[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007242359A - Electrode ring, electron microscope, manufacturing method of electrode ring, and manufacturing method of electron microscope - Google Patents

Electrode ring, electron microscope, manufacturing method of electrode ring, and manufacturing method of electron microscope Download PDF

Info

Publication number
JP2007242359A
JP2007242359A JP2006061401A JP2006061401A JP2007242359A JP 2007242359 A JP2007242359 A JP 2007242359A JP 2006061401 A JP2006061401 A JP 2006061401A JP 2006061401 A JP2006061401 A JP 2006061401A JP 2007242359 A JP2007242359 A JP 2007242359A
Authority
JP
Japan
Prior art keywords
electrode
resistor
sample
electrode ring
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006061401A
Other languages
Japanese (ja)
Inventor
Yoshihisa Miura
佳久 三浦
Koichi Muto
浩一 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006061401A priority Critical patent/JP2007242359A/en
Publication of JP2007242359A publication Critical patent/JP2007242359A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To carry out observation of a test piece by an electron microscope excellently. <P>SOLUTION: The electrode ring (1) is arranged opposed to the test piece (9) receiving irradiation of electron beams, and provided with an insulating barrel body (5) of which on one end face opposed to the test piece, a first electrode (2) is formed and, on the other end face, a second electrode (6) is formed, and a barrel resistor (4) which has a hollow hole (3) to become a passing passage of the electron beams, and is inserted in the inner face of the insulating barrel body (5) by connecting one end face to the first electrode (2) and the other end face to the second electrode (6). The barrel resistor (4) is made of a half-conductive glass material containing a conductive material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子ビームの照射を受ける試料に対向して配置される電極リング及びこの電極リングを有する電子顕微鏡及びこれらの製造方法に関し、詳しくは電子ビーム及び試料から放出される2次電子の通過経路を囲む部分の構造を工夫した電極リング及び電子顕微鏡及びこれらの製造方法に関する。   The present invention relates to an electrode ring disposed opposite to a sample to be irradiated with an electron beam, an electron microscope having the electrode ring, and a method for manufacturing the same, and more particularly to passage of secondary electrons emitted from the electron beam and the sample. The present invention relates to an electrode ring, an electron microscope, and a manufacturing method thereof, in which a structure of a portion surrounding a path is devised.

近年、半導体デバイスの高集積化、微細化が進んでおり、それに伴い、半導体デバイスの動作解析、故障解析の手段として従来の光学顕微鏡の分解能では観察が困難になってきている。そこで、光学方式に代わり走査型電子顕微鏡(SEM:Scanning Electron Microscope)による解析方法が有効な手段として採用されている。   In recent years, semiconductor devices have been highly integrated and miniaturized, and accordingly, it has become difficult to observe with the resolution of a conventional optical microscope as means for analyzing the operation and failure of semiconductor devices. Therefore, an analysis method using a scanning electron microscope (SEM) is employed as an effective means instead of the optical method.

走査型電子顕微鏡では、極めて細い電子ビームを用いるため凹凸の激しい試料表面であってもほぼ全面に焦点が合い、臨場感にあふれたミクロの世界が観察できる。走査型電子顕微鏡の分解能は電子ビームのスポット径によって決まるが、半導体デバイスの微細化に伴って分解能だけでなく、特にコンタクトホールなどのアスペクト比の大きな孔底の観察能力向上が要求されてきている。   The scanning electron microscope uses an extremely thin electron beam, so that even a highly uneven surface can be focused on almost the entire surface, and a microscopic world full of realism can be observed. The resolution of a scanning electron microscope is determined by the spot diameter of the electron beam, but not only the resolution but also the ability to observe hole bottoms with a large aspect ratio, such as contact holes, has been demanded as semiconductor devices become smaller. .

従来より、図10に示すリターディング法により、電子ビームの照射源での加速電圧を高くして収差を小さくし分解能を向上させると共に、試料9に電源11より負の電圧を印加してコンタクトホール10の深い孔底などからの2次電子の放出軌跡a’を引き上げる工夫は行われている。   Conventionally, by using the retarding method shown in FIG. 10, the acceleration voltage at the electron beam irradiation source is increased to reduce aberrations and improve resolution, and a negative voltage is applied to the sample 9 from the power source 11 to contact holes. A device has been devised to raise the emission trajectory a ′ of secondary electrons from 10 deep hole bottoms.

しかし、今後さらに半導体デバイスの微細化が進みコンタクトホールが高アスペクト比になると、上記リターディング法であっても孔底の観察は困難になってくると考えられる。放出される2次電子のエネルギーは非常に小さいので、アスペクト比の大きなコンタクトホールでは底部から放出されるほとんどの2次電子がコンタクトホールから出る前に側壁部に衝突してエネルギーを失ってしまい検出されなくなる。   However, if the semiconductor device is further miniaturized in the future and the contact hole has a high aspect ratio, it will be difficult to observe the bottom of the hole even with the retarding method. The energy of secondary electrons emitted is very small, so in contact holes with a large aspect ratio, most of the secondary electrons emitted from the bottom collide with the sidewalls before they exit the contact holes and lose energy. It will not be done.

そこで、特許文献1では、試料より放出される2次電子の引き上げ効率を高めるために、図11示す電極リング51を、図10における対物レンズ8と試料9との間に配置するようにしている。   Therefore, in Patent Document 1, the electrode ring 51 shown in FIG. 11 is arranged between the objective lens 8 and the sample 9 in FIG. 10 in order to increase the pulling efficiency of secondary electrons emitted from the sample. .

特開2004−327303号公報JP 2004-327303 A

電極リング51は絶縁性筒体54の上下の端面にそれぞれ電極52、53を形成し、さらに中空孔55の内面に抵抗膜を形成してなる。例えば電極53を試料9に対向させ、電極52を対物レンズ8側に向け、さらに照射電子ビーム及び放出2次電子の通過経路に中空孔55を位置させて、対物レンズ8と試料9との間に配置される。   The electrode ring 51 is formed by forming electrodes 52 and 53 on the upper and lower end surfaces of the insulating cylinder 54 and further forming a resistance film on the inner surface of the hollow hole 55. For example, the electrode 53 is opposed to the sample 9, the electrode 52 is directed toward the objective lens 8, and the hollow hole 55 is positioned in the passage path of the irradiation electron beam and the emitted secondary electrons, so Placed in.

電極リング51において試料9と対向する端面側に形成された電極53には電源11より負電圧が印加されて試料9と等電位とされるので、試料9とこれに対向する電極リング51の下端面との間には、試料9から放出された2次電子の加速を妨げるような電界は発生していない。これにより、2次電子の放出軌跡を引き上げ、さらに、放出された2次電子は電極リング51の中空孔55を通り抜け、このとき両電極52、53間の電位差による加速を受け、図示しない2次電子検出器に印加された正の電位に引かれてその2次電子検出器に至る。
Since a negative voltage is applied from the power source 11 to the electrode 53 formed on the end face side facing the sample 9 in the electrode ring 51 to make it equipotential with the sample 9, the sample 9 and the electrode ring 51 facing the electrode 9 are below An electric field that prevents acceleration of secondary electrons emitted from the sample 9 is not generated between the end faces. This raises the emission trajectory of the secondary electrons, and the emitted secondary electrons pass through the hollow hole 55 of the electrode ring 51. At this time, the secondary electrons are accelerated by the potential difference between the electrodes 52 and 53, and the secondary electrons (not shown) It is pulled by the positive potential applied to the electron detector and reaches its secondary electron detector.

電子顕微鏡において対物レンズ8と試料9間の距離が大きくなると分解能の低下をまねくので、対物レンズ8と試料9間の距離は数mmほどであり、よって対物レンズ8と試料9間に配置される電極リング51もそれに応じてサイズが小さく、中空孔55の内径は数mmほどである。このような小径の中空孔55内面に蒸着法やスパッタ法にて抵抗膜をむらなく均等に成膜するのは難しく、そのため中空孔55内面における抵抗値の分布にばらつきが生じ、これにより中空孔55における軸中心まわりの電界分布にばらつきが生じてしまい、電子ビームや2次電子の軌道を所望に制御するのが困難になってしまう。   In the electron microscope, when the distance between the objective lens 8 and the sample 9 is increased, the resolution is lowered. Therefore, the distance between the objective lens 8 and the sample 9 is about several millimeters, and is therefore arranged between the objective lens 8 and the sample 9. The size of the electrode ring 51 is small accordingly, and the inner diameter of the hollow hole 55 is about several mm. It is difficult to uniformly deposit a resistance film on the inner surface of such a small-diameter hollow hole 55 by vapor deposition or sputtering. Therefore, the resistance value distribution on the inner surface of the hollow hole 55 varies, thereby causing the hollow hole The electric field distribution around the center of the axis at 55 will vary, making it difficult to control the trajectory of the electron beam and secondary electrons as desired.

本出願人は上述の問題に鑑みて、先に電子ビーム及び試料から放出される2次電子の通過経路となる中空孔の軸中心まわりの電界分布のばらつきを抑えることのできる電極リング及び電子顕微鏡を提供することを課題として、試料と対向される一方の端面に第1電極が形成され、他方の端面に第2電極が形成された絶縁性筒体と、電子ビームの通過経路となる中空孔を有し、一方の端面を第1電極に接続させ、他方の端面を第2電極に接続させて絶縁性筒体の内側に嵌め込まれた筒状の抵抗体とを備える、電極リングを提案した(特願2005−078546)。   In view of the above-mentioned problems, the applicant of the present invention has an electrode ring and an electron microscope that can suppress variations in electric field distribution around the axial center of the hollow hole, which is a passage path for secondary electrons previously emitted from the electron beam and sample. An insulating cylinder having a first electrode formed on one end surface facing the sample and a second electrode formed on the other end surface, and a hollow hole serving as an electron beam passage path An electrode ring comprising: a cylindrical resistor having one end face connected to the first electrode and the other end face connected to the second electrode and fitted inside the insulating cylinder (Japanese Patent Application No. 2005-078546).

電子ビームは抵抗体の中空孔を通って試料に対して照射される。このとき、中空孔内面には、第1、第2電極間の電位差により軸方向にゆるやかな電位分布が生じるため、中空孔を通過して試料に照射される電子ビームのレンズ収差を小さくすることができる。   The electron beam is irradiated to the sample through the hollow hole of the resistor. At this time, since a gentle potential distribution is generated in the axial direction due to the potential difference between the first and second electrodes on the inner surface of the hollow hole, the lens aberration of the electron beam irradiated to the sample through the hollow hole is reduced. Can do.

試料に電子ビームが照射されると、その被照射部の表面から2次電子が放出される。ここで、電極リングにおいて試料と対向する端面側に形成された第1電極を試料と等電位とすることで、試料とこれに対向する電極リング端面との間には、試料から放出された2次電子の加速を妨げるような電界が存在しないことになり、2次電子の放出軌跡を引き上げることができる。   When the sample is irradiated with an electron beam, secondary electrons are emitted from the surface of the irradiated portion. Here, by setting the first electrode formed on the end face side facing the sample in the electrode ring to be equipotential with the sample, there is 2 between the sample and the end face of the electrode ring facing the sample. There is no electric field that hinders the acceleration of secondary electrons, and the emission trajectory of secondary electrons can be raised.

放出された2次電子は上記中空孔を通り抜け、このとき第1、第2電極間の電位差による加速を受け、2次電子検出器に印加された正の電位に引かれてその2次電子検出器に至る。   The emitted secondary electrons pass through the hollow hole and are accelerated by the potential difference between the first and second electrodes. At this time, the secondary electrons are detected by the positive potential applied to the secondary electron detector. To the vessel.

そして、上記提案では、絶縁性筒体の中空孔に筒状の抵抗体を嵌め込むことで、電子ビームや放出2次電子の通過経路が抵抗材で囲まれる構造としているため、絶縁性筒体の中空孔内面に抵抗膜を形成した従来例(特許文献1)で起こり得る抵抗膜の不均等形成による電界ばらつきが生じず、中空孔における軸中心まわりの電界分布を均等にでき、電子ビームや2次電子の所望の軌道制御を妨げない。   And in the said proposal, since it was set as the structure where the passage of an electron beam or an emission secondary electron is surrounded by a resistance material by inserting a cylindrical resistor in the hollow hole of an insulating cylinder, an insulating cylinder In the conventional example (Patent Document 1) in which the resistance film is formed on the inner surface of the hollow hole, the electric field variation due to the uneven formation of the resistance film does not occur, the electric field distribution around the axial center in the hollow hole can be made uniform, It does not interfere with the desired trajectory control of secondary electrons.

また、抵抗体の両端面の間の部分に少なくとも1層のリング状の導電層を介在させた構造とすれば、上記中空孔内面において導電層の部分では軸中心まわりに均等な電流が流れることになり、軸中心まわりに均等分布の電界が生じる。導電層のない部分で軸中心まわりに不均等な電流の流れが形成されても導電層の部分で軸中心まわりに均等にされるので、中空孔内面を軸方向に沿って流れる電流全体としてみれば軸中心まわりの電界ばらつきを抑えることになる。   Further, if a structure in which at least one ring-shaped conductive layer is interposed between the both end faces of the resistor, a uniform current flows around the axial center in the conductive layer portion on the inner surface of the hollow hole. And an evenly distributed electric field is generated around the axis center. Even if an uneven current flow is formed around the axial center in the part without the conductive layer, it is made uniform around the axial center in the conductive layer part, so that the entire current flowing along the inner surface of the hollow hole can be seen as a whole. For example, variations in the electric field around the axis center can be suppressed.

また、上記導電層を介在させた抵抗体を、複数の筒体を間に導電層を介在させて軸方向に積層させ、それら複数の筒体における互いに合わされる端面にそれぞれ成膜された導電膜どうしを拡散接合させて上記導電層を構成すれば、各筒体と導電膜との密着性及び各導電膜間の密着性及び寸法精度を高めた信頼性の高い抵抗体とすることができる。さらに、接着材を使っていないため、接着材を使うことによる径年劣化や寸法精度悪化の心配もない。   In addition, the conductive film formed by laminating the resistor having the conductive layer interposed therebetween in the axial direction with a plurality of cylinders interposed between the conductive layers, and formed on end surfaces of the plurality of cylinders that are joined to each other. When the conductive layer is formed by diffusion bonding, a highly reliable resistor with improved adhesion between each cylinder and the conductive film, adhesion between each conductive film, and dimensional accuracy can be obtained. In addition, since no adhesive is used, there is no fear of deterioration of the age and dimensional accuracy due to the use of the adhesive.

以上のように、先に提案した発明は種々の効果を奏するものであるが、先に提案した構成では抵抗膜の代わりに半導電性セラミック材に導電性物質を均等に混ぜ焼結したブロック材から切り出した電極リングを使用している。この場合このリングの厚みは1mm程度に数分割し中間膜にCuの電極膜(バッファ層)を形成することで更に安定した電界を作り出すことを提案している。然しながら、この半導電性セラミック材は数十mmから数百mm程度のブロック材で特殊雰囲気中(例えば、Nz、Ar、H2、CO等)の還元反応を用いて焼結されている。このためその内部(厚み)方向には十分な還元が進まずバッファ層(Cu)があっても許容できないほどの電気抵抗値の変動、もしくはばらつきが生じていた。 As described above, the previously proposed invention has various effects. However, in the previously proposed configuration, a block material in which a conductive material is uniformly mixed and sintered in place of a resistive film in a semiconductive ceramic material. The electrode ring cut out from is used. In this case, it is proposed that the thickness of the ring is divided into several parts of about 1 mm, and a Cu electrode film (buffer layer) is formed on the intermediate film to create a more stable electric field. However, this semiconductive ceramic material is a block material of about several tens mm to several hundred mm, and is sintered using a reduction reaction in a special atmosphere (for example, Nz, Ar, H 2 , CO, etc.). For this reason, sufficient reduction does not proceed in the internal (thickness) direction, and even if there is a buffer layer (Cu), an unacceptable fluctuation or variation in the electric resistance value occurs.

このため内部(厚み)方向に還元が進まない。そのため材料内部で抵抗値変動が生じ電界分布が安定し難く、電子顕微鏡画像に歪みを生じてしまうという致命的な欠陥があった。   For this reason, reduction does not proceed in the internal (thickness) direction. Therefore, the resistance value fluctuates inside the material, the electric field distribution is difficult to stabilize, and there is a fatal defect that an electron microscope image is distorted.

本発明は上述の問題に鑑みてなされ、電子顕微鏡画像に歪みを生じるという致命的な欠陥を除去することを課題とする。   The present invention has been made in view of the above-described problems, and an object thereof is to remove a fatal defect that causes distortion in an electron microscope image.

以上の課題は、電子ビームの照射を受ける試料に対向して配置される電極リングであって、前記試料と対向される一方の端面に第1電極が形成され、他方の端面に第2電極が形成された絶縁性筒体と、前記電子ビームの通過経路となる中空孔を有し、一方の端面を前記第1電極に接続させ、他方の端面を前記第2電極に接続させて前記絶縁性筒体の内面に嵌め込まれた筒体の抵抗体と、を備える電極リングにおいて、前記筒体の抵抗体は導電材を含む半導電性ガラス材でなることを特徴とする電極リングによって解決される。   The above-described problem is an electrode ring disposed to face a sample that is irradiated with an electron beam, wherein a first electrode is formed on one end surface facing the sample, and a second electrode is formed on the other end surface. The insulating cylinder formed and a hollow hole serving as a passage path for the electron beam, one end face is connected to the first electrode, and the other end face is connected to the second electrode to provide the insulation An electrode ring comprising: a cylindrical resistor fitted on an inner surface of the cylindrical body, wherein the cylindrical resistor is made of a semiconductive glass material including a conductive material. .

また、以上の課題は、電子ビームの照射を受ける試料に対向して配置される電極リングを有する電子顕微鏡であって、前記電極リングは、前記試料と対向される一方の端面に第1電極が形成され、他方の端面に第2電極が形成された絶縁性筒体と、前記電子ビームの通過経路となる中空孔を有し、一方の端面を前記第1電極に接続させ、他方の端面を前記第2電極に接続させて前記絶縁体の内面に嵌め込まれた筒体の抵抗体と、を備える電子顕微鏡において、前記筒体の抵抗体は導電材を含む半導電性ガラス材でなることを特徴とする電子顕微鏡によって解決される。   In addition, the above-described problem is an electron microscope having an electrode ring disposed to face a sample to be irradiated with an electron beam, and the electrode ring has a first electrode on one end face facing the sample. An insulating cylinder having a second electrode formed on the other end face, a hollow hole serving as a passage path for the electron beam, one end face being connected to the first electrode, and the other end face being An electron microscope including a cylindrical resistor connected to the inner surface of the insulator and connected to the second electrode, wherein the cylindrical resistor is made of a semiconductive glass material including a conductive material. Solved by the characteristic electron microscope.

また、以上の課題は、電子ビームの照射を受ける試料に対向して配置される電極リングであって、前記試料と対向される一方の端面に第1電極が形成され、他方の端面に第2電極が形成された絶縁性筒体と、前記電子ビームの通過経路となる中空孔を有し、一方の端面を前記第1電極に接続させ、他方の端面を前記第2電極に接続させて前記絶縁性筒体の内面に嵌め込まれた筒体の抵抗体と、を備える電極リングにおいて、前記抵抗体は、複数の筒体が間に導電層を介在させて軸方向に積層されてなり、前記導電層は、前記複数の筒体における互いに合わされる端面にそれぞれ成膜された導電膜どうしが拡散接合されてなり、且つ前記複数の筒体は各々充分に薄いシート状で焼結・還元した半導電セラミック材で成ることを特徴とする電極リングによって解決される。   In addition, the above-described problem is an electrode ring disposed to face a sample that is irradiated with an electron beam, wherein a first electrode is formed on one end surface facing the sample, and a second electrode is formed on the other end surface. An insulating cylinder having electrodes formed thereon, and a hollow hole serving as a passage path for the electron beam; one end face is connected to the first electrode, and the other end face is connected to the second electrode; In the electrode ring comprising a cylindrical resistor fitted on the inner surface of the insulating cylinder, the resistor is formed by laminating a plurality of cylinders in the axial direction with a conductive layer interposed therebetween, The conductive layer is formed by diffusion-bonding conductive films formed on end surfaces of the plurality of cylinders that are joined to each other, and the plurality of cylinders are each sintered and reduced in a sufficiently thin sheet shape. An electrode assembly comprising a conductive ceramic material It is resolved by grayed.

また、以上の課題は、電子ビームの照射を受ける試料に対向して配置される電極リングを有する電子顕微鏡であって、前記電極リングは、前記試料と対向される一方の端面に第1電極が形成され、他方の端面に第2電極が形成された絶縁性筒体と、前記電子ビームの通過経路となる中空孔を有し、一方の端面を前記第1電極に接続させ、他方の端面を前記第2電極に接続させて前記絶縁体の内面に嵌め込まれた筒体の抵抗体と、を備える電子顕微鏡において、前記抵抗体は、複数の筒体が間に導電層を介在させて軸方向に積層されてなり、前記導電層は、前記複数の筒体における互いに合わされる端面にそれぞれ成膜された導電膜どうしが拡散接合されてなり、且つ前記複数の筒体は各々シート状で焼結・還元した充分に薄い半導電セラミック材で成ることを特徴とする電子顕微鏡によって解決される。   In addition, the above-described problem is an electron microscope having an electrode ring disposed to face a sample to be irradiated with an electron beam, and the electrode ring has a first electrode on one end face facing the sample. An insulating cylinder having a second electrode formed on the other end face, a hollow hole serving as a passage path for the electron beam, one end face being connected to the first electrode, and the other end face being An electron microscope including a cylindrical resistor connected to the inner surface of the insulator and connected to the second electrode, wherein the resistor has an axial direction with a plurality of cylinders interposing a conductive layer therebetween. The conductive layers are formed by diffusion-bonding conductive films formed on end surfaces of the plurality of cylinders that are combined with each other, and the plurality of cylinders are each sintered in a sheet form.・ Reduced and sufficiently thin semiconductive ceramic It is solved by an electron microscope, characterized by comprising in wood.

また、以上の課題は、電子ビームの照射を受ける試料に対向して配置される電極リングであって、前記試料と対向される一方の端面に第1電極が形成され、他方の端面に第2電極が形成された絶縁性筒体と、前記電子ビームの通過経路となる中空孔を有し、一方の端面を前記第1電極に接続させ、他方の端面を前記第2電極に接続させて前記絶縁性筒体の内面に嵌め込まれた筒体の抵抗体と、を備える電極リングの製造方法において、前記筒体の抵抗体は導電材を添加した半導電性ガラス材を溶融して製造されることを特徴とする電極リングの製造方法によって解決される。   In addition, the above-described problem is an electrode ring disposed to face a sample that is irradiated with an electron beam, wherein a first electrode is formed on one end surface facing the sample, and a second electrode is formed on the other end surface. An insulating cylinder having electrodes formed thereon, and a hollow hole serving as a passage path for the electron beam; one end face is connected to the first electrode, and the other end face is connected to the second electrode; And a cylindrical resistor fitted on the inner surface of the insulating cylinder, wherein the cylindrical resistor is manufactured by melting a semiconductive glass material to which a conductive material is added. This is solved by a method for manufacturing an electrode ring.

また、以上の課題は、電子ビームの照射を受ける試料に対向して配置される電極リングを有する電子顕微鏡であって、前記電極リングは、前記試料と対向される一方の端面に第1電極が形成され、他方の端面に第2電極が形成された絶縁性筒体と、前記電子ビームの通過経路となる中空孔を有し、一方の端面を前記第1電極に接続させ、他方の端面を前記第2電極に接続させて前記絶縁体の内面に嵌め込まれた筒体の抵抗体と、を備える電子顕微鏡の製造方法において、前記筒体の抵抗体は導電材を添加した半導電性ガラス材を溶融して製造されることを特徴とする電子顕微鏡の製造方法によって解決される。   In addition, the above-described problem is an electron microscope having an electrode ring disposed to face a sample to be irradiated with an electron beam, and the electrode ring has a first electrode on one end face facing the sample. An insulating cylinder having a second electrode formed on the other end face, a hollow hole serving as a passage path for the electron beam, one end face being connected to the first electrode, and the other end face being A cylindrical resistor connected to the second electrode and fitted in the inner surface of the insulator, wherein the cylindrical resistor is a semiconductive glass material to which a conductive material is added. This is solved by a manufacturing method of an electron microscope, which is manufactured by melting the above.

近年、各種電子デバイスの集積度は飛躍的に向上しているが、その反面、静電気には非常に敏感である。静電気による電子デバイスの破壊・特性の劣化が大きな問題としてクローズアップされており、半導電性物質(セラミックスやガラス)は、このような静電気対策に有効な新しい材料で、静電気拡散特性を有する材料である。静電気を帯電しにくく、かつ大電流を流さないため、静電気に敏感な電子デバイスの周辺部品やその製造用治具材料に最適である。本発明の電子顕微鏡用電極リング材としても、高電圧付加時に微小電流しか流れないという特長から適用に至っている。   In recent years, the degree of integration of various electronic devices has improved dramatically, but on the other hand, they are very sensitive to static electricity. The destruction of electronic devices due to static electricity and the deterioration of characteristics have been highlighted as a major problem, and semiconductive materials (ceramics and glass) are new materials effective for countermeasures against static electricity, and are materials with electrostatic diffusion characteristics. is there. Because it is difficult to charge static electricity and does not flow a large current, it is optimal for peripheral parts of electronic devices sensitive to static electricity and jig materials for manufacturing them. The electrode ring material for an electron microscope of the present invention has also been applied due to the feature that only a minute current flows when a high voltage is applied.

本発明によれば、絶縁性筒体に嵌めこまれる筒状抵抗体の中空孔を電子ビームや2次電子の通過経路として、抵抗体の導電性のむらに起因して中空孔内面の抵抗値がばらつくといった問題が発生せず、中空孔における軸中心まわりの電界分布を均等にでき、電子ビームや2次電子の所望の軌道制御を妨げない。この結果、電子顕微鏡における試料の観測を良好に行える。   According to the present invention, the hollow hole of the cylindrical resistor fitted into the insulating cylinder is used as the electron beam or secondary electron passage path, and the resistance value of the inner surface of the hollow hole is caused by the uneven conductivity of the resistor. The problem of variation does not occur, the electric field distribution around the axis center in the hollow hole can be made uniform, and desired trajectory control of the electron beam and secondary electrons is not hindered. As a result, the sample can be satisfactorily observed with an electron microscope.

以下、本発明を適用した具体的な実施形態について、図面を参照しながら詳細に説明する。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings.

[第1の実施形態]
図1は本発明の第1の実施形態に係る電極リング1の一方の端面の平面図を示す。図2は図1における[A]−[A]線方向の断面図を示す。
[First Embodiment]
FIG. 1 shows a plan view of one end face of an electrode ring 1 according to a first embodiment of the present invention. FIG. 2 is a sectional view taken along the line [A]-[A] in FIG.

電極リング1は、絶縁性筒体5とこの絶縁性筒体5の内側に嵌め込まれた筒状の抵抗体4と、一方の端面に形成された第1電極2と、他方の端面に形成された第2電極6を備える。   The electrode ring 1 is formed on an insulating cylinder 5, a cylindrical resistor 4 fitted inside the insulating cylinder 5, a first electrode 2 formed on one end face, and the other end face. The second electrode 6 is provided.

絶縁性筒体5は、厚さ方向(軸方向)を貫通して形成された中空孔19を有する円筒状を呈する。中空孔19及び絶縁性筒体5の軸中心は一致している。絶縁性筒体5は例えばアルミナなどのセラミック材料からなるが、これに限らず非磁性且つ絶縁性の材料を用いることができる。   The insulating cylinder 5 has a cylindrical shape having a hollow hole 19 formed through the thickness direction (axial direction). The axial centers of the hollow hole 19 and the insulating cylinder 5 are the same. The insulating cylinder 5 is made of a ceramic material such as alumina, but is not limited thereto, and a nonmagnetic and insulating material can be used.

抵抗体4も絶縁性筒体5と同様な円筒状を呈し、厚さ方向(軸方向)を貫通して形成された中空孔3を有する。中空孔3及び抵抗体4の軸中心は一致している。抵抗体4の厚さ(軸方向寸法)は絶縁性筒体5のそれと略等しく、抵抗体4の太さ(外径)は絶縁性筒体5の中空孔19の内径と略等しいかわずかに小さい。抵抗体4の中空孔3の内径は絶縁性筒体5の中空孔19の内径よりも小さい。   The resistor 4 also has a cylindrical shape similar to that of the insulating cylinder 5 and has a hollow hole 3 formed through the thickness direction (axial direction). The axial centers of the hollow hole 3 and the resistor 4 are coincident. The thickness (axial dimension) of the resistor 4 is substantially equal to that of the insulating cylinder 5, and the thickness (outer diameter) of the resistor 4 is approximately equal to or slightly equal to the inner diameter of the hollow hole 19 of the insulating cylinder 5. small. The inner diameter of the hollow hole 3 of the resistor 4 is smaller than the inner diameter of the hollow hole 19 of the insulating cylinder 5.

本実施の形態では、抵抗体4は以下のようにして製造されている。すなわち、石英ガラス材に酸化鉄等の導電材を添加して溶融し固化させることで抵抗体4を得る。このように構成される導電性ガラスの溶融固化ブロックは機械加工で所望の寸法(例えば、厚み0.1mm)に薄くスライスした後、ラッピング加工で厚み寸法と平面度を仕上げるようにしている。この方法で製造された抵抗体4はガラスが溶融するため、添加材が内部で均一に分散され非常に電気抵抗値が均一な物質を作り出すことができる。   In the present embodiment, the resistor 4 is manufactured as follows. That is, the resistor 4 is obtained by adding a conductive material such as iron oxide to a quartz glass material and melting and solidifying it. The melted and solidified block of conductive glass thus configured is sliced thinly into a desired dimension (for example, thickness of 0.1 mm) by machining, and then the thickness dimension and flatness are finished by lapping. Since the resistor 4 manufactured by this method melts the glass, the additive can be uniformly dispersed inside and a substance having a very uniform electrical resistance can be created.

このように抵抗体4としては、軸方向における電位変化をゆるやかにするべく大きな抵抗値(例えば数GΩ〜数TΩ)を安定して得られる。添加する導電性物質の含有比率の調整により抵抗体4の抵抗値の調整を自由に行える。   As described above, the resistor 4 can stably obtain a large resistance value (for example, several GΩ to several TΩ) so as to moderate the potential change in the axial direction. The resistance value of the resistor 4 can be freely adjusted by adjusting the content ratio of the conductive material to be added.

抵抗体4は絶縁性筒体5の中空孔19に嵌め込まれている。抵抗体4は絶縁性筒体5の中空孔19に圧入された状態となり、抵抗体4の外周面と、絶縁性筒体5の中空孔19の内周面とは隙間なく密着している。抵抗体4の中空孔3及び絶縁性筒体5の中空孔19は互いの軸中心を一致させている。なお、絶縁性筒体5、抵抗体4は円筒状に限らず角筒状であってもよい。   The resistor 4 is fitted in the hollow hole 19 of the insulating cylinder 5. The resistor 4 is pressed into the hollow hole 19 of the insulating cylinder 5, and the outer peripheral surface of the resistor 4 and the inner peripheral surface of the hollow hole 19 of the insulating cylinder 5 are in close contact with each other without a gap. The hollow hole 3 of the resistor 4 and the hollow hole 19 of the insulating cylinder 5 are aligned with each other. The insulating cylinder 5 and the resistor 4 are not limited to a cylindrical shape, and may be a rectangular tube shape.

絶縁性筒体5の一方の端面(図2において下端面)と、抵抗体4の一方の端面(図2において下端面)とは面一とされて電極リング1の一方の端面(図2において下端面)を構成し、この端面には第1電極2が形成されている。第1電極2は、電極リング1の上記一方の端面の全面にスパッタ法や蒸着法で成膜された導電膜である。その導電膜は例えば銅やTiNなどの金属材料からなる。その他、導体箔を上記一方の端面に貼り付けることで第1電極2を構成してもよい。   One end surface (lower end surface in FIG. 2) of the insulating cylinder 5 and one end surface (lower end surface in FIG. 2) of the resistor 4 are flush with each other, and one end surface of the electrode ring 1 (in FIG. 2). The first electrode 2 is formed on this end surface. The first electrode 2 is a conductive film formed on the entire surface of the one end face of the electrode ring 1 by sputtering or vapor deposition. The conductive film is made of a metal material such as copper or TiN. In addition, you may comprise the 1st electrode 2 by affixing conductor foil on the said one end surface.

絶縁性筒体5の他方の端面(図2において上端面)と、抵抗体4の他方の端面(図2において上端面)とは面一とされて電極リング1の他方の端面(図2において上端面)を構成し、この端面には第2電極6が形成されている。第2電極6は、電極リング1の上記他方の端面の全面にスパッタ法や蒸着法で成膜された導電膜である。その導電膜は例えば銅やTiNなどの金属材料からなる。その他、導体箔を上記他方の端面に貼り付けることで第2電極6を構成してもよい。   The other end face of the insulating ring 5 (upper end face in FIG. 2) and the other end face of the resistor 4 (upper end face in FIG. 2) are flush with each other and the other end face of the electrode ring 1 (in FIG. 2). The second electrode 6 is formed on this end surface. The second electrode 6 is a conductive film formed on the entire surface of the other end face of the electrode ring 1 by sputtering or vapor deposition. The conductive film is made of a metal material such as copper or TiN. In addition, you may comprise the 2nd electrode 6 by affixing conductor foil on the said other end surface.

以上のように構成される電極リング1は電子顕微鏡の一構成部品として、図5に示すように、リング状の対物レンズ8と、試料9との間に配置される。対物レンズ8と試料9との間の間隙は例えば2〜3mmほどであり、その間隙に、第1電極2を形成した端面を試料9に対向させ、第2電極6を形成した端面を対物レンズ8側に向けて、さらに中空孔3を、試料9へと照射される電子ビームの通過経路に位置させて電極リング1は配置される。第1電極膜2が形成された端面と試料9との間の間隙は数十μm〜数百μmとされる。   The electrode ring 1 configured as described above is disposed as a component part of an electron microscope between a ring-shaped objective lens 8 and a sample 9 as shown in FIG. The gap between the objective lens 8 and the sample 9 is, for example, about 2 to 3 mm. In the gap, the end surface on which the first electrode 2 is formed is opposed to the sample 9, and the end surface on which the second electrode 6 is formed is the objective lens. The electrode ring 1 is disposed so that the hollow hole 3 is positioned on the passage of the electron beam irradiated to the sample 9 toward the side 8. The gap between the end surface on which the first electrode film 2 is formed and the sample 9 is several tens μm to several hundreds μm.

対物レンズ8の上方には、図示しない複数段の集束レンズや電子銃などが配設されている。対物レンズ8は、集束レンズにより細く絞り込まれた電子ビームを試料9上に焦点を合わせて照射するためのレンズとして機能する。   Above the objective lens 8, a multistage focusing lens, an electron gun, etc. (not shown) are arranged. The objective lens 8 functions as a lens for focusing and irradiating the sample 9 with the electron beam narrowed down by the focusing lens.

試料9には電源11より負電圧が印加され、対物レンズ8は接地される。電極リング1の第1電極2には電源11より負電圧が印加され試料9と等電位にされる。電極リング1の第2電極6は接地される。   A negative voltage is applied to the sample 9 from the power source 11, and the objective lens 8 is grounded. A negative voltage is applied from the power source 11 to the first electrode 2 of the electrode ring 1 to make it equipotential with the sample 9. The second electrode 6 of the electrode ring 1 is grounded.

以上のように構成される本実施形態に係る電子顕微鏡を用いて、例えば半導体ウェーハなどの試料9に形成されたコンタクトホール10を観察する場合について説明する。電子銃などの照射源から照射された電子ビームEBが、対物レンズ8及び電極リング1の抵抗体4の中空孔3を通過して試料9のコンタクトホール10に照射されると、その被照射部の表面から2次電子が放出される。   The case where the contact hole 10 formed in the sample 9 such as a semiconductor wafer is observed using the electron microscope according to the present embodiment configured as described above will be described. When the electron beam EB irradiated from an irradiation source such as an electron gun passes through the hollow hole 3 of the resistor 4 of the objective lens 8 and the electrode ring 1 and is irradiated to the contact hole 10 of the sample 9, the irradiated portion Secondary electrons are emitted from the surface.

ここで、試料9には負電圧が印加されているため、2次電子は試料9から反発するようにして放出される。このとき、電極リング1において試料9と対向する端面側に形成された第1電極6にも負電圧が印加されて試料9と等電位とされているので、試料9とこれに対向する電極リング1の下端面との間には、試料9から放出された2次電子の加速を妨げるような電界は発生していない。   Here, since a negative voltage is applied to the sample 9, secondary electrons are emitted from the sample 9 so as to repel. At this time, since the negative voltage is also applied to the first electrode 6 formed on the end face side facing the sample 9 in the electrode ring 1 to make it equipotential with the sample 9, the sample 9 and the electrode ring facing this An electric field that prevents acceleration of secondary electrons emitted from the sample 9 is not generated between the lower end surface of 1 and the bottom surface of 1.

これにより、2次電子の放出軌跡aを、図10に示す従来構成(対物レンズ8と試料9との間に上記電極リング1を介在させない構成)に比べて引き上げることができる(図5と図10とでは各構成要素を明確にするために必ずしも各間隔は相等しくない)。この結果、コンタクトホール10底部からの2次電子をコンタクトホール10の側壁部に吸収されることなく放出させることができる。これは特に、半導体集積回路の微細化が進み高アスペクト比のコンタクトホールなどの底部を観察する場合に非常に有効となる。   As a result, the secondary electron emission locus a can be raised as compared with the conventional configuration shown in FIG. 10 (the configuration in which the electrode ring 1 is not interposed between the objective lens 8 and the sample 9) (FIGS. 5 and 5). 10 is not necessarily equal to each other in order to clarify each component). As a result, secondary electrons from the bottom of the contact hole 10 can be emitted without being absorbed by the side wall of the contact hole 10. This is particularly effective when the bottom of a contact hole having a high aspect ratio is observed as the semiconductor integrated circuit becomes finer.

放出された2次電子は電極リング1の中空孔3を通り抜け、このとき第1、第2電極2、6間の電位差による加速を受け、且つ図示しない2次電子検出器に印加された正の電位に引かれてその2次電子検出器表面に塗布された蛍光面に衝突して光に変換され、この光は光電子増倍管で増幅される。この信号はさらに増幅された後、表示装置に表示される。   The emitted secondary electrons pass through the hollow hole 3 of the electrode ring 1. At this time, the secondary electrons are accelerated by a potential difference between the first and second electrodes 2 and 6 and are positively applied to a secondary electron detector (not shown). It is attracted to an electric potential and collides with a fluorescent screen applied to the surface of the secondary electron detector to be converted into light, which is amplified by a photomultiplier tube. This signal is further amplified and then displayed on the display device.

また、抵抗体4の一方の端面側には第1電極2が形成されてその端面は第1電極2と電気的に接続されており、他方の端面側には第2電極6が形成されてその端面は第2電極6と電気的に接続されているため、抵抗体4の中空孔3内面には、第1電極2に近い位置に生じる電位(−Vp)をピークとして、第2電極6側に向けて徐々に均一に電位が減少して電位0に近づく電位分布でもって電界が生じる。ここで、抵抗体4の抵抗値は非常に大きいため(例えば数GΩ〜数TΩ)、上記電位分布の変化は均一かつ、ゆるやかになり、中空孔3内を通過する電子ビームや放出2次電子の軌道に悪影響を与えず、結果として電子顕微鏡におけるレンズ収差を小さくすることができる。   Further, the first electrode 2 is formed on one end face side of the resistor 4 and the end face is electrically connected to the first electrode 2, and the second electrode 6 is formed on the other end face side. Since the end face is electrically connected to the second electrode 6, the second electrode 6 has a peak at the potential (−Vp) generated near the first electrode 2 on the inner surface of the hollow hole 3 of the resistor 4. An electric field is generated with a potential distribution that gradually decreases uniformly toward the side and approaches a potential of zero. Here, since the resistance value of the resistor 4 is very large (for example, several GΩ to several TΩ), the change in the potential distribution is uniform and gradual, and the electron beam or the emitted secondary electrons passing through the hollow hole 3. As a result, the lens aberration in the electron microscope can be reduced.

さらに、本実施形態では、絶縁性筒体5の中空孔19に筒状の抵抗体4を嵌め込むことで、電子ビームや放出2次電子の通過経路が抵抗材で囲まれる構造としているため、絶縁性筒体の中空孔内面に抵抗膜を形成した場合(特許文献1)に起こり得る抵抗膜の不均等形成による電界ばらつきが生じず、中空孔3における軸中心まわりの電界分布を均等にでき、対物レンズ8等による電子ビームの所望の制御を行いやすくなる。   Furthermore, in this embodiment, since the cylindrical resistor 4 is fitted into the hollow hole 19 of the insulating cylinder 5, the electron beam and the emission secondary electron passage path are surrounded by the resistance material. When the resistance film is formed on the inner surface of the hollow hole of the insulating cylinder (Patent Document 1), the electric field variation due to the non-uniform formation of the resistance film does not occur, and the electric field distribution around the axis center in the hollow hole 3 can be made uniform. It becomes easy to perform desired control of the electron beam by the objective lens 8 or the like.

[第2の実施形態]
次に、本発明の第2の実施形態について説明する。なお、上記第1の実施形態と同じ構成部分には同一の符号を付しその詳細な説明は省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the same component as the said 1st Embodiment, and the detailed description is abbreviate | omitted.

上述した抵抗体4としては、石英材と酸化鉄(Fe23)を混ぜ合わせて溶融固化したものを用いている。ここで、導電性物質としての酸化鉄が均等分布で混ざっていない場合には、抵抗の小さい部分(導電性物質が偏って存在している部分)に電流が流れやすく、中空孔3における軸中心まわりの電界分布が不均等になる可能性がある。特に、抵抗体4の抵抗値は数GΩ〜数TΩと非常に大きいこともあって、電流はより抵抗の小さい部分を流れやすい傾向が強く、少しの導電性物質の分布ばらつきでも中空孔3における電界不均等につながる可能性が高い。 As the resistor 4 described above, a material in which a quartz material and iron oxide (Fe 2 O 3 ) are mixed and melted and solidified is used. Here, when the iron oxide as the conductive material is not mixed in a uniform distribution, a current easily flows in a portion having a small resistance (a portion where the conductive material is biased), and the axial center in the hollow hole 3 The electric field distribution around can be uneven. In particular, the resistance value of the resistor 4 is very large, from several GΩ to several TΩ, and the current tends to easily flow through a portion having a smaller resistance. There is a high possibility of non-uniform electric fields.

第2の実施形態では、図3に示すように、抵抗体17の両端面の間に、電流の流れを軸中心まわりに均等にする複数(この例では2層)のリング状の導電層18a、18bを介在させている。各導電層18a、18b間のピッチ、および抵抗体17の各端面と導電層18a、18bとの間の間隔は略等しい。各導電層18a、18bの軸中心と中空孔3の軸中心とは一致している。   In the second embodiment, as shown in FIG. 3, a plurality of (in this example, two layers) ring-shaped conductive layers 18 a that equalize the current flow around the axial center between both end faces of the resistor 17. , 18b are interposed. The pitch between the conductive layers 18a and 18b and the distance between each end face of the resistor 17 and the conductive layers 18a and 18b are substantially equal. The axial center of each conductive layer 18a, 18b and the axial center of the hollow hole 3 coincide.

軸方向に沿った電流経路の途中に、導電層18a、18bが中空孔3内面における他の部分よりも抵抗の小さい部分として存在し、また導電層18a、18bは軸中心まわりにリング状に形成されているため、導電層18a、18bでは周方向のどの位置でも同じように電流が流れる(周方向の位置の違いによる偏りがなく流れる)。したがって、中空孔3内面において導電層18a、18bの部分では軸中心まわりに均等な電流が流れることになり、軸中心まわりに均等分布の電界が生じる。導電層18a、18bのない部分で軸中心まわりに不均等な電流の流れが形成されても導電層18a、18bの部分で軸中心まわりに均等にされるので、中空孔3内面を軸方向に沿って流れる電流全体としてみれば軸中心まわりの電界ばらつきを抑えることになる。   In the middle of the current path along the axial direction, the conductive layers 18a and 18b exist as portions having lower resistance than the other portions on the inner surface of the hollow hole 3, and the conductive layers 18a and 18b are formed in a ring shape around the axial center. Therefore, in the conductive layers 18a and 18b, current flows in the same way at any position in the circumferential direction (there is no bias due to the difference in the circumferential position). Therefore, an equal current flows around the axis center in the conductive layers 18a and 18b on the inner surface of the hollow hole 3, and an electric field with a uniform distribution is generated around the axis center. Even if an uneven current flow is formed around the axial center in the portions where the conductive layers 18a and 18b are not formed, the conductive layers 18a and 18b are made uniform around the axial center so that the inner surface of the hollow hole 3 is formed in the axial direction. As a whole of the current flowing along, the electric field variation around the axis center is suppressed.

この本実施形態に係る抵抗体17は、図4に示すように例えば3つの筒体17a〜17cを積層させて得られる。各筒体17a〜17cは、半導電性ガラスに酸化鉄を均等に混ぜて溶融固化したものであり、各筒体17a〜17cの厚さが互いに略等しくなるように端面を研削するなどして必要な寸法精度に加工されている。各筒体17a〜17cを積層して得られる抵抗体17の厚さは絶縁性筒体5の厚さと略等しい。各筒体17a〜17cの外径は絶縁性筒体5の中空孔19の内径と略等しいかわずかに小さい。各筒体17a〜17cの各中空孔の内径は互いに略等しく、且つ絶縁性筒体5の中空孔19の内径よりも小さい。   The resistor 17 according to this embodiment is obtained by stacking, for example, three cylinders 17a to 17c as shown in FIG. Each cylindrical body 17a-17c is obtained by uniformly mixing iron oxide with semiconductive glass and melting and solidifying it, and grinding the end surfaces so that the thicknesses of the cylindrical bodies 17a-17c are substantially equal to each other. Processed to the required dimensional accuracy. The thickness of the resistor 17 obtained by stacking the cylinders 17 a to 17 c is substantially equal to the thickness of the insulating cylinder 5. The outer diameters of the cylinders 17a to 17c are substantially equal to or slightly smaller than the inner diameter of the hollow hole 19 of the insulating cylinder 5. The inner diameters of the hollow holes of the cylinders 17a to 17c are substantially equal to each other and smaller than the inner diameter of the hollow hole 19 of the insulating cylinder 5.

筒体17aにおいて筒体17bと合わせられる端面には導電膜21aが成膜されている。筒体17bの両端面にはそれぞれ導電膜21b、21cが成膜されている。筒体17cの端面にはそれぞれ導電膜21dが成膜されている。各導電膜21a〜21dは、例えば蒸着法やスパッタ法で成膜される銅膜であるが、これに限らず導電性を有するものであればよい。各導電膜21a〜21dの厚さは数μmほどである。   A conductive film 21a is formed on the end face of the cylindrical body 17a that is aligned with the cylindrical body 17b. Conductive films 21b and 21c are formed on both end faces of the cylindrical body 17b. A conductive film 21d is formed on each end face of the cylindrical body 17c. Each of the conductive films 21a to 21d is a copper film formed by, for example, a vapor deposition method or a sputtering method, but is not limited thereto, and any conductive material may be used. The thickness of each conductive film 21a-21d is about several micrometers.

図4に示すように、各筒体17a〜17cの各中空孔に軸芯部材60を通し、各中空孔を一致させて各筒体17a〜17cを重ね合わせて、真空炉の中で加熱し且つ軸方向に圧力を加えることにより各導電膜21a〜21dを拡散接合(金属表面の原子間に働く結合力による金属接合)させる。すなわち、導電膜21aと導電膜21bとが拡散接合されることで導電層18aが得られ、導電膜21cと導電膜21dとが拡散接合されることで導電層18bが得られる。   As shown in FIG. 4, the shaft core member 60 is passed through the hollow holes of the cylinders 17a to 17c, and the cylinders 17a to 17c are overlapped with each other, and heated in a vacuum furnace. In addition, by applying pressure in the axial direction, the conductive films 21a to 21d are diffusion-bonded (metal bonding by a bonding force acting between atoms on the metal surface). That is, the conductive layer 18a is obtained by diffusion bonding of the conductive film 21a and the conductive film 21b, and the conductive layer 18b is obtained by diffusion bonding of the conductive film 21c and the conductive film 21d.

このような積層構造により、半導電ガラス材料からなる各筒体17a〜17cと導電膜21a〜21cとの密着性及び導電膜21a〜21cどうしの密着性を高めた信頼性の高い抵抗体17とすることができる。さらに、接着材を使っていないため、接着材を使うことによる径年劣化や寸法精度悪化の心配もない。   With such a laminated structure, the highly reliable resistor 17 having improved adhesion between the cylindrical bodies 17a to 17c made of a semiconductive glass material and the conductive films 21a to 21c and adhesion between the conductive films 21a to 21c, and can do. In addition, since no adhesive is used, there is no fear of deterioration of the age and dimensional accuracy due to the use of the adhesive.

以上のようにして得られる抵抗体17は、図3に示すように、絶縁性筒体5の中空孔19に嵌め込まれる。絶縁性筒体5の一方の端面(図3において下端面)と、抵抗体17の一方の端面(図3において下端面)とは面一とされて第2の実施形態に係る電極リング31の一方の端面(図3において下端面)を構成し、この端面には第1の実施形態と同様に第1電極2が形成される。絶縁性筒体5の他方の端面(図3において上端面)と、抵抗体17の他方の端面(図3において上端面)とは面一とされて電極リング31の他方の端面(図3において上端面)を構成し、この端面には第1の実施形態と同様に第2電極6が形成される。   The resistor 17 obtained as described above is fitted into the hollow hole 19 of the insulating cylinder 5 as shown in FIG. One end face (lower end face in FIG. 3) of the insulating cylinder 5 and one end face (lower end face in FIG. 3) of the resistor 17 are flush with each other in the electrode ring 31 according to the second embodiment. One end face (lower end face in FIG. 3) is formed, and the first electrode 2 is formed on this end face as in the first embodiment. The other end face of the insulating cylinder 5 (upper end face in FIG. 3) and the other end face of the resistor 17 (upper end face in FIG. 3) are flush with each other, and the other end face of the electrode ring 31 (in FIG. 3). The second electrode 6 is formed on the end surface as in the first embodiment.

上記例では各筒体17a〜17cの互いの合わせ面にそれぞれ導電膜21a〜21dを成膜してから各導電膜21a〜21dどうしの拡散接合を利用して抵抗体17を得たが、例えば、導体箔を接着材を介して各筒体17a〜17c間に挟み込んで積層させるようにしてもよい。   In the above example, the conductive films 21a to 21d are formed on the mating surfaces of the cylinders 17a to 17c, respectively, and then the resistor 17 is obtained using diffusion bonding between the conductive films 21a to 21d. The conductor foil may be sandwiched and laminated between the cylinders 17a to 17c via an adhesive.

また、導電層の層数は2層に限らず、1層や3層、4層以上であってもよい。また、電流が流れやすくなる部分が軸方向に関して均等配置となるように、各導電層は軸方向に関して等ピッチで配置することが好ましい。1層の場合は抵抗体17の厚さ方向(軸方向)の略半分位置に配置することが好ましい。   Further, the number of conductive layers is not limited to two, but may be one layer, three layers, four layers or more. In addition, it is preferable that the conductive layers are arranged at an equal pitch in the axial direction so that portions where current easily flows are arranged in the axial direction. In the case of one layer, it is preferable that the resistor 17 is disposed at a substantially half position in the thickness direction (axial direction).

図6は本発明の第3の実施形態による電極リング40を示す。本実施の形態では半導電セラミック材を採用し、先の提案では数十mm〜数百mm程度のブロック材で特殊雰囲気中の還元反応を用いて焼結して製造していたが、本発明の実施の形態では1mmより十分薄いシート、例えば0.1mmで焼結還元を行い十分内部まで還元反応を進行させ、抵抗値が均一化された半導体電セラミック材料を採用している。このようにシート状で焼結した材料の上下面にラッピング加工を施し厚み寸法を揃え平面度を仕上げる。なお、本願発明では充分に薄いシート状とは、中央まで充分に還元されている程度に薄いことを意味する。従って、シートの厚さは上述の1mm以上であってもよい。   FIG. 6 shows an electrode ring 40 according to a third embodiment of the present invention. In this embodiment, a semiconductive ceramic material is used, and in the previous proposal, a block material of about several tens mm to several hundred mm was manufactured by sintering using a reduction reaction in a special atmosphere. In this embodiment, a semiconductor electroceramic material having a uniform resistance value is adopted by carrying out a sintering reduction with a sheet sufficiently thinner than 1 mm, for example, 0.1 mm, and proceeding the reduction reaction sufficiently to the inside. Thus, lapping is performed on the upper and lower surfaces of the material sintered in the form of a sheet to align the thickness dimension and finish the flatness. In the present invention, a sufficiently thin sheet means that the sheet is thin enough to be sufficiently reduced to the center. Accordingly, the thickness of the sheet may be 1 mm or more as described above.

このようにして、図6に示すように本実施の形態の電極リング40では4段のシート状抵抗リング41a、41b、41c、41dを重ねている。この製法においては、図7に示すように上記半導電ガラス材とほぼ同様にして半導電セラミック材41a、41b、41c、41dを治具60に中心孔において挿通し、加熱加圧して図6に示す構成を得るようにしている。やはり各抵抗リング材41a、41b、41c、41dの間にバッファ層44a、44b、44cが形成され、これは上記の第2の実施形態と同様に銅を蒸着し(43a〜43f)このあと上述の治具60に挿通し加熱加圧により図6に示す抵抗体41を得ることができる。   In this way, as shown in FIG. 6, in the electrode ring 40 of the present embodiment, the four-stage sheet-like resistance rings 41a, 41b, 41c, and 41d are overlapped. In this manufacturing method, as shown in FIG. 7, the semiconductive ceramic materials 41a, 41b, 41c, and 41d are inserted into the jig 60 in the center hole in substantially the same manner as the above semiconductive glass material, and heated and pressurized to obtain FIG. The configuration shown is obtained. Again, buffer layers 44a, 44b, and 44c are formed between the resistance ring materials 41a, 41b, 41c, and 41d, and this is performed by depositing copper (43a to 43f) in the same manner as in the second embodiment. The resistor 41 shown in FIG. 6 can be obtained by being inserted into the jig 60 and heated and pressed.

本実施の形態では0.1mmと非常に薄い寸法で焼結・酸化するようにしたので、各抵抗リングは内部中央にまで十分に還元されており、各抵抗体は従来に比べ大幅に抵抗値を均一化することができる。   In this embodiment, since sintering and oxidation are performed with a very thin dimension of 0.1 mm, each resistance ring is sufficiently reduced to the inner center, and each resistor has a resistance value significantly higher than the conventional one. Can be made uniform.

図8は本発明の各実施の形態による抵抗体の抵抗値の経時変化を示すチャートである。上述の−Vpが1kVの電圧において、各実施の形態による変化を示すが、従来の数十mm〜数百mmのブロック状のセラミックの焼結体から切り出した抵抗体の場合にはaで示すように時間と共に抵抗値が大きくなっていくのに対し、本発明の第1の実施形態による石英材に酸化鉄材を添加して溶融して形成させた抵抗体では、bで示すように最初から60分経過してもほとんど抵抗値は変化していない。また、本発明の第3の実施形態による半導電セラミックでなる抵抗リングを上述したように各々、充分に薄く多層に積層した場合には、cで示すように最初の20分位は少し増大するが、その後殆ど変化することはない。従来の特性aと本願発明の実施の形態による特性cでは、安定性において、大きな相違がある。同じ半導電セラミックからなっても数十mm〜数百mmの焼結体ブロックから切り出して所望の厚さに切削したものでは上述したように特殊な雰囲気下で焼結するのであるが、ブロック切り出しにより中心まで還元されない。このためにaのように増大し不安定である。これに対し本実施の形態では0.1mmという非常に薄い成形体を焼結還元しているので中心まで十分に還元しているこのために特性cのように殆ど変化していない。   FIG. 8 is a chart showing the change with time of the resistance value of the resistor according to each embodiment of the present invention. The above-mentioned −Vp is 1 kV, and changes according to each embodiment are shown. In the case of a resistor cut out from a conventional ceramic sintered body of several tens to several hundreds of mm, it is indicated by a. In contrast, the resistance value increases with time, whereas in the resistor formed by adding and melting the iron oxide material to the quartz material according to the first embodiment of the present invention, as shown by b, from the beginning Even after 60 minutes, the resistance value hardly changed. In addition, when the resistance rings made of the semiconductive ceramic according to the third embodiment of the present invention are each sufficiently thin and laminated in multiple layers as described above, the first twentieth is slightly increased as shown by c. However, it hardly changes after that. There is a great difference in stability between the conventional characteristic a and the characteristic c according to the embodiment of the present invention. Even if it is made of the same semiconductive ceramic, it is cut out from a sintered body block of several tens mm to several hundred mm and cut to a desired thickness, but it is sintered in a special atmosphere as described above. Is not reduced to the center. For this reason, it increases as shown by a and is unstable. On the other hand, in the present embodiment, a very thin molded body of 0.1 mm is sintered and reduced, so that it is sufficiently reduced to the center.

図9は負荷電圧(−Vp)による抵抗値の変化を示すが、電圧が0〜1,000Vに変化するにつれて抵抗値は従来の数十mm〜数百mmの焼結ブロックからの切り出しによる高抵抗セラミックでは、0ボルトから少し上がった後、200Vを超えたところまで少し低下し、次いで上昇する特性を示している。一方の本発明の第1の実施形態による酸化鉄を添加した石英ガラス材では、bで示すように0Vから1000Vまで殆ど一定である。次いで、本発明の第3の実施形態の高抵抗セラミックでなるリング抵抗体を多層積層したものでは、cで示すように電圧が小さいところでは僅かに増大するがその後は一定である。これも上述したように0.1mmという薄いシート状に成形して焼結酸化したので十分内部まで還元しており、均一な材質の特性を持っているからである。   FIG. 9 shows the change in resistance value due to the load voltage (−Vp). As the voltage changes from 0 to 1,000 V, the resistance value increases as a result of cutting from a conventional sintered block of several tens to several hundred mm. Resistive ceramics show the characteristic that after a little increase from 0 volts, the resistance ceramic slightly decreases to a point exceeding 200 V and then increases. On the other hand, in the quartz glass material added with iron oxide according to the first embodiment of the present invention, as shown by b, it is almost constant from 0V to 1000V. Next, in the third embodiment of the present invention in which the ring resistors made of high resistance ceramics are laminated in multiple layers, as shown by c, the voltage increases slightly when it is small, but is constant thereafter. This is also because, as described above, it was formed into a thin sheet of 0.1 mm and sintered and oxidized, so that it was sufficiently reduced to the inside and had the characteristics of a uniform material.

本発明の実施形態では、上述したように抵抗値の経時変化においても負荷電圧による抵抗値の変化特性においても従来より大幅に優れている   In the embodiment of the present invention, as described above, both the resistance value change with time and the resistance value change characteristic due to the load voltage are significantly superior to those of the prior art.

以上、本発明の各実施の形態について説明したが、勿論、本発明はこれらに限定されることなく、本発明の技術的思想に基づいて種々の変形が可能である。   As mentioned above, although each embodiment of this invention was described, of course, this invention is not limited to these, A various deformation | transformation is possible based on the technical idea of this invention.

例えば以上の第1の実施形態では石英材に酸化鉄を添加し溶融して半導電ガラス材を得るようにしたが、導電材としては酸化鉄に限ることなく他の金属酸化物、粒子状のモリブデン、であってもよい。   For example, in the first embodiment described above, iron oxide is added to a quartz material and melted to obtain a semiconductive glass material. However, the conductive material is not limited to iron oxide, and other metal oxides and particulates are used. It may be molybdenum.

また、以上の第2の実施形態では、半導電ガラス材のシート状リング材を3層としたが、勿論これ以上或いは2層であってもよい。要するに、石英材に導電材を混合して溶融するであるが溶融の仕方、あるいは攪拌の状況によっては濃度にむらが生じ、このまま固化したのでは抵抗体の上端面から下端面において均一な電圧勾配を得ることができない。従って、この濃度のむらに応じてバッファ層(上述の実施例ではCu層)の枚数すなわち抵抗リング体の段数を増減すればよい。バッファ層によって上述の濃度むらを緩和するのであるが、バッファ層としては銅に限らず、他の金属であってもよい。   Moreover, in the above 2nd Embodiment, although the sheet-like ring material of the semiconductive glass material was made into 3 layers, of course, more or 2 layers may be sufficient. In short, the conductive material is mixed with the quartz material and melted. However, the concentration varies depending on the melting method or the state of stirring, and if the solidified as it is, a uniform voltage gradient from the upper end surface to the lower end surface of the resistor is produced. Can't get. Therefore, the number of buffer layers (Cu layer in the above embodiment), that is, the number of stages of the resistance ring body may be increased or decreased in accordance with the unevenness of the concentration. Although the above-described concentration unevenness is alleviated by the buffer layer, the buffer layer is not limited to copper but may be other metals.

また第3の実施形態においては半導電セラミック材を焼結してなる抵抗リングを4枚重ねたが、この枚数も上述と同様であり、これに限られることはない。   In the third embodiment, four resistance rings formed by sintering a semiconductive ceramic material are stacked. However, this number is the same as described above, and is not limited thereto.

本発明の第1の実施形態に係る電極リングの一方の端面側から見た平面図である。It is the top view seen from the one end surface side of the electrode ring which concerns on the 1st Embodiment of this invention. 図1における[A]−[A]線方向の断面図である。It is sectional drawing of the [A]-[A] line direction in FIG. 本発明の第2の実施形態に係る電極リングの断面図である。It is sectional drawing of the electrode ring which concerns on the 2nd Embodiment of this invention. 図4は第2の実施形態による半導電ガラス材抵抗リングの積層体を製造する方法を示す断面図である。FIG. 4 is a cross-sectional view showing a method of manufacturing a laminated body of semiconductive glass material resistance rings according to the second embodiment. 図5は本発明の実施形態に係る電子顕微鏡の要部を模式的に示した拡大断面図である。FIG. 5 is an enlarged cross-sectional view schematically showing the main part of the electron microscope according to the embodiment of the present invention. 図6は本発明の第3の実施形態による電極リングの断面図。FIG. 6 is a sectional view of an electrode ring according to a third embodiment of the present invention. 図7は第3の実施形態による半導電セラミック材リングの積層体を製造する方法を示す断面図。FIG. 7 is a cross-sectional view showing a method for manufacturing a laminate of semiconductive ceramic material rings according to a third embodiment. 図8は従来例、第1の実施形態及び第3実施形態の抵抗体の抵抗値の経時変化を示すグラフ。FIG. 8 is a graph showing changes over time in the resistance values of the resistors of the conventional example, the first embodiment, and the third embodiment. 図9は従来例、第1の実施形態及び第3の実施形態による抵抗体の電圧特性を示すグラフである。FIG. 9 is a graph showing voltage characteristics of the resistors according to the conventional example, the first embodiment, and the third embodiment. 図10は従来例の電子顕微鏡の要部を模式的に示した拡大断面図。FIG. 10 is an enlarged cross-sectional view schematically showing a main part of a conventional electron microscope. 従来例の電極リングの断面図である。It is sectional drawing of the electrode ring of a prior art example.

符号の説明Explanation of symbols

1…電極リング、2…第1電極、3…中空孔、4…抵抗体、5…絶縁性筒体、6…第2電極、8…対物レンズ、9…試料、10…コンタクトホール、17…抵抗体、18a、18b…導電層、21a〜21d…導電膜、31、40…電極リング、41…抵抗体、41a〜41d…抵抗リング、43a〜43f…導電膜、44a〜44d…導電膜   DESCRIPTION OF SYMBOLS 1 ... Electrode ring, 2 ... 1st electrode, 3 ... Hollow hole, 4 ... Resistor, 5 ... Insulating cylinder, 6 ... 2nd electrode, 8 ... Objective lens, 9 ... Sample, 10 ... Contact hole, 17 ... Resistor, 18a, 18b ... conductive layer, 21a-21d ... conductive film, 31, 40 ... electrode ring, 41 ... resistor, 41a-41d ... resistance ring, 43a-43f ... conductive film, 44a-44d ... conductive film

Claims (14)

電子ビームの照射を受ける試料に対向して配置される電極リングであって、前記試料と対向される一方の端面に第1電極が形成され、他方の端面に第2電極が形成された絶縁性筒体と、
前記電子ビームの通過経路となる中空孔を有し、一方の端面を前記第1電極に接続させ、他方の端面を前記第2電極に接続させて前記絶縁性筒体の内面に嵌め込まれた筒体の抵抗体と、を備える電極リングにおいて、
前記筒体の抵抗体は導電材を含む半導電性ガラス材でなることを特徴とする電極リング。
An electrode ring disposed opposite to a sample to be irradiated with an electron beam, wherein a first electrode is formed on one end surface facing the sample, and a second electrode is formed on the other end surface A cylinder,
A cylinder having a hollow hole serving as a passage path for the electron beam, having one end face connected to the first electrode and the other end face connected to the second electrode, and fitted into the inner surface of the insulating cylinder An electrode ring comprising a body resistor,
An electrode ring, wherein the cylindrical resistor is made of a semiconductive glass material including a conductive material.
前記ガラス材は石英であることを特徴とする請求項1に記載の電極リング。   The electrode ring according to claim 1, wherein the glass material is quartz. 前記導電材は酸化鉄であることを特徴とする請求項1または2に記載の電極リング。   The electrode ring according to claim 1, wherein the conductive material is iron oxide. 前記抵抗体の前記両端面の間の部分に少なくとも1層のリング状の導電層が介在されていることを特徴とする請求項1に記載の電極リング。   The electrode ring according to claim 1, wherein at least one ring-shaped conductive layer is interposed in a portion between the both end faces of the resistor. 前記抵抗体は、複数の筒体が間に前記導電層を介在させて軸方向に積層されてなり、前記導電層は、前記複数の筒体における互いに合わされる端面にそれぞれ成膜された導電膜どうしが拡散接合されてなることを特徴とする請求項4に記載の電極リング。   The resistor is formed by laminating a plurality of cylinders in the axial direction with the conductive layer interposed therebetween, and the conductive layers are respectively formed on end surfaces of the plurality of cylinders that are aligned with each other. The electrode ring according to claim 4, wherein the electrodes are formed by diffusion bonding. 電子ビームの照射を受ける試料に対向して配置される電極リングを有する電子顕微鏡であって、
前記電極リングは、
前記試料と対向される一方の端面に第1電極が形成され、他方の端面に第2電極が形成された絶縁性筒体と、
前記電子ビームの通過経路となる中空孔を有し、一方の端面を前記第1電極に接続させ、他方の端面を前記第2電極に接続させて前記絶縁体の内面に嵌め込まれた筒体の抵抗体と、を備える電子顕微鏡において、
前記筒体の抵抗体は導電材を含む半導電性ガラス材でなることを特徴とする電子顕微鏡。
An electron microscope having an electrode ring disposed opposite to a sample to be irradiated with an electron beam,
The electrode ring is
An insulating cylinder in which a first electrode is formed on one end surface facing the sample and a second electrode is formed on the other end surface;
A cylindrical hole having a hollow hole serving as a passage path for the electron beam, having one end face connected to the first electrode and the other end face connected to the second electrode, and fitted into the inner surface of the insulator; In an electron microscope comprising a resistor,
2. The electron microscope according to claim 1, wherein the cylindrical resistor is made of a semiconductive glass material including a conductive material.
電子ビームの照射を受ける試料に対向して配置される電極リングであって、前記試料と対向される一方の端面に第1電極が形成され、他方の端面に第2電極が形成された絶縁性筒体と、
前記電子ビームの通過経路となる中空孔を有し、一方の端面を前記第1電極に接続させ、他方の端面を前記第2電極に接続させて前記絶縁性筒体の内面に嵌め込まれた筒体の抵抗体と、を備える電極リングにおいて、
前記抵抗体は、複数の筒体が間に導電層を介在させて軸方向に積層されてなり、前記導電層は、前記複数の筒体における互いに合わされる端面にそれぞれ成膜された導電膜どうしが拡散接合されてなり、且つ前記複数の筒体は各々充分に薄いシート状で焼結・還元した半導電セラミック材で成ることを特徴とする電極リング。
An electrode ring disposed opposite to a sample to be irradiated with an electron beam, wherein a first electrode is formed on one end surface facing the sample, and a second electrode is formed on the other end surface A cylinder,
A cylinder having a hollow hole serving as a passage path for the electron beam, having one end face connected to the first electrode and the other end face connected to the second electrode, and fitted into the inner surface of the insulating cylinder. An electrode ring comprising a body resistor,
The resistor is formed by laminating a plurality of cylinders in the axial direction with a conductive layer interposed therebetween, and the conductive layers are formed between conductive films formed on end surfaces of the plurality of cylinders that are aligned with each other. And a plurality of cylinders each made of a semiconductive ceramic material sintered and reduced in a sufficiently thin sheet form.
電子ビームの照射を受ける試料に対向して配置される電極リングを有する電子顕微鏡であって、
前記電極リングは、
前記試料と対向される一方の端面に第1電極が形成され、他方の端面に第2電極が形成された絶縁性筒体と、
前記電子ビームの通過経路となる中空孔を有し、一方の端面を前記第1電極に接続させ、他方の端面を前記第2電極に接続させて前記絶縁体の内面に嵌め込まれた筒体の抵抗体と、を備える電子顕微鏡において、
前記抵抗体は、複数の筒体が間に導電層を介在させて軸方向に積層されてなり、前記導電層は、前記複数の筒体における互いに合わされる端面にそれぞれ成膜された導電膜どうしが拡散接合されてなり、且つ前記複数の筒体は各々シート状で焼結・還元した充分に薄い半導電セラミック材で成ることを特徴とする電子顕微鏡。
An electron microscope having an electrode ring disposed opposite to a sample to be irradiated with an electron beam,
The electrode ring is
An insulating cylinder in which a first electrode is formed on one end surface facing the sample and a second electrode is formed on the other end surface;
A cylindrical hole having a hollow hole serving as a passage path for the electron beam, having one end face connected to the first electrode and the other end face connected to the second electrode, and fitted into the inner surface of the insulator; In an electron microscope comprising a resistor,
The resistor is formed by laminating a plurality of cylinders in the axial direction with a conductive layer interposed therebetween, and the conductive layers are formed between conductive films formed on end surfaces of the plurality of cylinders that are aligned with each other. An electron microscope characterized in that the plurality of cylinders are made of a sufficiently thin semiconductive ceramic material sintered and reduced in a sheet form.
電子ビームの照射を受ける試料に対向して配置される電極リングであって、前記試料と対向される一方の端面に第1電極が形成され、他方の端面に第2電極が形成された絶縁性筒体と、
前記電子ビームの通過経路となる中空孔を有し、一方の端面を前記第1電極に接続させ、他方の端面を前記第2電極に接続させて前記絶縁性筒体の内面に嵌め込まれた筒体の抵抗体と、を備える電極リングの製造方法において、
前記筒体の抵抗体は導電材を添加した半導電性ガラス材を溶融して製造されることを特徴とする電極リングの製造方法。
An electrode ring disposed opposite to a sample to be irradiated with an electron beam, wherein a first electrode is formed on one end surface facing the sample, and a second electrode is formed on the other end surface A cylinder,
A cylinder having a hollow hole serving as a passage path for the electron beam, having one end face connected to the first electrode and the other end face connected to the second electrode, and fitted into the inner surface of the insulating cylinder In a method of manufacturing an electrode ring comprising a body resistor,
The manufacturing method of an electrode ring, wherein the cylindrical resistor is manufactured by melting a semiconductive glass material to which a conductive material is added.
前記ガラス材は石英であることを特徴とする請求項9に記載の電極リングの製造方法。   The method for manufacturing an electrode ring according to claim 9, wherein the glass material is quartz. 前記導電材は酸化鉄であることを特徴とする請求項9または10に記載の電極リングの製造方法。   The method for manufacturing an electrode ring according to claim 9, wherein the conductive material is iron oxide. 前記抵抗体の前記両端面の間の部分に少なくとも1層のリング状の導電層を介在させることを特徴とする請求項9に記載の電極リングの製造方法。   The electrode ring manufacturing method according to claim 9, wherein at least one ring-shaped conductive layer is interposed between the both end faces of the resistor. 前記抵抗体は、複数の筒体が間に前記導電層を介在させて軸方向に積層されて加圧され、前記導電層は、前記複数の筒体における互いに合わされる端面にそれぞれ成膜された導電膜どうしが拡散接合されてなることを特徴とする請求項12記載の電極リングの製造方法。   The resistor has a plurality of cylinders stacked in the axial direction with the conductive layer interposed therebetween, and is pressed, and the conductive layers are formed on end surfaces of the plurality of cylinders that are aligned with each other. The method for producing an electrode ring according to claim 12, wherein the conductive films are diffusion-bonded to each other. 電子ビームの照射を受ける試料に対向して配置される電極リングを有する電子顕微鏡であって、
前記電極リングは、
前記試料と対向される一方の端面に第1電極が形成され、他方の端面に第2電極が形成された絶縁性筒体と、
前記電子ビームの通過経路となる中空孔を有し、一方の端面を前記第1電極に接続させ、他方の端面を前記第2電極に接続させて前記絶縁体の内面に嵌め込まれた筒体の抵抗体と、を備える電子顕微鏡の製造方法において、
前記筒体の抵抗体は導電材を添加した半導電性ガラス材を溶融して製造されることを特徴とする電子顕微鏡の製造方法。
An electron microscope having an electrode ring disposed opposite to a sample to be irradiated with an electron beam,
The electrode ring is
An insulating cylinder in which a first electrode is formed on one end surface facing the sample and a second electrode is formed on the other end surface;
A cylindrical hole having a hollow hole serving as a passage path for the electron beam, having one end face connected to the first electrode and the other end face connected to the second electrode, and fitted into the inner surface of the insulator; In an electron microscope manufacturing method comprising a resistor,
The method of manufacturing an electron microscope, wherein the cylindrical resistor is manufactured by melting a semiconductive glass material to which a conductive material is added.
JP2006061401A 2006-03-07 2006-03-07 Electrode ring, electron microscope, manufacturing method of electrode ring, and manufacturing method of electron microscope Pending JP2007242359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006061401A JP2007242359A (en) 2006-03-07 2006-03-07 Electrode ring, electron microscope, manufacturing method of electrode ring, and manufacturing method of electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006061401A JP2007242359A (en) 2006-03-07 2006-03-07 Electrode ring, electron microscope, manufacturing method of electrode ring, and manufacturing method of electron microscope

Publications (1)

Publication Number Publication Date
JP2007242359A true JP2007242359A (en) 2007-09-20

Family

ID=38587690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006061401A Pending JP2007242359A (en) 2006-03-07 2006-03-07 Electrode ring, electron microscope, manufacturing method of electrode ring, and manufacturing method of electron microscope

Country Status (1)

Country Link
JP (1) JP2007242359A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507733A (en) * 2009-10-09 2013-03-04 マッパー・リソグラフィー・アイピー・ビー.ブイ. High voltage shielding arrangement
CN103426707A (en) * 2012-05-14 2013-12-04 佳能株式会社 Charged-particle beam lens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507733A (en) * 2009-10-09 2013-03-04 マッパー・リソグラフィー・アイピー・ビー.ブイ. High voltage shielding arrangement
CN103426707A (en) * 2012-05-14 2013-12-04 佳能株式会社 Charged-particle beam lens
US8710455B2 (en) 2012-05-14 2014-04-29 Canon Kabushiki Kaisha Charged-particle beam lens

Similar Documents

Publication Publication Date Title
JP5890652B2 (en) Sample observation apparatus and sample observation method
JP4795847B2 (en) Electron lens and charged particle beam apparatus using the same
JP5239026B2 (en) Device for field emission of particles and manufacturing method
US20040026629A1 (en) Emission source having carbon nanotube, electron microscope using this emission source, and electron beam drawing device
CN111668149B (en) Electrostatic chuck
JP6374989B2 (en) Charged particle beam apparatus and method for manufacturing member for charged particle beam apparatus
US8710455B2 (en) Charged-particle beam lens
TWI634583B (en) High throughput scan deflector and method of manufacturing thereof
TWI755544B (en) Multi-column scanning electron microscopy system
JP2007242359A (en) Electrode ring, electron microscope, manufacturing method of electrode ring, and manufacturing method of electron microscope
US9673016B2 (en) Micro-electron column having an electron emitter improving the density of an electron beam emitted from a nano structure tip
JP2009076474A (en) Electron-optical lens barrel and its manufacturing method
JP4211473B2 (en) electronic microscope
US6570320B1 (en) Device for shaping an electron beam, method for producing said device and use thereof
US11769650B2 (en) Multistage-connected multipole, multistage multipole unit, and charged particle beam device
JP2006139958A (en) Charged beam device
KR100533444B1 (en) A method for manufacturing a lens assembly of microcolumn and a lens assembly of microcolumn manufactured by the same
US5731586A (en) Magnetic-electrostatic compound objective lens
JP6323943B2 (en) Electron lens and electron beam device
JP2004200174A (en) Manufacturing method and device of mcp using unevenness metallic mold
JP2006260999A (en) Electrode ring and electron microscope
TW201721704A (en) Charged particle beam apparatus and scanning electron microscope capable of enhancing performance
US8246413B2 (en) Method for making field emission device
JP2015099701A (en) Sample measuring device
Miyoshi et al. Miniaturized finger-size electron-beam column with ceramic-type lenses for scanning electron microscopy

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071028