回転軸の周囲に複数個配置するとともに、前記軸受パッドの内周側弦長さ(B)と、外周側弦長さ(b)との寸法関係を、B≧bに設定したことを特徴とする水潤滑ガイド軸受装置。
In the water-lubricated guide bearing device that supports the rotating shaft of the rotating machine,
A plurality of bearing pads in which a resin material is joined to the sliding surface side of the metal base metal are arranged around the rotation shaft, and the inner circumferential chord length (B) and outer circumferential chord length ( A water-lubricated guide bearing device, wherein the dimensional relationship with b) is set to B ≧ b.
請求項3記載の水潤滑ガイド軸受装置において、
前記軸受パッドの周方向両端面を傾斜させたことを特徴とする水潤滑ガイド軸受装置。
The water-lubricated guide bearing device according to claim 3,
A water-lubricated guide bearing device characterized in that both end surfaces in the circumferential direction of the bearing pad are inclined.
軸受装置で支持された回転軸を有する水車において、
前記軸受装置として請求項1又は請求項2のいずれか1項に記載の水潤滑ガイド軸受装置が用いられていることを特徴とする水車。
In a water turbine having a rotating shaft supported by a bearing device,
The water turbine according to any one of claims 1 and 2, wherein the water lubrication guide bearing device is used as the bearing device.
JP2006081909A 2006-03-24 2006-03-24 Water lubricating guide bearing device and water turbine mounted with the same Pending JP2007255614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006081909A JP2007255614A (en) 2006-03-24 2006-03-24 Water lubricating guide bearing device and water turbine mounted with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006081909A JP2007255614A (en) 2006-03-24 2006-03-24 Water lubricating guide bearing device and water turbine mounted with the same

Publications (1)

Publication Number Publication Date
JP2007255614A true JP2007255614A (en) 2007-10-04

Family

ID=38630057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006081909A Pending JP2007255614A (en) 2006-03-24 2006-03-24 Water lubricating guide bearing device and water turbine mounted with the same

Country Status (1)

Country Link
JP (1) JP2007255614A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055849A1 (en) * 2008-11-12 2010-05-20 三菱重工業株式会社 Rotation structure with journal bearing and method of assembling same
JP2010116958A (en) * 2008-11-12 2010-05-27 Mitsubishi Heavy Ind Ltd Rotating structure and method for assembling the same
JP2010116959A (en) * 2008-11-12 2010-05-27 Mitsubishi Heavy Ind Ltd Rotating structure equipped with journal bearing
EP2199598A1 (en) * 2008-12-18 2010-06-23 OpenHydro IP Limited A hydroelectric turbine comprising a passive brake and method of operation
US8308422B2 (en) 2006-07-14 2012-11-13 Openhydro Group Limited Submerged hydroelectric turbines having buoyancy chambers
US8466595B2 (en) 2006-07-14 2013-06-18 Openhydro Group Limited Hydroelectric turbine
US8596964B2 (en) 2006-07-14 2013-12-03 Openhydro Group Limited Turbines having a debris release chute
US8754540B2 (en) 2008-02-05 2014-06-17 James Ives Hydroelectric turbine with floating rotor
US8784005B2 (en) 2008-04-17 2014-07-22 Openhydro Group Limited Turbine installation method
US8864439B2 (en) 2006-07-14 2014-10-21 Openhydro Ip Limited Tidal flow hydroelectric turbine
US8872371B2 (en) 2009-04-17 2014-10-28 OpenHydro IP Liminted Enhanced method of controlling the output of a hydroelectric turbine generator
JP2014214859A (en) * 2013-04-30 2014-11-17 東京電力株式会社 Bearing device of vertical shaft water turbine and vertical shaft water turbine power generator
US8933598B2 (en) 2009-09-29 2015-01-13 Openhydro Ip Limited Hydroelectric turbine with coil cooling
US9054512B2 (en) 2008-12-19 2015-06-09 Openhydro Ip Limited Method of installing a hydroelectric turbine generator
US9236725B2 (en) 2009-09-29 2016-01-12 Openhydro Ip Limited Hydroelectric turbine cabling system
US9234492B2 (en) 2010-12-23 2016-01-12 Openhydro Ip Limited Hydroelectric turbine testing method
US9284709B2 (en) 2007-04-11 2016-03-15 Openhydro Group Limited Method of installing a hydroelectric turbine
US9473046B2 (en) 2009-09-29 2016-10-18 Openhydro Ip Limited Electrical power conversion system and method
CN107120353A (en) * 2017-07-07 2017-09-01 高鹏 A kind of sliding bearing
US9765647B2 (en) 2010-11-09 2017-09-19 Openhydro Ip Limited Hydroelectric turbine recovery system and a method therefor
CN107740744A (en) * 2017-11-06 2018-02-27 浙江富春江水电设备有限公司 The guide bearing supporting structure of vertical hydropower generator
CN113653735A (en) * 2021-07-06 2021-11-16 上海大学 Water-lubricated sliding bearing with flexible support and self-lubricating diamond-like coating

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646116A (en) * 1979-09-19 1981-04-27 Hitachi Ltd Bearing
JPS57195915A (en) * 1981-05-29 1982-12-01 Hitachi Ltd Vertical guide bearing
JPS5857514A (en) * 1981-09-30 1983-04-05 Hitachi Ltd Vertical shaft type pilot bearing device
JPH0393617U (en) * 1990-01-12 1991-09-25
JP2000081034A (en) * 1998-09-07 2000-03-21 Hitachi Ltd Pad type ceramic bearing device and water turbine having pad type ceramic bearing device bearing device
JP2003028146A (en) * 2001-07-16 2003-01-29 Mitsubishi Electric Corp Guide bearing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646116A (en) * 1979-09-19 1981-04-27 Hitachi Ltd Bearing
JPS57195915A (en) * 1981-05-29 1982-12-01 Hitachi Ltd Vertical guide bearing
JPS5857514A (en) * 1981-09-30 1983-04-05 Hitachi Ltd Vertical shaft type pilot bearing device
JPH0393617U (en) * 1990-01-12 1991-09-25
JP2000081034A (en) * 1998-09-07 2000-03-21 Hitachi Ltd Pad type ceramic bearing device and water turbine having pad type ceramic bearing device bearing device
JP2003028146A (en) * 2001-07-16 2003-01-29 Mitsubishi Electric Corp Guide bearing device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8864439B2 (en) 2006-07-14 2014-10-21 Openhydro Ip Limited Tidal flow hydroelectric turbine
US8308422B2 (en) 2006-07-14 2012-11-13 Openhydro Group Limited Submerged hydroelectric turbines having buoyancy chambers
US8466595B2 (en) 2006-07-14 2013-06-18 Openhydro Group Limited Hydroelectric turbine
US8596964B2 (en) 2006-07-14 2013-12-03 Openhydro Group Limited Turbines having a debris release chute
US9284709B2 (en) 2007-04-11 2016-03-15 Openhydro Group Limited Method of installing a hydroelectric turbine
US8754540B2 (en) 2008-02-05 2014-06-17 James Ives Hydroelectric turbine with floating rotor
US8784005B2 (en) 2008-04-17 2014-07-22 Openhydro Group Limited Turbine installation method
JP2010116958A (en) * 2008-11-12 2010-05-27 Mitsubishi Heavy Ind Ltd Rotating structure and method for assembling the same
JP2010116959A (en) * 2008-11-12 2010-05-27 Mitsubishi Heavy Ind Ltd Rotating structure equipped with journal bearing
JP4709888B2 (en) * 2008-11-12 2011-06-29 三菱重工業株式会社 Rotating structure and assembling method thereof
WO2010055849A1 (en) * 2008-11-12 2010-05-20 三菱重工業株式会社 Rotation structure with journal bearing and method of assembling same
US8366323B2 (en) 2008-11-12 2013-02-05 Mitsubishi Heavy Industries, Ltd. Rotation shaft supporting structure with journal bearing and assembling method of the bearing
JP2012512354A (en) * 2008-12-18 2012-05-31 オープンハイドロ アイピー リミテッド Hydroelectric turbine with passive brake and method of operation
WO2010069538A1 (en) * 2008-12-18 2010-06-24 Openhydro Ip Limited A hydroelectric turbine comprising a passive brake and method of operation
US8690526B2 (en) 2008-12-18 2014-04-08 Openhydro Ip Limited Hydroelectric turbine with passive braking
EP2199598A1 (en) * 2008-12-18 2010-06-23 OpenHydro IP Limited A hydroelectric turbine comprising a passive brake and method of operation
US9054512B2 (en) 2008-12-19 2015-06-09 Openhydro Ip Limited Method of installing a hydroelectric turbine generator
US8872371B2 (en) 2009-04-17 2014-10-28 OpenHydro IP Liminted Enhanced method of controlling the output of a hydroelectric turbine generator
US9473046B2 (en) 2009-09-29 2016-10-18 Openhydro Ip Limited Electrical power conversion system and method
US9236725B2 (en) 2009-09-29 2016-01-12 Openhydro Ip Limited Hydroelectric turbine cabling system
US8933598B2 (en) 2009-09-29 2015-01-13 Openhydro Ip Limited Hydroelectric turbine with coil cooling
US9765647B2 (en) 2010-11-09 2017-09-19 Openhydro Ip Limited Hydroelectric turbine recovery system and a method therefor
US9234492B2 (en) 2010-12-23 2016-01-12 Openhydro Ip Limited Hydroelectric turbine testing method
JP2014214859A (en) * 2013-04-30 2014-11-17 東京電力株式会社 Bearing device of vertical shaft water turbine and vertical shaft water turbine power generator
CN107120353A (en) * 2017-07-07 2017-09-01 高鹏 A kind of sliding bearing
CN107740744A (en) * 2017-11-06 2018-02-27 浙江富春江水电设备有限公司 The guide bearing supporting structure of vertical hydropower generator
CN113653735A (en) * 2021-07-06 2021-11-16 上海大学 Water-lubricated sliding bearing with flexible support and self-lubricating diamond-like coating

Similar Documents

Publication Publication Date Title
JP2007255614A (en) Water lubricating guide bearing device and water turbine mounted with the same
US20090154852A1 (en) Hydrodynamic bearing device, spindle motor, and information recording and reproducing apparatus
JPWO2016059883A1 (en) Sealing device
CN101668970A (en) Ceramic sliding member for pure water
CA1225939A (en) Bearing lubrication device
JP4597152B2 (en) Pad type bearing device and horizontal axis turbine
JP3745396B2 (en) Water lubricated ceramic bearing device, pump and water wheel
JP4527183B2 (en) Water lubrication segment type bearing device and water turbine
US7144161B2 (en) Hydrodynamic bearing system for a rotary bearing of spindle motors
JP2007177808A (en) Hydrodynamic bearing unit
JP5021576B2 (en) Pad type bearing device and horizontal axis turbine
US20060183074A1 (en) Dental handpiece with air-foil bearings
JP4897316B2 (en) Water lubrication pad type bearing device and water wheel
JP6411902B2 (en) Vertical shaft pump
JP2008095565A (en) Submerged bearing lubricating system
JP2001124070A (en) Water lubricated bearing device
US20080212907A1 (en) Hydrodynamic bearing, and hydrodynamic bearing-type rotary device and recording and reproducing apparatus equipped with same
JP4089209B2 (en) Double suction centrifugal pump
JP6591751B2 (en) Bearing mechanism and pump
CN100391088C (en) Spindle motor and magnetic disk drive
JP2005249030A (en) Water-lubrication segment type bearing device and water turbine
JPH09257038A (en) Spindle head for machine tool
JPH07293556A (en) Submerged bearing device
CN102828957A (en) Upright type liquid discharge centrifugal pump
US884477A (en) Shaft-bearing.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706