JP2007243111A - Electrolytic solution - Google Patents
Electrolytic solution Download PDFInfo
- Publication number
- JP2007243111A JP2007243111A JP2006067373A JP2006067373A JP2007243111A JP 2007243111 A JP2007243111 A JP 2007243111A JP 2006067373 A JP2006067373 A JP 2006067373A JP 2006067373 A JP2006067373 A JP 2006067373A JP 2007243111 A JP2007243111 A JP 2007243111A
- Authority
- JP
- Japan
- Prior art keywords
- fluorine
- formula
- lactone
- group
- atom
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000008151 electrolyte solution Substances 0.000 title claims abstract description 41
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 192
- 239000011737 fluorine Substances 0.000 claims abstract description 152
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 141
- 150000003839 salts Chemical class 0.000 claims abstract description 71
- 150000002596 lactones Chemical class 0.000 claims abstract description 69
- 239000003792 electrolyte Substances 0.000 claims abstract description 53
- 125000001033 ether group Chemical group 0.000 claims abstract description 39
- 125000001153 fluoro group Chemical group F* 0.000 claims abstract description 27
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 23
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 22
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 16
- 125000003545 alkoxy group Chemical group 0.000 claims abstract description 13
- 125000005843 halogen group Chemical group 0.000 claims abstract description 11
- 125000000217 alkyl group Chemical group 0.000 claims description 62
- 125000004432 carbon atom Chemical group C* 0.000 claims description 37
- 239000003990 capacitor Substances 0.000 claims description 18
- 125000002947 alkylene group Chemical group 0.000 claims description 14
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 6
- 125000004429 atom Chemical group 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 238000005868 electrolysis reaction Methods 0.000 claims description 2
- 239000002904 solvent Substances 0.000 abstract description 35
- 239000000243 solution Substances 0.000 abstract description 24
- 229910052799 carbon Inorganic materials 0.000 abstract description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 8
- 239000004215 Carbon black (E152) Substances 0.000 abstract description 8
- 125000005842 heteroatom Chemical group 0.000 abstract description 8
- 229930195733 hydrocarbon Natural products 0.000 abstract description 8
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract 1
- 125000001309 chloro group Chemical group Cl* 0.000 abstract 1
- -1 lactone compound Chemical class 0.000 description 25
- 229910052744 lithium Inorganic materials 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 17
- 150000001875 compounds Chemical class 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 13
- 238000003786 synthesis reaction Methods 0.000 description 13
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical class O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 239000002585 base Substances 0.000 description 11
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical class [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 10
- 238000005481 NMR spectroscopy Methods 0.000 description 10
- 238000005160 1H NMR spectroscopy Methods 0.000 description 9
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 125000000524 functional group Chemical group 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 150000001721 carbon Chemical group 0.000 description 7
- 150000001768 cations Chemical class 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- 239000004593 Epoxy Substances 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 4
- 229910013063 LiBF 4 Inorganic materials 0.000 description 4
- 229910013870 LiPF 6 Inorganic materials 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 4
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 4
- 150000005678 chain carbonates Chemical class 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 150000002170 ethers Chemical class 0.000 description 4
- 150000002221 fluorine Chemical class 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000004817 gas chromatography Methods 0.000 description 4
- HVAMZGADVCBITI-UHFFFAOYSA-N pent-4-enoic acid Chemical compound OC(=O)CCC=C HVAMZGADVCBITI-UHFFFAOYSA-N 0.000 description 4
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 4
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 4
- 238000001308 synthesis method Methods 0.000 description 4
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 3
- GVNVAWHJIKLAGL-UHFFFAOYSA-N 2-(cyclohexen-1-yl)cyclohexan-1-one Chemical compound O=C1CCCCC1C1=CCCCC1 GVNVAWHJIKLAGL-UHFFFAOYSA-N 0.000 description 3
- 229910017008 AsF 6 Inorganic materials 0.000 description 3
- 101150065749 Churc1 gene Proteins 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 3
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 102100038239 Protein Churchill Human genes 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 3
- LTMRRSWNXVJMBA-UHFFFAOYSA-L 2,2-diethylpropanedioate Chemical compound CCC(CC)(C([O-])=O)C([O-])=O LTMRRSWNXVJMBA-UHFFFAOYSA-L 0.000 description 2
- NZSICTQUKULOSA-UHFFFAOYSA-N 5-azoniaspiro[4.4]nonane Chemical class C1CCC[N+]21CCCC2 NZSICTQUKULOSA-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- 229910013684 LiClO 4 Inorganic materials 0.000 description 2
- 229910013385 LiN(SO2C2F5)2 Inorganic materials 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 229910020808 NaBF Inorganic materials 0.000 description 2
- 229910019093 NaOCl Inorganic materials 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 229910018286 SbF 6 Inorganic materials 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- METIGIXCFPEQNM-UHFFFAOYSA-M amino-(2-bromoethyl)-dimethylazanium;bromide Chemical compound [Br-].C[N+](C)(N)CCBr METIGIXCFPEQNM-UHFFFAOYSA-M 0.000 description 2
- 150000001449 anionic compounds Chemical class 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- KVNRLNFWIYMESJ-UHFFFAOYSA-N butyronitrile Chemical compound CCCC#N KVNRLNFWIYMESJ-UHFFFAOYSA-N 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 125000005587 carbonate group Chemical group 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000008034 disappearance Effects 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 125000004185 ester group Chemical group 0.000 description 2
- 125000003709 fluoroalkyl group Chemical group 0.000 description 2
- ZTOMUSMDRMJOTH-UHFFFAOYSA-N glutaronitrile Chemical compound N#CCCCC#N ZTOMUSMDRMJOTH-UHFFFAOYSA-N 0.000 description 2
- 229910001412 inorganic anion Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- LRDFRRGEGBBSRN-UHFFFAOYSA-N isobutyronitrile Chemical compound CC(C)C#N LRDFRRGEGBBSRN-UHFFFAOYSA-N 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 150000002891 organic anions Chemical class 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- IAHFWCOBPZCAEA-UHFFFAOYSA-N succinonitrile Chemical compound N#CCCC#N IAHFWCOBPZCAEA-UHFFFAOYSA-N 0.000 description 2
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- GEKLDGQKEZAPFZ-UHFFFAOYSA-N 2-(ethylamino)-1-(3-methylphenyl)propan-1-one Chemical compound CCNC(C)C(=O)C1=CC=CC(C)=C1 GEKLDGQKEZAPFZ-UHFFFAOYSA-N 0.000 description 1
- AQZRARFZZMGLHL-UHFFFAOYSA-N 2-(trifluoromethyl)oxirane Chemical compound FC(F)(F)C1CO1 AQZRARFZZMGLHL-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- SBUOHGKIOVRDKY-UHFFFAOYSA-N 4-methyl-1,3-dioxolane Chemical compound CC1COCO1 SBUOHGKIOVRDKY-UHFFFAOYSA-N 0.000 description 1
- 229910016467 AlCl 4 Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910012424 LiSO 3 Inorganic materials 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- PHXQIAWFIIMOKG-UHFFFAOYSA-N NClO Chemical compound NClO PHXQIAWFIIMOKG-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 125000005210 alkyl ammonium group Chemical group 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- DBDNZCBRIPTLJF-UHFFFAOYSA-N boron(1-) monohydride Chemical compound [BH-] DBDNZCBRIPTLJF-UHFFFAOYSA-N 0.000 description 1
- RBHJBMIOOPYDBQ-UHFFFAOYSA-N carbon dioxide;propan-2-one Chemical compound O=C=O.CC(C)=O RBHJBMIOOPYDBQ-UHFFFAOYSA-N 0.000 description 1
- MYWGVEGHKGKUMM-UHFFFAOYSA-N carbonic acid;ethene Chemical compound C=C.C=C.OC(O)=O MYWGVEGHKGKUMM-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- BXHHZLMBMOBPEH-UHFFFAOYSA-N diethyl-(2-methoxyethyl)-methylazanium Chemical class CC[N+](C)(CC)CCOC BXHHZLMBMOBPEH-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011245 gel electrolyte Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 150000004693 imidazolium salts Chemical class 0.000 description 1
- 229920000592 inorganic polymer Chemical class 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000004694 iodide salts Chemical class 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 1
- 229920000620 organic polymer Chemical class 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000009840 oxygen flask method Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- FFZANLXOAFSSGC-UHFFFAOYSA-N phosphide(1-) Chemical compound [P-] FFZANLXOAFSSGC-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000007348 radical reaction Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- QDRKDTQENPPHOJ-UHFFFAOYSA-N sodium ethoxide Chemical compound [Na+].CC[O-] QDRKDTQENPPHOJ-UHFFFAOYSA-N 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical compound C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
- H01G11/60—Liquid electrolytes characterised by the solvent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
- H01G11/62—Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/022—Electrolytes; Absorbents
- H01G9/035—Liquid electrolytes, e.g. impregnating materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Secondary Cells (AREA)
- Hybrid Cells (AREA)
- Fuel Cell (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
本発明は、含フッ素エーテル基または含フッ素アルキル基を有する含フッ素ラクトンと電解質塩とを含む電解液に関する。 The present invention relates to an electrolytic solution containing a fluorine-containing lactone having a fluorine-containing ether group or a fluorine-containing alkyl group and an electrolyte salt.
リチウム二次電池や太陽電池、ラジカル電池、キャパシタの電解質塩用溶媒としては、カーボネート類のほか、ラクトン類が使用されている。しかし、ラクトン類は引火点が低く燃焼性が高いために過充電・過加熱による発火爆発の危険性がある、また、粘性が高く低温での伝導率が低くなるために出力が低下するといった問題がある。また、加水分解性が高いため、非常に使用しにくいという欠点もある。 In addition to carbonates, lactones are used as solvents for electrolyte salts of lithium secondary batteries, solar batteries, radical batteries, and capacitors. However, lactones have a low flash point and high flammability, so there is a risk of ignition and explosion due to overcharging and overheating, and there is a problem that output is reduced due to low viscosity and low conductivity at low temperatures. There is. Moreover, since hydrolyzability is high, there also exists a fault that it is very difficult to use.
また、リチウム二次電池では、高容量化のために電解液の耐電圧の向上が求められている。さらには、キャパシタにおいては、負極・正極ともにハードカーボンであることが、特には3V以上で安定して使用できることが望ましいが、従来から用いられているカーボネート類やラクトン類などの電解質塩用の溶媒では、3V以上では電解液の分解が起こってしまうため、使用できない。 Further, in the lithium secondary battery, an increase in the withstand voltage of the electrolytic solution is required to increase the capacity. Furthermore, in the capacitor, it is desirable that both the negative electrode and the positive electrode are hard carbon, and it is desirable that they can be stably used particularly at 3 V or more, but conventionally used solvents for electrolyte salts such as carbonates and lactones. Then, since the decomposition of the electrolyte occurs at 3 V or more, it cannot be used.
またさらに、リチウム二次電池と同様に充放電を繰り返すキャパシタやラジカル電池の電解液においては、難燃性や耐電圧の向上のほか、低温でも粘性が高くならずしかも伝導率の低下が少ないという低温特性の向上が望まれている。 Furthermore, in the case of electrolytes for capacitors and radical batteries that repeatedly charge and discharge in the same way as lithium secondary batteries, in addition to improved flame retardancy and withstand voltage, the viscosity does not increase even at low temperatures and the decrease in conductivity is small. Improvement of low temperature characteristics is desired.
電解質塩用の溶媒として用いるラクトン類としては、たとえば特許文献1、特許文献2、特許文献3および特許文献4に記載されている。 Examples of lactones used as a solvent for the electrolyte salt are described in Patent Document 1, Patent Document 2, Patent Document 3 and Patent Document 4.
特許文献1、特許文献2には、α−フッ素化−γ−ブチロラクトン、β−フッ素化−γ−ブチロラクトン、γ−フッ素化−γ−ブチロラクトンを電解液として用いることが提案されている。 Patent Documents 1 and 2 propose that α-fluorinated-γ-butyrolactone, β-fluorinated-γ-butyrolactone, and γ-fluorinated-γ-butyrolactone are used as an electrolytic solution.
特許文献3には、γ−ブチロラクトンのγ位の水素原子2つが1〜2個のトリフルオロメチル基で置換されたγ−ブチロラクトン誘導体を電解液として用いることが提案されている。 Patent Document 3 proposes that a γ-butyrolactone derivative in which two γ-position hydrogen atoms of γ-butyrolactone are substituted with 1 to 2 trifluoromethyl groups is used as an electrolytic solution.
特許文献4には、γ−ブチロラクトンのγ位にアルコキシ基を有するγ−ブチロラクトン誘導体を電解液として用いることが提案されている。 Patent Document 4 proposes that a γ-butyrolactone derivative having an alkoxy group at the γ-position of γ-butyrolactone is used as the electrolytic solution.
しかし、特許文献1、特許文献2、特許文献4に記載されているラクトン類では、フッ素含有量の低さから、耐電圧、難燃性の点で不充分であり、さらなる改善が求められる。 However, the lactones described in Patent Document 1, Patent Document 2, and Patent Document 4 are insufficient in terms of withstand voltage and flame retardancy because of their low fluorine content, and further improvements are required.
また、特許文献3に記載されているラクトン類では、電解質塩の溶解性が不充分であり、また塩基性下で分解しやすく、これらの点のさらなる改善が求められる。 In addition, the lactones described in Patent Document 3 have insufficient solubility of the electrolyte salt and are easily decomposed under basicity, and further improvements in these respects are required.
本発明は、上記のような従来技術に伴う問題点を解決しようとするものであって、低温特性、耐電圧に優れ、また、難燃性が向上し、電解質塩の溶解性が高く、塩基性下でも安定な、炭化水素系溶媒との相溶性にも優れた電解液を提供することを目的としている。 The present invention seeks to solve the problems associated with the prior art as described above, and is excellent in low-temperature characteristics and withstand voltage, improved in flame retardancy, high solubility of electrolyte salt, and base. It is an object of the present invention to provide an electrolytic solution that is stable even under the property of the resin and excellent in compatibility with a hydrocarbon solvent.
本発明者らは、含フッ素ラクトンをベースにし、非水電解質の電解液の要求特性を満足させる化合物を鋭意検討した結果、含フッ素ラクトンの一方に含フッ素エーテル基、含フッ素アルコキシ基または炭素数2以上の含フッ素アルキル基を配置させることにより上記の問題点を解消できることを見出し、本発明を完成するに至った。 As a result of intensive studies on a compound satisfying the required characteristics of the electrolyte solution of the non-aqueous electrolyte based on the fluorine-containing lactone, the present inventors have found that one of the fluorine-containing lactones has a fluorine-containing ether group, a fluorine-containing alkoxy group, or a carbon number. It has been found that the above-mentioned problems can be solved by arranging two or more fluorine-containing alkyl groups, and the present invention has been completed.
すなわち本発明は、式(I): That is, the present invention relates to the formula (I):
本発明によれば、難燃性、低温特性、耐電圧、電解質塩の溶解性、塩基性下での安定性および炭化水素系溶媒との相溶性をバランスよく向上させることができる電解液を提供することができる。 According to the present invention, there is provided an electrolytic solution capable of improving the flame retardancy, low temperature characteristics, withstand voltage, electrolyte salt solubility, basic stability and compatibility with hydrocarbon solvents in a well-balanced manner. can do.
本発明の電解液は、電解質塩溶解用溶媒である特定の含フッ素エーテル基または含フッ素アルキル基を一方に有する含フッ素ラクトン(I)と電解質塩(II)とを含む。 The electrolytic solution of the present invention contains a fluorine-containing lactone (I) having a specific fluorine-containing ether group or fluorine-containing alkyl group on one side and an electrolyte salt (II), which is a solvent for dissolving an electrolyte salt.
本発明で用いる特定の含フッ素ラクトン(I)は、式(I):
式(I)で示される含フッ素ラクトンは5員環構造が好ましく、式(IA):
式(IA)で示される含フッ素ラクトンには、AとBの組合せにより、式(IA−1):
式(IA−2):
Formula (IA-2):
これらのうち、合成の容易さの点から式(IA−1)で示される含フッ素ラクトン(IA−1)が好ましい。 Of these, the fluorine-containing lactone (IA-1) represented by the formula (IA-1) is preferable from the viewpoint of ease of synthesis.
6員環(n=1)の含フッ素ラクトンとしては、たとえば式(IB):
本発明の含フッ素ラクトン(I)は含フッ素エーテル構造または炭素数2以上の含フッ素アルキル基を有することから、低温での粘性のさらなる低下と引火点の上昇、さらには電解質塩の溶解性の向上が期待できる。 Since the fluorinated lactone (I) of the present invention has a fluorinated ether structure or a fluorinated alkyl group having 2 or more carbon atoms, it further reduces the viscosity at low temperature, increases the flash point, and further dissolves the electrolyte salt. Improvement can be expected.
Rf1は、含フッ素エーテル基、好ましくは炭素数2〜17の含フッ素エーテル基であるか、または含フッ素アルコキシ基、好ましくは炭素数1〜17の含フッ素アルコキシ基であるか、または炭素数2以上の含フッ素アルキル基、好ましくは炭素数2〜17の含フッ素アルキル基である。 Rf 1 is a fluorine-containing ether group, preferably a fluorine-containing ether group having 2 to 17 carbon atoms, or a fluorine-containing alkoxy group, preferably a fluorine-containing alkoxy group having 1 to 17 carbon atoms, or the number of carbon atoms Two or more fluorine-containing alkyl groups, preferably a fluorine-containing alkyl group having 2 to 17 carbon atoms.
Rf1のフッ素含有率は10質量%以上が好ましく、フッ素含有率が少ないと、低温での粘性向上効果や引火点の向上効果が充分に得られない。この観点からRf1のフッ素含有率は20質量%以上が好ましく、30質量%以上がより好ましい。上限は通常76質量%である。なお、Rf1のフッ素含有率は、構成原子の組成から算出する。 The fluorine content of Rf 1 is preferably 10% by mass or more. If the fluorine content is low, the effect of improving the viscosity at low temperatures and the effect of improving the flash point cannot be obtained sufficiently. From this viewpoint, the fluorine content of Rf 1 is preferably 20% by mass or more, and more preferably 30% by mass or more. The upper limit is usually 76% by mass. Note that the fluorine content of Rf 1 is calculated from the composition of the constituent atoms.
また、含フッ素ラクトン(I)全体のフッ素含有率は10質量%以上、好ましくは20質量%以上であり、上限は通常76質量%である。含フッ素ラクトン全体のフッ素含有率の測定方法は後述する燃焼法による。 Moreover, the fluorine content of the whole fluorine-containing lactone (I) is 10% by mass or more, preferably 20% by mass or more, and the upper limit is usually 76% by mass. The method for measuring the fluorine content of the entire fluorinated lactone is based on the combustion method described later.
含フッ素エーテル基の炭素数は2〜17が好ましい。炭素数が17を超えると、含フッ素ラクトン(I)の粘性が高くなり、また、フッ素含有基が多くなることから、誘電率の低下による電解質塩の溶解性低下や、他の溶剤との相溶性の低下がみられることがある。この観点からRf1の炭素数は2〜10が好ましく、2〜7がより好ましい。 As for carbon number of a fluorine-containing ether group, 2-17 are preferable. When the number of carbon atoms exceeds 17, the viscosity of the fluorinated lactone (I) increases and the number of fluorine-containing groups increases, so that the solubility of the electrolyte salt decreases due to a decrease in dielectric constant, and the phase with other solvents. A decrease in solubility may be observed. The number of carbon atoms of Rf 1 from this point of view is preferably from 2 to 10, 2 to 7 is more preferable.
含フッ素エーテル基のエーテル部分を構成するアルキレン基は以上のようなフッ素含有率であれば、直鎖型や分岐型のアルキレン基でよい。そうした直鎖型や分岐型のアルキレン基を構成する最小構造単位の一例を下記に示す。 The alkylene group constituting the ether portion of the fluorine-containing ether group may be a linear or branched alkylene group as long as the fluorine content is as described above. An example of the minimum structural unit constituting such a linear or branched alkylene group is shown below.
(i)直鎖型の最小構造単位:
−CH2−、−CHF−、−CF2−、−CHCl−、−CFCl−、−CCl2−
(i) Minimum linear structural unit:
-CH 2 -, - CHF -, - CF 2 -, - CHCl -, - CFCl -, - CCl 2 -
(ii)分岐型の最小構造単位:
アルキレン基は、これらの最小構造単位を単独で、または直鎖型(i)同士、分岐鎖型(ii)同士またはこれらを適宜組み合わせて構成される。好ましい具体例は、後述する。 The alkylene group is composed of these minimum structural units singly, or linear (i), branched (ii), or a combination thereof. Preferred specific examples will be described later.
なお、以上の例示のなかでも、塩基による脱HCl反応が起こらず、より安定なことから、Clを含有しない構成単位から構成されることが好ましい。 In addition, among the above examples, it is preferable that the base is composed of a constitutional unit that does not contain Cl, because de-HCl reaction with a base does not occur and is more stable.
さらに好ましい含フッ素エーテル基としては、式:
より具体的には、つぎの組合せが例示できるが、これらのみに限定されるものではない。 More specifically, the following combinations can be exemplified, but are not limited to these.
(a)R1としては、式(1):X8X9X10C−(R4)n2−(X8、X9およびX10は同じかまたは異なりいずれもHまたはF;R4は炭素数1〜5のフッ素原子を有していてもよいアルキレン基;n2は0または1)で表されるアルキル基がさらに好ましい。 The (a) R 1, formula (1): X 8 X 9 X 10 C- (R 4) n2 - (X 8, X 9 and both X 10 are the same or different H or F; R 4 is An alkylene group which may have a fluorine atom having 1 to 5 carbon atoms; n2 is more preferably an alkyl group represented by 0 or 1).
n2が0の場合は、CH3−、CF3−、HCF2−、H2CF−である。 When n2 is 0, it is CH 3 —, CF 3 —, HCF 2 —, H 2 CF—.
n2が1の場合の具体例としては、R1が直鎖状のものとして、CF3CH2−、CF3CF2−、CF3CH2CH2−、CF3CF2CH2−、CF3CF2CF2−、CF3CH2CF2−、CF3CH2CH2CH2−、CF3CF2CH2CH2−、CF3CH2CF2CH2−、CF3CF2CF2CH2−、CF3CF2CF2CF2−、CF3CF2CH2CF2−、CF3CH2CH2CH2CH2−、CF3CF2CH2CH2CH2−、CF3CH2CF2CH2CH2−、CF3CF2CF2CH2CH2−、CF3CF2CF2CF2CH2−、CF3CF2CH2CF2CH2−、CF3CF2CH2CH2CH2CH2−、CF3CF2CF2CF2CH2CH2−、CF3CF2CH2CF2CH2CH2−、HCF2CH2−、HCF2CF2−、HCF2CH2CH2−、HCF2CF2CH2−、HCF2CH2CF2−、HCF2CF2CH2CH2−、HCF2CH2CF2CH2−、HCF2CF2CF2CF2−、HCF2CF2CH2CH2CH2−、HCF2CH2CF2CH2CH2−、HCF2CF2CF2CF2CH2−、HCF2CF2CF2CF2CH2CH2−、FCH2CH2−、FCH2CF2−、FCH2CF2CH2−、FCH2CF2CH2−、CH3CF2−、CH3CH2−、CH3CF2CH2−、CH3CF2CF2−、CH3CH2CH2−、CH3CF2CH2CF2−、CH3CF2CF2CF2−、CH3CH2CF2CF2−、CH3CH2CH2CH2−、CH3CF2CH2CF2CH2−、CH3CF2CF2CF2CH2−、CH3CF2CF2CH2CH2−、CH3CH2CF2CF2CH2−、CH3CF2CH2CF2CH2−、CH3CF2CH2CF2CH2CH2−、CH3CH2CF2CF2CH2CH2−、CH3CF2CH2CF2CH2CH2−などが例示でき、分岐鎖状のものとしては、 As a specific example when n2 is 1, R 1 is linear, CF 3 CH 2 —, CF 3 CF 2 —, CF 3 CH 2 CH 2 —, CF 3 CF 2 CH 2 —, CF 3 CF 2 CF 2- , CF 3 CH 2 CF 2- , CF 3 CH 2 CH 2 CH 2- , CF 3 CF 2 CH 2 CH 2- , CF 3 CH 2 CF 2 CH 2- , CF 3 CF 2 CF 2 CH 2 -, CF 3 CF 2 CF 2 CF 2 -, CF 3 CF 2 CH 2 CF 2 -, CF 3 CH 2 CH 2 CH 2 CH 2 -, CF 3 CF 2 CH 2 CH 2 CH 2 -, CF 3 CH 2 CF 2 CH 2 CH 2 —, CF 3 CF 2 CF 2 CH 2 CH 2 —, CF 3 CF 2 CF 2 CF 2 CH 2 —, CF 3 CF 2 CH 2 CF 2 CH 2 —, CF 3 CF 2 CH 2 CH 2 CH 2 CH 2 -, CF 3 CF 2 CF 2 CF 2 CH 2 CH 2 -, CF 3 CF 2 CH 2 CF 2 CH 2 CH 2 , HCF 2 CH 2 -, HCF 2 CF 2 -, HCF 2 CH 2 CH 2 -, HCF 2 CF 2 CH 2 -, HCF 2 CH 2 CF 2 -, HCF 2 CF 2 CH 2 CH 2 -, HCF 2 CH 2 CF 2 CH 2- , HCF 2 CF 2 CF 2 CF 2- , HCF 2 CF 2 CH 2 CH 2 CH 2- , HCF 2 CH 2 CF 2 CH 2 CH 2- , HCF 2 CF 2 CF 2 CF 2 CH 2 -, HCF 2 CF 2 CF 2 CF 2 CH 2 CH 2 -, FCH 2 CH 2 -, FCH 2 CF 2 -, FCH 2 CF 2 CH 2 -, FCH 2 CF 2 CH 2 -, CH 3 CF 2 - CH 3 CH 2 —, CH 3 CF 2 CH 2 —, CH 3 CF 2 CF 2 —, CH 3 CH 2 CH 2 —, CH 3 CF 2 CH 2 CF 2 —, CH 3 CF 2 CF 2 CF 2 — CH 3 CH 2 CF 2 CF 2 —, CH 3 CH 2 CH 2 CH 2 —, CH 3 CF 2 CH 2 CF 2 CH 2- , CH 3 CF 2 CF 2 CF 2 CH 2- , CH 3 CF 2 CF 2 CH 2 CH 2- , CH 3 CH 2 CF 2 CF 2 CH 2- , CH 3 CF 2 CH 2 CF 2 CH 2− , CH 3 CF 2 CH 2 CF 2 CH 2 CH 2 —, CH 3 CH 2 CF 2 CF 2 CH 2 CH 2 —, CH 3 CF 2 CH 2 CF 2 CH 2 CH 2 — and the like can be exemplified and branched As a chain,
ただし、−CH3や−CF3という分岐を有していると粘性が高くなりやすいため、直鎖型がより好ましい。 However, since the viscosity is likely to increase when the branch is —CH 3 or —CF 3 , the straight chain type is more preferable.
n1は1〜3の整数であり、好ましくは1または2である。なお、n1=2または3のとき、R2は同じでも異なっていてもよい。 n1 is an integer of 1 to 3, preferably 1 or 2. When n1 = 2 or 3, R 2 may be the same or different.
R2の好ましい具体例としては、つぎの直鎖型または分岐鎖型のものが例示できる。 Preferable specific examples of R 2 include the following linear or branched types.
直鎖型のものとしては、−CH2−、−CHF−、−CF2−、−CH2CH2−、−CF2CH2−、−CF2CF2−、−CH2CF2−、−CH2CH2CH2−、−CH2CH2CF2−、−CH2CF2CH2−、−CH2CF2CF2−、−CF2CH2CH2−、−CF2CF2CH2−、−CF2CH2CF2−、−CF2CF2CF2−などが例示でき、分岐鎖型のものとしては、 As those of linear, -CH 2 -, - CHF - , - CF 2 -, - CH 2 CH 2 -, - CF 2 CH 2 -, - CF 2 CF 2 -, - CH 2 CF 2 -, -CH 2 CH 2 CH 2 -, - CH 2 CH 2 CF 2 -, - CH 2 CF 2 CH 2 -, - CH 2 CF 2 CF 2 -, - CF 2 CH 2 CH 2 -, - CF 2 CF 2 CH 2 —, —CF 2 CH 2 CF 2 —, —CF 2 CF 2 CF 2 — and the like can be exemplified.
Rf1は、炭素数1〜17、好ましくは炭素数1〜6の含フッ素アルコキシ基であってもよい。 Rf 1 may be a fluorine-containing alkoxy group having 1 to 17 carbon atoms, preferably 1 to 6 carbon atoms.
特に式(2):X11X12X13C−(R5)n4−O−(X11、X12およびX13は同じかまたは異なりいずれもHまたはF;R5は好ましくは炭素数1〜5のフッ素原子を有していてもよいアルキレン基;n4は0または1;ただしX11、X12、X13またはR5のいずれかはフッ素原子を含んでいる)で表される含フッ素アルコキシ基がさらに好ましい。 In particular, formula (2): X 11 X 12 X 13 C— (R 5 ) n4 —O— (X 11 , X 12 and X 13 are the same or different and all are H or F; R 5 is preferably one carbon atom. An alkylene group optionally having 5 to 5 fluorine atoms; n4 is 0 or 1; provided that any one of X 11 , X 12 , X 13 or R 5 contains a fluorine atom) More preferred are alkoxy groups.
含フッ素アルコキシ基の具体例は、前記式(1)で示されるR1の説明で示した具体例があげられる。 Specific examples of the fluorine-containing alkoxy group include the specific examples shown in the description of R 1 represented by the formula (1).
Rf1は、さらに炭素数2以上の含フッ素アルキル基であってもよい。含フッ素アルキル基の炭素数は、好ましくは2〜17、さらには2〜7、特に2〜5である。炭素数が大きくなりすぎると低温特性が低下したり、電解質塩の溶解性が低下したりし、炭素数が1の場合、上記のように電解質塩の溶解性の低下、放電効率の低下、さらには粘性の増大などがみられる。 Rf 1 may be a fluorine-containing alkyl group having 2 or more carbon atoms. The number of carbon atoms of the fluorine-containing alkyl group is preferably 2 to 17, more preferably 2 to 7, particularly 2 to 5. If the number of carbons is too large, the low-temperature characteristics are lowered, or the solubility of the electrolyte salt is lowered. When the carbon number is 1, the solubility of the electrolyte salt is lowered as described above, the discharge efficiency is lowered, and further Shows an increase in viscosity.
特に式:
R20−R21−
(式中、R20はフッ素原子を有していてもよい炭素数1以上のアルキル基;R21は炭素数1〜3のアルキレン基;ただし、R20およびR21の少なくとも一方はフッ素原子を有している)で示される含フッ素アルキル基が、電解質塩の溶解性が良好な点から好ましく例示できる。
Especially the formula:
R 20 -R 21 -
Wherein R 20 is an alkyl group having 1 or more carbon atoms which may have a fluorine atom; R 21 is an alkylene group having 1 to 3 carbon atoms; provided that at least one of R 20 and R 21 is a fluorine atom. Can be preferably exemplified from the viewpoint of good solubility of the electrolyte salt.
R20は、フッ素原子を有していてもよい炭素数1以上のアルキル基、好ましくは炭素数1〜16、さらには1〜6、特に1〜3の直鎖状または分岐鎖状のアルキル基である。 R 20 is an alkyl group having 1 or more carbon atoms which may have a fluorine atom, preferably a linear or branched alkyl group having 1 to 16 carbon atoms, more preferably 1 to 6, particularly 1 to 3 carbon atoms. It is.
R20は具体的には、CH3−、CH3CH2−、CH3CH2CH2−、CH3CH2CH2CH2−、 R 20 is specifically CH 3 —, CH 3 CH 2 —, CH 3 CH 2 CH 2 —, CH 3 CH 2 CH 2 CH 2 —,
CF3−、CF3CH2−、CF3CF2−、CF3CH2CH2−、CF3CF2CH2−、CF3CF2CF2−、CF3CH2CF2−、CF3CH2CH2CH2−、CF3CF2CH2CH2−、CF3CH2CF2CH2−、CF3CF2CF2CH2−、CF3CF2CF2CF2−、CF3CF2CH2CF2−、CF3CH2CH2CH2CH2−、CF3CF2CH2CH2CH2−、CF3CH2CF2CH2CH2−、CF3CF2CF2CH2CH2−、CF3CF2CF2CF2CH2−、CF3CF2CH2CF2CH2−、CF3CF2CH2CH2CH2CH2−、CF3CF2CF2CF2CH2CH2−、CF3CF2CH2CF2CH2CH2−、HCF2−、HCF2CH2−、HCF2CF2−、HCF2CH2CH2−、HCF2CF2CH2−、HCF2CH2CF2−、HCF2CF2CH2CH2−、HCF2CH2CF2CH2−、HCF2CF2CF2CF2−、HCF2CF2CH2CH2CH2−、HCF2CH2CF2CH2CH2−、HCF2CF2CF2CF2CH2−、HCF2CF2CF2CF2CH2CH2−、FCH2−、FCH2CH2−、FCH2CF2−、FCH2CF2CH2−、FCH2CF2CF2−、CH3CF2CH2−、CH3CF2CF2−、CH3CH2CH2−、CH3CF2CH2CF2−、CH3CF2CF2CF2−、CH3CH2CF2CF2−、CH3CF2CH2CF2CH2−、CH3CF2CF2CF2CH2−、CH3CF2CF2CH2CH2−、CH3CH2CF2CF2CH2−、CH3CF2CH2CF2CH2−、CH3CF2CH2CF2CH2CH2−、CH3CF2CH2CF2CH2CH2−、HCFClCF2CH2−、HCF2CFClCH2−、HCF2CFClCF2CFClCH2−、HCFClCF2CFClCF2CH2−などの直鎖状のものとしての例があげられ、また分岐鎖状のものとしては、
CF 3- , CF 3 CH 2- , CF 3 CF 2- , CF 3 CH 2 CH 2- , CF 3 CF 2 CH 2- , CF 3 CF 2 CF 2- , CF 3 CH 2 CF 2- , CF 3 CH 2 CH 2 CH 2 —, CF 3 CF 2 CH 2 CH 2 —, CF 3 CH 2 CF 2 CH 2 —, CF 3 CF 2 CF 2 CH 2 —, CF 3 CF 2 CF 2 CF 2 —, CF 3 CF 2 CH 2 CF 2 -, CF 3 CH 2 CH 2 CH 2 CH 2 -, CF 3 CF 2 CH 2 CH 2 CH 2 -, CF 3 CH 2 CF 2 CH 2 CH 2 -, CF 3 CF 2 CF 2 CH 2 CH 2 —, CF 3 CF 2 CF 2 CF 2 CH 2 —, CF 3 CF 2 CH 2 CF 2 CH 2 —, CF 3 CF 2 CH 2 CH 2 CH 2 CH 2 —, CF 3 CF 2 CF 2 CF 2 CH 2 CH 2 -, CF 3 CF 2 CH 2 CF 2 CH 2 CH 2 -, HCF 2 -, HCF 2 CH 2 -, HCF 2 CF 2 , HCF 2 CH 2 CH 2 - , HCF 2 CF 2 CH 2 -, HCF 2 CH 2 CF 2 -, HCF 2 CF 2 CH 2 CH 2 -, HCF 2 CH 2 CF 2 CH 2 -, HCF 2 CF 2 CF 2 CF 2 -, HCF 2 CF 2 CH 2 CH 2 CH 2 -, HCF 2 CH 2 CF 2 CH 2 CH 2 -, HCF 2 CF 2 CF 2 CF 2 CH 2 -, HCF 2 CF 2 CF 2 CF 2 CH 2 CH 2 -, FCH 2 - , FCH 2 CH 2 -, FCH 2 CF 2 -, FCH 2 CF 2 CH 2 -, FCH 2 CF 2 CF 2 -, CH 3 CF 2 CH 2 -, CH 3 CF 2 CF 2 -, CH 3 CH 2 CH 2 -, CH 3 CF 2 CH 2 CF 2 -, CH 3 CF 2 CF 2 CF 2 -, CH 3 CH 2 CF 2 CF 2 -, CH 3 CF 2 CH 2 CF 2 CH 2 -, CH 3 CF 2 CF 2 CF 2 CH 2 -, CH 3 CF 2 CF 2 CH 2 CH 2 -, C 3 CH 2 CF 2 CF 2 CH 2 -, CH 3 CF 2 CH 2 CF 2 CH 2 -, CH 3 CF 2 CH 2 CF 2 CH 2 CH 2 -, CH 3 CF 2 CH 2 CF 2 CH 2 CH 2 - , HCFClCF 2 CH 2- , HCF 2 CFClCH 2- , HCF 2 CFClCF 2 CFClCH 2- , HCFClCF 2 CFClCF 2 CH 2-, etc. ,
R21はフッ素原子を有していてもよいアルキレン基などの直鎖型や分岐型の炭素数1〜3のアルキレン基である。そうした直鎖型や分岐型のアルキレン基を構成する最小構造単位の一例を下記に示す。R21はこれらの単独または組合せで構成される。 R 21 is a linear or branched alkylene group having 1 to 3 carbon atoms such as an alkylene group which may have a fluorine atom. An example of the minimum structural unit constituting such a linear or branched alkylene group is shown below. R 21 is composed of these alone or in combination.
(i)直鎖型の最小構造単位:
−CH2−、−CHF−、−CF2−、−CHCl−、−CFCl−、−CCl2−
(i) Minimum linear structural unit:
-CH 2 -, - CHF -, - CF 2 -, - CHCl -, - CFCl -, - CCl 2 -
(ii)分岐型の最小構造単位: (ii) Branched minimum structural unit:
なお、以上の例示のなかでも、塩基による脱HCl反応が起こらず、より安定なことから、Clを含有しない構成単位から構成されることが好ましい。 In addition, among the above examples, it is preferable that the base is composed of a constitutional unit that does not contain Cl, because de-HCl reaction with a base does not occur and is more stable.
さらにはR21が直鎖型のものとしては、−CH2−、−CH2CH2−または−CF2−、特に電解質塩の溶解性をより一層向上させることができる点から−CH2−、−CH2CH2−が好ましい。 Furthermore as R 21 is a straight-chain type, -CH 2 -, - CH 2 CH 2 - or -CF 2 -, -CH 2 from the viewpoint of especially it can be further improved solubility of the electrolyte salt - , —CH 2 CH 2 — is preferable.
R21が分岐型のものとしては、−(CX14X15)−(X14はH、F、CH3またはCF3;X15はCH3またはCF3。ただし、X15がCF3の場合、X14はHまたはCH3である)が好ましく例示でき、これらは特に電解質塩の溶解性をより一層向上させることができる。 R 21 is a branched type:-(CX 14 X 15 )-(X 14 is H, F, CH 3 or CF 3 ; X 15 is CH 3 or CF 3, provided that X 15 is CF 3 X 14 is preferably H or CH 3 ), and these can particularly further improve the solubility of the electrolyte salt.
好ましい含フッ素アルキル基としては、たとえばCF3CF2−、HCF2CF2−、H2CFCF2−、CH3CF2−、CF3CF2CF2−、HCF2CF2CF2−、H2CFCF2CF2−、CH3CF2CF2−、CF3CH2−、HCF2CH2−、CF3CF2CH2−、HCF2CF2CH2−、H2CFCF2CH2−、CH3CF2CH2−、CF3CF2CF2CH2−、CF3CF2CF2CF2CH2−、HCF2CF2CF2CH2−、H2CFCF2CF2CH2−、CH3CF2CF2CH2−、CF3CH2CH2−、HCF2CH2CH2−、CF3CF2CH2CH2−、HCF2CF2CH2CH2−、H2CFCF2CH2CH2−、CH3CF2CH2CH2−、CF3CF2CF2CH2CH2−、HCF2CF2CF2CH2CH2−、H2CFCF2CF2CH2CH2−、CH3CF2CF2CH2CH2−、 Preferred fluorine-containing alkyl groups include, for example, CF 3 CF 2 —, HCF 2 CF 2 —, H 2 CFCF 2 —, CH 3 CF 2 —, CF 3 CF 2 CF 2 —, HCF 2 CF 2 CF 2 —, H 2 CFCF 2 CF 2 —, CH 3 CF 2 CF 2 —, CF 3 CH 2 —, HCF 2 CH 2 —, CF 3 CF 2 CH 2 —, HCF 2 CF 2 CH 2 —, H 2 CFCF 2 CH 2 — , CH 3 CF 2 CH 2 - , CF 3 CF 2 CF 2 CH 2 -, CF 3 CF 2 CF 2 CF 2 CH 2 -, HCF 2 CF 2 CF 2 CH 2 -, H 2 CFCF 2 CF 2 CH 2 - , CH 3 CF 2 CF 2 CH 2 -, CF 3 CH 2 CH 2 -, HCF 2 CH 2 CH 2 -, CF 3 CF 2 CH 2 CH 2 -, HCF 2 CF 2 CH 2 CH 2 -, H 2 CFCF 2 CH 2 CH 2 -, CH 3 CF 2 CH 2 CH 2 -, CF 3 CF 2 CF 2 CH 2 H 2 -, HCF 2 CF 2 CF 2 CH 2 CH 2 -, H 2 CFCF 2 CF 2 CH 2 CH 2 -, CH 3 CF 2 CF 2 CH 2 CH 2 -,
R21が直鎖型の好ましい含フッ素アルキル基の具体例としては、たとえばCF3CH2−、HCF2CH2−、CF3CF2CH2−、HCF2CF2CH2−、H2CFCF2CH2−、CH3CF2CH2−、CF3CF2CF2CH2−、HCF2CF2CF2CH2−、H2CFCF2CF2CH2−、CH3CF2CF2CH2−、CF3CH2CH2−、HCF2CH2CH2−、CF3CF2CH2CH2−、HCF2CF2CH2CH2−、H2CFCF2CH2CH2−、CH3CF2CH2CH2−、CF3CF2CF2CH2CH2−、HCF2CF2CF2CH2CH2−、H2CFCF2CF2CH2CH2−、CH3CF2CF2CH2CH2−、 Specific examples of preferred fluorine-containing alkyl groups in which R 21 is a linear type include, for example, CF 3 CH 2 —, HCF 2 CH 2 —, CF 3 CF 2 CH 2 —, HCF 2 CF 2 CH 2 —, H 2 CFCF 2 CH 2- , CH 3 CF 2 CH 2- , CF 3 CF 2 CF 2 CH 2- , HCF 2 CF 2 CF 2 CH 2- , H 2 CFCF 2 CF 2 CH 2- , CH 3 CF 2 CF 2 CH 2 -, CF 3 CH 2 CH 2 -, HCF 2 CH 2 CH 2 -, CF 3 CF 2 CH 2 CH 2 -, HCF 2 CF 2 CH 2 CH 2 -, H 2 CFCF 2 CH 2 CH 2 -, CH 3 CF 2 CH 2 CH 2 —, CF 3 CF 2 CF 2 CH 2 CH 2 —, HCF 2 CF 2 CF 2 CH 2 CH 2 —, H 2 CFCF 2 CF 2 CH 2 CH 2 —, CH 3 CF 2 CF 2 CH 2 CH 2- ,
R21が分岐型の好ましい含フッ素アルキル基の具体例としては、たとえば Specific examples of preferred fluorine-containing alkyl groups in which R 21 is branched include, for example:
含フッ素ラクトン(I)において、X1およびX2は同じかまたは異なり、いずれもH、F、Cl、CF3またはCH3であり、X3はH、F、Clまたは水素原子がハロゲン原子で置換されていてもよく、ヘテロ原子を鎖中に含んでいてもよいアルキル基である。 In the fluorine-containing lactone (I), X 1 and X 2 are the same or different and all are H, F, Cl, CF 3 or CH 3 , and X 3 is H, F, Cl or a hydrogen atom is a halogen atom It is an alkyl group which may be substituted and may contain a hetero atom in the chain.
X1およびX2は、これらのうち分子の嵩が小さい方が望ましいことから、H、FまたはClであることが好ましい。特に、電子吸引効果の高い基または原子では含フッ素ラクトンの配位能が低下し電解質塩の溶解性やイオン伝導率が低下する傾向にあることからHが最も好ましい。 X 1 and X 2 are preferably H, F, or Cl because it is desirable that the bulk of the molecule is smaller. In particular, in the group or atom having a high electron-withdrawing effect, H is most preferable because the coordination ability of the fluorinated lactone tends to decrease and the solubility of the electrolyte salt and the ionic conductivity tend to decrease.
X3が水素原子がハロゲン原子で置換されていてもよく、ヘテロ原子を鎖中に含んでいてもよいアルキル基である場合、その好ましい具体例は、好ましくは炭素数1〜15の直鎖または分岐鎖状の非置換アルキル基、さらに好ましくは炭素数1〜4の直鎖または分岐鎖状の非置換アルキル基;好ましくは炭素数1〜15、さらに好ましくは炭素数1〜4の含フッ素アルキル基;上記Rf1と同じ含フッ素エーテル基;好ましくは炭素数1〜15、さらに好ましくは炭素数1〜4の直鎖または分岐鎖状の非フッ素系エーテル基などがあげられる。 When X 3 is an alkyl group in which a hydrogen atom may be substituted with a halogen atom and a hetero atom may be contained in the chain, a preferred specific example thereof is preferably a straight chain having 1 to 15 carbon atoms or A branched unsubstituted alkyl group, more preferably a linear or branched unsubstituted alkyl group having 1 to 4 carbon atoms; preferably a fluorinated alkyl having 1 to 15 carbon atoms, more preferably 1 to 4 carbon atoms Group; the same fluorine-containing ether group as Rf 1 above; preferably a linear or branched non-fluorinated ether group having 1 to 15 carbon atoms, more preferably 1 to 4 carbon atoms.
直鎖または分岐鎖状の非置換アルキル基としては、たとえばCH3−、C2H5−、C3H7−、C4H9−、(CH3)2CH−、CH3C(CH3)2−などがあげられる。 Examples of the linear or branched unsubstituted alkyl group include CH 3 —, C 2 H 5 —, C 3 H 7 —, C 4 H 9 —, (CH 3 ) 2 CH—, CH 3 C (CH 3 ) 2- and the like.
含フッ素アルキル基としては、CF3−、CF3CH2−、CF3CF2−、CF3CF2CH2−、CF3CF2CF2−、CF3CH2CF2−、CF3CH2CH2−、CF3CF2CH2CH2−、CF3CF2CF2CH2−、CF3CF2CF2CF2−、CF3CH2CF2CH2−、HCF2CF2CH2−、FCH2CF2CF2−、FCH2CF2CH2−、HCF2CF2CF2CF2CH2−などが例示でき、分岐鎖状のものとしては、 Examples of the fluorine-containing alkyl group include CF 3- , CF 3 CH 2- , CF 3 CF 2- , CF 3 CF 2 CH 2- , CF 3 CF 2 CF 2- , CF 3 CH 2 CF 2- , CF 3 CH 2 CH 2 -, CF 3 CF 2 CH 2 CH 2 -, CF 3 CF 2 CF 2 CH 2 -, CF 3 CF 2 CF 2 CF 2 -, CF 3 CH 2 CF 2 CH 2 -, HCF 2 CF 2 CH 2- , FCH 2 CF 2 CF 2 —, FCH 2 CF 2 CH 2 —, HCF 2 CF 2 CF 2 CF 2 CH 2 — and the like can be exemplified.
X3のうち特に好ましいものは、原子または分子の嵩が小さいことから、H、F、Cl、CF3、CH3であり、さらにはHまたはFである。 Particularly preferred among X 3 are H, F, Cl, CF 3 , and CH 3 since the bulk of atoms or molecules is small, and further H or F.
また、Rf1が含フッ素アルキル基である場合は、X1、X2およびX3はいずれもHであるのが好ましいが、X3が含フッ素アルキル基であるときときは、Rf1の含フッ素アルキル基と同じであっても異なっていてもよい。 When Rf 1 is a fluorine-containing alkyl group, X 1 , X 2 and X 3 are all preferably H, but when X 3 is a fluorine-containing alkyl group, the content of Rf 1 is It may be the same as or different from the fluorine alkyl group.
含フッ素エーテル基としては、上記の含フッ素エーテル基の具体例があげられる。 Specific examples of the fluorine-containing ether group include the above-mentioned fluorine-containing ether groups.
直鎖または分岐鎖状の非フッ素系エーテル基としては、たとえばCH3CH2−OCH2CH2−、CH3−OCH2CH2−、CH3CH(CH3)−OCH2CH2−などがあげられ、直鎖または分岐鎖状の末端がCF3の含フッ素エーテル基としては、たとえばC3F7−OCF(CF3)CH2−、C3F7−OCF(CF3)CF2−、CF3CH2−OCH2CH2−、CF3−OCH2CH2−、CF3CF2CH2−OCH2CH2−、CF3CH(CF3)−OCH2CH2−などがあげられる。 Examples of the linear or branched non-fluorinated ether group include CH 3 CH 2 —OCH 2 CH 2 —, CH 3 —OCH 2 CH 2 —, CH 3 CH (CH 3 ) —OCH 2 CH 2 — and the like. Examples of the fluorine-containing ether group having a linear or branched terminal CF 3 at the end include, for example, C 3 F 7 —OCF (CF 3 ) CH 2 —, C 3 F 7 —OCF (CF 3 ) CF 2 -, CF 3 CH 2 -OCH 2 CH 2 -, CF 3 -OCH 2 CH 2 -, CF 3 CF 2 CH 2 -OCH 2 CH 2 -, CF 3 CH (CF 3) -OCH 2 CH 2 - and can give.
本発明において、特に好ましい含フッ素エーテル基含有含フッ素ラクトンおよび含フッ素アルコキシ基含有含フッ素ラクトンの具体例をつぎにあげるが、本発明はこれらに限定されるものではない。各式中、AおよびBのいずれか一方は、結合している水素原子が置換されているか置換されていない炭素原子、好ましくはCX6X7(X6およびX7は式(I)と同じ)であり、他方は酸素原子である。 In the present invention, specific examples of particularly preferred fluorine-containing ether group-containing fluorine-containing lactones and fluorine-containing alkoxy group-containing fluorine-containing lactones are given below, but the present invention is not limited thereto. In each formula, either one of A and B is a carbon atom in which the bonded hydrogen atom is substituted or unsubstituted, preferably CX 6 X 7 (X 6 and X 7 are the same as in formula (I) ) And the other is an oxygen atom.
本発明において、特に好ましい含フッ素アルキル基含有含フッ素ラクトンの具体例をつぎにあげるが、本発明はこれらに限定されるものではない。各式中、AおよびBのいずれか一方は、結合している水素原子が置換されているか置換されていない炭素原子、好ましくはCX6X7(X6およびX7は式(I)と同じ)であり、他方は酸素原子である。 In the present invention, specific examples of particularly preferred fluorine-containing alkyl group-containing fluorine-containing lactones are listed below, but the present invention is not limited to these. In each formula, either one of A and B is a carbon atom in which the bonded hydrogen atom is substituted or unsubstituted, preferably CX 6 X 7 (X 6 and X 7 are the same as in formula (I) ) And the other is an oxygen atom.
これらの中でも、Aが酸素原子でBが炭素原子である含フッ素ラクトンが、合成が容易である点から好ましい。 Among these, a fluorine-containing lactone in which A is an oxygen atom and B is a carbon atom is preferable from the viewpoint of easy synthesis.
Rf1が含フッ素エーテル基、含フッ素アルコキシ基または炭素数が2以上の含フッ素アルキル基で5員環の含フッ素ラクトンの合成法としては、つぎの(1)〜(6)の方法が例示できるが、これらのみに限定されるものではなく、適宜変更してもよい。 Rf 1 is a fluorine-containing ether group, the synthesis of the fluorine-containing lactone 5- fluorinated alkoxy group, or carbon atoms at two or more fluorine-containing alkyl group, exemplified is a method of the following (1) to (6) However, it is not limited to these, and may be changed as appropriate.
式(I)においてX1、X2およびX3がいずれもHの場合は、式(I−a):
Rf1−OH (I−a)
(式中、Rf1は前記と同じ)で示される含フッ素アルコール(I−a)をつぎの反応に供する方法が例示できる。
In the formula (I), when X 1 , X 2 and X 3 are all H, the formula (Ia):
Rf 1 -OH (Ia)
A method of subjecting the fluorinated alcohol (Ia) represented by the formula (wherein Rf 1 is the same as above) to the next reaction can be exemplified.
(1)塩基触媒の存在下に式(I−b): (1) Formula (Ib) in the presence of a base catalyst:
(2)酸触媒の存在下に式(I−c): (2) Formula (Ic) in the presence of an acid catalyst:
(3)Rf1IとCH2=CHCH2CH2COOHをラジカル反応させてRf1CH2CHICH2CH2COOHを得る。その後付加体を塩基存在下で環化させることで含フッ素ラクトン化合物を得る。 (3) Rf 1 I and CH 2 = CHCH 2 CH 2 COOH are radically reacted to obtain Rf 1 CH 2 CHICH 2 CH 2 COOH. Thereafter, the adduct is cyclized in the presence of a base to obtain a fluorine-containing lactone compound.
(4)式(I−d): (4) Formula (Id):
合成法(4)で用いるエポキシ化合物(I−e)の別の合成法としては、たとえばつぎの方法があげられる。 As another synthesis method of the epoxy compound (Ie) used in the synthesis method (4), for example, the following method may be mentioned.
を反応させれば、
If you react
式(I)においてX1、X2およびX3のいずれか1つがHではない場合の合成法としては、たとえば(4)のエポキシ化合物からのラクトン合成法が採用できる。 As a synthesis method in the case where any one of X 1 , X 2 and X 3 is not H in the formula (I), for example, a lactone synthesis method from the epoxy compound of (4) can be employed.
また、
Rf1−O−R3−CH=CH−R
をO3、KMnO4、NaOClなどを用いて酸化して対応するエポキシ化合物:
Also,
Rf 1 —O—R 3 —CH═CH—R
Is oxidized using O 3 , KMnO 4 , NaOCl, etc., and the corresponding epoxy compound:
Rf1が含フッ素アルキル基である5員環の含フッ素ラクトンの合成法としては、たとえばつぎの方法が例示できる。 Examples of the method for synthesizing a 5-membered fluorinated lactone in which Rf 1 is a fluorinated alkyl group include the following methods.
(5)Rf1−CH=CH2をO3、KMnO4またはNaOClを用いて対応するエポキシ化合物: (5) Rf 1 —CH═CH 2 corresponding to an epoxy compound using O 3 , KMnO 4 or NaOCl:
(6)Rf1IとCH2=CHCH2ORまたはCH2=CHCH2OC(=O)R(Rはアルキル基またはH)をラジカル反応させて、Rf1−CH2=CHCHICH2ORとRf1−CH2CHICH2OC(=O)Rを得た後、環化させて対応するエポキシ化合物: (6) Rf 1 I and CH 2 ═CHCH 2 OR or CH 2 ═CHCH 2 OC (═O) R (where R is an alkyl group or H) undergo a radical reaction, and Rf 1 —CH 2 ═CHCHICH 2 OR and Rf 1- CH 2 CHICH 2 OC (═O) R is obtained and then cyclized to give the corresponding epoxy compound:
なお、式(I)で示される含フッ素ラクトンのうち、Rf1が含フッ素エーテル基または炭素数2以上の含フッ素アルキル基である化合物は、文献未記載の新規化合物である。 Of the fluorine-containing lactones represented by the formula (I), a compound in which Rf 1 is a fluorine-containing ether group or a fluorine-containing alkyl group having 2 or more carbon atoms is a novel compound not described in any literature.
本発明において、電解質塩溶解用溶媒として、含フッ素エーテル基または含フッ素アルキル基を有する含フッ素ラクトン(I)に加えて、他の電解質塩溶解用溶媒(III)を1種または2種以上混合して使用してもよい。 In the present invention, as a solvent for dissolving an electrolyte salt, in addition to a fluorine-containing lactone (I) having a fluorine-containing ether group or a fluorine-containing alkyl group, one or more other electrolyte salt-dissolving solvents (III) are mixed. May be used.
他の電解質塩溶解用溶媒(III)としては、炭化水素系カーボネート溶媒やニトリル系溶媒、炭化水素系ラクトン系溶媒、エステル系溶媒などの非フッ素系溶媒、さらには含フッ素ラクトン(I)以外の含フッ素系溶媒、たとえば含フッ素カーボネート溶媒であってもよい。特に、該含フッ素ラクトンが固体である場合、他の電解質塩溶解用溶媒(III)を加えることが望ましい。 Other electrolyte salt dissolving solvents (III) include non-fluorinated solvents such as hydrocarbon carbonate solvents, nitrile solvents, hydrocarbon lactone solvents, ester solvents, and other than fluorine-containing lactones (I). It may be a fluorine-containing solvent, for example, a fluorine-containing carbonate solvent. In particular, when the fluorinated lactone is solid, it is desirable to add another electrolyte salt dissolving solvent (III).
非フッ素系溶媒としては、たとえばエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、蟻酸メチル、酢酸メチル、プロピオン酸メチル、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、アセトニトリル、プロピオニトリル、スクシノニトリル、ブチロニトリル、イソブチロニトリル、ベンゾニトリル、グルタロニトリル、ジメチルスルホキシド、メチルピロリドンなどがあげられ、特に誘電率や耐酸化性、電気化学的安定性の向上の点からエチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン、1,3−ジオキソラン、アセトニトリル、プロピオニトリル、スクシノニトリル、ブチロニトリル、イソブチロニトリル、グルタロニトリルなどがあげられ、特に誘電率や耐酸化性が好ましい。 Examples of the non-fluorine solvent include ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane. , Methyl formate, methyl acetate, methyl propionate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, acetonitrile, propionitrile, succinonitrile, butyronitrile, isobutyronitrile, benzonitrile, glutaronitrile, dimethyl sulfoxide, methyl pyrrolidone In particular, ethylene carbonate, propylene carbonate, diethyl carbonate, and γ-butyl are used from the viewpoint of improving dielectric constant, oxidation resistance, and electrochemical stability. Examples include tyrolactone, 1,2-dimethoxyethane, 1,3-dioxolane, acetonitrile, propionitrile, succinonitrile, butyronitrile, isobutyronitrile, and glutaronitrile, and dielectric constant and oxidation resistance are particularly preferable.
また含フッ素ラクトン(I)以外の含フッ素系溶媒としては、たとえば特開06−219992号公報、特開10−149840号公報、特開2001−256983号公報、2000−327634号公報などに記載されている含フッ素系カーボネート類;特開11−195429号公報、特開07−283083号公報、特開2001−256983号公報、特開2003−163031号公報などに記載されている含フッ素ラクトン類;特開06−176768号公報、特開08−37024号公報、特開11−307123号公報、特開2000−294281号公報などの含フッ素エーテル類などが使用でき、これらのうち、特に特開06−219992号公報および特開2001−256983号公報に記載されている含フッ素系カーボネート類や上記特許公報に記載されている含フッ素エーテル類が好ましい。 Examples of the fluorine-containing solvent other than the fluorine-containing lactone (I) are described in JP-A-06-219992, JP-A-10-149840, JP-A-2001-256983, 2000-327634, and the like. Fluorine-containing carbonates; fluorine-containing lactones described in JP-A-11-195429, JP-A-07-283083, JP-A-2001-256983, JP-A-2003-163031, and the like; Fluorinated ethers such as JP 06-176768, JP 08-37024, JP 11-307123, JP 2000-294281, and the like can be used. -219992 and JP-A-2001-256983 Fluorinated ethers have been described in carbonates and the patent publications are preferred.
そのほか、式: In addition, the formula:
式:
formula:
式:
formula:
HCFX1c−
(式中、X1cはHまたはF)で示される部位を末端に有しかつフッ素含有率が10〜76質量%である含フッ素エーテル基;R1cは水素原子がハロゲン原子で置換されていてもよく、ヘテロ原子を鎖中に含んでいてもよいアルキル基)で示される鎖状カーボネート
なども併用してもよい。特に、高耐電圧が必要なキャパシタ用途では、電解質塩溶解用溶媒(III)として上記の含フッ素鎖状カーボネートを用いることが望ましい。
HCFX 1c −
(Wherein X 1c is H or F) and a fluorine-containing ether group having a fluorine content of 10 to 76% by mass at the terminal; R 1c is a hydrogen atom substituted with a halogen atom Alternatively, a chain carbonate represented by an alkyl group which may contain a hetero atom in the chain may be used in combination. In particular, in a capacitor application requiring a high withstand voltage, it is desirable to use the above-mentioned fluorine-containing chain carbonate as the solvent (III) for dissolving the electrolyte salt.
併用可能な含フッ素鎖状カーボネートとしては、たとえば式: Examples of fluorine-containing chain carbonates that can be used in combination include:
また、式: Also the formula:
ところで含フッ素エーテルは、不燃性を高める効果に優れており有用であるが、非フッ素系電解質塩溶解用溶媒、特にエチレンカーボネートやジエチレンカーボネートなどの炭化水素系カーボネートと相溶性が低く、非フッ素系電解質塩溶解用溶媒に一定量以上混合すると2層に分離することがあった。しかし、含フッ素ラクトン(I)が共存しているとこれら3成分の均一溶液が容易に形成できる。これは含フッ素ラクトン(I)が含フッ素エーテルと非フッ素系電解質塩溶解用溶媒とを相溶させる相溶化剤として作用しているものと推定され、したがって、含フッ素ラクトン(I)と電解質塩(II)と非フッ素系電解質塩溶解用溶媒と含フッ素エーテルとを含む均一な電解液では、さらなる不燃性の向上が期待できる。 By the way, fluorine-containing ethers are useful because they have excellent nonflammability-improving effects, but have low compatibility with non-fluorinated electrolyte salt dissolving solvents, especially hydrocarbon carbonates such as ethylene carbonate and diethylene carbonate. When a certain amount or more was mixed with the electrolyte salt dissolving solvent, it sometimes separated into two layers. However, when the fluorine-containing lactone (I) coexists, a uniform solution of these three components can be easily formed. This is presumed that the fluorine-containing lactone (I) acts as a compatibilizing agent for compatibilizing the fluorine-containing ether and the solvent for dissolving the non-fluorine-based electrolyte salt. In a uniform electrolytic solution containing (II), a solvent for dissolving a non-fluorinated electrolyte salt, and a fluorinated ether, further improvement in incombustibility can be expected.
他の電解質塩溶解用溶媒(III)の混合量は、全電解質塩溶解用溶媒中の1質量%以上、好ましくは10質量%以上、特に20質量%以上とすることが電解質塩の溶解性が良好な点から好ましく、上限は、難燃性や低温特性、耐電圧の点から98質量%、好ましくは90質量%、特に80質量%である。 The amount of the other electrolyte salt dissolving solvent (III) mixed is 1% by mass or more, preferably 10% by mass or more, particularly 20% by mass or more in the total electrolyte salt dissolving solvent. The upper limit is preferably 98% by mass, preferably 90% by mass, and particularly 80% by mass from the viewpoints of flame retardancy, low temperature characteristics, and withstand voltage.
特にキャパシタでは、大きな電流密度に対応し得るため、電解液の電解質塩濃度は高いほど望ましい。この観点から、電解質塩の溶解性に優れた炭化水素系溶媒、特に前記の含フッ素カーボネート、プロピレンカーボネート、γ−ブチロラクトン、アセトニトリル、1,3−ジオキソランなどを併用することが好ましい。 In particular, a capacitor can cope with a large current density, so that the electrolyte salt concentration in the electrolytic solution is preferably as high as possible. From this viewpoint, it is preferable to use a hydrocarbon solvent excellent in solubility of the electrolyte salt, in particular, the above-mentioned fluorine-containing carbonate, propylene carbonate, γ-butyrolactone, acetonitrile, 1,3-dioxolane and the like.
さらにキャパシタ用で特に使用電圧を高くする場合、本発明の含フッ素ラクトン自体は耐酸化電圧が高いので、組み合わせる他の溶媒および電解質塩も耐酸化電圧の高いものが好ましい。この観点から、他の溶媒としては特に前記の含フッ素カーボネート、プロピレンカーボネート、γ−ブチロラクトンが好ましく、電解質塩としては後述するもののうち、アニオンがBF4 -、PF6 -、AsF6 -、SbF6 -である塩が好ましい。 Further, when the working voltage is particularly increased for capacitors, the fluorine-containing lactone itself of the present invention has a high oxidation resistance, and therefore other solvents and electrolyte salts to be combined preferably have a high oxidation resistance. From this point of view, the above-mentioned fluorine-containing carbonate, propylene carbonate, and γ-butyrolactone are particularly preferable as the other solvent, and among the electrolyte salts described later, the anion is BF 4 − , PF 6 − , AsF 6 − , SbF 6. - can be salts are preferred.
つぎに本発明の電解液の他方の成分である電解質塩(II)について説明する。 Next, the electrolyte salt (II) which is the other component of the electrolytic solution of the present invention will be described.
本発明で使用可能な電解質塩(II)は従来公知の金属塩、液体状の塩(イオン性液体)、無機高分子型の塩、有機高分子型の塩などがあげられる。 Examples of the electrolyte salt (II) that can be used in the present invention include conventionally known metal salts, liquid salts (ionic liquids), inorganic polymer salts, organic polymer salts, and the like.
これらの電解質塩は電解液の使用目的によって特に好適な化合物がある。つぎに用途別に好適な電解質塩を例示するが、例示した具体例に限定されるものではなく、また、他の用途においては、以下の例示の電解質塩を適宜使用することができる。 These electrolyte salts are particularly suitable compounds depending on the intended use of the electrolytic solution. Next, suitable electrolyte salts are illustrated for each application, but are not limited to the illustrated specific examples. In other applications, the following exemplified electrolyte salts can be used as appropriate.
まず、リチウム二次電池の金属塩としては、ホウ素アニオン型、酸素アニオン型、窒素アニオン型、炭素アニオン型、リンアニオン型などの各種有機金属塩を用いることができ、酸素アニオン型、窒素アニオン型を用いることが好ましい。 First, as the metal salt of the lithium secondary battery, various organic metal salts such as boron anion type, oxygen anion type, nitrogen anion type, carbon anion type, and phosphorus anion type can be used. Is preferably used.
酸素アニオン型としては、具体的には、CF3SO3Li、C4F9SO3Li、C8F17SO3Li、CH3SO3Li、C6H5SO3Li、LiSO3C2F4SO3Li、CF3CO2Li、C6H5CO2Li、Li2C4O4などを用いればよく、特に、CF3SO3Li、C4F9SO3Li、C8F17SO3Liを用いることが好ましい。 Specific examples of the oxygen anion type include CF 3 SO 3 Li, C 4 F 9 SO 3 Li, C 8 F 17 SO 3 Li, CH 3 SO 3 Li, C 6 H 5 SO 3 Li, and LiSO 3 C. 2 F 4 SO 3 Li, CF 3 CO 2 Li, C 6 H 5 CO 2 Li, Li 2 C 4 O 4 or the like may be used, and in particular, CF 3 SO 3 Li, C 4 F 9 SO 3 Li, C It is preferable to use 8 F 17 SO 3 Li.
窒素アニオン型としては、(CF3SO2)2NLi(TFSI)、(C2F5SO2)2NLi(BETI)、(CF3SO2)(C4F9SO2)NLi、(CF3SO2)(C8F17SO2)NLi、(CF3CO)2NLi、(CF3CO)(CF3CO2)NLi、((CF3)2CHOSO2)2NLi、(C2F5CH2OSO2)2NLiなどを用いればよく、特に、(CF3SO2)2NLi(TFSI)、(C2F5SO2)2NLi(BETI)を用いることが好ましい。 Nitrogen anion types include (CF 3 SO 2 ) 2 NLi (TFSI), (C 2 F 5 SO 2 ) 2 NLi (BETI), (CF 3 SO 2 ) (C 4 F 9 SO 2 ) NLi, (CF 3 SO 2 ) (C 8 F 17 SO 2 ) NLi, (CF 3 CO) 2 NLi, (CF 3 CO) (CF 3 CO 2 ) NLi, ((CF 3 ) 2 CHOSO 2 ) 2 NLi, (C 2 F 5 CH 2 OSO 2 ) 2 NLi or the like may be used, and (CF 3 SO 2 ) 2 NLi (TFSI) or (C 2 F 5 SO 2 ) 2 NLi (BETI) is particularly preferable.
無機金属塩としては、LiPF6、LiBF4、LiAsF6、LiSbF6、LiClO4などを用いることができ、特に、LiPF6、LiBF4を用いることが好ましい。 The inorganic metal salt, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, can be used as LiClO 4, in particular, it is preferable to use LiPF 6, LiBF 4.
キャパシタ用としては、有機金属塩としては、(Me)x(Et)yN(Meはメチレン、Etはエチレン、xおよびyは同じかまたは異なり0〜4の整数で、かつx+y=4)で示される4級アンモニウム塩、具体的にはEt4NBF4、Et4NClO4、Et4NPF6、Et4NAsF6、Et4NSbF6、Et4NCF3SO3、Et4N(CF3SO2)2N、Et4NC4F9SO3、Et3MeBF4、Et3MeClO4、Et3MePF6、Et3MeAsF6、Et3MeSbF6、Et3MeCF3SO3、Et3Me(CF3SO2)2N、Et3MeC4F9SO3を用いればよく、特に、Et4NBF4、Et4NPF6、Et4NSbF6、Et4NAsF6を用いることが好ましい。
また、テトラアルキル4級アンモニウム塩のうち、アルキル基の1個か2個がエーテルである4級アンモニウム塩を用いることが粘性低下の点で望ましい。たとえば、N,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウム塩などは粘性が低いため好ましい。また、スピロビピロリジニウム塩、またはスピロビピリジニウムの水素原子を一部フッ素原子で置換した塩も粘性が低く、特に低温特性が優れているため好ましい。また、テトラアルキル4級アンモニウム塩のうち、アルキル基が1つ以上の含フッ素アルキル基、または含フッ素エーテル基であるものが、耐酸化性向上、粘性低下の点から好ましい。さらには、フッ素原子または含フッ素アルキル基、含フッ素エーテル基を含有するイミダゾリウム塩も耐酸化性向上、粘性低下の点から好ましい。塩のアニオン種としては、耐酸化性の優れたBF4 -、PF6 -、AsF6 -、SbF6 -が好ましい。
For capacitors, the organometallic salt is (Me) x (Et) y N (Me is methylene, Et is ethylene, x and y are the same or different and are integers from 0 to 4 and x + y = 4) The quaternary ammonium salts shown, specifically Et 4 NBF 4 , Et 4 NClO 4 , Et 4 NPF 6 , Et 4 NAsF 6 , Et 4 NSbF 6 , Et 4 NCF 3 SO 3 , Et 4 N (CF 3 SO 2) 2 N, Et 4 NC 4 F 9 SO 3, Et 3 MeBF 4, Et 3 MeClO 4, Et 3 MePF 6, Et 3 MeAsF 6, Et 3 MeSbF 6, Et 3 MeCF 3 SO 3, Et 3 Me ( CF 3 SO 2 ) 2 N, Et 3 MeC 4 F 9 SO 3 may be used, and Et 4 NBF 4 , Et 4 NPF 6 , Et 4 NSbF 6 , and Et 4 NAsF 6 are particularly preferable.
Of the tetraalkyl quaternary ammonium salts, it is desirable to use a quaternary ammonium salt in which one or two of the alkyl groups are ethers from the viewpoint of viscosity reduction. For example, N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium salt is preferable because of its low viscosity. A spirobipyrrolidinium salt or a salt in which hydrogen atoms of spirobipyridinium are partially substituted with fluorine atoms is also preferable because of low viscosity and particularly excellent low-temperature characteristics. Further, among the tetraalkyl quaternary ammonium salts, those in which the alkyl group is one or more fluorine-containing alkyl groups or fluorine-containing ether groups are preferable from the viewpoint of improving oxidation resistance and reducing viscosity. Furthermore, an imidazolium salt containing a fluorine atom, a fluorine-containing alkyl group, or a fluorine-containing ether group is also preferred from the viewpoint of improving oxidation resistance and reducing viscosity. As the anion species of the salt, BF 4 − , PF 6 − , AsF 6 − and SbF 6 − having excellent oxidation resistance are preferable.
無機金属塩としては、LiPF6、LiBF4、LiAsF6、LiSbF6、LiClO4、NaPF6、NaBF4、NaAsF6、NaClO4、KPF6、KBF4、KAsF6、KClO4などを用いることができ、特に、LiPF6、LiBF4、LiSbF6、LiAsF6、NaPF6、NaBF4を用いることが好ましい。 As the inorganic metal salt, LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 , LiClO 4 , NaPF 6 , NaBF 4 , NaAsF 6 , NaClO 4 , KPF 6 , KBF 4 , KAsF 6 , KClO 4, etc. can be used. in particular, LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, NaPF 6, it is preferable to use a NaBF 4.
色素増感太陽電池用としては、R6R7R8R9NI(R6〜R9は同じかまたは異なり、炭素数1〜3のアルキル基)、LiI、NaI、KI、 For dye-sensitized solar cells, R 6 R 7 R 8 R 9 NI (R 6 to R 9 are the same or different and are alkyl groups having 1 to 3 carbon atoms), LiI, NaI, KI,
電解質塩(II)として液体状の塩を使用するときは、リチウム二次電池やキャパシタ、色素増感太陽電池用として、有機および無機のアニオンとポリアルキルイミダゾリウムカチオン、N−アルキルピリジニウムカチオン、テトラアルキルアンモニウムカチオン、エーテル鎖を含むテトラアルキルアンモニウムカチオン、テトラアルキルフォスフォニウムカチオン、スピロビピロリジニウムカチオンとの塩があげられ、特に1,3−ジアルキルイミダゾリウム塩、スピロビピロリジニウム塩、エーテル鎖を含むアルキルアンモニウム塩が好ましい。また、上記塩のカチオンの一部がフッ素に置換されたものが粘性低下、耐酸化性向上の点から望ましい。 When a liquid salt is used as the electrolyte salt (II), organic and inorganic anions and polyalkylimidazolium cations, N-alkylpyridinium cations, tetrasalts are used for lithium secondary batteries, capacitors, and dye-sensitized solar cells. Examples thereof include salts with alkylammonium cations, tetraalkylammonium cations containing an ether chain, tetraalkylphosphonium cations, and spirobipyrrolidinium cations, particularly 1,3-dialkylimidazolium salts, spirobipyrrolidinium salts, Alkyl ammonium salts containing ether chains are preferred. In addition, a salt in which a part of the cation of the salt is substituted with fluorine is desirable from the viewpoint of viscosity reduction and oxidation resistance improvement.
ポリアルキルイミダゾリウムカチオンとしては、1−エチル−3−メチルイミダゾリウムカチオン(EMI+)、1−ブチル−3−メチルイミダゾリウムカチオン(BMI+)などの1,3−ジアルキルイミダゾリウムカチオン;1,2−ジメチル−3−プロピルイミダゾリウムカチオン(DMPI+)などのトリアルキルイミダゾリウムカチオンなどが好ましい。また、これらの水素原子の一部がフッ素に置換されたものが望ましい。 Examples of polyalkylimidazolium cations include 1,3-dialkylimidazolium cations such as 1-ethyl-3-methylimidazolium cation (EMI + ) and 1-butyl-3-methylimidazolium cation (BMI + ); Trialkylimidazolium cations such as 2-dimethyl-3-propylimidazolium cation (DMPI + ) are preferred. Further, those in which some of these hydrogen atoms are substituted with fluorine are desirable.
好ましい無機アニオンとしては、たとえばAlCl4 -、BF4 -、PF6 -、AsF6 -、I-などが、有機アニオンとしてはたとえばCH3COO-、CF3COO-、C3F7COO-、CF3SO3 -、C4F9SO3 -、(CF3SO2)2N-、(C2F5SO2)2N-などがあげられる。 Preferred inorganic anions include, for example, AlCl 4 − , BF 4 − , PF 6 − , AsF 6 − , I − and the like, and organic anions include, for example, CH 3 COO − , CF 3 COO − , C 3 F 7 COO − , CF 3 SO 3 − , C 4 F 9 SO 3 − , (CF 3 SO 2 ) 2 N − , (C 2 F 5 SO 2 ) 2 N − and the like can be mentioned.
具体例としては、EMIAlCl4、EMIBF4、EMIPF6、EMIAsF6、EMII、EMICH3COO、EMICF3COO、EMIC3F7COO、EMICF3SO3、EMIC4F9SO3、EMI(CF3SO2)2N、EMI(C2F5SO2)2N、BMIAlCl4、BMIBF4、BMIPF6、BMIAsF6、BMII、BMICH3COO、BMICF3COO、BMIC3F7COO、BMICF3SO3、BMIC4F9SO3、BMI(CF3SO2)2N、BMI(C2F5SO2)2N、DMPIAlCl4、DMPIBF4、DMPIPF6、DMPIAsF6、DMPII、DMPICH3COO、DMPICF3COO、DMPIC3F7COO、DMPICF3SO3、DMPIC4F9SO3、DMPI(CF3SO2)2N、DMPI(C2F5SO2)2Nなどが例示できる。 Specific examples include EMIAlCl 4 , EMIBF 4 , EMIPF 6 , EMIAsF 6 , EMII, EMICH 3 COO, EMCF 3 COO, EMIC 3 F 7 COO, EMCF 3 SO 3 , EMIC 4 F 9 SO 3 , EMI (CF 3 SO 2 ) 2 N, EMI (C 2 F 5 SO 2 ) 2 N, BMIAlCl 4 , BMIBF 4 , BMIPF 6 , BMIAsF 6 , BMII, BMICH 3 COO, BMICF 3 COO, BMIC 3 F 7 COO, BMICF 3 SO 3 , BMIC 4 F 9 SO 3 , BMI (CF 3 SO 2 ) 2 N, BMI (C 2 F 5 SO 2 ) 2 N, DMPIAlCl 4 , DMPIBF 4 , DMPIPF 6 , DMPIAsF 6 , DMPII, DMPICH 3 COO, DMPICF 3 COO , DMPIC 3 F 7 COO, DMPICF 3 SO 3 , DMPIC Examples thereof include 4 F 9 SO 3 , DMPI (CF 3 SO 2 ) 2 N, DMPI (C 2 F 5 SO 2 ) 2 N, and the like.
特に色素増感太陽電池用としては、EMII、BMII、DMPIIなどのヨウ化物が好適である。 In particular, iodides such as EMII, BMII, and DMPII are suitable for dye-sensitized solar cells.
電解質塩(II)の配合量は要求される電流密度、用途、電解質塩の種類などによって異なるが、含フッ素ラクトン(I)100質量部に対し0.1質量部以上、さらには1質量部以上、特に5質量部以上で、200質量部以下、さらには100質量部以下、特に50質量部以下とすることが好ましい。 The amount of electrolyte salt (II) blended varies depending on the required current density, application, type of electrolyte salt, etc., but 0.1 parts by mass or more, and 1 part by mass or more with respect to 100 parts by mass of the fluorinated lactone (I). In particular, it is preferably 5 parts by mass or more, 200 parts by mass or less, more preferably 100 parts by mass or less, and particularly preferably 50 parts by mass or less.
本発明の電解液は、電解質塩(II)を含フッ素ラクトン(I)、または含フッ素ラクトン(I)と電解質塩溶解用溶媒(III)からなる溶媒に溶解させることで調製される。 The electrolytic solution of the present invention is prepared by dissolving the electrolyte salt (II) in a fluorine-containing lactone (I) or a solvent comprising the fluorine-containing lactone (I) and the electrolyte salt dissolving solvent (III).
また、本発明の電解液は、本発明の電解液に使用する溶媒に溶解または膨潤する高分子材料と組み合わせてゲル状(可塑化された)のゲル電解液としてもよい。 The electrolytic solution of the present invention may be combined with a polymer material that dissolves or swells in the solvent used in the electrolytic solution of the present invention to form a gel (plasticized) gel electrolytic solution.
かかる高分子材料としては、従来公知のポリエチレンオキシドやポリプロピレンオキシド、それらの変性体(特開平8−222270号公報、特開2002−100405号公報);ポリアクリレート系ポリマー、ポリアクリロニトリルや、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体などのフッ素樹脂(特表平4−506726号公報、特表平8−507407号公報、特開平10−294131号公報);それらフッ素樹脂と炭化水素系樹脂との複合体(特開平11−35765号公報、特開平11−86630号公報)などがあげられる。特には、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体をゲル電解質用高分子材料として用いることが望ましい。 Examples of such a polymer material include conventionally known polyethylene oxide and polypropylene oxide, modified products thereof (Japanese Patent Laid-Open Nos. 8-222270 and 2002-140405); polyacrylate polymers, polyacrylonitrile, and polyvinylidene fluoride. , Fluororesins such as vinylidene fluoride-hexafluoropropylene copolymer (Japanese Patent Publication No. 4-506726, Japanese Patent Publication No. 8-507407, Japanese Patent Laid-Open No. 10-294131); Examples thereof include composites with resins (Japanese Patent Laid-Open Nos. 11-35765 and 11-86630). In particular, it is desirable to use polyvinylidene fluoride or a vinylidene fluoride-hexafluoropropylene copolymer as the polymer material for the gel electrolyte.
そのほか、特願2004−301934号明細書に記載されているイオン伝導性化合物も使用できる。 In addition, ion conductive compounds described in Japanese Patent Application No. 2004-301934 can be used.
このイオン伝導性化合物は、式(1−1):
P−(D)−Q (1−1)
[式中、Dは式(2−1):
−(D1)n−(FAE)m−(AE)p−(Y)q− (2−1)
(式中、D1は、式(2a):
This ion conductive compound has the formula (1-1):
P- (D) -Q (1-1)
[Wherein D represents the formula (2-1):
-(D1) n- (FAE) m- (AE) p- (Y) q- (2-1)
(In the formula, D1 represents the formula (2a):
FAEは、式(2b):
FAE is represented by formula (2b):
AEは、式(2c):
AE is the formula (2c):
Yは、式(2d−1)〜(2d−3):
Y represents formulas (2d-1) to (2d-3):
の少なくとも1種を含む単位;
nは0〜200の整数;mは0〜200の整数;pは0〜10000の整数;qは1〜100の整数;ただしn+mは0ではなく、D1、FAE、AEおよびYの結合順序は特定されない);
PおよびQは同じかまたは異なり、水素原子、フッ素原子および/または架橋性官能基を含んでいてもよいアルキル基、フッ素原子および/または架橋性官能基を含んでいてもよいフェニル基、−COOH基、−OR14(R14は水素原子またはフッ素原子および/または架橋性官能基を含んでいてもよいアルキル基)、エステル基またはカーボネート基(ただし、Dの末端が酸素原子の場合は−COOH基、−OR14、エステル基およびカーボネート基ではない)]で表される側鎖に含フッ素基を有する非晶性含フッ素ポリエーテル化合物である。
A unit comprising at least one of
n is an integer from 0 to 200; m is an integer from 0 to 200; p is an integer from 0 to 10000; q is an integer from 1 to 100; provided that n + m is not 0, and the bonding order of D1, FAE, AE and Y is Not specified);
P and Q are the same or different and are a hydrogen atom, a fluorine atom and / or an alkyl group which may contain a crosslinkable functional group, a phenyl group which may contain a fluorine atom and / or a crosslinkable functional group, -COOH A group, —OR 14 (R 14 is a hydrogen atom or a fluorine atom and / or an alkyl group which may contain a crosslinkable functional group), an ester group or a carbonate group (provided that —COOH when D is terminated with an oxygen atom) Group, —OR 14 , not an ester group and a carbonate group)], and an amorphous fluorine-containing polyether compound having a fluorine-containing group in the side chain.
本発明の電解液には必要に応じて、他の添加剤を配合してもよい。他の添加剤としては、たとえば金属酸化物、ガラスなどがあげられる。 You may mix | blend another additive with the electrolyte solution of this invention as needed. Examples of other additives include metal oxides and glass.
なお、本発明の電解液は低温(例えば0℃や−20℃)で凍ったり、電解質塩が析出しないことが好ましい。具体的には、0℃での粘度が100mPa・秒以下であることが好ましく、30mPa・秒以下であることがより好ましく、15mPa・秒以下であることが特に好ましい。さらにまた、具体的には、−20℃での粘度が100mPa・秒以下であることが好ましく、40mPa・秒以下であることがより好ましく、15mPa・秒以下であることが特に好ましい。 In addition, it is preferable that the electrolyte solution of this invention does not freeze at low temperature (for example, 0 degreeC or -20 degreeC), or electrolyte salt precipitates. Specifically, the viscosity at 0 ° C. is preferably 100 mPa · sec or less, more preferably 30 mPa · sec or less, and particularly preferably 15 mPa · sec or less. Furthermore, specifically, the viscosity at −20 ° C. is preferably 100 mPa · sec or less, more preferably 40 mPa · sec or less, and particularly preferably 15 mPa · sec or less.
本発明の電解液は、難燃性、低温特性、耐電圧、電解質塩の溶解性および炭化水素系溶媒との相溶性を同時に向上させることができるので、電気化学デバイスの電解液として好適である。 The electrolyte solution of the present invention is suitable as an electrolyte solution for electrochemical devices because it can simultaneously improve flame retardancy, low temperature characteristics, withstand voltage, solubility of electrolyte salts, and compatibility with hydrocarbon solvents. .
すなわち本発明は、上記の電解液を備えた電気化学デバイスにも関する。電気化学デバイスとしては、リチウム二次電池、キャパシタ(電解二重層キャパシタ)、ラジカル電池、太陽電池(特に色素増感型太陽電池)、燃料電池、各種電気化学センサー、エレクトロクロミック素子、電気化学スイッチング素子、アルミニウム電解コンデンサ、タンタル電解コンデンサ、などがあげられ、特にリチウム二次電池、電解二重層キャパシタ、特に耐電圧が3.5V以上である電気二重層キャパシタが好適である。耐電圧が3.0V以上で安定なことが高容量の電気二重層キャパシタには求められるが、本発明の電気二重層キャパシタは充分にその要求を満たすものである。 That is, this invention relates also to the electrochemical device provided with said electrolyte solution. Electrochemical devices include lithium secondary batteries, capacitors (electrolytic double layer capacitors), radical batteries, solar cells (especially dye-sensitized solar cells), fuel cells, various electrochemical sensors, electrochromic devices, and electrochemical switching devices. , Aluminum electrolytic capacitors, tantalum electrolytic capacitors, and the like, and lithium secondary batteries, electrolytic double layer capacitors, and particularly electric double layer capacitors having a withstand voltage of 3.5 V or more are preferable. A high-capacity electric double layer capacitor is required to have a withstand voltage of 3.0 V or more, but the electric double layer capacitor of the present invention sufficiently satisfies the requirement.
そのほか、本発明の電解液は、帯電防止用コーティング材のイオン伝導体などとしても使用できる。 In addition, the electrolytic solution of the present invention can also be used as an ionic conductor of an antistatic coating material.
つぎに本発明を実施例および比較例に基づいて説明するが、本発明はかかる例のみに限定されるものではない。 Next, the present invention will be described based on examples and comparative examples, but the present invention is not limited to such examples.
なお、本発明で採用した測定法は以下のとおりである。 In addition, the measuring method employ | adopted by this invention is as follows.
(1)NMR:BRUKER社製のAC−300を使用。
19F−NMR:
測定条件:282MHz(トリクロロフルオロメタン=0ppm)
1H−NMR:
測定条件:300MHz(テトラメチルシラン=0ppm)
(1) NMR: AC-300 manufactured by BRUKER is used.
19 F-NMR:
Measurement conditions: 282 MHz (trichlorofluoromethane = 0 ppm)
1 H-NMR:
Measurement conditions: 300 MHz (tetramethylsilane = 0 ppm)
(2)IR:
Perkin Elmer社製フーリエ変換赤外分光光度計1760Xで室温にて測定する。
(2) IR:
Measure at room temperature with a Fourier transform infrared spectrophotometer 1760X manufactured by Perkin Elmer.
(3)ガスクロマトグラフィ
装置:GC17A GAS CHROMATOGRAPH((株)島津製作所製)
測定条件:100℃で5分間保持した後20℃/分で230℃まで昇温し、230℃で10分間保持する。
使用カラム:DB624
(3) Gas chromatography apparatus: GC17A GAS CHROMATOGRAPH (manufactured by Shimadzu Corporation)
Measurement conditions: After holding at 100 ° C. for 5 minutes, the temperature is raised to 230 ° C. at 20 ° C./minute and held at 230 ° C. for 10 minutes.
Column used: DB624
(4)フッ素含有率
酸素フラスコ燃焼法により試料10mgを燃焼し、分解ガスを脱イオン水20mlに吸収させ、吸収液中のフッ素イオン濃度をフッ素選択電極法(フッ素イオンメーター、オリオン社製 901型)で測定することにより求める(質量%)。
(4) Fluorine content 10 mg of the sample is burned by the oxygen flask combustion method, the decomposition gas is absorbed in 20 ml of deionized water, and the fluorine ion concentration in the absorption liquid is determined by the fluorine selective electrode method (fluorine ion meter, model 901 manufactured by Orion). ) To obtain (mass%).
合成例1
ステンレススチール製の500mlオートクレーブを用いて反応を行った。オートクレーブ内にアゾイソブチロニトリル(AIBN)(840mg:5mmol)、4−ペンテン酸(25g:250mmol)を加え、ドライアイス-アセトン溶液を用いてオートクレーブを冷却し、系内を真空下にした。
Synthesis example 1
The reaction was carried out using a stainless steel 500 ml autoclave. Azoisobutyronitrile (AIBN) (840 mg: 5 mmol) and 4-pentenoic acid (25 g: 250 mmol) were added to the autoclave, the autoclave was cooled using a dry ice-acetone solution, and the system was evacuated.
その後、C2F5I(67g:275mmol)を液化して加えた。攪拌しながら、オートクレーブを室温に戻し、その後70℃まで熱を加えた。その時の内圧は0.8MPaであった。1時間攪拌を行った後反応を止めた。ガスクロマトグラフィ法により4−ペンテン酸の消失を確認した。 Thereafter, C 2 F 5 I (67 g: 275 mmol) was liquefied and added. While stirring, the autoclave was returned to room temperature and then heated to 70 ° C. The internal pressure at that time was 0.8 MPa. The reaction was stopped after stirring for 1 hour. The disappearance of 4-pentenoic acid was confirmed by gas chromatography.
つぎにその反応溶液を500mlの還流管を付けた三口フラスコに移した。反応溶液を60℃まで熱を加え滴下ロートを用いてK2CO3水溶液(34.6g、水100ml)を滴下した。滴下と同時に二酸化炭素の発生が確認できた。 The reaction solution was then transferred to a three-necked flask equipped with a 500 ml reflux tube. The reaction solution was heated to 60 ° C., and a K 2 CO 3 aqueous solution (34.6 g, water 100 ml) was added dropwise using a dropping funnel. The generation of carbon dioxide was confirmed simultaneously with the dropwise addition.
二酸化炭素の発生が終了した時点で滴下を終了した。滴下後反応溶液は2相に分離していた。下層の溶液を抜き出し蒸留を行った。目的生成物を収率60%(32.9g:151mmol)で得た。 The dripping was completed when the generation of carbon dioxide was completed. After the addition, the reaction solution was separated into two phases. The lower layer solution was extracted and distilled. The target product was obtained in 60% yield (32.9 g: 151 mmol).
この生成物を19F−NMR、1H−NMR分析により分析したところ、側鎖に含フッ素アルキル基を有する5員環の含フッ素ラクトン: When this product was analyzed by 19 F-NMR and 1 H-NMR analysis, a 5-membered fluorinated lactone having a fluorinated alkyl group in the side chain:
19F−NMR:(neat):−85.69ppm(3F)、−117.69〜−114.98ppm(2F)
1H−NMR:(neat):2.33〜2.51ppm(1H)、2.76〜3.08ppm(5H)、5.18〜5.28ppm(1H)
19 F-NMR: (neat): −85.69 ppm (3F), −117.69 to −114.98 ppm (2F)
1 H-NMR: (neat): 2.33 to 2.51 ppm (1H), 2.76 to 3.08 ppm (5H), 5.18 to 5.28 ppm (1H)
またIR測定によりカルボニル基の伸縮振動を1789.8cm-1に確認した。 Further, the stretching vibration of the carbonyl group was confirmed at 1789.8 cm −1 by IR measurement.
この含フッ素ラクトンのフッ素含有率は43.6質量%であった。 The fluorine content of this fluorine-containing lactone was 43.6% by mass.
合成例2
SUS製の500mlオートクレーブを用いて反応を行った。オートクレーブ内にAIBN(771mg:4.70mmol)、4−ペンテン酸(23.62g:236mmol)、(CF3)2CFI(67g:275mmol)を加えた。攪拌しながら、その後70℃まで熱を加えた。その時の内圧は0MPaであった。1時間攪拌を行った後反応を止めた。ガスクロマトグラフィ法により4−ペンテン酸の消失を確認した。つぎにその反応溶液を500mlの還流管を付けた三口フラスコに移した。反応溶液を60℃まで熱を加え滴下ロートを用いてK2CO3水溶液(32.0g、水80ml)を滴下した。滴下と同時に二酸化炭素の発生が確認できた。二酸化炭素の発生が終了した時点で滴下を終了した。滴下後反応溶液は2相に分離していた。下層の溶液を抜き出し蒸留を行った。目的生成物を収率70%(45.6g:170mmol)で得た。
Synthesis example 2
The reaction was performed using a SUS 500 ml autoclave. AIBN (771 mg: 4.70 mmol), 4-pentenoic acid (23.62 g: 236 mmol), and (CF 3 ) 2 CFI (67 g: 275 mmol) were added to the autoclave. While stirring, heat was then applied to 70 ° C. The internal pressure at that time was 0 MPa. The reaction was stopped after stirring for 1 hour. The disappearance of 4-pentenoic acid was confirmed by gas chromatography. The reaction solution was then transferred to a three-necked flask equipped with a 500 ml reflux tube. The reaction solution was heated to 60 ° C., and an aqueous K 2 CO 3 solution (32.0 g, water 80 ml) was added dropwise using a dropping funnel. The generation of carbon dioxide was confirmed simultaneously with the dropwise addition. The dripping was completed when the generation of carbon dioxide was completed. After the addition, the reaction solution was separated into two phases. The lower layer solution was extracted and distilled. The desired product was obtained in a yield of 70% (45.6 g: 170 mmol).
この生成物を19F−NMR、1H−NMR分析により分析したところ、側鎖に含フッ素アルキル基を有する5員環の含フッ素ラクトン: When this product was analyzed by 19 F-NMR and 1 H-NMR analysis, a 5-membered fluorinated lactone having a fluorinated alkyl group in the side chain:
19F−NMR:(neat):−183.7〜−183.5ppm(1F)、−76.6〜−76.5ppm(2F)
1H−NMR:(neat):1.51〜2.78ppm(6H)、4.83〜4.93ppm(1H)
19 F-NMR: (neat): -183.7 to -183.5 ppm (1F), -76.6 to -76.5 ppm (2F)
1 H-NMR: (neat): 1.51 to 2.78 ppm (6H), 4.83 to 4.93 ppm (1H)
またIR測定によりカルボニル基の伸縮振動を1783.8cm-1に確認した。 Further, the stretching vibration of the carbonyl group was confirmed at 1783.8 cm −1 by IR measurement.
この含フッ素ラクトンのフッ素含有率は49.60質量%であった。 The fluorine content of this fluorine-containing lactone was 49.60% by mass.
比較合成例1
窒素雰囲気下、還流管、滴下ロート、温度計を付けた500mlの四口フラスコに、ナトリウムエトキサイド(86ml:245mmol)、エタノール100mlを入れ撹拌した。続いて、マロン酸ジエチル(37.5g:234mmol)を30℃に保ちながら滴下し反応させた。滴下後、1,1,1−トリフルオロ−2,3−エポキシプロパン(25g:223mmol)を滴下した。発熱がおさまったところで、反応器の温度を80℃にし30分攪拌した。つぎに、KOH溶液(16g:285mmol)を滴下した。この時、気体の発生を確認した。気体の発生が見られなくなった時点で、温度を下げ、反応液をHCl溶液に注いだ。このとき、酸性であることを確認した。酢酸エチルで抽出し、溶媒を留去後、蒸留精製を行なった。目的生成物を収率40%(12g:78mmol;沸点=64℃/3mmHg)で得た。
Comparative Synthesis Example 1
Under a nitrogen atmosphere, sodium ethoxide (86 ml: 245 mmol) and 100 ml of ethanol were stirred in a 500 ml four-necked flask equipped with a reflux tube, a dropping funnel and a thermometer. Subsequently, diethyl malonate (37.5 g: 234 mmol) was dropped and reacted while maintaining at 30 ° C. After the dropwise addition, 1,1,1-trifluoro-2,3-epoxypropane (25 g: 223 mmol) was added dropwise. When the exotherm subsided, the temperature of the reactor was raised to 80 ° C. and stirred for 30 minutes. Next, a KOH solution (16 g: 285 mmol) was added dropwise. At this time, generation of gas was confirmed. When no more gas was generated, the temperature was lowered and the reaction solution was poured into a HCl solution. At this time, it was confirmed to be acidic. Extraction with ethyl acetate was performed, and the solvent was distilled off, followed by purification by distillation. The desired product was obtained in a yield of 40% (12 g: 78 mmol; boiling point = 64 ° C./3 mmHg).
この生成物を19F−NMR、1H−NMR分析により分析したところ、CF3が含フッ素ラクトンに直接結合した炭素数1の含フッ素アルキル基含有含フッ素ラクトン: This product was analyzed by 19 F-NMR and 1 H-NMR analysis. As a result, the fluorine-containing lactone containing a fluorine-containing alkyl group having 1 carbon atom in which CF 3 was directly bonded to the fluorine-containing lactone:
19F−NMR:(neat):−79.29〜−79.26ppm(3F)
1H−NMR:(neat):2.28〜2.43ppm(1H)2.55〜2.70ppm(3H)、5.01〜5.14pp(1H)
19 F-NMR: (neat): −79.29 to −79.26 ppm (3F)
1 H-NMR: (neat): 2.28 to 2.43 ppm (1H) 2.55 to 2.70 ppm (3H), 5.01 to 5.14 pp (1H)
またIR測定によりカルボニル基の伸縮振動を1801cm-1に確認した。 Further, the stretching vibration of the carbonyl group was confirmed at 1801 cm −1 by IR measurement.
この含フッ素ラクトンのフッ素含有率は37.0質量%であった。 This fluorine-containing lactone had a fluorine content of 37.0% by mass.
比較合成例2
500mlオートクレーブに無水コハク酸(20g:0.20mol)、亜鉛(26.7g:0.41mmol)、BrCH2CH2Br(1滴)、I2(0.25g:0.98mmol)、CH3CN(152g)、ピリジン(64g:0.80mmol)を加え、反応容器内を真空下にしその状態で5分攪拌を行った。続いて、CF3I(90g:563mmol)を導入した。このとき反応温度が50℃まで発熱した。その後10〜20℃に保ったまま1.5時間程度攪拌後、内容物を取り出した。取り出した反応溶液に、酢酸エチル(300ml)を加え攪拌、ろ過を行い亜鉛を除去した。続いて1N−HCl溶液で3回クエンチし、分液により上層を採取した。採取した上層はエバポレーターにより濃縮し、ガスクロマトグラフィ法による分析を行った。続いて、濃縮した溶液の蒸留を行った。蒸留により収率20%で目的生成物を得た(8.8g)。
Comparative Synthesis Example 2
In a 500 ml autoclave, succinic anhydride (20 g: 0.20 mol), zinc (26.7 g: 0.41 mmol), BrCH 2 CH 2 Br (1 drop), I 2 (0.25 g: 0.98 mmol), CH 3 CN (152 g) and pyridine (64 g: 0.80 mmol) were added, and the reaction vessel was evacuated and stirred in that state for 5 minutes. Then, CF 3 I (90g: 563mmol ) was introduced. At this time, the reaction temperature exothermed to 50 ° C. Thereafter, the contents were taken out after stirring for about 1.5 hours while maintaining the temperature at 10 to 20 ° C. To the reaction solution taken out, ethyl acetate (300 ml) was added, stirred and filtered to remove zinc. Subsequently, it was quenched with 1N-HCl solution three times, and the upper layer was collected by liquid separation. The collected upper layer was concentrated by an evaporator and analyzed by gas chromatography. Subsequently, the concentrated solution was distilled. The target product was obtained by distillation in a yield of 20% (8.8 g).
この生成物を19F−NMR、1H−NMR分析により分析したところ、CF3が含フッ素ラクトンに直接結合した炭素数1の含フッ素アルキル基含有含フッ素ラクトン: This product was analyzed by 19 F-NMR and 1 H-NMR analysis. As a result, the fluorine-containing lactone containing a fluorine-containing alkyl group having 1 carbon atom in which CF 3 was directly bonded to the fluorine-containing lactone:
19F−NMR:(neat):−77.93〜−77.90ppm(6F)
1H−NMR:(neat):3.62〜3.81ppm(4H)
19 F-NMR: (neat): −77.93 to −77.90 ppm (6F)
1 H-NMR: (neat): 3.62-3.81 ppm (4H)
またIR測定によりカルボニル基の伸縮振動を1825cm-1に確認した。 Further, the stretching vibration of the carbonyl group was confirmed at 1825 cm −1 by IR measurement.
この含フッ素ラクトンのフッ素含有率は51.33質量%であった。 The fluorine content of this fluorine-containing lactone was 51.33% by mass.
実施例1〜2および比較例1〜2
合成例1〜2でそれぞれ得た含フッ素アルキル基を有する含フッ素ラクトンと、比較合成例1〜2で得た含フッ素アルキル基含有含フッ素ラクトンについて粘度、耐塩基性試験を調べた。さらに、上記溶液に、電解質塩としてLiN(SO2C2F5)2を1モル/リットルの濃度になるように配合し、電解液を調製した。この電解液について、耐電圧、電解質塩の溶解性を調べた。結果を表1に示す。
Examples 1-2 and Comparative Examples 1-2
Viscosity and base resistance tests were examined for the fluorinated lactones having a fluorinated alkyl group obtained in Synthesis Examples 1 and 2 and the fluorinated alkyl group-containing fluorinated lactones obtained in Comparative Synthesis Examples 1 and 2, respectively. Further, LiN (SO 2 C 2 F 5 ) 2 as an electrolyte salt was added to the above solution so as to have a concentration of 1 mol / liter, thereby preparing an electrolytic solution. With respect to this electrolytic solution, the withstand voltage and the solubility of the electrolyte salt were examined. The results are shown in Table 1.
耐電圧:
3電極式電圧測定セル(作用極、対極:白金(なお、対極と作用極の面積比を5:1とする)、参照極:Ag。宝泉(株)製のHSセル)に電解液を入れ、ポテンシオスタットで3mV/secで電位走引し、分解電流が0.1mA以上流れなかった範囲を耐電圧(V)とする。
Withstand voltage:
Electrolytic solution was applied to a three-electrode voltage measuring cell (working electrode, counter electrode: platinum (where the area ratio of the counter electrode and working electrode is 5: 1), reference electrode: Ag, HS cell manufactured by Hosen Co., Ltd.) Then, the potential is pulled at 3 mV / sec with a potentiostat, and the range where the decomposition current does not flow more than 0.1 mA is defined as the withstand voltage (V).
粘度:
B型回転粘度計(東海八神(株)製のVISCONE CVシリーズ)により、測定粘度範囲1〜500mPa・秒のコーンを用い、回転数60rpm、温度25、0、−20℃で溶液の粘度を測定する。
viscosity:
Using a B-type rotational viscometer (VISCONE CV series manufactured by Tokai Yagami Co., Ltd.), measure the viscosity of the solution at a rotational speed of 60 rpm, temperature of 25, 0, and -20 ° C using a cone with a measured viscosity range of 1 to 500 mPa · s. To do.
電解質塩の溶解性:
溶液にLiN(SO2C2F5)2および4フッ化ホウ酸4エチルアンモニウム[(C2H5)4NBF4]をそれぞれ室温で1モル/リットルになるように加え、充分に攪拌し、目視で溶解性を観察する。
○:均一に溶解した。
△:若干懸濁している状態となった。
×:不溶分が沈殿した。
Solubility of electrolyte salt:
LiN (SO 2 C 2 F 5 ) 2 and tetraethylammonium tetrafluoroborate [(C 2 H 5 ) 4 NBF 4 ] were added to the solution so as to be 1 mol / liter at room temperature, and the mixture was stirred well. The solubility is visually observed.
○: Dissolved uniformly.
Δ: Slightly suspended.
X: Insoluble matter precipitated.
耐塩基性試験:
10重量%K2CO3水溶液と含フッ素ラクトンをサンプル瓶に1:1の体積比で混合し攪拌を行う。1時間攪拌後の溶液の状態を目視によって検討する。
○:分解せず、2層分離のまま。
×:分解し、均一層になる。
Base resistance test:
A 10% by weight aqueous K 2 CO 3 solution and a fluorine-containing lactone are mixed in a sample bottle at a volume ratio of 1: 1 and stirred. The state of the solution after stirring for 1 hour is examined visually.
○: Not decomposed, but separated into two layers.
X: Decomposes into a uniform layer.
耐塩基性試験に関して合成例1、2、比較合成例2に関して変化は確認されなかったが、比較合成例1に関しては紫色に呈色しており溶液も均一になっていた。分析したところ分解が確認できた。 Regarding the base resistance test, no change was confirmed for Synthesis Examples 1 and 2 and Comparative Synthesis Example 2, but Comparative Synthesis Example 1 was colored purple and the solution was uniform. Analysis revealed that it was decomposed.
実施例3
つぎの方法でコイン型リチウム二次電池を作製した。
Example 3
A coin-type lithium secondary battery was produced by the following method.
(正極の作製)
正極活物質としてLiCoO2(85質量%)にカーボンブラック(6質量%)およびポリフッ化ビニリデン(呉羽化学(株)製の商品名KF−1000)(9質量%)を加えて混合し、N−メチル−2−ピロリドンで分散しスラリー状としたもの用い、これを正極集電体である厚さ20μmのアルミニウム箔上に均一に塗布し、乾燥後、直径12.5mmの円盤状に打ち抜いて正極とした。
(Preparation of positive electrode)
As a positive electrode active material, LiCoO 2 (85% by mass) was added with carbon black (6% by mass) and polyvinylidene fluoride (trade name KF-1000 manufactured by Kureha Chemical Co., Ltd.) (9% by mass) and mixed. A slurry dispersed with methyl-2-pyrrolidone was used, which was uniformly coated on a positive electrode current collector aluminum foil having a thickness of 20 μm, dried, and then punched into a disk shape having a diameter of 12.5 mm. It was.
(負極の作製)
人造黒鉛粉末(テイムカル社製の商品名KS−44)94重量%に蒸留水で分散させたスチレンーブタジエンゴム(SBR)を固形分で6重量%となるように加えてディスパーザーで混合し、スラリー状にしたものを負極集電体である厚さ18μmの銅箔上に均一に塗布し、乾燥後、直径12.5mmの円盤状に打ち抜いて負極とした。
(Preparation of negative electrode)
Styrene-butadiene rubber (SBR) dispersed with distilled water in 94% by weight of artificial graphite powder (trade name KS-44 manufactured by Temcal Co.) was added to a solid content of 6% by weight and mixed with a disperser. The slurry was uniformly applied onto a negative electrode current collector 18 μm thick copper foil, dried, and then punched into a disk shape having a diameter of 12.5 mm to obtain a negative electrode.
(コイン型リチウム二次電池の作製)
正極集電体をかねるステンレス製の缶体に上記正極を収容し、その上に下記に示す各種の電解液を含浸させたポリエチレン製のセパレータを介して上記負極を載置し、この缶体と、負極集電体をかねる封口板とを絶縁用ガスケットを介してかしめて密封し、コイン型リチウム二次電池を作製した。
(Production of coin-type lithium secondary battery)
The positive electrode is housed in a stainless steel can body that also serves as a positive electrode current collector, and the negative electrode is placed thereon via a polyethylene separator impregnated with various electrolytic solutions shown below. The coin-type lithium secondary battery was manufactured by caulking and sealing the sealing plate covering the negative electrode current collector with an insulating gasket.
実施例4
水蒸気賦活された比表面積2000m2/gのフェノール樹脂系活性炭とポリテトラフルオロエチレン(PTFE)とカーボンブラックとの質量比で8:1:1の混合物にエタノールを加えて混練した。これをシート状に成形後、厚さ0.6mmにロール圧延し、得られたシートを直径12mmの円盤に打ち抜き、電極を作製した。
Example 4
Ethanol was added and kneaded to a 8: 1: 1 mixture of phenol resin activated carbon having a specific surface area of 2000 m 2 / g activated with water vapor, polytetrafluoroethylene (PTFE), and carbon black. After forming this into a sheet shape, it was roll-rolled to a thickness of 0.6 mm, and the obtained sheet was punched into a disk having a diameter of 12 mm to produce an electrode.
この円盤状の電極を、コイン型セルの集電体兼ハウジング部材とするステンレススチール製のケースの正極側および負極側の内側に、それぞれ黒鉛系接着剤を用いて接着した。次にこのステンレス製ケースごと減圧下、200℃で加熱処理して水分を除き、合成例2で合成した化合物に、電解質塩としてテトラメチルアンモニウム・BF4を1M濃度となるように溶解して電解液を調製し、この電解液を円盤状の電極中に含浸させた。ついで、両電極の間にポリプロピレン繊維不織布製のセパレータ(厚さ160μm、空隙率70%)をはさみ、ステンレスケースを絶縁体であるガスケットを介してかしめ封印し、直径18.4mm、厚さ2.0mmのコイン型電気二重層キャパシタを作製した。 This disk-shaped electrode was bonded to the inside of the positive electrode side and the negative electrode side of a stainless steel case serving as a current collector / housing member of a coin-type cell using a graphite-based adhesive. Next, this stainless steel case was heat-treated at 200 ° C. under reduced pressure to remove moisture, and the compound synthesized in Synthesis Example 2 was dissolved in tetramethylammonium · BF 4 as an electrolyte salt to a concentration of 1M for electrolysis. A liquid was prepared, and this electrolytic solution was impregnated into a disk-shaped electrode. Next, a polypropylene fiber nonwoven fabric separator (thickness 160 μm, porosity 70%) is sandwiched between both electrodes, and the stainless steel case is caulked and sealed through a gasket as an insulator, and the diameter is 18.4 mm and the thickness is 2. A coin-type electric double layer capacitor of 0 mm was produced.
Claims (10)
R20−R21−
(式中、R20はフッ素原子を有していてもよい炭素数1以上のアルキル基;R21はフッ素原子を有していてもよい炭素数1〜3のアルキレン基;ただし、R20およびR21の少なくとも一方はフッ素原子を有している)で示される含フッ素アルキル基である請求項1〜3のいずれかに記載の電解液。 In the fluorine-containing lactone, Rf 1 is represented by the formula:
R 20 -R 21 -
(Wherein R 20 is an alkyl group having 1 or more carbon atoms which may have a fluorine atom; R 21 is an alkylene group having 1 to 3 carbon atoms which may have a fluorine atom; provided that R 20 and The electrolytic solution according to claim 1, wherein at least one of R 21 is a fluorine-containing alkyl group represented by:
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006067373A JP4929766B2 (en) | 2006-03-13 | 2006-03-13 | Electrolyte |
PCT/JP2007/054651 WO2007119322A1 (en) | 2006-03-13 | 2007-03-09 | Electrolyte solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006067373A JP4929766B2 (en) | 2006-03-13 | 2006-03-13 | Electrolyte |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007243111A true JP2007243111A (en) | 2007-09-20 |
JP4929766B2 JP4929766B2 (en) | 2012-05-09 |
Family
ID=38588313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006067373A Expired - Fee Related JP4929766B2 (en) | 2006-03-13 | 2006-03-13 | Electrolyte |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4929766B2 (en) |
WO (1) | WO2007119322A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011040261A (en) * | 2009-08-10 | 2011-02-24 | Daikin Industries Ltd | Electrolyte for dye-sensitized solar cell, and the dye-sensitized solar cell |
US20110304950A1 (en) * | 2009-02-25 | 2011-12-15 | Daikin Industries, Ltd. | Electric double layer capacitor |
JP2016006790A (en) * | 2013-09-25 | 2016-01-14 | 国立大学法人 東京大学 | Nonaqueous secondary battery |
JP2016021593A (en) * | 2013-09-25 | 2016-02-04 | 国立大学法人 東京大学 | Capacitor including electrolyte containing salt using alkali metal, alkali-earth metal or aluminum as cations, and organic solvent having hetero element |
JP2016058384A (en) * | 2013-09-25 | 2016-04-21 | 国立大学法人 東京大学 | Nonaqueous secondary battery |
US10686223B2 (en) | 2013-09-25 | 2020-06-16 | Kabushiki Kaisha Toyota Jidoshokki | Nonaqueous electrolyte secondary battery |
US11011781B2 (en) | 2013-09-25 | 2021-05-18 | The University Of Tokyo | Nonaqueous electrolyte secondary battery |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5369589B2 (en) * | 2008-10-02 | 2013-12-18 | ダイキン工業株式会社 | Nonaqueous electrolyte containing fluorine-containing formate solvent |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62290073A (en) * | 1986-06-09 | 1987-12-16 | Matsushita Electric Ind Co Ltd | Organic electrolyte secondary battery |
JPS6332871A (en) * | 1986-07-24 | 1988-02-12 | Matsushita Electric Ind Co Ltd | Organic electrolyte secondary cell |
JPH11340101A (en) * | 1998-05-26 | 1999-12-10 | Tokin Corp | Electrolyte for electric double layer capacitor and electric double layer capacitor |
JP2001256983A (en) * | 2000-03-13 | 2001-09-21 | Central Glass Co Ltd | Electrolytic solution for electrochemical devices |
JP2003045483A (en) * | 2001-07-26 | 2003-02-14 | Yuasa Corp | Non-aqueous electrolyte battery |
JP2003163031A (en) * | 2001-09-12 | 2003-06-06 | Daicel Chem Ind Ltd | ELECTROLYTE, NONAQUEOUS ELECTROCHEMICAL EQUIPMENT AND alpha-SUBSTITUTIONAL OXY-gamma-BUTYROLACTONE DERIVATIVE |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11195429A (en) * | 1998-01-05 | 1999-07-21 | Hitachi Ltd | Nonaqueous electrolytic solution secondary battery |
JP4900994B2 (en) * | 2000-09-06 | 2012-03-21 | 株式会社東芝 | Nonaqueous electrolyte secondary battery |
JP4153700B2 (en) * | 2001-01-29 | 2008-09-24 | 松下電器産業株式会社 | Non-aqueous electrolyte secondary battery |
-
2006
- 2006-03-13 JP JP2006067373A patent/JP4929766B2/en not_active Expired - Fee Related
-
2007
- 2007-03-09 WO PCT/JP2007/054651 patent/WO2007119322A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62290073A (en) * | 1986-06-09 | 1987-12-16 | Matsushita Electric Ind Co Ltd | Organic electrolyte secondary battery |
JPS6332871A (en) * | 1986-07-24 | 1988-02-12 | Matsushita Electric Ind Co Ltd | Organic electrolyte secondary cell |
JPH11340101A (en) * | 1998-05-26 | 1999-12-10 | Tokin Corp | Electrolyte for electric double layer capacitor and electric double layer capacitor |
JP2001256983A (en) * | 2000-03-13 | 2001-09-21 | Central Glass Co Ltd | Electrolytic solution for electrochemical devices |
JP2003045483A (en) * | 2001-07-26 | 2003-02-14 | Yuasa Corp | Non-aqueous electrolyte battery |
JP2003163031A (en) * | 2001-09-12 | 2003-06-06 | Daicel Chem Ind Ltd | ELECTROLYTE, NONAQUEOUS ELECTROCHEMICAL EQUIPMENT AND alpha-SUBSTITUTIONAL OXY-gamma-BUTYROLACTONE DERIVATIVE |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110304950A1 (en) * | 2009-02-25 | 2011-12-15 | Daikin Industries, Ltd. | Electric double layer capacitor |
JP2011040261A (en) * | 2009-08-10 | 2011-02-24 | Daikin Industries Ltd | Electrolyte for dye-sensitized solar cell, and the dye-sensitized solar cell |
JP2016006790A (en) * | 2013-09-25 | 2016-01-14 | 国立大学法人 東京大学 | Nonaqueous secondary battery |
JP2016021593A (en) * | 2013-09-25 | 2016-02-04 | 国立大学法人 東京大学 | Capacitor including electrolyte containing salt using alkali metal, alkali-earth metal or aluminum as cations, and organic solvent having hetero element |
JP2016058384A (en) * | 2013-09-25 | 2016-04-21 | 国立大学法人 東京大学 | Nonaqueous secondary battery |
US10686223B2 (en) | 2013-09-25 | 2020-06-16 | Kabushiki Kaisha Toyota Jidoshokki | Nonaqueous electrolyte secondary battery |
US11011781B2 (en) | 2013-09-25 | 2021-05-18 | The University Of Tokyo | Nonaqueous electrolyte secondary battery |
Also Published As
Publication number | Publication date |
---|---|
WO2007119322A1 (en) | 2007-10-25 |
JP4929766B2 (en) | 2012-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4591505B2 (en) | Electrolyte | |
JP4748153B2 (en) | Electrolyte | |
JP4645648B2 (en) | Electrolyte | |
JP4710902B2 (en) | Electrolyte | |
JP5733358B2 (en) | Non-aqueous electrolyte | |
JP4929766B2 (en) | Electrolyte | |
JP6101575B2 (en) | Non-aqueous electrolyte additive, non-aqueous electrolyte, and lithium secondary battery | |
JP6267038B2 (en) | Non-aqueous electrolyte and power storage device including the same | |
KR20180058717A (en) | Additive for electrolyte | |
WO2016084792A1 (en) | Ionic liquid, method for preparing same, and use of same | |
JP2010097802A (en) | Electrolytic solution | |
JP4904950B2 (en) | Electric double layer capacitor | |
JP2019133895A (en) | Additive for electrolyte | |
JP6532157B2 (en) | Ionic liquid, method for producing the same and use thereof | |
JP5875954B2 (en) | Cyanoborate compound and electrolyte using the same | |
JP2009105028A (en) | Ammonium salt, electrolyte using same, electrolyte, additive, and electricity accumulation device | |
JP2008130623A (en) | Electrolyte for electrochemical device using room temperature molten salt, and electrochemical device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081117 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20100517 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20101020 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20101021 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110308 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110509 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111018 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120117 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120130 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4929766 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150224 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |