[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007247711A - Rolling bearing for underwater rotary device - Google Patents

Rolling bearing for underwater rotary device Download PDF

Info

Publication number
JP2007247711A
JP2007247711A JP2006069250A JP2006069250A JP2007247711A JP 2007247711 A JP2007247711 A JP 2007247711A JP 2006069250 A JP2006069250 A JP 2006069250A JP 2006069250 A JP2006069250 A JP 2006069250A JP 2007247711 A JP2007247711 A JP 2007247711A
Authority
JP
Japan
Prior art keywords
housing
ring
rotating shaft
bearing
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006069250A
Other languages
Japanese (ja)
Inventor
Hideki Koizumi
秀樹 小泉
Akira Iida
彰 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006069250A priority Critical patent/JP2007247711A/en
Publication of JP2007247711A publication Critical patent/JP2007247711A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Support Of The Bearing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive rolling bearing for an underwater rotary device which can maintain rotational accuracy constant for a long period of time, by preventing occurrence of creep between a bearing ring and a housing. <P>SOLUTION: A plurality of rolling bearings 10, 12 are used for an underwater rotary device having a housing 8 housing a rotational shaft 6 to which an impeller for circulating water is attached, so as to rotatably support the rotational shaft. Each rolling bearing comprises: bearing rings (inner and outer rings 14, 16) rotatable relatively to each other and opposed to each other is disposed between the rotational shaft and the housing; and a plurality of rolling elements 18 incorporated between the bearing rings to be capable of rolling. In at least one of rolling bearings out of these bearings, one bearing ring is fixed to the housing by interference fit, the other bearing ring is fixed to the rotational shaft by clearance fit, and elastic material 36 is disposed in a gap G between the inner ring 14 (inner ring inner diameter face 14s) and the rotational shaft 6 (rotational shaft outer diameter face 6s). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば水中ポンプや攪拌装置などの水中回転装置において、羽根車が取り付けられた回転軸を支持する転がり軸受に関する。   The present invention relates to a rolling bearing that supports a rotating shaft to which an impeller is attached in an underwater rotating device such as a submersible pump or a stirring device.

従来、この種の水中回転装置として、例えば下水処理場や浄水場などにおいて水没状態で用いられる種々の水中ポンプが知られている(特許文献1参照)。その一例として図2に示された水中ポンプは、吸水口2aと吐出口2bとを有し、水を循環させるための羽根車(インペラ)4が回転自在に配置されたポンプケーシング2と、ポンプケーシング2上に縦型に配設され、羽根車4が取り付けられた回転軸6を収容するハウジング8とを備えている。   Conventionally, as this type of submersible rotating device, various submersible pumps used in a submerged state in, for example, sewage treatment plants and water purification plants are known (see Patent Document 1). As an example, the submersible pump shown in FIG. 2 includes a pump casing 2 having a water suction port 2a and a discharge port 2b, in which an impeller 4 for circulating water is rotatably disposed, A housing 8 is disposed on the casing 2 in a vertical shape and accommodates a rotating shaft 6 to which the impeller 4 is attached.

ハウジング8は、回転軸6を制御するモータ(電動機)が収容されたモータ室8aと、モータ室8aとポンプケーシング2との間のハウジング8内に設けられたオイル室8bとを有して構成されている。この場合、回転軸6は、モータ室8aからオイル室8bを通してポンプケーシング2内を垂直方向に沿って延出されており、その延出端に羽根車4が取り付けられている。図の構成例において、回転軸6は、モータ室8aの上下側にそれぞれ配設された複数の転がり軸受10,12で回転自在に支持されている。   The housing 8 includes a motor chamber 8 a in which a motor (electric motor) that controls the rotating shaft 6 is accommodated, and an oil chamber 8 b provided in the housing 8 between the motor chamber 8 a and the pump casing 2. Has been. In this case, the rotating shaft 6 extends in the pump casing 2 along the vertical direction from the motor chamber 8a through the oil chamber 8b, and the impeller 4 is attached to the extending end. In the configuration example shown in the figure, the rotating shaft 6 is rotatably supported by a plurality of rolling bearings 10 and 12 respectively disposed on the upper and lower sides of the motor chamber 8a.

なお、転がり軸受10,12としては、例えば図3(a)に示すように、回転軸6に固定された内輪14と、ハウジング8に固定された外輪16と、内外輪間に転動自在に組み込まれた複数の転動体(玉)18と、これら各転動体(玉)18を1つずつ回転自在に保持する保持器20とを備えた玉軸受が適用されている。また、図3(a)の構成例において、転がり軸受10,12には、軸受内部を密封するための密封板22が設けられており、当該密封板22は、その基端(外径部)22aが外輪16に固定され、その先端(内径部)22bが内輪14に向けて延出し、内輪14に対して非接触状態に位置決めされている。なお、密封板22としては、このようなシールドの代わりに、接触又は非接触タイプのシールが適用される場合もある。   As the rolling bearings 10 and 12, for example, as shown in FIG. 3A, the inner ring 14 fixed to the rotary shaft 6, the outer ring 16 fixed to the housing 8, and the inner and outer rings can be freely rolled. A ball bearing including a plurality of incorporated rolling elements (balls) 18 and a cage 20 that rotatably holds the rolling elements (balls) one by one is applied. In the configuration example of FIG. 3A, the rolling bearings 10 and 12 are provided with a sealing plate 22 for sealing the inside of the bearing, and the sealing plate 22 has a base end (outer diameter portion). 22 a is fixed to the outer ring 16, and a tip end (inner diameter part) 22 b extends toward the inner ring 14 and is positioned in a non-contact state with respect to the inner ring 14. The sealing plate 22 may be a contact or non-contact type seal instead of such a shield.

また、図2に示すように、モータ室8aに収容されたモータ(電動機)は、回転軸6に固定されたロータ(例えば、永久磁石)24と、ロータ24に対向してハウジング8に固定されたステータ(例えば、電磁石)26とを備えている。一方、オイル室8bには、モータ室8aを液密状態に密封するためのメカニカルシール28が回転軸6に固定されていると共に、メカニカルシール28の耐摩耗性や潤滑性などを高めるために所定量の潤滑剤(例えば、鉱油系の潤滑油)30が封入されている。   As shown in FIG. 2, the motor (electric motor) housed in the motor chamber 8 a is fixed to the housing 8 so as to face the rotor 24 (for example, a permanent magnet) fixed to the rotating shaft 6 and the rotor 24. And a stator (for example, an electromagnet) 26. On the other hand, in the oil chamber 8b, a mechanical seal 28 for sealing the motor chamber 8a in a liquid-tight state is fixed to the rotary shaft 6, and in order to improve the wear resistance and lubricity of the mechanical seal 28, etc. A fixed amount of lubricant (for example, mineral oil-based lubricant) 30 is enclosed.

このような水中ポンプにおいて、モータ(電動機)を駆動させて、ステータ(電磁石)26のコイル(図示しない)に電流を流すと、電磁石26とロータ(永久磁石)24との磁気相互作用により、フレミングの左手の法則に従って永久磁石24を介して回転軸6に回転力を与えることができる。このとき、回転軸6に取り付けられた羽根車4が当該回転軸6と共に回転することにより、吸水口2aから吸い込まれた水W1は、ポンプケーシング2に沿って移動した後(W2)、吐出口2bから吐き出される(W3)。   In such a submersible pump, when a motor (electric motor) is driven to pass a current through a coil (not shown) of a stator (electromagnet) 26, the framing is caused by the magnetic interaction between the electromagnet 26 and the rotor (permanent magnet) 24. The rotational force can be applied to the rotating shaft 6 through the permanent magnet 24 in accordance with the left hand rule. At this time, after the impeller 4 attached to the rotary shaft 6 rotates together with the rotary shaft 6, the water W1 sucked from the water suction port 2a moves along the pump casing 2 (W2), and then the discharge port. It is discharged from 2b (W3).

ところで、上述したような水中ポンプは、水没状態で使用されるため、ポンプ運転中に例えばモータ(電動機)や転がり軸受10,12から発生した熱がハウジング8内にこもり易くなっている。この場合、ハウジング8内の熱量によっては回転軸6が熱膨張し、その熱膨張量に応じて転がり軸受10,12の内部荷重が上昇することにより、その結果、転がり軸受10,12の回転精度(例えば、回転安定性)を長期に亘って一定に維持することが困難になってしまう場合がある。   Incidentally, since the submersible pump as described above is used in a submerged state, heat generated from, for example, the motor (electric motor) and the rolling bearings 10 and 12 during the pump operation is likely to be trapped in the housing 8. In this case, the rotary shaft 6 is thermally expanded depending on the amount of heat in the housing 8, and the internal load of the rolling bearings 10 and 12 is increased according to the amount of thermal expansion. As a result, the rotational accuracy of the rolling bearings 10 and 12 is increased. It may be difficult to maintain (for example, rotational stability) constant over a long period of time.

これを解消する方策として、例えば図3(a)に示すように、転がり軸受10,12のいずれか一方をハウジング8に対して“すきまばめ”により固定する構成が提案されている。この構成において、いずれか一方の転がり軸受10(12)の内輪14の内輪内径面14sは、回転軸6の回転軸外径面6sに対して“しまりばめ”により固定され、一方、外輪16の外輪外径面16sとハウジング8のハウジング内径面8sとの間には、隙間Gが介在されている。このため、回転軸6が熱膨張した場合でも、その熱膨張量に応じて転がり軸受10,12(外輪16)が隙間Gに沿って軸方向又は径方向にスライドすることで、当該転がり軸受10(12)の内部荷重が上昇するのを防止することができる。なお、他方の転がり軸受12(10)は、羽根車4及び回転軸6を安定して支持するために、ハウジング8に対して“しまりばめ”により固定されている。   As a measure for solving this problem, for example, as shown in FIG. 3A, a configuration is proposed in which one of the rolling bearings 10 and 12 is fixed to the housing 8 by “clearance fitting”. In this configuration, the inner ring inner surface 14s of the inner ring 14 of any one of the rolling bearings 10 (12) is fixed to the rotating shaft outer diameter surface 6s of the rotating shaft 6 by “fitting fit”, while the outer ring 16 A gap G is interposed between the outer ring outer diameter surface 16 s and the housing inner diameter surface 8 s of the housing 8. For this reason, even when the rotary shaft 6 is thermally expanded, the rolling bearings 10 and 12 (outer ring 16) slide in the axial direction or the radial direction along the gap G in accordance with the amount of thermal expansion. It is possible to prevent the internal load of (12) from increasing. The other rolling bearing 12 (10) is fixed to the housing 8 by “fitting fit” in order to stably support the impeller 4 and the rotating shaft 6.

この場合、羽根車4には、ポンプケーシング2内の流動水の水圧(荷重)を直接受けることになるが、例えばその流動水の流動量や流動方向が一定しないと、当該羽根車4に作用する水圧(荷重)が変化する場合がある。このとき、羽根車4に作用した水圧(荷重)は、そのまま回転軸6にも伝達されるため、当該回転軸6には、水圧(荷重)の変化に応じた不安定な振れ回り荷重が発生することになる。また、回転軸6に発生する振れ回り荷重は、羽根車4が回転軸6に対して不釣合い状態(例えば、羽根車4が回転中心に対して対称形状を成していない状態)で取り付けられている場合にも生じる。   In this case, the impeller 4 directly receives the water pressure (load) of the flowing water in the pump casing 2. For example, if the flowing amount and the flowing direction of the flowing water are not constant, the impeller 4 acts on the impeller 4. The water pressure (load) to be changed may change. At this time, since the water pressure (load) acting on the impeller 4 is transmitted to the rotating shaft 6 as it is, an unstable swaying load corresponding to a change in the water pressure (load) is generated on the rotating shaft 6. Will do. Further, the swinging load generated on the rotating shaft 6 is attached in a state where the impeller 4 is unbalanced with respect to the rotating shaft 6 (for example, the impeller 4 is not symmetrical with respect to the rotation center). It also occurs when

このような振れ回り荷重は、その大きさによっては例えば図3(a)に示す外輪外径面16sとハウジング内径面8sとの間でクリープと呼ばれる低速すべりが発生する場合がある。ここで、クリープの発生について説明すると、上述した回転軸6に作用する振れ回り荷重は、例えば図3(a)に示すように、回転軸6から転がり軸受10(12)の内輪14、転動体(玉)18をそれぞれ経由して外輪16に伝達される。このとき、外輪外径面16sとハウジング内径面8sとの間に介在した隙間Gにより、外輪16はハウジング内径面8s方向に位置ずれを生じる。この状態において、回転軸6は、外輪16をハウジング内径面8sに押し付けながら回転するため、当該外輪16は、ハウジング内径面8sに沿って転がるように滑り回転する。この結果、外輪外径面16sとハウジング内径面8sとの間でクリープが発生する。   Depending on the magnitude of such a swinging load, for example, a low-speed slip called creep may occur between the outer ring outer surface 16s and the housing inner surface 8s shown in FIG. Here, the generation of creep will be explained. As shown in FIG. 3A, for example, the run-out load acting on the rotary shaft 6 is caused by the inner ring 14 and the rolling elements of the rolling bearing 10 (12). It is transmitted to the outer ring 16 via each (ball) 18. At this time, due to the gap G interposed between the outer ring outer diameter surface 16s and the housing inner diameter surface 8s, the outer ring 16 is displaced in the direction of the housing inner diameter surface 8s. In this state, the rotating shaft 6 rotates while pressing the outer ring 16 against the housing inner diameter surface 8s, so that the outer ring 16 slides and rotates so as to roll along the housing inner diameter surface 8s. As a result, creep occurs between the outer ring outer surface 16s and the housing inner surface 8s.

クリープが発生すると、外輪外径面16sとハウジング内径面8sとの間で摺接が繰り返され、その結果、例えば外輪外径面16sやハウジング内径面8sが摩耗する場合がある。このとき、その摩耗量の大きさによっては、ハウジング8に転がり軸受10(12)を堅牢に固定させることが困難になり、当該転がり軸受10(12)がガタついてしまう場合がある。そうなると、転がり軸受10(12)により回転軸6を安定して支持することができなくなり、その結果、回転軸6が芯ブレ(偏心)すると共に、これにより、モータ(電動機)のロータ24も芯ブレ(偏心)してステータ26に接触してしまう場合がある。そして、かかる状態でポンプを運転すると、回転軸6を滑らかに且つ安定して回転させることができなくなってしまう。   When creep occurs, sliding contact between the outer ring outer diameter surface 16s and the housing inner diameter surface 8s is repeated. As a result, for example, the outer ring outer diameter surface 16s and the housing inner diameter surface 8s may be worn. At this time, depending on the amount of wear, it may be difficult to firmly fix the rolling bearing 10 (12) to the housing 8, and the rolling bearing 10 (12) may be rattled. Then, the rotating shaft 6 cannot be stably supported by the rolling bearing 10 (12). As a result, the rotating shaft 6 is deviated (eccentric), and the rotor 24 of the motor (electric motor) is thereby also decentered. In some cases, the stator 26 may be shaken (eccentric). And if a pump is drive | operated in this state, it will become impossible to rotate the rotating shaft 6 smoothly and stably.

このようなクリープの発生を防止する方策として、例えば図3(b)に示すように、外輪外径面16sとハウジング内径面8sとの間に、その周方向に沿って連続したゴム製Oリング32を介在させる構成が提案されている。しかしながら、かかる構成では、Oリング32を介在させるための構成(例えば、Oリング収容溝34)を外輪外径面16sに構築しなければならず、そのための構築費用が別途必要となり、その結果、軸受の製造コストが上昇してしまう。   As a measure for preventing the occurrence of such creep, for example, as shown in FIG. 3B, a rubber O-ring that is continuous along the circumferential direction between the outer ring outer diameter surface 16s and the housing inner diameter surface 8s. A configuration in which 32 is interposed has been proposed. However, in such a configuration, a configuration for interposing the O-ring 32 (for example, the O-ring housing groove 34) must be constructed in the outer ring outer diameter surface 16s, and a construction cost for that is required separately. The manufacturing cost of the bearing will increase.

上述したような転がり軸受10,12では、内輪回転を想定して説明したが、外輪回転の軸受でも内輪とハウジングとの間でクリープが発生する場合がある。そこで、内輪回転及び外輪回転のいずれの軸受であっても、その一方の軌道輪とハウジングとの間のクリープの発生を防止することで、回転精度を長期に亘って一定に維持することが可能な低コストの水中回転装置用転がり軸受の開発が望まれているが、現在そのような技術は知られていない。
特開2001−140908号公報
Although the rolling bearings 10 and 12 as described above have been described on the assumption that the inner ring rotates, creep may occur between the inner ring and the housing even in the outer ring rotating bearing. Therefore, it is possible to keep the rotational accuracy constant over a long period of time by preventing the occurrence of creep between one of the bearing rings and the housing of the inner ring rotation and the outer ring rotation. Although development of a low-cost rolling bearing for an underwater rotating device is desired, such technology is not known at present.
JP 2001-140908 A

本発明は、このような要望に応えるためになされており、その目的は、軌道輪とハウジングとの間のクリープの発生を防止することで、回転精度を長期に亘って一定に維持することが可能な低コストの水中回転装置用転がり軸受を提供することにある。   The present invention has been made in order to meet such a demand, and an object of the present invention is to prevent the occurrence of creep between the race and the housing, thereby maintaining the rotational accuracy constant over a long period of time. It is an object of the present invention to provide a possible low-cost rolling bearing for an underwater rotating device.

このような目的を達成するために、本発明は、水を循環させる羽根車が取り付けられた回転軸をハウジング内に収容した水中回転装置に用いられ、回転軸を回転自在に支持する複数の転がり軸受であって、各転がり軸受は、回転軸とハウジングとの間に設けられ、互いに相対回転可能に対向配置された軌道輪と、軌道輪間に転動自在に組み込まれた複数の転動体とを具備し、これら複数の転がり軸受のうち、少なくとも1つの転がり軸受において、その一方の軌道輪はハウジングに対してしまりばめにより固定され、その他方の軌道輪は回転軸に対してすきまばめにより固定されており、当該他方の軌道輪と回転軸との間には、弾性材が介在されている。   In order to achieve such an object, the present invention is used in an underwater rotating device in which a rotating shaft to which an impeller for circulating water is attached is accommodated in a housing, and a plurality of rolling members that rotatably support the rotating shaft. Each rolling bearing is provided between a rotating shaft and a housing, and is provided with a bearing ring disposed so as to be relatively rotatable with each other, and a plurality of rolling elements that are rotatably incorporated between the bearing rings. In at least one of the plurality of rolling bearings, one of the bearing rings is fixed to the housing by an interference fit, and the other bearing ring is a clearance fit to the rotating shaft. The elastic material is interposed between the other raceway ring and the rotating shaft.

この場合、ハウジング内が所定温度に上昇した雰囲気において、少なくとも1つの転がり軸受は、一方の軌道輪とハウジングとがしまりばめによる固定状態を維持し、且つ、他方の軌道輪と回転軸とがすきまばめによる固定状態を維持する。また、少なくとも弾性材の表面には、潤滑剤が塗布されており、これにより、軌道輪と回転軸との間の摩耗が防止されている。   In this case, in an atmosphere in which the inside of the housing has risen to a predetermined temperature, at least one rolling bearing maintains a fixed state by an interference fit between one of the bearing rings and the housing, and the other bearing ring and the rotating shaft are in contact with each other. Maintain a fixed state by clearance fit. Further, at least the surface of the elastic material is coated with a lubricant, thereby preventing wear between the race and the rotating shaft.

本発明によれば、軌道輪とハウジングとの間のクリープの発生を防止することで、回転精度を長期に亘って一定に維持することが可能な低コストの水中回転装置用転がり軸受を実現することができる。   According to the present invention, it is possible to realize a low-cost rolling bearing for an underwater rotating device capable of maintaining the rotational accuracy constant over a long period of time by preventing the occurrence of creep between the race and the housing. be able to.

以下、本発明の一実施の形態に係る水中回転装置用転がり軸受について、図1を参照して説明する。なお、本実施の形態の説明に際し、上述した水中回転装置(図2)及び転がり軸受(図3)と同一の構成には、図面上で同一符号を付して、その説明を省略する。   Hereinafter, a rolling bearing for an underwater rotating device according to an embodiment of the present invention will be described with reference to FIG. In the description of the present embodiment, the same components as those in the underwater rotating device (FIG. 2) and the rolling bearing (FIG. 3) described above are denoted by the same reference numerals in the drawing, and the description thereof is omitted.

図1(a)に示すように、本実施の形態の転がり軸受10,12は、回転軸6とハウジング8との間に設けられており、これら複数の転がり軸受10,12のうち、少なくとも1つの転がり軸受(例えば、図2の上側の転がり軸受10)において、一方の軌道輪(例えば、外輪16)はハウジング8に対して“しまりばめ”により固定され、他方の軌道輪(例えば、内輪14)は回転軸6に対して“すきまばめ”により固定されている。なお、残りの転がり軸受12(図2の下側の転がり軸受)において、両軌道輪(内外輪14,16)は、羽根車4及び回転軸6を堅牢に支持するために、回転軸6及びハウジング8に対して“しまりばめ”により固定されている。   As shown in FIG. 1A, the rolling bearings 10 and 12 of the present embodiment are provided between the rotary shaft 6 and the housing 8, and at least one of the plurality of rolling bearings 10 and 12 is provided. In one rolling bearing (for example, the upper rolling bearing 10 in FIG. 2), one bearing ring (for example, the outer ring 16) is fixed to the housing 8 by “fitting fit”, and the other bearing ring (for example, the inner ring). 14) is fixed to the rotary shaft 6 by “clearance fit”. In the remaining rolling bearing 12 (the lower rolling bearing in FIG. 2), both race rings (inner and outer rings 14, 16) are provided with the rotating shaft 6 and the rotating shaft 6 in order to firmly support the impeller 4 and the rotating shaft 6. It is fixed to the housing 8 by “fitting fit”.

この場合、上側の転がり軸受10において、外輪(一方の軌道輪)16の外輪外径面16sとハウジング8のハウジング内径面8sとは、互いに隙間無く密着(密接)して嵌合しており、一方、内輪(他方の軌道輪)14の内輪内径面14sと回転軸6の回転軸外径面6sとの間には、隙間Gが介在されている。このため、ポンプ運転中にハウジング8内に発生した熱量によって回転軸6が熱膨張した場合でも、その熱膨張量に応じて内輪14が隙間Gに沿って軸方向又は径方向にスライドすることで、当該転がり軸受10の内部荷重が上昇するのを防止することができる。この結果、転がり軸受10の回転精度(例えば、回転安定性)を長期に亘って一定に維持することが可能となる。   In this case, in the upper rolling bearing 10, the outer ring outer diameter surface 16s of the outer ring (one raceway ring) 16 and the housing inner diameter surface 8s of the housing 8 are fitted in close contact with each other without any gap. On the other hand, a gap G is interposed between the inner ring inner surface 14 s of the inner ring (the other race ring) 14 and the rotating shaft outer surface 6 s of the rotating shaft 6. For this reason, even when the rotating shaft 6 is thermally expanded by the amount of heat generated in the housing 8 during the pump operation, the inner ring 14 slides in the axial direction or the radial direction along the gap G according to the amount of thermal expansion. It is possible to prevent the internal load of the rolling bearing 10 from increasing. As a result, it becomes possible to maintain the rotational accuracy (for example, rotational stability) of the rolling bearing 10 constant over a long period of time.

また、ポンプ運転中、ポンプケーシング2(図2)内の流動水により羽根車4に作用する水圧(荷重)が変化し、その際に回転軸6に発生した振れ回り荷重は、当該回転軸6から内輪14、転動体(玉)18をそれぞれ経由して外輪16に伝達される。この場合、内輪14は、回転軸6に対して“すきまばめ”により固定されており、内輪内径面14sと回転軸外径面6sとの間には隙間Gが介在されている。   Further, during the operation of the pump, the water pressure (load) acting on the impeller 4 is changed by the flowing water in the pump casing 2 (FIG. 2). Are transmitted to the outer ring 16 via the inner ring 14 and the rolling elements (balls) 18 respectively. In this case, the inner ring 14 is fixed to the rotation shaft 6 by “clearance fitting”, and a gap G is interposed between the inner ring inner surface 14s and the rotation shaft outer surface 6s.

これにより、内輪14は、その内輪内径面14sのうち常に同じ部分を回転軸外径面6sに当接させた状態で回転軸6と共に回転する。別の捉え方をすると、回転軸6は、常に内輪内径面14sの同一部分に圧接した状態を維持しながら内輪14と共に回転する。この状態において、振れ回り荷重は、回転軸6から内輪14に対して例えば径方向の静止荷重となって作用するため、内輪内径面14sと回転軸外径面6sとの間でクリープと呼ばれる低速すべりが発生することは無い。   Thereby, the inner ring 14 rotates together with the rotating shaft 6 in a state where the same portion of the inner ring inner diameter surface 14s is always in contact with the rotating shaft outer diameter surface 6s. In another way of understanding, the rotating shaft 6 rotates together with the inner ring 14 while maintaining a state where it is always in pressure contact with the same portion of the inner ring inner surface 14s. In this state, the whirling load acts as a static load, for example, in the radial direction from the rotating shaft 6 to the inner ring 14, so that a low speed called creep is formed between the inner ring inner surface 14s and the rotating shaft outer surface 6s. There is no slip.

ところで、このような回転軸6の振れ回り荷重は、当該回転軸6の径方向のみならず軸方向にも分力として作用する場合がある。このとき、内輪14が軸方向に沿って往復移動(微動)することで、内輪内径面14sと回転軸外径面6sとの間で微小な摩耗が発生する場合がある。この場合、摩耗の大きさやその程度によっては凝着摩耗に到る虞もある。   By the way, the swinging load of the rotating shaft 6 may act as a component force not only in the radial direction of the rotating shaft 6 but also in the axial direction. At this time, when the inner ring 14 reciprocates (finely moves) along the axial direction, minute wear may occur between the inner ring inner surface 14s and the rotary shaft outer surface 6s. In this case, depending on the magnitude and the degree of wear, there is a possibility that adhesion wear may occur.

そこで、図1(a),(b)に示すように、内輪14(内輪内径面14s)と回転軸6(回転軸外径面6s)との隙間Gには、例えば2つの弾性材36が介在されている。ここでは、各弾性材36として、隙間Gに沿って周方向に連続した断面円形の例えばゴム製のOリングを想定する。この場合、各弾性材(Oリング)36は、内輪内径面14を周方向に沿って所定量だけ掘り込んで形成した2つの環状溝38にそれぞれ収容保持されている。なお、弾性材(Oリング)36の径寸法や表面形状、或いは隙間Gにおける各弾性材(Oリング)36の相互間距離や位置は、例えば軸受の使用環境、形状や大きさ、或いは回転軸6の振れ回りの大きさ(振れ回り量)に応じて任意に設定されるため、ここでは特に限定しない。   Therefore, as shown in FIGS. 1A and 1B, for example, two elastic members 36 are provided in the gap G between the inner ring 14 (inner ring inner diameter surface 14s) and the rotating shaft 6 (rotating shaft outer diameter surface 6s). Intervened. Here, as each elastic member 36, for example, a rubber O-ring having a circular cross section continuous in the circumferential direction along the gap G is assumed. In this case, each elastic material (O-ring) 36 is accommodated and held in two annular grooves 38 formed by digging the inner ring inner surface 14 by a predetermined amount along the circumferential direction. The diameter and surface shape of the elastic material (O-ring) 36, or the distance and position between the elastic materials (O-ring) 36 in the gap G are, for example, the usage environment, shape and size of the bearing, or the rotation axis Since it is arbitrarily set according to the size of 6 swings (swing amount), there is no particular limitation here.

このように、隙間Gに弾性材(Oリング)36を介在させたことで、回転軸6の振れ回り荷重は、当該弾性材36で吸収されて弱められた後、内輪14に作用する。即ち、当該弾性材(Oリング)36が緩衝材として機能するため、回転軸6から内輪14に振れ回り荷重がそのままダイレクトに作用することは無い。この場合、回転輪6(回転軸外径面6s)と内輪14(内輪内径面14s)との間には、極僅かの荷重作用が働くことになる。これにより、回転軸外径面6sと内輪内径面14sとの間の摩擦抵抗が軽減され、その結果、回転軸外径面6s及び内輪内径面14sの摩耗を低減させることができる。   As described above, the elastic material (O-ring) 36 is interposed in the gap G, so that the swinging load of the rotating shaft 6 is absorbed and weakened by the elastic material 36 and then acts on the inner ring 14. That is, since the elastic material (O-ring) 36 functions as a cushioning material, the swinging load from the rotating shaft 6 to the inner ring 14 does not act directly. In this case, an extremely slight load action acts between the rotating wheel 6 (rotating shaft outer diameter surface 6s) and the inner ring 14 (inner ring inner diameter surface 14s). Thereby, the frictional resistance between the rotating shaft outer diameter surface 6s and the inner ring inner diameter surface 14s is reduced, and as a result, wear of the rotation shaft outer diameter surface 6s and the inner ring inner diameter surface 14s can be reduced.

また、このような効果を高めるために、少なくとも弾性材(Oリング)36の表面に潤滑剤40を塗布することが好ましい。これにより、回転軸外径面6sと内輪内径面14sとの摩擦抵抗を更に低減させることができるため、回転軸外径面6s及び内輪内径面14sの摩耗の発生を防止することができる。なお、潤滑剤40としては、市販されている例えばグリースや油などを適用すれば良いので、ここでは特に限定しな。   In order to enhance such effects, it is preferable to apply the lubricant 40 to at least the surface of the elastic material (O-ring) 36. As a result, the frictional resistance between the outer surface 6s of the rotating shaft and the inner surface 14s of the inner ring can be further reduced, so that the wear of the outer surface 6s of the rotating shaft and the inner surface 14s of the inner ring can be prevented. In addition, as the lubricant 40, for example, commercially available grease, oil, or the like may be applied.

また、上述したように、回転軸6に発生した振れ回り荷重は、当該回転軸6から内輪14、転動体(玉)18をそれぞれ経由して外輪16に伝達される。この場合、外輪16に伝わった振れ回り荷重は、回転軸6が1回転する毎に、外輪外径面16sをハウジング8のハウジング内径面8sに沿って周方向に1回転連続して押圧する回転荷重となって外輪16に作用する。しかしながら、外輪16は、その外輪外径面16sがハウジング内径面8sに対して隙間無く密着(密接)して嵌合しているため、外輪外径面16sとハウジング内径面8sとの間でクリープと呼ばれる低速すべりが発生することは無い。   Further, as described above, the swinging load generated on the rotating shaft 6 is transmitted from the rotating shaft 6 to the outer ring 16 via the inner ring 14 and the rolling elements (balls) 18. In this case, the run-out load transmitted to the outer ring 16 is a rotation that continuously presses the outer ring outer diameter surface 16s along the housing inner diameter surface 8s of the housing 8 in the circumferential direction every time the rotating shaft 6 makes one rotation. A load is applied to the outer ring 16. However, the outer ring 16 has an outer ring outer diameter surface 16s closely and closely fitted to the housing inner diameter surface 8s without any gap, so that creep occurs between the outer ring outer diameter surface 16s and the housing inner diameter surface 8s. The low-speed slip called is not generated.

また、上述したようなクリープが発生しない状態は、ポンプ運転中にハウジング8(図2)内が所定温度に上昇した雰囲気でも維持される。このとき、転がり軸受10は、一方の軌道輪(外輪16)とハウジング8とが“しまりばめ”による固定状態を維持し、且つ他方の軌道輪(内輪14)と回転軸6とが“すきまばめ”による固定状態を維持する。なお、所定温度とは、転がり軸受10が適用される水中回転装置の種類や大きさなどに応じて増減変化するため、ここでは特に限定しない。   Further, the state where the creep does not occur as described above is maintained even in an atmosphere in which the inside of the housing 8 (FIG. 2) is raised to a predetermined temperature during the pump operation. At this time, in the rolling bearing 10, one of the race rings (outer ring 16) and the housing 8 maintain a fixed state by “fitting fit”, and the other race ring (inner ring 14) and the rotary shaft 6 are “clearance”. The fixed state by “fitting” is maintained. Note that the predetermined temperature is not particularly limited because it changes in accordance with the type and size of the underwater rotating device to which the rolling bearing 10 is applied.

以上、本実施の形態によれば、転がり軸受10の外輪16をハウジング8に対して“しまりばめ”により固定し、内輪14を回転軸6に対して“すきまばめ”により固定すると共に、内輪14(内輪内径面14s)と回転軸6(回転軸外径面6s)との隙間Gに弾性材(Oリング)36及び潤滑剤40を介在させたことにより、内輪内径面14sと回転軸外径面6sとの間及び外輪外径面16sとハウジング内径面8sとの間の摩耗を無くすることができ、これにより、クリープの発生及び、微少振動による摩耗、いわゆるフレッチング摩耗も確実に防止することができる。この場合、転がり軸受10の回転精度(例えば、回転安定性)を長期に亘って一定に維持することができるため、当該転がり軸受10により回転軸6を安定して且つ堅牢に支持することができる。この結果、水中回転装置を長期に亘って安定して運転させ続けることが可能となる。更に、本実施の形態によれば、従来に比べて低コストな転がり軸受を提供することができる。   As described above, according to the present embodiment, the outer ring 16 of the rolling bearing 10 is fixed to the housing 8 by “tight fit”, the inner ring 14 is fixed to the rotating shaft 6 by “clearance fit”, and By interposing an elastic material (O-ring) 36 and a lubricant 40 in a gap G between the inner ring 14 (inner ring inner diameter surface 14s) and the rotation shaft 6 (rotation shaft outer diameter surface 6s), the inner ring inner diameter surface 14s and the rotation shaft are provided. It is possible to eliminate wear between the outer diameter surface 6s and between the outer ring outer diameter surface 16s and the housing inner diameter surface 8s, thereby reliably preventing the occurrence of creep and wear caused by minute vibrations, so-called fretting wear. can do. In this case, since the rotation accuracy (for example, rotation stability) of the rolling bearing 10 can be maintained constant over a long period of time, the rotating shaft 6 can be stably and firmly supported by the rolling bearing 10. . As a result, it is possible to keep the underwater rotating device operating stably over a long period of time. Furthermore, according to the present embodiment, it is possible to provide a rolling bearing that is lower in cost than conventional ones.

なお、上述した実施の形態では、図2の上側の転がり軸受10において、一方の軌道輪(例えば、外輪16)をハウジング8に対して“しまりばめ”により固定し、他方の軌道輪(例えば、内輪14)を回転軸6に対して“すきまばめ”により固定したが、これに限定されることは無く、全ての転がり軸受10,12について同様の構成を適用しても良い。
また、上述した実施の形態では、図面上で2つの転がり軸受10,12を例示したが、これに限定されることは無く、3つ以上の転がり軸受を用いた水中回転装置にも本発明の技術を適用することにより、上述した実施の形態と同様の効果を実現することができる。
In the embodiment described above, in the upper rolling bearing 10 of FIG. 2, one race ring (for example, the outer ring 16) is fixed to the housing 8 by “fitting fit”, and the other race ring (for example, The inner ring 14) is fixed to the rotary shaft 6 by “clearance fitting”. However, the present invention is not limited to this, and the same configuration may be applied to all the rolling bearings 10 and 12.
In the above-described embodiment, the two rolling bearings 10 and 12 are illustrated in the drawings. However, the present invention is not limited to this, and the present invention is also applied to an underwater rotating device using three or more rolling bearings. By applying the technique, it is possible to achieve the same effect as the above-described embodiment.

また、上述した実施の形態では、隙間Gに2つの弾性材36を介在させた構成を例示したが、これに限定されることは無く、3つ以上の弾性材36を隙間Gに介在させるように構成しても良い。更に、上述した実施の形態では、弾性材36の表面に潤滑剤40を塗布する場合を想定しているが、これに限定されることは無く、隙間Gの全体に亘って潤滑剤40を塗布するようにしても良い。   In the above-described embodiment, the configuration in which the two elastic members 36 are interposed in the gap G is illustrated. However, the present invention is not limited to this, and three or more elastic members 36 are interposed in the gap G. You may comprise. Furthermore, although the case where the lubricant 40 is applied to the surface of the elastic material 36 is assumed in the above-described embodiment, the present invention is not limited to this, and the lubricant 40 is applied over the entire gap G. You may make it do.

また、上述した実施の形態では、内輪14(内輪内径面14)に形成した環状溝38に弾性材36を収容しているが、その変形例として図1(c)に示すように、内輪14(内輪内径面14s)と回転軸6(回転軸外径面6s)との隙間Gにおいて、回転軸外径面6sを周方向に沿って所定量だけ掘り込んで環状溝38を形成し、ここに弾性材36を収容するよに構成しても良い。   In the above-described embodiment, the elastic material 36 is accommodated in the annular groove 38 formed in the inner ring 14 (inner ring inner diameter surface 14). As a modified example, as shown in FIG. In the gap G between the inner ring inner surface 14s and the rotating shaft 6 (rotating shaft outer surface 6s), a predetermined amount of the outer shaft outer surface 6s is dug in the circumferential direction to form an annular groove 38. Alternatively, the elastic member 36 may be accommodated.

更に、上述した実施の形態では、弾性材36を隙間Gに沿って周方向に連続させる方法について特に言及しなかったが、当該弾性材36を周方向に沿ってストレート(真っ直ぐ)に連続させても良いし、或いは、周方向を横切るように蛇行させても良い。また、弾性材36を周方向に沿って連続させる代わりに、断続的に配しても良い。この場合、断続させた各弾性材36の向きは、周方向に沿って平行に配しても良いし、或いは、周方向を横切るように斜めに配しても良い。また、弾性材36の材質としては、ゴムに限定されることは無く、これに代えて例えば樹脂を適用しても良い。   Furthermore, in the above-described embodiment, no particular mention was made of a method of continuously making the elastic material 36 along the gap G in the circumferential direction. However, the elastic material 36 is made straight (straight) continuously along the circumferential direction. Alternatively, meandering may be performed across the circumferential direction. Further, the elastic material 36 may be provided intermittently instead of being continuous along the circumferential direction. In this case, the directions of the interrupted elastic members 36 may be arranged in parallel along the circumferential direction, or may be arranged obliquely so as to cross the circumferential direction. Further, the material of the elastic member 36 is not limited to rubber, and instead of this, for example, resin may be applied.

更に、上述した実施の形態では、内輪回転を想定して説明したが、外輪回転の軸受にも本発明の技術を適用することができる。即ち、転がり軸受10,12のうち、少なくとも1つの軸受において、内輪14がハウジング8に対して“しまりばめ”により固定され、外輪16が回転軸6に対して“すきまばめ”により固定されている場合である。この場合、外輪16の外輪外径面16sと回転軸6の回転軸外径面6sとの隙間に弾性材36を介在させれば良い。   Furthermore, in the above-described embodiment, the explanation has been made assuming the inner ring rotation, but the technique of the present invention can also be applied to a bearing for outer ring rotation. That is, in at least one of the rolling bearings 10 and 12, the inner ring 14 is fixed to the housing 8 by “fitting fit” and the outer ring 16 is fixed to the rotating shaft 6 by “clearance fitting”. It is a case. In this case, the elastic material 36 may be interposed in the gap between the outer ring outer diameter surface 16 s of the outer ring 16 and the rotation shaft outer diameter surface 6 s of the rotation shaft 6.

(a)は、本発明の一実施の形態に係る水中回転装置用転がり軸受の構成を示す断面図、(b)は、同図(a)の内輪と回転軸との隙間周りの構成を拡大して示す断面図、(c)は、本発明の変形例に係る水中回転装置用転がり軸受の構成を示す断面図。(a) is sectional drawing which shows the structure of the rolling bearing for submersible rotating apparatuses which concerns on one embodiment of this invention, (b) expands the structure around the clearance gap between the inner ring | wheel and rotating shaft of the figure (a). FIG. 6C is a cross-sectional view showing a configuration of a rolling bearing for an underwater rotating device according to a modification of the present invention. 水中回転装置の全体構成を概略的に示す断面図。Sectional drawing which shows schematically the whole structure of an underwater rotation apparatus. (a)は、従来の水中回転装置用転がり軸受の構成を示す断面図、(b)は、クリープの発生を防止するための従来の方策が施された軸受構成を例示した断面図。(a) is sectional drawing which shows the structure of the conventional rolling bearing for submersible rotating apparatuses, (b) is sectional drawing which illustrated the bearing structure in which the conventional measure for preventing generation | occurrence | production of creep was taken.

符号の説明Explanation of symbols

6 回転軸
6s 回転軸外径面
8 ハウジング
10,12 転がり軸受
14 内輪
14s 内輪内径面
16 外輪
18 転動体
36 弾性材
G 隙間
6 Rotating shaft 6s Rotating shaft outer diameter surface 8 Housing
10,12 Rolling bearing 14 Inner ring 14s Inner ring inner diameter surface 16 Outer ring 18 Rolling element 36 Elastic material G Gap

Claims (3)

水を循環させる羽根車が取り付けられた回転軸をハウジング内に収容した水中回転装置に用いられ、回転軸を回転自在に支持する複数の転がり軸受であって、
各転がり軸受は、回転軸とハウジングとの間に設けられ、互いに相対回転可能に対向配置された軌道輪と、軌道輪間に転動自在に組み込まれた複数の転動体とを具備し、
これら複数の転がり軸受のうち、少なくとも1つの転がり軸受において、その一方の軌道輪はハウジングに対してしまりばめにより固定され、その他方の軌道輪は回転軸に対してすきまばめにより固定されており、
当該他方の軌道輪と回転軸との間には、弾性材が介在されていることを特徴とする水中回転装置用転がり軸受。
A plurality of rolling bearings used in a submersible rotating device in which a rotating shaft to which an impeller for circulating water is attached is housed in a housing, and rotatably supporting the rotating shaft;
Each rolling bearing is provided between a rotating shaft and a housing, and includes a bearing ring arranged to face each other so as to be relatively rotatable, and a plurality of rolling elements incorporated so as to be able to roll between the bearing rings.
In at least one of the plurality of rolling bearings, one of the bearing rings is fixed to the housing by an interference fit, and the other bearing ring is fixed to the rotating shaft by a clearance fit. And
A rolling bearing for an underwater rotating device, wherein an elastic material is interposed between the other race ring and the rotating shaft.
ハウジング内が所定温度に上昇した雰囲気において、少なくとも1つの転がり軸受は、一方の軌道輪とハウジングとがしまりばめによる固定状態を維持し、且つ、他方の軌道輪と回転軸とがすきまばめによる固定状態を維持することを特徴とする請求項1に記載の水中回転装置用転がり軸受。   In an atmosphere in which the inside of the housing has risen to a predetermined temperature, at least one rolling bearing maintains a fixed state in which one race ring and the housing are fixed by an interference fit, and the other race ring and the rotation shaft are a clearance fit. The rolling bearing for an underwater rotating device according to claim 1, wherein a fixed state is maintained. 少なくとも弾性材の表面には、潤滑剤が塗布されていることを特徴とする請求項1又は2に記載の水中回転装置用転がり軸受。
The rolling bearing for an underwater rotating device according to claim 1 or 2, wherein a lubricant is applied to at least the surface of the elastic material.
JP2006069250A 2006-03-14 2006-03-14 Rolling bearing for underwater rotary device Pending JP2007247711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006069250A JP2007247711A (en) 2006-03-14 2006-03-14 Rolling bearing for underwater rotary device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006069250A JP2007247711A (en) 2006-03-14 2006-03-14 Rolling bearing for underwater rotary device

Publications (1)

Publication Number Publication Date
JP2007247711A true JP2007247711A (en) 2007-09-27

Family

ID=38592235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006069250A Pending JP2007247711A (en) 2006-03-14 2006-03-14 Rolling bearing for underwater rotary device

Country Status (1)

Country Link
JP (1) JP2007247711A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112490A (en) * 2008-11-07 2010-05-20 Ntn Corp Creep-preventive and conductive rolling bearing
CN102126641A (en) * 2010-01-15 2011-07-20 欧瑞康纺织部件有限公司 Impression roller
JP2014077496A (en) * 2012-10-10 2014-05-01 Sumitomo Heavy Ind Ltd Eccentric oscillation type speed reducer
CN104819216A (en) * 2014-05-09 2015-08-05 安徽安风风机有限公司 Supporting device for axial movement of rotating shaft
JP2019000936A (en) * 2017-06-14 2019-01-10 株式会社マキタ Rotary impact tool
IT201800009042A1 (en) * 2018-10-01 2020-04-01 Lyra Bearing Srl "IMPROVED PUMP"
JPWO2021105735A1 (en) * 2019-11-26 2021-06-03
JP2022518693A (en) * 2019-01-15 2022-03-16 ヌオーヴォ・ピニォーネ・テクノロジー・ソチエタ・レスポンサビリタ・リミタータ Attenuated bearing components, bearings containing the component, and rotating machines containing the bearing
EP3998405A4 (en) * 2019-09-30 2022-11-09 Daikin Industries, Ltd. Fan assembly and air conditioner

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112490A (en) * 2008-11-07 2010-05-20 Ntn Corp Creep-preventive and conductive rolling bearing
CN102126641A (en) * 2010-01-15 2011-07-20 欧瑞康纺织部件有限公司 Impression roller
JP2014077496A (en) * 2012-10-10 2014-05-01 Sumitomo Heavy Ind Ltd Eccentric oscillation type speed reducer
CN104819216A (en) * 2014-05-09 2015-08-05 安徽安风风机有限公司 Supporting device for axial movement of rotating shaft
JP2021192952A (en) * 2017-06-14 2021-12-23 株式会社マキタ Impact tool
JP2019000936A (en) * 2017-06-14 2019-01-10 株式会社マキタ Rotary impact tool
JP7263469B2 (en) 2017-06-14 2023-04-24 株式会社マキタ impact tool
IT201800009042A1 (en) * 2018-10-01 2020-04-01 Lyra Bearing Srl "IMPROVED PUMP"
JP2022518693A (en) * 2019-01-15 2022-03-16 ヌオーヴォ・ピニォーネ・テクノロジー・ソチエタ・レスポンサビリタ・リミタータ Attenuated bearing components, bearings containing the component, and rotating machines containing the bearing
EP3998405A4 (en) * 2019-09-30 2022-11-09 Daikin Industries, Ltd. Fan assembly and air conditioner
WO2021105735A1 (en) * 2019-11-26 2021-06-03 日産自動車株式会社 Rotary electric machine
EP4068587A4 (en) * 2019-11-26 2022-11-30 NISSAN MOTOR Co., Ltd. Rotary electric machine
JPWO2021105735A1 (en) * 2019-11-26 2021-06-03
JP7447914B2 (en) 2019-11-26 2024-03-12 日産自動車株式会社 Electric vehicle drive device

Similar Documents

Publication Publication Date Title
JP2007247711A (en) Rolling bearing for underwater rotary device
US7413348B2 (en) Fluid dynamic air bearing system to rotatably support a motor
JP2008157453A (en) Hydrodynamic pressure bearing device with axial pre-load applied thereto
KR20100138957A (en) Windturbine comprising a bearing seal
JP2010121779A (en) Rolling bearing
US7517153B2 (en) Fluid dynamic bearing system
KR20120043504A (en) Fluid dynamic bearing assembly
US9765791B2 (en) Turbo compressor
JP2009052681A (en) Bearing structure
JP5600958B2 (en) Bearing device
JP2004360903A (en) Shaft sealing device and motor with shaft sealing device
JP2009014083A (en) Bearing device and centrifugal compressor having the same
KR20120013629A (en) Fluid dynamic bearing assembly
JP4370907B2 (en) Ball bearing
JP2002364637A (en) Kinetic pressure gas bering device
JP4178803B2 (en) Vibration motor integrated bearing unit
JP2007247710A (en) Rolling bearing for underwater rotary device
JP2019054593A (en) Electric motor for inhibiting entry of foreign matter
US20070058895A1 (en) Anti-friction thrust bearing centering device for hermetic refrigeration compressors
JP2017115904A (en) Rolling bearing
JP2005337349A (en) Bearing device and main spindle device using it
JP2017115902A (en) Rolling bearing
JP2009074601A (en) Sealing device
JP2006336515A (en) Underwater rotary device
RU2154179C1 (en) Free turbine of gas pumping set drive