[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007248039A - Closing valve for liquid refrigerant of air conditioner - Google Patents

Closing valve for liquid refrigerant of air conditioner Download PDF

Info

Publication number
JP2007248039A
JP2007248039A JP2006296929A JP2006296929A JP2007248039A JP 2007248039 A JP2007248039 A JP 2007248039A JP 2006296929 A JP2006296929 A JP 2006296929A JP 2006296929 A JP2006296929 A JP 2006296929A JP 2007248039 A JP2007248039 A JP 2007248039A
Authority
JP
Japan
Prior art keywords
valve
refrigerant
flow path
channel
closing valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006296929A
Other languages
Japanese (ja)
Inventor
Koji Shibaike
幸治 芝池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2006296929A priority Critical patent/JP2007248039A/en
Priority to PCT/JP2007/052452 priority patent/WO2007094280A1/en
Publication of JP2007248039A publication Critical patent/JP2007248039A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/36Valve members
    • F16K1/38Valve members of conical shape

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lift Valve (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a closing valve capable of achieving miniaturization. <P>SOLUTION: This closing valve 1 comprises a body 2, and a valve element 3. The body 2 incorporates a first refrigerant channel 5, a second refrigerant channel 6, an intermediate channel 7, and a valve passage 8. The intermediate channel 7 allows communication between the first refrigerant channel 5 and the second refrigerant channel 6. The valve passage 8 communicates with the intermediate channel 7. The valve element 3 is inserted into the valve passage 8 movably in the axial direction. The valve element 3 shuts off the passage between the first refrigerant channel 5 and the second refrigerant channel 6 by moving in the first direction from the valve passage 8 side toward the intermediate channel 7 side. The valve element 3 allows communication between the first refrigerant channel 5 and the second refrigerant channel 6 by moving in the second direction from the intermediate channel 7 side toward the valve passage 8 side. The channel diameter d2 of the first refrigerant channel 5 and the channel diameter d3 of the second refrigerant channel 6 are less than 0.9 times the inside diameter of liquid refrigerant piping P connected with the first refrigerant channel 5 or the second refrigerant channel 6. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、空気調和機の液冷媒用閉鎖弁に関する。   The present invention relates to a liquid refrigerant closing valve for an air conditioner.

従来より、特許文献1に記載されるように、空気調和機の冷媒回路における液冷媒用配管を閉鎖するために、液冷媒用閉鎖弁(以下、閉鎖弁という)が用いられている。閉鎖弁は、第1冷媒流路、第2冷媒流路ならびに中間流路を有する本体と、軸方向に移動することによって中間流路を開閉する弁体とを備えている。
特開2004−1432498公報
Conventionally, as described in Patent Document 1, a liquid refrigerant closing valve (hereinafter referred to as a closing valve) has been used to close a liquid refrigerant pipe in a refrigerant circuit of an air conditioner. The closing valve includes a main body having a first refrigerant channel, a second refrigerant channel, and an intermediate channel, and a valve body that opens and closes the intermediate channel by moving in the axial direction.
JP 2004-143498 A

しかし、従来の閉鎖弁は、通常、閉鎖弁に接続される液冷媒配管の内径(通常5mm程度)に対して、第1冷媒流路および第2冷媒流路の流路径が液冷媒配管の内径とほぼ同等の流路径(通常4.8mm程度)であってせいぜい0.95倍ぐらいになるように製造されている。閉鎖弁の製造上、閉鎖弁内部の冷媒流路の流路径を狭くすると性能が悪化するのではないかという性能悪化の懸念もあってかそれよりも小さい閉鎖弁については現在まで開発または製造されておらず、閉鎖弁の小型化がいまだ達成されていない。   However, in the conventional closing valve, the flow diameters of the first refrigerant flow path and the second refrigerant flow path are usually equal to the inner diameter of the liquid refrigerant pipe with respect to the inner diameter (usually about 5 mm) of the liquid refrigerant pipe connected to the shut-off valve. The flow path diameter is approximately the same (usually about 4.8 mm), and is manufactured to be about 0.95 times at most. Due to the concern of performance deterioration that the performance deteriorates when the diameter of the refrigerant flow path inside the shut-off valve is narrowed due to the manufacture of the shut-off valve, a smaller shut-off valve has been developed or manufactured to date. The downsizing of the closing valve has not been achieved yet.

本発明の課題は、小型化を達成することが可能な閉鎖弁を提供することにある。   The subject of this invention is providing the closing valve which can achieve size reduction.

第1発明の閉鎖弁は、本体と、弁体とを備えている。本体は、第1冷媒流路と、第2冷媒流路と、中間流路と、弁通路とを内部に有する。中間流路は、第1冷媒流路と第2冷媒流路とを連通させる。弁通路は、中間流路に連通する。弁体は、軸方向に移動可能に弁通路に挿入されている。弁体は、弁通路側から中間流路側へ向かう第1方向に移動することによって第1冷媒流路と第2冷媒流路との間を遮断する。弁体は、中間流路側から弁通路側へ向かう第2方向に移動することによって第1冷媒流路と第2冷媒流路とを連通させる。第1冷媒流路の流路径および第2冷媒流路の流路径は、第1冷媒流路または第2冷媒流路に接続される液冷媒配管の内径の0.9倍未満である。   The closing valve of the first invention includes a main body and a valve body. The main body has a first refrigerant channel, a second refrigerant channel, an intermediate channel, and a valve channel inside. The intermediate flow path connects the first refrigerant flow path and the second refrigerant flow path. The valve passage communicates with the intermediate flow path. The valve body is inserted into the valve passage so as to be movable in the axial direction. The valve element blocks the first refrigerant channel and the second refrigerant channel by moving in the first direction from the valve channel side toward the intermediate channel side. The valve body communicates the first refrigerant channel and the second refrigerant channel by moving in the second direction from the intermediate channel side toward the valve channel side. The channel diameter of the first refrigerant channel and the channel diameter of the second refrigerant channel are less than 0.9 times the inner diameter of the liquid refrigerant pipe connected to the first refrigerant channel or the second refrigerant channel.

ここでは、第1冷媒流路および第2冷媒流路の流路径が、第1冷媒流路または第2冷媒流路に接続される液冷媒配管の内径の0.9倍未満である。したがって、閉鎖弁の小型化を実現でき、それに伴って弁体のシール部分が本体に接触する部分の接触面積も小さくなるので、漏れ防止効果が向上する。
漏れ防止効果が向上する。
Here, the flow path diameters of the first refrigerant flow path and the second refrigerant flow path are less than 0.9 times the inner diameter of the liquid refrigerant pipe connected to the first refrigerant flow path or the second refrigerant flow path. Accordingly, it is possible to reduce the size of the closing valve, and accordingly, the contact area of the portion where the seal portion of the valve body contacts the main body is also reduced, so that the leakage prevention effect is improved.
Leak prevention effect is improved.

第2発明の閉鎖弁は、第1発明の閉鎖弁であって、第1冷媒流路の流路径は、3.8〜4.4mmである。   The closing valve of the second invention is the closing valve of the first invention, and the channel diameter of the first refrigerant channel is 3.8 to 4.4 mm.

ここでは、第1冷媒流路の流路径が3.8〜4.4mmであるので、閉鎖弁の小型化を実現できる。   Here, since the channel diameter of the first refrigerant channel is 3.8 to 4.4 mm, the size of the shut-off valve can be reduced.

第3発明の閉鎖弁は、第1発明の閉鎖弁であって、第2冷媒流路の流路径は、3.8〜4.4mmである。   The closing valve of the third invention is the closing valve of the first invention, and the flow path diameter of the second refrigerant flow path is 3.8 to 4.4 mm.

ここでは、第2冷媒流路の流路径が3.8〜4.4mmであるので、閉鎖弁の小型化を実現できる。   Here, since the channel diameter of the second refrigerant channel is 3.8 to 4.4 mm, the size of the shut-off valve can be reduced.

第4発明の閉鎖弁は、第1発明の閉鎖弁であって、第1冷媒流路の周辺部分の肉厚は、3.3〜3.7mmである。   The closing valve of the fourth invention is the closing valve of the first invention, and the thickness of the peripheral portion of the first refrigerant flow path is 3.3 to 3.7 mm.

ここでは、第1冷媒流路の周辺部分の肉厚が3.3〜3.7mmであるので、肉厚が厚くなることによって弁強度が向上し、弁体のシール部分近傍の変形を抑制できる。   Here, since the thickness of the peripheral portion of the first refrigerant flow path is 3.3 to 3.7 mm, the valve strength is improved by increasing the thickness, and deformation in the vicinity of the seal portion of the valve body can be suppressed. .

第5発明の閉鎖弁は、第1発明の閉鎖弁であって、弁蓋をさらに備えている。弁蓋の外径は、16.4〜17.0mmである。   A closing valve according to a fifth aspect is the closing valve according to the first aspect, further comprising a valve lid. The outer diameter of the valve lid is 16.4 to 17.0 mm.

ここでは、弁蓋の外径が16.4〜17.0mmであるので、弁蓋の小型化をすることができる。   Here, since the outer diameter of the valve lid is 16.4 to 17.0 mm, the valve lid can be downsized.

第1発明によれば、閉鎖弁の小型化を実現できる。また、それに伴って弁体のシール部分が本体に接触する部分の接触面積も小さくなるので、漏れ防止効果を向上することができる。   According to the first aspect of the invention, it is possible to reduce the size of the closing valve. Moreover, since the contact area of the part where the seal part of the valve body contacts the main body is reduced accordingly, the leakage prevention effect can be improved.

第2発明によれば、閉鎖弁の小型化を実現できる。   According to the 2nd invention, size reduction of a shut-off valve is realizable.

第3発明によれば、閉鎖弁の小型化を実現できる。   According to the 3rd invention, size reduction of a closing valve is realizable.

第4発明によれば、弁体のシール部分近傍の変形を抑制できる。   According to the fourth invention, deformation in the vicinity of the seal portion of the valve body can be suppressed.

第5発明によれば、弁蓋の小型化をすることができる。   According to the fifth aspect of the invention, the valve lid can be reduced in size.

以下、本発明を図示の実施の形態により詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.

図1には、本発明の実施形態の閉鎖弁の断面図が示されている。この閉鎖弁1は、主として、黄銅製の本体2と、黄銅製の弁体3と、弁蓋4と、フレアナット9とを備えている。   FIG. 1 shows a cross-sectional view of a closing valve according to an embodiment of the present invention. The closing valve 1 mainly includes a brass main body 2, a brass valve body 3, a valve lid 4, and a flare nut 9.

本体2は、第1円筒部2a、第2円筒部2b、第3円筒部2cを有する。各円筒部2a〜2cは、内部に貫通孔が設けられた略円筒形状をそれぞれ有しており、互いに貫通孔の内周面が連続するように一端が接続されている。第1円筒部2aの他端には、連絡配管が接続される第1接続ポート11が設けられている。なお、図1に示される第1接続ポート11には、ごみの侵入を防止するためのキャップ17が取り付けられている。第2円筒部2bの他端には、室外機内の内部配管が接続される第2接続ポート12が設けられている。第3円筒部2cの他端には、弁体3を移動させるためのレンチが挿入される操作ポート14が設けられている。また、第2円筒部2bは、第1円筒部2aに対して約90度の角度を成している。第3円筒部2cは、第1円筒部2aと約90度の角度を成しており、第2円筒部2bと略同軸上に並んで配置されている。   The main body 2 includes a first cylindrical portion 2a, a second cylindrical portion 2b, and a third cylindrical portion 2c. Each of the cylindrical portions 2a to 2c has a substantially cylindrical shape with a through hole provided therein, and one end thereof is connected so that the inner peripheral surfaces of the through holes are continuous with each other. A first connection port 11 to which a communication pipe is connected is provided at the other end of the first cylindrical portion 2a. Note that a cap 17 for preventing intrusion of dust is attached to the first connection port 11 shown in FIG. A second connection port 12 to which an internal pipe in the outdoor unit is connected is provided at the other end of the second cylindrical portion 2b. An operation port 14 into which a wrench for moving the valve body 3 is inserted is provided at the other end of the third cylindrical portion 2c. In addition, the second cylindrical portion 2b forms an angle of about 90 degrees with respect to the first cylindrical portion 2a. The third cylindrical portion 2c forms an angle of about 90 degrees with the first cylindrical portion 2a, and is arranged substantially coaxially with the second cylindrical portion 2b.

第1円筒部2aの内部には、第1冷媒流路5が設けられており、第2円筒部2bの内部には第2冷媒流路6が設けられている。また、第3円筒部2cの内部には、弁通路8が設けられている。第1冷媒流路5、第2冷媒流路6、および弁通路8は、中間流路7を中心にして三方に放射状に配置されており、中間流路7に連通している。また、第2冷媒流路6と弁通路8とは中間流路7を挟んで略同軸上に配置されている。以上のように、第1冷媒流路5、中間流路7、および第2冷媒流路6は、冷媒が流れる一連の冷媒流路10を形成している。   A first refrigerant channel 5 is provided inside the first cylindrical part 2a, and a second refrigerant channel 6 is provided inside the second cylindrical part 2b. A valve passage 8 is provided inside the third cylindrical portion 2c. The first refrigerant flow path 5, the second refrigerant flow path 6, and the valve path 8 are arranged radially in three directions around the intermediate flow path 7 and communicate with the intermediate flow path 7. Further, the second refrigerant flow path 6 and the valve passage 8 are arranged substantially coaxially with the intermediate flow path 7 interposed therebetween. As described above, the first refrigerant flow path 5, the intermediate flow path 7, and the second refrigerant flow path 6 form a series of refrigerant flow paths 10 through which the refrigerant flows.

以下、第2冷媒流路6と弁通路8とを通る軸に平行な方向のうち弁通路8から第2冷媒流路6へ向かう方向を第1方向(図1の矢印A1参照)と呼び、第2冷媒流路6から弁通路8へ向かう方向を第2方向(図1の矢印A2参照)と呼ぶこととする。   Hereinafter, the direction from the valve passage 8 toward the second refrigerant passage 6 among the directions parallel to the axis passing through the second refrigerant passage 6 and the valve passage 8 is referred to as a first direction (see arrow A1 in FIG. 1). The direction from the second refrigerant flow path 6 toward the valve passage 8 is referred to as a second direction (see arrow A2 in FIG. 1).

中間流路7と第2冷媒流路6との境界には、弁体3の先端が当接・離反する弁座13が設けられており、弁座13は、第2方向A2へ向けて拡径するテーパ形状を有している。   A valve seat 13 is provided at the boundary between the intermediate flow path 7 and the second refrigerant flow path 6 so that the tip of the valve body 3 contacts and separates. The valve seat 13 expands in the second direction A2. It has a tapered shape that is diametrical.

弁体3は、略円柱状の形状を有しており、第3円筒部2cの弁通路8に軸方向に移動可能に配置されている。弁体3の先端は、中間流路7に面しており、第1方向A1に向けて縮径するテーパ形状を有している。弁体3のテーパ面には、シール部分として、メタルシール20が設けられている。弁体3の側面と本体2の内面との間には互いに噛み合うネジ山18が形成されている。また、弁体3の後端には六角レンチが挿入される六角穴3aが形成されており、六角レンチと共に弁体3を回転させることによって弁体3を軸方向である第1方向A1または第2方向に移動させることができる。   The valve body 3 has a substantially columnar shape, and is disposed in the valve passage 8 of the third cylindrical portion 2c so as to be movable in the axial direction. The tip of the valve body 3 faces the intermediate flow path 7 and has a tapered shape that decreases in diameter in the first direction A1. A metal seal 20 is provided on the tapered surface of the valve body 3 as a seal portion. A thread 18 that meshes with each other is formed between the side surface of the valve body 3 and the inner surface of the main body 2. Further, a hexagon hole 3a into which a hexagon wrench is inserted is formed at the rear end of the valve body 3. By rotating the valve body 3 together with the hexagon wrench, the valve body 3 is axially moved in the first direction A1 or the first direction A1. It can be moved in two directions.

図1に示すように閉鎖弁1が開かれた開状態においては、一連の冷媒通路10(第1冷媒流路5、中間流路7、および第2冷媒流路6)が連通している。この開状態では、弁体3の上部の外周には環状の溝3bが形成されており、溝3bにはOリング15が外嵌されている。これにより、弁通路8の内周面と弁体3の外周面との間がシールされ、外部に冷媒が漏れないようにされている。   As shown in FIG. 1, in the open state in which the shut-off valve 1 is opened, a series of refrigerant passages 10 (the first refrigerant passage 5, the intermediate passage 7, and the second refrigerant passage 6) communicate with each other. In this open state, an annular groove 3b is formed on the outer periphery of the upper portion of the valve body 3, and an O-ring 15 is fitted on the groove 3b. Thereby, the space between the inner peripheral surface of the valve passage 8 and the outer peripheral surface of the valve body 3 is sealed, so that the refrigerant does not leak to the outside.

閉鎖弁1を閉じる場合には、弁体3を回転させながら第1方向A1に移動させることによって、弁体3の先端と弁座13とを当接させて、第1冷媒流路5と第2冷媒流路6との間を遮断する。この閉状態では、弁体3の先端は弁座13に当接している。この状態においては、弁体3の先端と第2冷媒流路6との間は隙間無く閉じられており、中間流路7は閉塞されている。   When closing the closing valve 1, the valve body 3 is moved in the first direction A1 while rotating, thereby bringing the tip of the valve body 3 and the valve seat 13 into contact with each other, and 2 Blocks between the refrigerant flow paths 6. In this closed state, the tip of the valve body 3 is in contact with the valve seat 13. In this state, the tip of the valve body 3 and the second refrigerant flow path 6 are closed without a gap, and the intermediate flow path 7 is closed.

さらに、閉状態から閉鎖弁1を開く場合には、弁体3を回転させながら第2方向A2に移動させることによって、その先端を弁座13から離反させて、第1冷媒流路5と第2冷媒流路6とを連通させる。   Further, when the closing valve 1 is opened from the closed state, the tip of the valve body 3 is moved away from the valve seat 13 by moving the valve body 3 in the second direction A2, while rotating the valve body 3. 2 The refrigerant flow path 6 is communicated.

弁蓋4は、通常時には第3円筒部2cの他端に取り付けられており、操作ポート14を塞ぐ。閉鎖弁1の開閉が行われる場合には、第3円筒部2cの他端から取り外される。弁蓋4の内面と本体2の外周面との間には互いに噛み合うネジ山19が形成されている。   The valve lid 4 is normally attached to the other end of the third cylindrical portion 2 c and closes the operation port 14. When the closing valve 1 is opened and closed, it is removed from the other end of the third cylindrical portion 2c. A thread 19 that meshes with each other is formed between the inner surface of the valve lid 4 and the outer peripheral surface of the main body 2.

なお、図1に示される第2接続ポート12には、銅管がロウ付けされる。   A copper tube is brazed to the second connection port 12 shown in FIG.

<閉鎖弁1の内径および肉厚についての説明>
本実施形態の閉鎖弁1では、図2に示されるように、本体2において、第1冷媒流路5に接続される冷媒配管Pの内径d1(5.0mm)と比較して、第1冷媒流路5の内径d2が3.8〜4.4mm(好ましくは、約4.0mm)、第2冷媒流路6の内径d3が3.8〜4.4mm(好ましくは、約4.0mm)であるので、d2/d1=0.76〜0.84となり、また、d3/d1=0.76〜0.84となり、いずれも0.9倍未満となる。
<Explanation about inner diameter and thickness of closing valve 1>
In the closing valve 1 of the present embodiment, as shown in FIG. 2, the first refrigerant is compared with the inner diameter d1 (5.0 mm) of the refrigerant pipe P connected to the first refrigerant flow path 5 in the main body 2. The inner diameter d2 of the flow path 5 is 3.8 to 4.4 mm (preferably about 4.0 mm), and the inner diameter d3 of the second refrigerant flow path 6 is 3.8 to 4.4 mm (preferably about 4.0 mm). Therefore, d2 / d1 = 0.76 to 0.84 and d3 / d1 = 0.76 to 0.84, both of which are less than 0.9 times.

これに伴って、第1冷媒流路5を構成する第1円筒部2aの肉厚t1は3.3〜3.7mm(好ましくは、3.5mm)、第2冷媒流路6を構成する第2円筒部2bの肉厚t2は3.3〜3.7mm(好ましくは、3.5mm)である。それとともに、第1円筒部2aと第2円筒部2bとが連結されている部分の肉厚t3も、上記肉厚t1およびt2よりも厚くなっている。   Accordingly, the wall thickness t1 of the first cylindrical portion 2a constituting the first refrigerant flow path 5 is 3.3 to 3.7 mm (preferably 3.5 mm), and the second refrigerant flow path 6 constituting the second refrigerant flow path 6 is formed. The wall thickness t2 of the two cylindrical portions 2b is 3.3 to 3.7 mm (preferably 3.5 mm). At the same time, the thickness t3 of the portion where the first cylindrical portion 2a and the second cylindrical portion 2b are connected is also thicker than the thicknesses t1 and t2.

以上のように、第1冷媒流路5および第2冷媒流路6の流路径となる内径d2、d3は、第1冷媒流路5または第2冷媒流路6に接続される液冷媒配管の内径d1の0.9倍未満である。その結果、本実施形態の閉鎖弁1では、冷媒流路10の内径d2、d3を小さくすることが可能であり、第1冷媒流路5および第2冷媒流路6の肉厚t1、t2を厚くなるように形成することが可能になる。これによって、弁操作における強度を上げることが可能になっている。   As described above, the inner diameters d2 and d3 that are the diameters of the first refrigerant flow path 5 and the second refrigerant flow path 6 are the liquid refrigerant pipes connected to the first refrigerant flow path 5 or the second refrigerant flow path 6. It is less than 0.9 times the inner diameter d1. As a result, in the closing valve 1 of the present embodiment, the inner diameters d2 and d3 of the refrigerant flow path 10 can be reduced, and the wall thicknesses t1 and t2 of the first refrigerant flow path 5 and the second refrigerant flow path 6 are reduced. It can be formed to be thick. Thereby, it is possible to increase the strength in the valve operation.

また、閉鎖弁1の小型化に伴って弁体3のメタルシール20が本体2に接触する部分の接触面積も小さくなるので、漏れ防止効果が向上する。   Moreover, since the contact area of the part which the metal seal 20 of the valve body 3 contacts with the main body 2 also becomes small with the miniaturization of the closing valve 1, the leakage prevention effect is improved.

さらに、閉鎖弁1の小型化に伴って、実施形態の弁蓋4の外径は16.4〜17.0mmになり、弁蓋4を小型化することが可能である。   Furthermore, with the downsizing of the shut-off valve 1, the outer diameter of the valve lid 4 of the embodiment becomes 16.4 to 17.0 mm, and the valve lid 4 can be miniaturized.

ここで、フレアナット9を強く締めると、弁座13付近にたわみ変形が生じやすくなるが、本実施形態では、第1冷媒流路5周辺部分の肉厚t1は3.3〜3.7mmであるので、メタルシール20近傍の変形を抑制することが可能である。   Here, if the flare nut 9 is tightened strongly, bending deformation is likely to occur in the vicinity of the valve seat 13, but in this embodiment, the thickness t1 of the peripheral portion of the first refrigerant flow path 5 is 3.3 to 3.7 mm. Therefore, it is possible to suppress deformation near the metal seal 20.

<実験結果からの分析>
閉鎖弁内部の液冷媒の流量についてのCv値を実験的に測定した結果、従来の閉鎖弁(図3参照)のCv値を100とした場合、本実施形態の閉鎖弁1についての第1流路5から第2流路6への流れ(すなわち、フレアナット9側→銅管ロウ付け側)についての相対的なCv値は65となり、第2流路6から第1流路5への流れ(すなわち、銅管ロウ付け側→フレアナット9側)についての相対的なCv値は60となった。したがって、従来の閉鎖弁と比較して、本実施形態の閉鎖弁1では、Cv値はいずれの流れ方向についても低下する。
<Analysis from experimental results>
As a result of experimentally measuring the Cv value of the flow rate of the liquid refrigerant inside the closing valve, when the Cv value of the conventional closing valve (see FIG. 3) is 100, the first flow for the closing valve 1 of the present embodiment. The relative Cv value for the flow from the path 5 to the second flow path 6 (that is, the flare nut 9 side → the copper pipe brazing side) is 65, and the flow from the second flow path 6 to the first flow path 5 The relative Cv value for the copper pipe brazing side to the flare nut 9 side was 60. Therefore, compared with the conventional closing valve, in the closing valve 1 of the present embodiment, the Cv value decreases in any flow direction.

しかし、従来の閉鎖弁を用いた場合と本実施形態の閉鎖弁1を用いた場合の空調機の性能をそれぞれシステム試験によって測定した結果では、従来の閉鎖弁のシステム試験でのCOPを100とした場合、本実施形態の閉鎖弁1についての冷房時の相対的なCOPは99.61となり、暖房時の相対的なCOPは99.98となった。これらの数値は、いずれも誤差0.05未満の測定誤差の範囲内に収まっている。   However, the results of measuring the performance of the air conditioner when using the conventional shut-off valve and when using the shut-off valve 1 of this embodiment by the system test show that the COP in the system test of the conventional shut-off valve is 100. In this case, the relative COP during cooling of the closing valve 1 of the present embodiment was 99.61, and the relative COP during heating was 99.98. These numerical values are all within the measurement error range with an error of less than 0.05.

したがって、従来の閉鎖弁から本実施形態の閉鎖弁1に置き換えた場合であっても、液冷媒側の空調システムの性能には影響しないことが明らかである。   Therefore, even if it replaces with the closing valve 1 of this embodiment from the conventional closing valve, it is clear that it does not affect the performance of the liquid refrigerant side air conditioning system.

<比較例についての説明>
ここで、本発明の比較例として、図3に示される従来の閉鎖弁と比較した場合、従来の閉鎖弁の本体22では、図3に示されるように、第1冷媒流路25に接続される冷媒配管Pの内径d1(5.0mm)と比較して、第1冷媒流路25の内径d22が4.6〜4.8mm(約4.7mm)、第2冷媒流路26の内径d23が4.6〜4.8mm(約4.7mm)であるので、d22/d1=0.92〜0.96、d23/d1=0.92〜0.96である。
<Description of Comparative Example>
Here, as a comparative example of the present invention, when compared with the conventional closing valve shown in FIG. 3, the main body 22 of the conventional closing valve is connected to the first refrigerant flow path 25 as shown in FIG. Compared with the inner diameter d1 (5.0 mm) of the refrigerant pipe P, the inner diameter d22 of the first refrigerant flow path 25 is 4.6 to 4.8 mm (about 4.7 mm), and the inner diameter d23 of the second refrigerant flow path 26 is. Is 4.6 to 4.8 mm (about 4.7 mm), d22 / d1 = 0.92 to 0.96 and d23 / d1 = 0.92 to 0.96.

これに伴って、第1冷媒流路25を構成する第1円筒部22aの肉厚t21は3.0〜3.2mm(約3.1mm)、第2冷媒流路26を構成する第2円筒部22bの肉厚t22は3.0〜3.2mm(約3.1mm)である。   Accordingly, the thickness t21 of the first cylindrical portion 22a constituting the first refrigerant flow path 25 is 3.0 to 3.2 mm (about 3.1 mm), and the second cylinder constituting the second refrigerant flow path 26 is provided. The thickness t22 of the part 22b is 3.0 to 3.2 mm (about 3.1 mm).

したがって、従来の閉鎖弁では、本実施形態の閉鎖弁1よりも第1冷媒流路25の内径d22および第2冷媒流路26の内径d23が大きく、第1冷媒流路25の肉厚t21および第2冷媒流路26の肉厚t22が薄く、弁操作における強度を上げることが困難である。   Therefore, in the conventional closing valve, the inner diameter d22 of the first refrigerant channel 25 and the inner diameter d23 of the second refrigerant channel 26 are larger than the closing valve 1 of the present embodiment, and the wall thickness t21 of the first refrigerant channel 25 and The wall thickness t22 of the second refrigerant channel 26 is thin, and it is difficult to increase the strength in the valve operation.

<特徴>
(1)
実施形態の閉鎖弁1では、第1冷媒流路5および第2冷媒流路6の流路径である内径d2およびd3が、第1冷媒流路5に接続される液冷媒配管Pの内径d1の0.9倍未満である。したがって、閉鎖弁1の小型化を実現することが可能である。
<Features>
(1)
In the shutoff valve 1 of the embodiment, the inner diameters d2 and d3 that are the diameters of the first refrigerant flow path 5 and the second refrigerant flow path 6 are equal to the inner diameter d1 of the liquid refrigerant pipe P connected to the first refrigerant flow path 5. It is less than 0.9 times. Therefore, it is possible to reduce the size of the closing valve 1.

(2)
また、閉鎖弁1の小型化に伴って弁体3のメタルシール20が本体2に接触する部分の接触面積も小さくなるので、Oリング15の部分も含めて、弁体3と本体2との間の隙間から冷媒が漏れることを効果的に防止することが可能である。
(2)
Further, as the size of the shut-off valve 1 is reduced, the contact area of the portion of the valve body 3 where the metal seal 20 contacts the main body 2 is also reduced. It is possible to effectively prevent the refrigerant from leaking through the gaps between them.

(3)
実施形態の閉鎖弁1は、第1冷媒流路5の流路径d2が3.8〜4.4mmであるので、閉鎖弁1の小型化が可能である。
(3)
In the closing valve 1 of the embodiment, since the flow path diameter d2 of the first refrigerant flow path 5 is 3.8 to 4.4 mm, the closing valve 1 can be reduced in size.

(4)
実施形態の閉鎖弁1は、第2冷媒流路6の流路径d3が3.8〜4.4mmであるので、閉鎖弁1の小型化が可能である。
(4)
In the closing valve 1 of the embodiment, since the flow path diameter d3 of the second refrigerant flow path 6 is 3.8 to 4.4 mm, the closing valve 1 can be reduced in size.

(5)
しかも、本実施形態の閉鎖弁1は、閉鎖弁1の小型化に伴って第1円筒部2aの肉厚t1、第2円筒部2bの肉厚t2、ならびに第1円筒部2aと第2円筒部2bの連結部分の肉厚t3が従来の閉鎖弁よりも厚くなっている。とくに、第1冷媒流路5周辺部分の肉厚t1は、3.3〜3.7mmであるので、フレアナット9を強く締めたときでも、それによって生じるせん断応力等によって生じる弁体3のメタルシール20近傍における本体2の変形を抑制することが可能である。
(5)
Moreover, the closing valve 1 of the present embodiment has a thickness t1 of the first cylindrical portion 2a, a thickness t2 of the second cylindrical portion 2b, and the first cylindrical portion 2a and the second cylinder as the size of the closing valve 1 is reduced. The thickness t3 of the connecting portion of the portion 2b is thicker than that of the conventional closing valve. In particular, since the thickness t1 of the peripheral portion of the first refrigerant flow path 5 is 3.3 to 3.7 mm, even when the flare nut 9 is strongly tightened, the metal of the valve body 3 generated by the shearing stress and the like generated thereby. It is possible to suppress deformation of the main body 2 in the vicinity of the seal 20.

(6)
実施形態の閉鎖弁1では、弁蓋4の外径が16.4〜17.0mmであるので、閉鎖弁1の小型化に伴って弁蓋4の小型化も可能である。
(6)
In the closing valve 1 of the embodiment, since the outer diameter of the valve lid 4 is 16.4 to 17.0 mm, the valve lid 4 can be downsized as the closing valve 1 is downsized.

したがって、従来より一般に知られている閉鎖弁ではフレアナットと比較して弁蓋の外径が大きかったので、フレアナットを締めるための工具を用いて弁蓋を締めることができなかったが、本実施形態の閉鎖弁1では、フレアナット9を締めるための工具を用いて、小型化された弁蓋4を締めることが可能になっている。これにより、作業効率の向上ならびに工具の共通化が可能になる。   Therefore, since the outer diameter of the valve lid is larger than that of the flare nut in a conventionally known closing valve, the valve lid could not be tightened using a tool for tightening the flare nut. In the closing valve 1 of the embodiment, it is possible to tighten the miniaturized valve lid 4 using a tool for tightening the flare nut 9. As a result, work efficiency can be improved and tools can be shared.

本発明は、空気調和機の液冷媒用閉鎖弁に適用することが可能である。   The present invention can be applied to a liquid refrigerant closing valve for an air conditioner.

本発明の実施形態に係わる空気調和機の液冷媒用閉鎖弁の断面図。Sectional drawing of the closing valve for liquid refrigerants of the air conditioner concerning embodiment of this invention. 図1の閉鎖弁の各寸法を模式的に示す図。The figure which shows each dimension of the closing valve of FIG. 1 typically. 本発明の比較例である従来の閉鎖弁の各寸法を模式的に示す図。The figure which shows typically each dimension of the conventional closing valve which is a comparative example of this invention.

符号の説明Explanation of symbols

1 閉鎖弁
2 本体
3 弁体
4 弁蓋
5 第1冷媒流路
6 第2冷媒流路
7 中間流路
8 弁通路
13 弁座
DESCRIPTION OF SYMBOLS 1 Closing valve 2 Main body 3 Valve body 4 Valve cover 5 1st refrigerant flow path 6 2nd refrigerant flow path 7 Intermediate flow path 8 Valve path 13 Valve seat

Claims (5)

第1冷媒流路(5)と、第2冷媒流路(6)と、前記第1冷媒流路(5)と前記第2冷媒流路(6)とを連通させる中間流路(7)と、前記中間流路(7)に連通する弁通路(8)とを内部に有する本体(2)と、
軸方向に移動可能に前記弁通路(8)に挿入され、前記弁通路(8)側から前記中間流路(7)側へ向かう第1方向に移動することによって前記第1冷媒流路(5)と前記第2冷媒流路(6)との間を遮断し、前記中間流路(7)側から前記弁通路(8)側へ向かう第2方向に移動することによって前記第1冷媒流路(5)と前記第2冷媒流路(6)とを連通させる弁体(3)と、
を備えており、
前記第1冷媒流路(5)の流路径(d2)および前記第2冷媒流路(6)の流路径(d3)は、前記第1冷媒流路(5)または前記第2冷媒流路(6)に接続される液冷媒配管(P)の内径(d1)の0.9倍未満である、
空気調和機の液冷媒用閉鎖弁(1)。
A first refrigerant flow path (5), a second refrigerant flow path (6), an intermediate flow path (7) communicating the first refrigerant flow path (5) and the second refrigerant flow path (6); A main body (2) having a valve passage (8) communicating with the intermediate flow path (7) inside,
The first refrigerant flow path (5) is inserted into the valve passage (8) so as to be movable in the axial direction and moves in a first direction from the valve passage (8) side toward the intermediate flow path (7) side. ) And the second refrigerant flow path (6), and the first refrigerant flow path is moved in the second direction from the intermediate flow path (7) side toward the valve passage (8) side. (5) and a valve body (3) communicating the second refrigerant flow path (6);
With
The channel diameter (d2) of the first refrigerant channel (5) and the channel diameter (d3) of the second refrigerant channel (6) are the first refrigerant channel (5) or the second refrigerant channel ( 6) less than 0.9 times the inner diameter (d1) of the liquid refrigerant pipe (P) connected to
Air conditioner liquid refrigerant shut-off valve (1).
前記第1冷媒流路(5)の流路径(d2)は、3.8〜4.4mmである、
請求項1に記載の液冷媒用閉鎖弁(1)
The flow path diameter (d2) of the first refrigerant flow path (5) is 3.8 to 4.4 mm.
The liquid refrigerant shut-off valve (1) according to claim 1.
前記第2冷媒流路(6)の流路径(d3)は、3.8〜4.4mmである、
請求項1に記載の液冷媒用閉鎖弁(1)
The channel diameter (d3) of the second refrigerant channel (6) is 3.8 to 4.4 mm.
The liquid refrigerant shut-off valve (1) according to claim 1.
前記第1冷媒流路(5)周辺部分の肉厚(t1)は、3.3〜3.7mmである、
請求項1に記載の液冷媒用閉鎖弁(1)
The thickness (t1) of the peripheral portion of the first refrigerant channel (5) is 3.3 to 3.7 mm.
The liquid refrigerant shut-off valve (1) according to claim 1.
弁蓋(4)をさらに備え、
前記弁蓋(4)の外径(d4)は、16.4〜17.0mmである、
請求項1に記載の液冷媒用閉鎖弁(1)。
Further comprising a valve lid (4),
The outer diameter (d4) of the valve lid (4) is 16.4 to 17.0 mm.
The liquid refrigerant shut-off valve (1) according to claim 1.
JP2006296929A 2006-02-15 2006-10-31 Closing valve for liquid refrigerant of air conditioner Pending JP2007248039A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006296929A JP2007248039A (en) 2006-02-15 2006-10-31 Closing valve for liquid refrigerant of air conditioner
PCT/JP2007/052452 WO2007094280A1 (en) 2006-02-15 2007-02-13 Closing valve for liquid refrigerant of air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006037618 2006-02-15
JP2006296929A JP2007248039A (en) 2006-02-15 2006-10-31 Closing valve for liquid refrigerant of air conditioner

Publications (1)

Publication Number Publication Date
JP2007248039A true JP2007248039A (en) 2007-09-27

Family

ID=38371460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006296929A Pending JP2007248039A (en) 2006-02-15 2006-10-31 Closing valve for liquid refrigerant of air conditioner

Country Status (2)

Country Link
JP (1) JP2007248039A (en)
WO (1) WO2007094280A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136707A1 (en) * 2014-03-14 2015-09-17 三菱電機株式会社 Air conditioning device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60188969U (en) * 1984-05-28 1985-12-14 三菱電機株式会社 Air conditioner stop valve
JPH0158050U (en) * 1987-10-02 1989-04-11
JPH0771790A (en) * 1993-09-03 1995-03-17 Sharp Corp Connecting joint of air conditioner
JP2000310460A (en) * 1999-04-26 2000-11-07 Taiheiyo Seiko Kk Service valve with sealing mechanism for air conditioner
DK1202009T3 (en) * 2000-10-30 2006-10-02 Parker Hannifin Corp Double throttle shut-off valve for fluid under pressure in air cooler / air heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136707A1 (en) * 2014-03-14 2015-09-17 三菱電機株式会社 Air conditioning device
JPWO2015136707A1 (en) * 2014-03-14 2017-04-06 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
WO2007094280A1 (en) 2007-08-23

Similar Documents

Publication Publication Date Title
JP2020101291A (en) Valve device
US11143323B2 (en) Valve assembly
JP5895330B2 (en) Sealing structure for high pressure pipe joints
US9140469B2 (en) Refrigeration valve block
US8491017B2 (en) Fitting structure including a pair of connection pipes and a clamp ring
JP2009168075A (en) Pipe joint structure, and pipe connection method
JP2007198423A (en) Shutoff valve and air conditioner
JP2007248039A (en) Closing valve for liquid refrigerant of air conditioner
JP4602448B2 (en) Self-sealing single pipe fitting
JP2010048373A (en) Flare nut, and coolant piping, air conditioner, and freezing equipment equipped with the flare nut
EP3376138B1 (en) Air conditioner
JP2005308101A (en) Valve device
JP5810991B2 (en) Refrigerant closing valve
US20150159763A1 (en) Method of making a ball valve
JP7182283B2 (en) Power element and expansion valve using the same
US7337797B1 (en) Ball valve and method of manufacture
JP2007285371A (en) Piping joint
JP2010151204A (en) Closing valve for coolant and air conditioner equipped with the same
JP2017116391A (en) Pressure guide inspection jig of valve driving pressure and pressure guide inspection method of valve driving pressure
CN101384849A (en) Closing valve for liquid refrigerant of air conditioner
JP2009250274A (en) Three-way valve for air conditioner
JP2007146880A (en) Tube fitting
JP2011106711A (en) Three-way valve of air conditioner
JP4367844B2 (en) Valve device
JP2008232201A (en) Pipe joint structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080313

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080321

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080613