[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007242332A - Method and apparatus of suppressing deterioration of lead-acid battery, and lead-acid battery provided with this apparatus - Google Patents

Method and apparatus of suppressing deterioration of lead-acid battery, and lead-acid battery provided with this apparatus Download PDF

Info

Publication number
JP2007242332A
JP2007242332A JP2006060841A JP2006060841A JP2007242332A JP 2007242332 A JP2007242332 A JP 2007242332A JP 2006060841 A JP2006060841 A JP 2006060841A JP 2006060841 A JP2006060841 A JP 2006060841A JP 2007242332 A JP2007242332 A JP 2007242332A
Authority
JP
Japan
Prior art keywords
lead
discharge
charging
storage battery
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006060841A
Other languages
Japanese (ja)
Inventor
Kiichi Koike
喜一 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006060841A priority Critical patent/JP2007242332A/en
Publication of JP2007242332A publication Critical patent/JP2007242332A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress insufficient charge and sulfation of a lead-acid battery while being left for a long period of time. <P>SOLUTION: The apparatus of suppressing deterioration of a lead-acid battery comprises a discharge means for discharging a lead-acid battery, an electricity storage device for storing electrical charge in discharging, a charging means for charging the lead-acid battery with the electrical charge stored in the electricity storage device, and a control means for controlling so that charging and discharging are repeatedly performed. Repeating charge and discharge remarkably suppresses sulfation of the lead-acid battery active material and the capacitive deterioration, as compared with the case where charging alone or discharging alone is performed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は車両のエンジン始動用やバッテリフォークリフト等に用いられる鉛蓄電池の劣化抑制方法と劣化抑制装置およびこの劣化抑制装置を備えた鉛蓄電池に関する。   The present invention relates to a deterioration suppressing method and a deterioration suppressing device for a lead storage battery used for starting an engine of a vehicle, a battery forklift, and the like, and a lead storage battery including the deterioration suppressing device.

自動車用蓄電池をはじめとするエンジン始動用蓄電池あるいはバッテリフォークリフトの電源として、主に鉛蓄電池が使用されている。鉛蓄電池は長期間放置すると、負極の活物質中に粗大な粗大な硫酸鉛の結晶が蓄積する、いわゆるサルフェ−ションが進行する。   Lead storage batteries are mainly used as power sources for engine starting storage batteries such as automobile storage batteries or battery forklifts. If the lead storage battery is left for a long period of time, so-called sulfation proceeds, in which coarse and coarse lead sulfate crystals accumulate in the negative electrode active material.

サルフェ−ションによって生じた粗大な硫酸鉛結晶は、通常の放電によって生じる硫酸鉛よりも溶解性が大幅に低下する。その結果、鉛蓄電池の充電受入性が低下し、容量が回復しにくくなり早期に寿命となることがある。このようなサルフェ−ションを抑制あるいはサルフェーションから回復させる方法として、パルス放電を行い粗大な硫酸鉛結晶を溶解させ易くすることが示されている。   Coarse lead sulfate crystals produced by sulfation are significantly less soluble than lead sulfate produced by normal discharge. As a result, the charge acceptability of the lead-acid battery is reduced, the capacity is difficult to recover, and the life may be shortened early. As a method for suppressing or recovering from such sulfation, it has been shown that pulse discharge is performed to easily dissolve coarse lead sulfate crystals.

特許文献1で示された非伝導性結晶皮膜除去装置においては、その明細書および図面の記載から、鉛蓄電池が車両に接続され、車両の充電系統から鉛蓄電池が充電されている間に鉛蓄電池をパルス放電することが示されていると考えられる。   In the non-conductive crystal film removing apparatus shown in Patent Document 1, the lead storage battery is connected while the lead storage battery is connected to the vehicle and the lead storage battery is being charged from the vehicle charging system. It is considered that it has been shown to pulse discharge.

したがって、車両の充電系統が動作している間、すなわち車両が運行されている間のみにパルス放電が行われる。したがって、車両が運行されずに長期間放置される場合、あるいは鉛蓄電池が車両に搭載されない状態で長期間放置される場合については、パルス放電が行われないため、その効果は限定的である。   Therefore, pulse discharge is performed only while the vehicle charging system is operating, that is, while the vehicle is operating. Therefore, when the vehicle is left unattended for a long time without being operated, or when the lead storage battery is left unattended for a long time without being mounted on the vehicle, the pulse discharge is not performed, so the effect is limited.

また、パルス放電で消費される電力は再利用されないため、車両の充電系統から見れば充電効率を低下させるという要因になっていた。
特開2003−163001号公報
Moreover, since the electric power consumed by the pulse discharge is not reused, it has been a factor of reducing the charging efficiency as seen from the vehicle charging system.
Japanese Patent Laid-Open No. 2003-163001

本発明は、鉛蓄電池を長期間放置した場合においても、サルフェーションとこれによる電池の性能低下を抑制することを目的とする。   An object of the present invention is to suppress sulfation and deterioration of battery performance due to this even when a lead storage battery is left for a long period of time.

前記した課題を解決するために、本発明の請求項1に係る発明は、鉛蓄電池を放電してその放電電荷を蓄電デバイスに蓄電し、前記蓄電デバイスに蓄電した電荷で前記鉛蓄電池を充電することにより、前記鉛蓄電池に放電と充電とを繰り返して行う鉛蓄電池の劣化抑制方法を示すものである。   In order to solve the above-described problem, the invention according to claim 1 of the present invention discharges a lead storage battery, stores the discharged charge in the storage device, and charges the lead storage battery with the charge stored in the storage device. By this, the deterioration suppression method of the lead storage battery which repeats discharge and charge to the said lead storage battery is shown.

また、本発明の請求項2に係る発明は、鉛蓄電池を放電する放電手段と、放電における電荷を蓄積する蓄電デバイスと、前記蓄電デバイスに蓄積された電荷を用いて前記鉛蓄電池を充電する充電手段と、前記放電と充電とを繰り返して行うよう制御する制御手段とを備えた鉛蓄電池の劣化抑制装置を示すものである。   According to a second aspect of the present invention, there is provided a discharging means for discharging a lead storage battery, an electric storage device for storing electric charge in discharge, and charging for charging the lead storage battery using the electric charge stored in the electric storage device. The deterioration suppression apparatus of the lead storage battery provided with a means and a control means to control to repeat and perform the said discharge and charge is shown.

さらに、本発明の請求項3に係る発明は、請求項2の鉛蓄電池の劣化抑制装置を備えた鉛蓄電池を示すものである。   Further, an invention according to claim 3 of the present invention shows a lead storage battery provided with the deterioration suppression device for a lead storage battery of claim 2.

本発明は、上記の構成を有することにより、鉛蓄電池を放電した際の放電電荷を蓄電デバイスに蓄電し、この蓄電された電荷で鉛蓄電池を充電することが可能となる。したがって、鉛蓄電池が充電されずに長期間放置された場合においても、鉛蓄電池を放電と充電とを加えることが可能となる。また、放電単独ではなく、放電と充電とをパルス状に繰り返して行うことにより、長期放置中での鉛蓄電池のサルフェーションの進行を顕著に抑制することができる。   By having the above-described configuration, the present invention can store the discharge charge when the lead storage battery is discharged in the storage device, and charge the lead storage battery with this stored charge. Therefore, even when the lead storage battery is left uncharged for a long time, the lead storage battery can be discharged and charged. Further, by repeating discharge and charging in a pulsed manner instead of discharging alone, the progress of sulfation of the lead storage battery during standing for a long time can be remarkably suppressed.

本発明の鉛蓄電池の劣化抑制装置では、鉛蓄電池を放電してその放電電荷を蓄電デバイスに蓄電し、この前記蓄電デバイスに蓄電した電荷で鉛蓄電池を充電することにより、鉛蓄電池に放電と充電とを繰り返して行う。   In the deterioration suppressing device for a lead storage battery according to the present invention, the lead storage battery is discharged, the discharge charge is stored in the power storage device, and the lead storage battery is charged with the charge stored in the power storage device, whereby the lead storage battery is discharged and charged. Repeatedly.

本発明の鉛蓄電池の劣化抑制装置1の構成例を図1に示す。劣化抑制装置1に設けた放電スイッチを制御手段9によりOFF→ON→OFF動作させ、鉛蓄電池2を放電する。その際、鉛蓄電池2はキャパシタやコンデンサ等の蓄電デバイス6を充電することにより、自身は放電させる。なお、放電スイッチ3とこの開閉制御を行う制御手段9および蓄電デバイス6は請求項2における放電手段に対応する。   The structural example of the deterioration suppression apparatus 1 of the lead storage battery of this invention is shown in FIG. The discharge switch provided in the deterioration suppressing device 1 is turned OFF → ON → OFF by the control means 9 to discharge the lead storage battery 2. At that time, the lead storage battery 2 discharges itself by charging the storage device 6 such as a capacitor or a capacitor. The discharge switch 3, the control means 9 for performing the opening / closing control, and the power storage device 6 correspond to the discharge means in claim 2.

鉛蓄電池2を放電した際の電荷はキャパシタやコンデンサ等の蓄電デバイス6に蓄電されるが、放電スイッチ3がOFF状態である間、鉛蓄電池2から蓄電デバイス6へ流れる電流が過大とならないよう、鉛蓄電池2と蓄電デバイス6間に電流制限抵抗5等の電流を制御する手段を設ける。   The electric charge when the lead storage battery 2 is discharged is stored in the power storage device 6 such as a capacitor or a capacitor. However, while the discharge switch 3 is in the OFF state, the current flowing from the lead storage battery 2 to the power storage device 6 is not excessive. Means for controlling a current such as a current limiting resistor 5 is provided between the lead storage battery 2 and the power storage device 6.

鉛蓄電池2の放電が終了した後、充電スイッチ4を制御手段9によりOFF→ON→OFF動作させ、蓄電デバイス6に蓄電された電荷により、鉛蓄電池2を充電する。なお、充電スイッチ4とこの開閉制御を行う制御手段および蓄電デバイス6は請求項2における充電手段に対応する。   After the discharge of the lead storage battery 2 is completed, the charge switch 4 is turned OFF → ON → OFF by the control means 9, and the lead storage battery 2 is charged by the charge stored in the power storage device 6. The charging switch 4, the control means for performing the opening / closing control, and the power storage device 6 correspond to the charging means in claim 2.

図1に示した例では、充電スイッチ4がOFF−ON−OFF動作することにより、蓄電デバイス6から電流制限抵抗5を介して、昇圧トランス7の一次側巻線にパルス状に電流が供給され、その結果、昇圧トランス7の2次側巻線に昇圧された電圧パルスが発生する。この電圧パルスが逆流防止ダイオード8を通り、鉛蓄電池2が充電されることとなる。   In the example shown in FIG. 1, when the charging switch 4 performs an OFF-ON-OFF operation, a current is supplied in a pulse form from the power storage device 6 to the primary winding of the step-up transformer 7 via the current limiting resistor 5. As a result, a boosted voltage pulse is generated in the secondary winding of the step-up transformer 7. This voltage pulse passes through the backflow prevention diode 8 and the lead storage battery 2 is charged.

本発明では、放電スイッチ3および充電スイッチ4のOFF−ON−OFFの一連の動作を交互に繰り返して行うことにより、鉛蓄電池を図2に示したようなパルス状の放電と充電を行う。   In the present invention, a series of OFF-ON-OFF operations of the discharge switch 3 and the charge switch 4 are alternately repeated to discharge and charge the lead storage battery as shown in FIG.

パルス状の放電を行うことによって、鉛蓄電池2の活物質内に比較的微細な硫酸鉛結晶を生成させ、さらにパルス状の充電を行うことによって、正極活物質においては微細な2酸化鉛結晶、負極活物質においては微細な鉛結晶を生成する。その結果、粗大な硫酸鉛結晶が極板表面を覆う、サルフェーションを抑制する。   By performing pulsed discharge, relatively fine lead sulfate crystals are generated in the active material of the lead-acid battery 2, and further, by performing pulsed charging, fine lead dioxide crystals in the positive electrode active material, In the negative electrode active material, fine lead crystals are generated. As a result, coarse lead sulfate crystals suppress the sulfation that covers the electrode plate surface.

なお、放電において微細な硫酸鉛結晶を生成するよう、放電率は例えば0.1CA程度以上とすることが好ましい。例えば、0.001CA等の極めて低率の放電では、体積あたりに生成する結晶核数も少ない。結晶核数が少ない場合、この結晶核から成長する硫酸鉛結晶はより大きく成長し、粗大化するため好ましくない。   The discharge rate is preferably about 0.1 CA or more so that fine lead sulfate crystals are generated in the discharge. For example, in a very low rate discharge such as 0.001 CA, the number of crystal nuclei generated per volume is small. When the number of crystal nuclei is small, lead sulfate crystals grown from the crystal nuclei grow larger and become coarse, which is not preferable.

一方、ある程度以上の放電率で放電することにより、放電時での活物質近傍での硫酸鉛の過飽和度がより高くなり、体積あたりに生成する結晶核数はより多くなる。その結果、硫酸鉛結晶成長の過程において、隣接する硫酸鉛結晶と比較的早期に衝突し、結晶成長が阻害されるため、硫酸鉛結晶の粗大化が抑制されると考えられる。   On the other hand, by discharging at a discharge rate of a certain level or more, the supersaturation degree of lead sulfate in the vicinity of the active material at the time of discharge becomes higher, and the number of crystal nuclei generated per volume increases. As a result, in the process of lead sulfate crystal growth, it collides with an adjacent lead sulfate crystal relatively early, and the crystal growth is inhibited. Therefore, it is considered that the coarsening of the lead sulfate crystal is suppressed.

一方、充電においても、例えば0.1CA程度以上の充電率で充電することにより、活物質(正極においては2酸化鉛、負極においては鉛)の結晶核数がより多く生成される。そして、この充電と放電とを繰り返して行うことにより、粗大な硫酸鉛結晶の形成が抑制され、また活物質の結晶核も多数確保されるため、放置期間中の鉛蓄電池の充電受け入れ性低下を抑制できると推測される。   On the other hand, in charging, for example, by charging at a charging rate of about 0.1 CA or more, more crystal nuclei of the active material (lead dioxide in the positive electrode and lead in the negative electrode) are generated. By repeating this charging and discharging, the formation of coarse lead sulfate crystals is suppressed, and a large number of active material crystal nuclei are secured. It is estimated that it can be suppressed.

さらに、放電時の放電電流(放電率)および充電時の充電電流(充電率)の下限値は、鉛蓄電池設計によって異なる場合がある。例えば、高率放電に対応するために薄型極板を採用した電池と、低率放電における寿命を考慮し、極板厚みをより厚く設定した電池では、その下限値は異なる。   Furthermore, the lower limit of the discharge current (discharge rate) at the time of discharge and the charge current (charge rate) at the time of charge may differ depending on the lead-acid battery design. For example, a battery that employs a thin electrode plate to cope with high rate discharge and a battery in which the electrode plate thickness is set to be thicker considering the life in low rate discharge are different.

例えば、同じ放電率で放電した場合、薄型極板を採用した電池では、より厚い極板を採用した電池に比較して、極板周囲の硫酸鉛の過飽和度はより低くなる傾向にある。これにより、硫酸鉛の結晶核数がより少なくなる。したがって、放電時および充電時の電流については、予め電池別に評価を行い、本発明の効果が得られる範囲に設定すべきである。   For example, when discharging at the same discharge rate, a battery employing a thin electrode plate tends to have a lower degree of supersaturation of lead sulfate around the electrode plate than a battery employing a thicker electrode plate. This reduces the number of lead sulfate crystal nuclei. Therefore, the current at the time of discharging and charging should be evaluated in advance for each battery and set within a range where the effects of the present invention can be obtained.

放電スイッチ3および充電スイッチ4として、MOS−FET等のスイッチング素子を用いることができる。制御手段9は放電スイッチ3および充電スイッチ4のON時間およびOFF時間を制御することにより、放電時間、充電時間および放電−充電の周期を制御する。放電時間(Td)および充電時間(Tc)に関しては、蓄電デバイス6の容量にもよるが、100μs〜10ms程度に設定することができる。   As the discharge switch 3 and the charge switch 4, a switching element such as a MOS-FET can be used. The control means 9 controls the discharge time, the charge time, and the discharge-charge cycle by controlling the ON time and the OFF time of the discharge switch 3 and the charge switch 4. The discharge time (Td) and the charge time (Tc) can be set to about 100 μs to 10 ms depending on the capacity of the power storage device 6.

放電−充電動作は、鉛蓄電池2を放置している間に連続して行うことができる。この場合、制御手段9により鉛蓄電池2の電池電圧計測により、鉛蓄電池2が外部機器により充電されていないことを検知後に放電−充電を行えばよい。また、放置期間中に常時放電−充電を行う場合、放電電気量>充電電気量であるため鉛蓄電池2の残存容量低下が進行する。   The discharge-charge operation can be continuously performed while the lead storage battery 2 is left unattended. In this case, discharge-charging may be performed after detecting that the lead storage battery 2 is not charged by an external device by the battery voltage measurement of the lead storage battery 2 by the control means 9. In addition, when the discharging and charging are always performed during the leaving period, the remaining capacity of the lead storage battery 2 decreases because the amount of discharged electricity> the amount of charged electricity.

したがって、放置初期の鉛蓄電池のSOC(充電状態)が高く、自己放電が殆ど進行せず、劣化が進行していない状況では劣化抑制装置1での放電−充電操作を停止することができる。例えば、鉛蓄電池2の開路電圧を計測し、ある程度まで自己放電が進行することによって、サルフェーションが進行し、開路電圧が所定の電圧まで低下した時点で放電−充電操作を行うよう制御手段9により制御してもよい。また、鉛蓄電池が過放電されないよう、電池電圧がさらに低下した場合には、制御手段9により放電−充電操作を停止してもよい。また、放電−充電の周期を長くして、劣化抑制装置1による放電電気量を減少させてもよい。   Therefore, in a situation where the SOC (charged state) of the lead storage battery at the initial stage of leaving is high, the self-discharge hardly progresses, and the deterioration does not progress, the discharge-charging operation in the deterioration suppressing device 1 can be stopped. For example, when the open circuit voltage of the lead storage battery 2 is measured and self-discharge proceeds to a certain extent, sulfation proceeds, and the control means 9 controls the discharge-charge operation when the open circuit voltage drops to a predetermined voltage. May be. Further, when the battery voltage is further lowered so that the lead storage battery is not overdischarged, the discharging and charging operation may be stopped by the control means 9. Further, the discharge-charge cycle may be lengthened to reduce the amount of electricity discharged by the deterioration suppressing device 1.

なお、本発明の劣化抑制装置1は鉛蓄電池2と別体としてもよいが、鉛蓄電池の外装の一部に装着して鉛蓄電池と劣化抑制装置とを一体とすることもできる。   In addition, although the deterioration suppression apparatus 1 of this invention is good also as a separate body from the lead storage battery 2, it can equip | install with a part of exterior of a lead storage battery, and can also integrate a lead storage battery and a deterioration suppression apparatus.

(本発明例)
本発明による劣化抑制装置1を55D23形の始動用鉛蓄電池(公称電圧12V、5時間率定格容量48Ah)に接続した状態で40℃雰囲気下で1ヶ月間放置後、補充電(14.0V定電圧、最大充電電流25A、充電時間24時間)を行った。なお、電池は、5時間率放電によりSOCを50%の状態に調整した上で劣化抑制装置1に接続した。
(Example of the present invention)
The deterioration suppressing device 1 according to the present invention is connected to a 55D23-type lead storage battery for starting (nominal voltage 12V, 5 hour rate rated capacity 48Ah), left in a 40 ° C. atmosphere for one month, and then supplementary charged (14.0V constant). Voltage, maximum charging current 25A, charging time 24 hours). The battery was connected to the deterioration suppressing device 1 after adjusting the SOC to 50% by 5-hour rate discharge.

実施例中、劣化抑制装置1の放電および充電の仕様は以下の通りとした。   In the examples, the specifications of discharging and charging of the deterioration suppressing device 1 were as follows.

すなわち、図2における放電−充電パターンにおいて、放電電流Id=10A、放電時間Td=100μs、放電終了から充電開始までの時間Tl=60μs、充電電流Ic=8A、充電時間Tc=100μs、周期Tf=100msとした。   That is, in the discharge-charge pattern in FIG. 2, the discharge current Id = 10 A, the discharge time Td = 100 μs, the time from the end of discharge to the start of charging Tl = 60 μs, the charge current Ic = 8 A, the charge time Tc = 100 μs, the period Tf = 100 ms.

なお、放電スイッチ3と充電スイッチ4には、高速で動作しON−OFF動作時の損失が少ないMOS−FETを、電流制限抵抗5には1.2Ω、蓄電デバイス6には16V500μFの電解コンデンサを使用した。また、昇圧トランス7の昇圧比は1.5のものを用いた。   Note that the discharge switch 3 and the charge switch 4 are MOS-FETs that operate at high speed and have little loss during the ON-OFF operation, the current limiting resistor 5 is 1.2 Ω, and the storage device 6 is a 16 V 500 μF electrolytic capacitor. used. The step-up transformer 7 has a step-up ratio of 1.5.

なお、劣化抑制装置1によって電池が過放電にならないよう電池電圧が12V以下では劣化抑制装置1が動作しないように設定した。また、本実施例において、劣化抑制装置1による電池の平均放電電流は4mAであった。   In addition, it set so that the deterioration suppression apparatus 1 might not operate | move with the battery voltage 12V or less so that a battery might not be overdischarged by the deterioration suppression apparatus 1. FIG. Moreover, in the present Example, the average discharge current of the battery by the deterioration suppression apparatus 1 was 4 mA.

(比較例1)
本発明例で用いたものと同仕様の始動用鉛蓄電池を開路状態を保持したまま、40℃雰囲気下で1ヶ月間放置後、補充電(14.0V定電圧、最大充電電流25A、充電時間24時間)を行った。なお、本発明例と同様、放置に先立って鉛蓄電池を5時間率放電により、SOCを50%に調整した。
(Comparative Example 1)
A lead acid battery for start-up having the same specifications as those used in the present invention example is left for one month in an atmosphere at 40 ° C. while maintaining the open circuit state, and then supplementary charging (14.0 V constant voltage, maximum charging current 25 A, charging time) 24 hours). As in the case of the present invention, prior to leaving, the lead storage battery was adjusted to 50% by 5-hour rate discharge.

(比較例2)
比較例2は本発明例において、劣化抑制装置1の動作を放電のみとし、充電の部分を充電も放電も行わない、単なる放置に置換したものである。この場合、蓄電デバイス6の電荷は蓄電デバイス6は別途並列接続した放電用抵抗(図示せず)によって放電される。なお、用いた電池は、本発明例および比較例1と同仕様であり、放置前に5時間率放電により、SOCを50%に調整後、上記の通り動作変更した劣化抑制装置1を接続した。この状態で鉛蓄電池を40℃雰囲気下で1ヶ月間放置後、補充電(14.0V定電圧、最大充電電流25A、充電時間24時間)を行った。
(Comparative Example 2)
Comparative Example 2 is an example of the present invention in which the operation of the degradation suppressing device 1 is only discharged, and the charging portion is replaced with mere leaving without charging or discharging. In this case, the electric charge of the electric storage device 6 is discharged by a discharging resistor (not shown) separately connected in parallel to the electric storage device 6. In addition, the used battery is the same specification as the present invention example and the comparative example 1, and after the SOC was adjusted to 50% by 5 hour rate discharge before leaving, the deterioration suppressing device 1 whose operation was changed as described above was connected. . In this state, the lead storage battery was left in a 40 ° C. atmosphere for one month, and then supplementary charging (14.0 V constant voltage, maximum charging current 25 A, charging time 24 hours) was performed.

(比較例3)
比較例3は、本発明例の劣化抑制装置1における放電−充電パターンから放電を除いたパターンとしたものである。比較例3では、本発明例1、比較例2とは異なり、別途設けた外部電源を用いて電池を充電する。なお、用いた電池は、本発明例、比較例1および比較例2のものと同仕様であり、放置前に5時間率放電により、SOCを50%に調整後、外部電源を用いて、前記した充電を行う。この状態で鉛蓄電池を40℃雰囲気下で1ヶ月間放置後、補充電(14.0V定電圧、最大充電電流25A、充電時間24時間)を行った。
(Comparative Example 3)
Comparative Example 3 is a pattern obtained by removing discharge from the discharge-charge pattern in the degradation suppressing device 1 of the present invention example. In Comparative Example 3, unlike Example 1 and Comparative Example 2, the battery is charged using an external power source provided separately. The batteries used have the same specifications as those of the present invention example, comparative example 1 and comparative example 2, and after adjusting the SOC to 50% by 5 hour rate discharge before leaving, Charge the battery. In this state, the lead storage battery was left in a 40 ° C. atmosphere for one month, and then supplementary charging (14.0 V constant voltage, maximum charging current 25 A, charging time 24 hours) was performed.

上記した本発明例、比較例1、比較例2および比較例3についてはそれぞれn=2で行い、補充電終了後、それぞれに使用した電池の2個中の1個は、5時間率容量を計測した。また、残りの1個の電池は解体し、負極活物質中の硫酸鉛量を定量した。   The above-described inventive example, comparative example 1, comparative example 2 and comparative example 3 are each performed at n = 2, and after completion of auxiliary charging, one of the two batteries used for each has a 5-hour rate capacity. Measured. The remaining one battery was disassembled and the amount of lead sulfate in the negative electrode active material was quantified.

上記した本発明例、比較例1、比較例2および比較例3に使用した電池の放置後の5時間率放電容量は、本発明例(本発明例の劣化抑制装置を接続した)では47Ah(定格容量の97.9%)であった。一方、比較例1(本発明例の劣化抑制装置を接続せず、開路状態で放置した)では36.5Ah(定格容量の76%)であった。また、比較例2の場合では39.4Ah(定格容量の82%)であった。さらに比較例3の場合では39.8Ah(定格容量の83%)であった。   The 5-hour rate discharge capacity after leaving the batteries used in the above-described examples of the present invention, comparative examples 1, 2 and 3 is 47 Ah in the present invention example (with the deterioration suppression device of the present invention connected). 97.9% of the rated capacity). On the other hand, it was 36.5 Ah (76% of the rated capacity) in Comparative Example 1 (the deterioration suppressing device of the present invention was not connected and left open). In the case of Comparative Example 2, it was 39.4 Ah (82% of the rated capacity). Furthermore, in the case of Comparative Example 3, it was 39.8 Ah (83% of the rated capacity).

また、負極活物質中の硫酸鉛量は、本発明例に用いた電池で負極活物質総体(純然とした金属鉛と添加物および硫酸鉛を含む)中に7.2質量%含有していた。比較例1では26.5質量%、比較例2では18.5質量%であった。また、比較例3では18.0質量%であった。   The amount of lead sulfate in the negative electrode active material was 7.2% by mass in the negative electrode active material (including pure metal lead, additive, and lead sulfate) in the battery used in the examples of the present invention. . In Comparative Example 1, it was 26.5% by mass, and in Comparative Example 2, it was 18.5% by mass. In Comparative Example 3, it was 18.0% by mass.

上記のことから、本発明によれば、鉛蓄電池の放置中に進行するサルフェーションによる容量低下を顕著に抑制できることがわかる。放電のみを行う比較例2および充電のみを行う比較例3では、放置中に放電も充電も行わない比較例1よりもサルフェーションと容量劣化は抑制されている。   From the above, it can be seen that according to the present invention, the capacity reduction due to sulfation that proceeds while the lead storage battery is left can be remarkably suppressed. In Comparative Example 2 in which only discharging is performed and in Comparative Example 3 in which only charging is performed, sulfation and capacity deterioration are suppressed as compared with Comparative Example 1 in which neither discharging nor charging is performed during standing.

本発明例では、放電もしくは充電をそれぞれ単独に行った場合(比較例2および比較例3)に比較して顕著にサルフェーションと容量劣化が抑制されている。また、本発明では、比較例3のような外部電源を必要としない。また、比較例2のように放電電荷を無駄に消費することなく、充電に利用することによって、サルフェーションとこれによる容量劣化を顕著に抑制することができる。   In the example of the present invention, sulfation and capacity deterioration are remarkably suppressed as compared with the case where each discharge or charge is performed independently (Comparative Example 2 and Comparative Example 3). Further, the present invention does not require an external power supply as in Comparative Example 3. In addition, sulfation and capacity degradation due to this can be remarkably suppressed by using it for charging without wastefully consuming the discharge charge as in Comparative Example 2.

本発明によれば、放置や充電不足でサルフェ−ションになり易く容量劣化が進行し易い車両用やフォークリフト用鉛蓄電池をはじめとした、様々な鉛蓄電池に好適である。   According to the present invention, it is suitable for various lead storage batteries including lead storage batteries for vehicles and forklifts that are prone to sulfation due to neglect and lack of charge, and capacity deterioration easily proceeds.

本発明による劣化抑制装置を示す図The figure which shows the deterioration suppression apparatus by this invention 鉛蓄電池の放電−充電パターンを示す図The figure which shows the discharge-charge pattern of lead acid battery

符号の説明Explanation of symbols

1 劣化抑制装置
2 鉛蓄電池
3 放電スイッチ
4 充電スイッチ
5 電流制限抵抗
6 蓄電デバイス
7 昇圧トランス
8 逆流防止ダイオード
9 制御手段
DESCRIPTION OF SYMBOLS 1 Deterioration suppression apparatus 2 Lead acid battery 3 Discharge switch 4 Charge switch 5 Current limiting resistor 6 Electric storage device 7 Step-up transformer 8 Backflow prevention diode 9 Control means

Claims (3)

鉛蓄電池を放電してその放電電荷を蓄電デバイスに蓄電し、前記蓄電デバイスに蓄電した電荷で前記鉛蓄電池を充電することにより、前記鉛蓄電池に放電と充電とを繰り返して行う鉛蓄電池の劣化抑制方法。 The lead storage battery is discharged, the discharge charge is stored in the storage device, and the lead storage battery is charged with the charge stored in the storage device, thereby suppressing the deterioration of the lead storage battery that repeatedly discharges and charges the lead storage battery. Method. 鉛蓄電池を放電する放電手段と、前記放電における電荷を蓄積する蓄電デバイスと、前記蓄電デバイスに蓄積された電荷を用いて前記鉛蓄電池を充電する充電手段と、前記放電と充電とを繰り返して行うよう制御する制御手段とを備えた鉛蓄電池の劣化抑制装置。 Discharging means for discharging the lead storage battery, an electricity storage device for accumulating charges in the discharge, a charging means for charging the lead storage battery using the electric charge accumulated in the electricity storage device, and performing the discharging and charging repeatedly The deterioration suppression apparatus of the lead storage battery provided with the control means to control. 請求項2の鉛蓄電池の劣化抑制装置を備えた鉛蓄電池。 The lead acid battery provided with the deterioration suppression apparatus of the lead acid battery of Claim 2.
JP2006060841A 2006-03-07 2006-03-07 Method and apparatus of suppressing deterioration of lead-acid battery, and lead-acid battery provided with this apparatus Pending JP2007242332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006060841A JP2007242332A (en) 2006-03-07 2006-03-07 Method and apparatus of suppressing deterioration of lead-acid battery, and lead-acid battery provided with this apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006060841A JP2007242332A (en) 2006-03-07 2006-03-07 Method and apparatus of suppressing deterioration of lead-acid battery, and lead-acid battery provided with this apparatus

Publications (1)

Publication Number Publication Date
JP2007242332A true JP2007242332A (en) 2007-09-20

Family

ID=38587664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006060841A Pending JP2007242332A (en) 2006-03-07 2006-03-07 Method and apparatus of suppressing deterioration of lead-acid battery, and lead-acid battery provided with this apparatus

Country Status (1)

Country Link
JP (1) JP2007242332A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010226885A (en) * 2009-03-24 2010-10-07 Jae-Han Jung Battery voltage stabilizing apparatus
JP2012070510A (en) * 2010-09-22 2012-04-05 Nissan Motor Co Ltd Device and method for supplying power
JP2013077393A (en) * 2011-09-29 2013-04-25 Sensin Techno Co Ltd Lead sulfate coat removing device of lead-acid battery
FR2991104A1 (en) * 2012-05-23 2013-11-29 Peugeot Citroen Automobiles Sa Method for desulphation of e.g. lithium-ion battery, in electrical network of vehicle, involves discharging battery until predetermined load threshold is reached, and changing load of battery until another load threshold is reached
US9008950B2 (en) 2011-09-28 2015-04-14 Robert Bosch Gmbh Pressure sensor diagnosing method and common rail fuel injection control apparatus
JP2015141900A (en) * 2014-01-29 2015-08-03 株式会社テック Energy consumption rate improvement device for vehicle
JP2015176829A (en) * 2014-03-17 2015-10-05 株式会社ハウステック Lead acid battery charging/discharging device
JP2015197946A (en) * 2014-03-31 2015-11-09 新神戸電機株式会社 Power storage system
DE102016200991A1 (en) 2015-03-19 2016-09-22 Robert Bosch Gmbh Method for fault diagnosis for the pressure sensor and common rail fuel injection control device
JP7218468B1 (en) 2022-08-15 2023-02-06 正一 田中 Alternating current supply circuit for batteries
JP7301208B1 (en) 2022-12-05 2023-06-30 正一 田中 Alternating current supply circuit for batteries

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010226885A (en) * 2009-03-24 2010-10-07 Jae-Han Jung Battery voltage stabilizing apparatus
JP2012070510A (en) * 2010-09-22 2012-04-05 Nissan Motor Co Ltd Device and method for supplying power
US9008950B2 (en) 2011-09-28 2015-04-14 Robert Bosch Gmbh Pressure sensor diagnosing method and common rail fuel injection control apparatus
CN103283081B (en) * 2011-09-29 2016-08-17 北京电通伟业电子设备有限公司 A kind of lead sulfate attachment removal device and method
JP2013077393A (en) * 2011-09-29 2013-04-25 Sensin Techno Co Ltd Lead sulfate coat removing device of lead-acid battery
FR2991104A1 (en) * 2012-05-23 2013-11-29 Peugeot Citroen Automobiles Sa Method for desulphation of e.g. lithium-ion battery, in electrical network of vehicle, involves discharging battery until predetermined load threshold is reached, and changing load of battery until another load threshold is reached
JP2015141900A (en) * 2014-01-29 2015-08-03 株式会社テック Energy consumption rate improvement device for vehicle
JP2015176829A (en) * 2014-03-17 2015-10-05 株式会社ハウステック Lead acid battery charging/discharging device
JP2015197946A (en) * 2014-03-31 2015-11-09 新神戸電機株式会社 Power storage system
DE102016200991A1 (en) 2015-03-19 2016-09-22 Robert Bosch Gmbh Method for fault diagnosis for the pressure sensor and common rail fuel injection control device
JP7218468B1 (en) 2022-08-15 2023-02-06 正一 田中 Alternating current supply circuit for batteries
JP7401620B1 (en) 2022-08-15 2023-12-19 正一 田中 battery current control circuit
WO2024038619A1 (en) * 2022-08-15 2024-02-22 正一 田中 Battery current control circuit
JP2024025954A (en) * 2022-08-15 2024-02-28 正一 田中 Ac current supply circuit for battery
JP2024026018A (en) * 2022-08-15 2024-02-28 正一 田中 battery current control circuit
JP7301208B1 (en) 2022-12-05 2023-06-30 正一 田中 Alternating current supply circuit for batteries
JP2024081078A (en) * 2022-12-05 2024-06-17 正一 田中 Ac current supply circuit for battery

Similar Documents

Publication Publication Date Title
JP2007242332A (en) Method and apparatus of suppressing deterioration of lead-acid battery, and lead-acid battery provided with this apparatus
US7928698B2 (en) Battery charging apparatus and method
US8421406B2 (en) Charge control circuit, battery-operated device, charging apparatus and charging method
CN107181292B (en) Supplementary electric control device of electric vehicle
US8384360B2 (en) Hybrid battery
US10110023B2 (en) Power supply system
JP6982787B2 (en) Fuel cell control device and its control method, fuel cell vehicle
JP2007064209A (en) Engine control device, control method, and control system
JP5096538B2 (en) Sulfate film removal apparatus and sulfate film removal method
JP2007236115A (en) Charging method and charger of secondary battery
JP5353741B2 (en) Charge / discharge control device for lithium ion secondary battery
JP4055565B2 (en) Storage battery control method
US10498154B2 (en) Electric power system
JP2011062018A (en) Power supply system and converter unit
CN1307769C (en) Battery pack olischarge recovery circuit
JP2012095428A (en) Power supply device
JP2006325331A (en) Discharging circuit for secondary battery and secondary battery pack equipped with the same, and electronic equipment
JP2005269824A (en) Hybrid system
KR101124768B1 (en) A Life Extending and Recycling Equipment for Automobile Rechargeable Battery
JP2003189498A (en) Charging method and charger of secondary battery
KR102378696B1 (en) Apparatus for restoring capability of a secondary battery
JP2008159298A (en) Power source system
JP6171693B2 (en) Lead storage battery state determination device and vehicle
JP2003052129A (en) Battery-charging method
JP2014023306A (en) Charger