JP2007139615A - Fuel assembly, and nuclear reactor having core loaded with fuel assembly - Google Patents
Fuel assembly, and nuclear reactor having core loaded with fuel assembly Download PDFInfo
- Publication number
- JP2007139615A JP2007139615A JP2005334851A JP2005334851A JP2007139615A JP 2007139615 A JP2007139615 A JP 2007139615A JP 2005334851 A JP2005334851 A JP 2005334851A JP 2005334851 A JP2005334851 A JP 2005334851A JP 2007139615 A JP2007139615 A JP 2007139615A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- core
- fuel assembly
- rods
- rod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Description
本発明は、軽水炉用の燃料集合体に関し、特に、冷却材として超臨界圧水が用いられる超臨界圧軽水炉用の燃料集合体に関する。 The present invention relates to a fuel assembly for a light water reactor, and more particularly to a fuel assembly for a supercritical pressure light water reactor in which supercritical pressure water is used as a coolant.
現在、冷却材として超臨界圧水を用いた超臨界圧軽水炉の開発が行われている。超臨界圧軽水炉は、冷却水として、高温高圧の超臨界圧水(500℃、25MPa)を冷却材として使用した原子炉である。超臨界圧軽水炉では、燃料集合体は、従来の軽水炉よりも200度以上高い温度領域で使用されるため、燃料集合体の健全性を保つために局所での温度上昇量の低減が要求されていた。 Currently, development of supercritical light water reactors using supercritical pressure water as a coolant is underway. A supercritical light water reactor is a nuclear reactor that uses high-temperature and high-pressure supercritical water (500 ° C., 25 MPa) as a coolant. In supercritical light water reactors, fuel assemblies are used in a temperature range that is 200 degrees higher than conventional light water reactors. Therefore, in order to maintain the integrity of the fuel assemblies, it is required to reduce the temperature rise locally. It was.
そこで、超臨界圧軽水炉において燃料集合体の出力分布を平坦化するために、燃料集合体の内部や外周部に水ロッドを配置する方法が提案されてきた(例えば特許文献1参照)。
軽水炉(特に超臨界圧軽水炉)における燃料集合体の出力分布を平均化するためには、燃料集合体の形状の最適化、集合体形状にあわせた濃縮度分布の設定及び原子炉における燃料集合体配置が重要であるが、これらを合わせた包括的な検討はなされていないのが現状である。 To average the power distribution of fuel assemblies in light water reactors (especially supercritical light water reactors), optimize the shape of the fuel assemblies, set the enrichment distribution according to the shape of the assemblies, and the fuel assemblies in the reactor Placement is important, but there is currently no comprehensive study that combines them.
本発明は、上記課題を鑑みなされたものであり、軽水炉(特に超臨界圧軽水炉)において、燃料集合体の所要濃縮度を低減させること、被覆管温度を低減させること、及び、燃料集合体の冷却材出口付近の冷却材温度を均一化させることを目的とする。 The present invention has been made in view of the above problems, and in a light water reactor (particularly a supercritical pressure light water reactor), reducing the required concentration of the fuel assembly, reducing the cladding tube temperature, and the fuel assembly The purpose is to make the coolant temperature near the coolant outlet uniform.
上記課題を解決するために、本発明に係る燃料集合体は、請求項1及び2に記載したように、チャンネルボックス内に燃料棒が正方格子状に配列されて炉心に充填される軽水炉用または超臨界圧軽水炉用の燃料集合体において、燃料棒はN×N(Nは12以上の整数)の正方格子状に配列され、前記燃料棒のチャンネルボックス内中央部の[(N+1)/2]×[(N+1)/2]本分([X]は実数Xを超えない最大の整数)の領域には角筒状の水ロッドが配置されることを特徴とする。
In order to solve the above problems, a fuel assembly according to the present invention is used for a light water reactor in which fuel rods are arranged in a square lattice in a channel box and filled into a reactor core as described in
また、本発明に係る原子炉は、請求項9に記載したように、請求項1または2記載の燃料集合体を炉心に装荷した原子炉において、正方格子状に配置された4体1組の燃料集合体の中心に制御棒が1体各組毎に配置され、前記4体1組の燃料集合体の各燃料棒のサイクル数がほぼ等しいことを特徴とする。
Further, as described in
本発明に係る燃料集合体によると、軽水炉または超臨界圧軽水炉において、燃料集合体の所要濃縮度を低減すること、被覆管温度を低減すること、及び、燃料集合体の冷却材出口付近の冷却材温度を均一化することが可能となる。 According to the fuel assembly according to the present invention, in a light water reactor or a supercritical pressure light water reactor, the required enrichment of the fuel assembly is reduced, the cladding temperature is reduced, and the cooling in the vicinity of the coolant outlet of the fuel assembly is performed. It is possible to make the material temperature uniform.
本発明に係る燃料集合体の実施形態について、添付図面に基づいて説明する。 An embodiment of a fuel assembly according to the present invention will be described with reference to the accompanying drawings.
〔第1実施形態〕
図1〜図5は、本発明に係る燃料集合体の第1実施形態を示す図である。
[First Embodiment]
1 to 5 are views showing a first embodiment of a fuel assembly according to the present invention.
第1実施形態の燃料集合体1は、図1に示すように、角筒状のチャンネルボックス2を備える。チャンネルボックス2の内部には、多数の燃料棒3が炉心軸方向に延設されて正方格子状に配置され、チャネルボックス2内の炉心径方向中央部に炉心軸方向に延びる角筒状の水ロッド4が配置される。
As shown in FIG. 1, the
第1実施形態では、例えば、燃料棒3が16×16本の正方格子状に配置されるとともに水ロッド4が燃料棒3の8×8本分の大きさのスペースを占めるように配置される。すなわち、燃料集合体1には、例えば192本の燃料棒23が配置される。192本とは、16×16本から水ロッド4が配置されるスペースである8×8本を除いた数である。
In the first embodiment, for example, the
ここで、燃料集合体1の1辺当りの燃料棒3の本数(以下、燃料棒本数と言う)をNとし、水ロッド4の1辺の長さに相当する炉心設置状態での燃料棒3の相当本数(以下、水ロッド対応本数と言う)をMとする。
Here, the number of the
図2に、燃料棒本数N毎の、水ロッド対応本数Mと、一定期間の燃焼(例えば取出平均燃焼度45GWd/t)を行うために必要な初期濃縮度(以下、所要濃縮度と言う)との関係を示す。 FIG. 2 shows the number M of water rods corresponding to the number N of fuel rods and the initial enrichment necessary for performing a certain period of combustion (for example, take-out average burnup 45 GWd / t) (hereinafter referred to as required enrichment). Shows the relationship.
図2から、所要濃縮度を最小にする燃料棒本数Nと水ロッド対応本数Mとの関係が、
[数1]
M=[(N+1)/2] ……(1)
(ここで、[X]は実数Xを超えない最大の整数を表す。)
であることがわかる。
From FIG. 2, the relationship between the number of fuel rods N and the number M of water rods that minimize the required enrichment is
[Equation 1]
M = [(N + 1) / 2] (1)
(Here, [X] represents the maximum integer not exceeding the real number X.)
It can be seen that it is.
ここで、水ロッド4内の冷却水は相反する二つの効果を有している。一つは、高速中性子を熱中性子にまで減速する減速材としての働きにより生じる所要濃縮度を下げる効果である。もう一つは、中性子から熱エネルギーを吸収する吸収材としての働きにより生じる所要濃縮度を上げる効果である。
Here, the cooling water in the
中性子の減速材としての効果が水ロッド4の大きさが大きくなると飽和するのに対し、中性子の吸収材としての効果は水ロッド4の大きさが大きくなるのに比例して大きくなる。すなわち、水ロッド4は、水の量が少なくなると減速材としての働きによる効果が大きくなり、水の量が大きくなると吸収剤としての働きによる効果が大きくなる。
While the effect of the neutron moderator as the
したがって、所要濃縮度を最小にする観点から、燃料棒本数Nと水ロッド対応本数Mとは最適な関係が存在し、その関係が式(1)に示すような関係であることがわかる。 Therefore, from the viewpoint of minimizing the required enrichment, it can be seen that there is an optimal relationship between the number N of fuel rods and the number M corresponding to water rods, and the relationship is as shown in Equation (1).
また、図3は、所要濃縮度(7.4、7.6、7.8、8.0、8.2、8.4wt%)毎の、隣り合う燃料棒3間の間隙と燃料棒本数Nとの関係を示したものである。図3によると、隣り合う燃料棒3間の間隙が広くなるにつれて、所要濃縮度が小さくなっているとともに、所要濃縮度の、隣り合う燃料棒3間の間隙に対する依存性が小さくなることがわかる。なお、隣り合う燃料棒3間の間隙は、間隙保持スペーサによって保持される。
FIG. 3 shows the gap between the
隣り合う燃料棒3間の間隙と所要濃縮度とを小さくするとともに燃料棒本数Nを大きくすることが望まれていることを考慮すると、図3より、燃料棒3間の間隙を1.3mm、燃料棒本数Nを16本とすることが最も好ましいことがわかる。
Considering that it is desired to reduce the gap between the
図4は、被覆管表面温度の、指標となる被覆管表面における温度上昇量の基準値との比(0.8、0.9、1.0、1.1、1.2、1.3)毎に、隣り合う燃料棒3間の間隙と燃料棒本数Nとの関係を示したものである。この温度上昇量の基準値との比が1以下となる範囲F(図4において斜線で塗りつぶした範囲)が、被覆管表面温度を低減できる範囲である。
FIG. 4 shows the ratio (0.8, 0.9, 1.0, 1.1, 1.2, 1.3) of the cladding tube surface temperature to the reference value of the temperature rise amount on the cladding tube surface as an index. ) Shows the relationship between the gap between
図4によると、燃料棒間隙を1.5mm以下とすることにより、被覆管表面温度を低減できることがわかる。 According to FIG. 4, it can be seen that the cladding surface temperature can be reduced by setting the fuel rod gap to 1.5 mm or less.
図5に、第1実施形態の燃料集合体1の他の例として燃料集合体1Aを示す。燃料集合体1Aのチャンネルボックス2Aを成形する際に必要な強度を維持しつつ角部Aを角ばらせることが困難であるため、実際には、図5に示すように、チャンネルボックス2Aの角部Aを緩やかに湾曲させることが多い。そのように角部Aが湾曲している場合であっても、上記の燃料棒3の一辺の本数Nと水ロッド4の一辺の長さMとの関係を当てはめることができる。
FIG. 5 shows a
第1実施形態に係る燃料集合体1、1Aによると、水ロッド4の大きさを燃料棒3の本数から決定することにより、被覆管温度を低減させ、燃料集合体1、1Aの冷却水出口付近での冷却材温度を均一化させることが可能となる。
According to the
〔第2実施形態〕
次に、本発明に係る燃料集合体の第2実施形態を、図6〜図9に基づいて説明する。なお、第1実施形態と同一の構成には同一の符号を付し、重複する説明は省略する。
[Second Embodiment]
Next, a second embodiment of the fuel assembly according to the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the structure same as 1st Embodiment, and the overlapping description is abbreviate | omitted.
第2実施形態の燃料集合体1Bは、図6に示すように、角筒状のチャンネルボックス2の内部に、燃料棒3が炉心径方向に正方格子状に配置され、角筒状の水ロッド4が炉心径方向中央部に配置される。
As shown in FIG. 6, the
第2実施形態では、第1実施形態と同様に、例えば燃料棒3が16×16の正方格子状に配置され、水ロッド4が燃料棒3の8×8本分の大きさで形成される。
In the second embodiment, as in the first embodiment, for example, the
図7は、燃料集合体1Bで使用される燃料棒3の燃料棒タイプU1、G1、G2の、燃料棒3の炉心軸方向の濃縮度分布を示したものである。図6に示した燃料棒タイプU1、G1、G2は、図7に示した燃料棒タイプU1、G1、G2にそれぞれ対応している。
FIG. 7 shows the concentration distribution in the core axis direction of the
燃料タイプU1は、炉心軸方向の下部から、C領域(図7の燃料棒有効長を24区分した場合の1〜18内の領域)がウラン濃縮度8.5wt%の濃縮ウラン、D領域(図7の燃料棒有効長を24区分した場合の19〜22内の領域)がウラン濃縮度9.5wt%の濃縮ウラン、E領域(図7の燃料棒有効長を24区分した場合の23〜24内の領域)がウラン235を0.71wt%含んだ天然ウラン(または劣化ウラン)で満たされる。 In the fuel type U1, from the lower part in the core axis direction, the C region (the region within 1 to 18 when the fuel rod effective length of FIG. 7 is an enriched uranium enriched uranium enrichment of 9.5 wt%, and E region (an area of 23 to 24 fuel rod effective lengths in FIG. 7). 24) is filled with natural uranium (or depleted uranium) containing 0.71 wt% uranium 235.
また、燃料タイプG1は、C領域が濃度3.0wt%のガドリニアを含んだウラン濃縮度9.5wt%の濃縮ウラン、D領域が濃度3.0wt%のガドリニアを含んだのウラン濃縮度8.5wt%の濃縮ウラン、E領域がウラン235を0.71wt%含んだ天然ウラン(または劣化ウラン)で満たされる。 The fuel type G1 has a uranium enrichment with a concentration of 9.5 wt% uranium enriched in the C region containing 3.0 wt% gadolinia and a uranium enrichment with a D region containing 3.0 wt% gadolinia. 5 wt% enriched uranium, E region is filled with natural uranium (or depleted uranium) containing 0.71 wt% uranium 235.
また、燃料タイプG2は、C領域が濃度15.0wt%のガドリニアを含んだウラン濃縮度9.5wt%の濃縮ウラン、D領域が濃度15.0wt%のガドリニアを含んだのウラン濃縮度8.5wt%の濃縮ウラン、E領域がウラン235を0.71wt%含んだ天然ウラン(または劣化ウラン)で満たされる。 In addition, fuel type G2 has a uranium enrichment with a concentration of 9.5 wt% containing 15.0 wt% gadolinia in the C region and a uranium enrichment with a D region containing gadolinia with a concentration of 15.0 wt%. 5 wt% enriched uranium, E region is filled with natural uranium (or depleted uranium) containing 0.71 wt% uranium 235.
なお、図7の右端に、各ノードのウラン235の濃度(ウラン濃縮度)の平均値を示している。 In addition, the average value of the density | concentration (uranium enrichment) of the uranium 235 of each node is shown on the right end of FIG.
また、第2実施形態では可燃性毒物としてガドリニウム(Gd)を用いているが、ヨーロピウム(Eu)、アメリシウム(Am)等の他の可燃性毒物を用いてもよい。 In the second embodiment, gadolinium (Gd) is used as the flammable poison, but other flammable poisons such as europium (Eu) and americium (Am) may be used.
燃料集合体1Bの炉心径方向の核分裂性物質濃度分布及び可燃性毒物の濃度分布は、1/4対角対称性を備えている。この様に燃料棒3を対角対称性をもたせて配置すると燃料集合体1B内の出力分布を平坦化することが可能となり、局所的な被覆管表面温度の上昇を抑えることができる。
The fissile material concentration distribution and the flammable poison concentration distribution in the core radial direction of the
燃料集合体1Bの炉心径方向の角部(コーナー部)Aにおいて、少なくとも3本の可燃性毒物入り燃料棒G2が角部A外周を囲うようにL字状に配置される。可燃性毒物入り燃料棒G2を隣り合わせて配置すると、お互いの遮蔽効果により可燃性毒物による反応度抑制効果を保持できる期間を延長することができ、炉停止余裕の改善及び出力分布の改善の効果が得られる。 In the corner portion (corner portion) A in the core diameter direction of the fuel assembly 1B, at least three fuel rods G2 containing flammable poisons are arranged in an L shape so as to surround the outer periphery of the corner portion A. When the fuel rods G2 containing flammable poisons are arranged side by side, the period during which the reactivity suppression effect by the flammable poisons can be maintained can be extended by the mutual shielding effect, and the effect of improving the furnace shutdown margin and improving the power distribution can be achieved. can get.
可燃性毒物入り燃料棒G2において可燃性毒物の濃度を高めることにより可燃性毒物による反応度抑制効果を得ることができる。しかしながら、可燃性毒物の濃度を上げることにより、熱伝達特性が劣化したり、核分裂性物質の減少分を補償するために所要濃縮度を高める必要が生じたりする等のデメリットがあるため、可燃性毒物の濃度を上げることは好ましくない。 By increasing the concentration of the combustible poison in the combustible poison-containing fuel rod G2, it is possible to obtain the reactivity suppression effect by the combustible poison. However, increasing the concentration of flammable poisons has the disadvantages of deteriorating heat transfer characteristics and increasing the required concentration to compensate for the decrease in fissile material. It is not preferable to increase the concentration of toxic substances.
また、特に超臨界圧軽水炉では、図8に示すように、炉心軸方向における冷却材温度が大きく変化する。冷却材温度が低い炉心下部の出力割合を高め、冷却材温度が超臨界温度(約400℃、圧力25MPaの場合)を超えた領域(図8の、炉心軸方向ノード位置16〜24付近)での出力を下げることにより、被覆管表面最高温度を低下させ得ることがわかった。
In particular, in the supercritical light water reactor, as shown in FIG. 8, the coolant temperature in the core axis direction changes greatly. In the region where the coolant temperature exceeds the supercritical temperature (about 400 ° C. and pressure of 25 MPa) (in the vicinity of
このため、燃料棒3の炉心軸方向上端から燃料有効長の1/4下がった範囲(炉心軸方向ノード位置18〜24)のウラン濃縮度を下げている。
For this reason, the uranium enrichment in a range (core axis direction node positions 18 to 24) in which the fuel effective length is reduced by a quarter from the upper end in the core axis direction of the
なお、燃料棒3の炉心軸方向上部に天然ウラン(または劣化ウラン)の上部ブランケット(図7の領域E)を設けて、核分裂性物質濃度を0.2〜0.71wt%にすることにより、被覆管表面温度の高くなりやすい上部の被覆管表面温度を下げることが可能である。
In addition, by providing an upper blanket (region E in FIG. 7) of natural uranium (or deteriorated uranium) at the upper part of the
図8において示していないが、上部ブランケットの長さを燃料有効長の1/24とした場合には、燃料棒3の炉心軸方向中央部において被覆管表面温度が高くなってしまうため、上部ブランケットの長さは、燃料有効長の2/24以上とすることが望ましい。
Although not shown in FIG. 8, when the length of the upper blanket is 1/24 of the effective fuel length, the cladding tube surface temperature becomes high at the center of the
しかし一方で、炉心軸方向上部の出力が下がると他の部分の出力があがり、他の部分の被覆管表面温度が上がってしまうことも考慮する必要がある。 However, on the other hand, it is necessary to consider that when the output in the upper part of the core axis direction decreases, the output of other parts increases and the surface temperature of the cladding tube of other parts increases.
図9に、上部ブランケット長さと被覆管表面最高温度との関係を示す。 FIG. 9 shows the relationship between the upper blanket length and the maximum cladding surface temperature.
図9によると、上部ブランケットの長さを燃料有効長の1/6(図9のブランケット長さが燃料有効長の約0.16倍)とすると被覆管表面最高温度の低下が飽和してしまった。よって、上部ブランケットの長さを燃料有効長の1/6以下とすることが望ましい。 According to FIG. 9, when the length of the upper blanket is 1/6 of the effective fuel length (the blanket length of FIG. 9 is approximately 0.16 times the effective fuel length), the decrease in the cladding tube surface maximum temperature is saturated. It was. Therefore, it is desirable that the length of the upper blanket is 1/6 or less of the effective fuel length.
第2実施形態では、上部ブランケットの長さを、被覆管表面最高温度の低下が飽和し始める長さである燃料有効長の2/24、すなわち1/12とした。 In the second embodiment, the length of the upper blanket is set to 2/24, that is, 1/12 of the effective fuel length, which is the length at which the decrease in the maximum temperature of the cladding tube begins to saturate.
また、上部ブランケットの長さを燃料有効長の1/6以下とした。 Moreover, the length of the upper blanket was set to 1/6 or less of the effective fuel length.
第2実施形態に係る燃料集合体1Bによると、チャンネルボックス2の炉心径方向の角部Aに可燃性毒物入り燃料棒G2を配置することにより、被覆管温度を低減させ、燃料集合体1出口での冷却材温度を均一化させることが可能となる。
According to the fuel assembly 1B according to the second embodiment, the temperature of the cladding tube is reduced by disposing the fuel rod G2 containing the flammable poison at the corner portion A of the
また、燃料集合体1Bによると、上部ブランケットの長さを燃料有効長の1/6以下とすることにより、被覆冠表面最高温度を下げることができる。 Further, according to the fuel assembly 1B, the maximum temperature of the coating crown surface can be lowered by setting the length of the upper blanket to 1/6 or less of the effective fuel length.
〔第3実施形態〕
本発明に係る第1実施形態の燃料集合体1を装荷した原子炉を、第3実施形態として、図10〜図12を用いて説明する。
[Third Embodiment]
A nuclear reactor loaded with the
図10に、第3実施形態の原子炉の炉心の燃料装荷の1/4炉心を示す。図10において、制御棒位置を○で示すとともに、燃料サイクル数を1〜4に記号化して示している。 FIG. 10 shows a quarter core of fuel loading of the reactor core of the third embodiment. In FIG. 10, the position of the control rod is indicated by a circle and the number of fuel cycles is symbolized as 1 to 4.
このとき、炉心の外周側に反応度の大きい初期の燃料サイクルの燃料集合体1を配置し、炉心の中央側に、反応度の小さい燃焼の進んだ燃料サイクルの燃料集合体1を配置するとよい。
At this time, the
図10に示すように、制御棒の周りの4体1組の燃料集合体1の燃料サイクル数が等しくなるように装荷すると、横断面十字型の制御棒の操作により制御棒周りの4体1組の燃料集合体1の出力を調整し、炉心全体の出力分布を運転期間中、一定の形状に保つことが可能となる。
As shown in FIG. 10, when the four
また、この出力分布形状に合わせて流量区分を変更することにより、冷却材の出口付近の温度分布を平坦化し、且つ被覆管表面温度を下げることができる。図11に、原子炉の炉心の燃料装荷の1/4炉心の流量区分の例を示す。図11は流量区分を3区分としたもので、高流量の区分を区分1、中流量の区分を区分2、低流量の区分を区分3として図に示している。
Further, by changing the flow rate classification according to the output distribution shape, the temperature distribution near the outlet of the coolant can be flattened and the cladding surface temperature can be lowered. FIG. 11 shows an example of the flow rate classification of the quarter core of the fuel loading of the reactor core. FIG. 11 shows the flow rate as three categories. The high flow rate category is shown as
このとき、炉心の外周側において流量を低流量とし、炉心の中央側において流量を高流量とするとよい。また、外周側(例えば最外周の2列)において、中性子の漏れの量が少ない位置では炉の出力が高くなることを考慮しつつ、低流量の区分3と中流量の区分2との2区分からなるように設定するとよい。
At this time, the flow rate may be low on the outer peripheral side of the core, and the flow rate may be high on the central side of the core. In addition, on the outer peripheral side (for example, the outermost two rows), there are two sections, a
図12に、第1実施形態の燃料集合体1を炉心に装荷した原子炉における、3区分の流量区分をつけた場合(実線)と流量区分をつけない場合(破線)の冷却材出口温度の最高温度の推移を示す。3区分の流量区分をつけることにより冷却材出口温度の最高温度が約75℃下がっていることがわかる。
FIG. 12 shows the coolant outlet temperature in the reactor in which the
第3実施形態の原子炉によると、制御棒の周りの4対の燃料棒3を集荷サイクル数が同じものに揃えることにより、または、冷却水に流量区分を設けることにより、冷却水出口付近の温度分布を平坦化しかつ被覆管表面温度を下げることが可能となる。
According to the reactor of the third embodiment, by arranging four pairs of
1 燃料集合体
2 チャンネルボックス
3 燃料棒
4 水ロッド
1
Claims (11)
燃料棒はN×N(Nは12以上の整数)本の正方格子状に配列され、
前記燃料棒のチャンネルボックス内中央部の[(N+1)/2]×[(N+1)/2]本分([X]は実数Xを超えない最大の整数)の領域には角筒状の水ロッドが配置されることを特徴とする燃料集合体。 In a fuel assembly for a light water reactor in which fuel rods are arranged in a square lattice in a channel box and filled in the core,
The fuel rods are arranged in a square lattice of N × N (N is an integer of 12 or more),
In the region of [(N + 1) / 2] × [(N + 1) / 2] lines ([X] is the maximum integer not exceeding the real number X) in the center of the fuel rod channel box, a rectangular tube of water A fuel assembly, wherein a rod is arranged.
燃料棒はN×N(Nは12以上の整数)の正方格子状に配列され、
前記燃料棒のチャンネルボックス内中央部の[(N+1)/2]×[(N+1)/2]本分([X]は実数Xを超えない最大の整数)の領域には角筒状の水ロッドが配置されることを特徴とする燃料集合体。 In a fuel assembly for a supercritical light water reactor in which fuel rods are arranged in a square lattice in a channel box and filled into the core,
The fuel rods are arranged in a square lattice of N × N (N is an integer of 12 or more),
In the region of [(N + 1) / 2] × [(N + 1) / 2] lines ([X] is the largest integer not exceeding the real number X) in the center of the fuel rod channel box, water in the shape of a rectangular tube is used. A fuel assembly, wherein a rod is arranged.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005334851A JP4559957B2 (en) | 2005-11-18 | 2005-11-18 | Reactor with fuel assembly and core loaded with this fuel assembly |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005334851A JP4559957B2 (en) | 2005-11-18 | 2005-11-18 | Reactor with fuel assembly and core loaded with this fuel assembly |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007139615A true JP2007139615A (en) | 2007-06-07 |
JP4559957B2 JP4559957B2 (en) | 2010-10-13 |
Family
ID=38202668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005334851A Expired - Fee Related JP4559957B2 (en) | 2005-11-18 | 2005-11-18 | Reactor with fuel assembly and core loaded with this fuel assembly |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4559957B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2375420A2 (en) * | 2010-04-08 | 2011-10-12 | Global Nuclear Fuel-Americas, LLC | Exposure boost zone for boiling water reactor nuclear bundles |
CN102354539A (en) * | 2011-09-15 | 2012-02-15 | 西安交通大学 | Annular fuel element and annular fuel supercritical water reactor |
CN102768863A (en) * | 2012-07-12 | 2012-11-07 | 华北电力大学 | MOX (Mixed Oxide) fuel assembly structure suitable for supercritical water reactor |
CN102855946A (en) * | 2012-09-12 | 2013-01-02 | 华北电力大学 | Water rod used in supercritical water-cooled reactor |
JP2013007678A (en) * | 2011-06-24 | 2013-01-10 | Toshiba Corp | Fuel assembly |
FR3030099A1 (en) * | 2014-12-11 | 2016-06-17 | Dcns | NUCLEAR REACTOR WITH PRESSURIZED WATER |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102117664B (en) * | 2010-12-24 | 2013-01-02 | 中国核动力研究设计院 | Double-row hexagonal fuel assembly for supercritical water-cooled reactor |
CN105390167B (en) * | 2015-11-05 | 2017-05-31 | 中国核动力研究设计院 | A kind of supercritical water reactor fuel assembly and reactor core |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04301591A (en) * | 1991-03-29 | 1992-10-26 | Hitachi Ltd | Fuel assembly |
JP2003294878A (en) * | 2002-04-03 | 2003-10-15 | Yoshiaki Oka | Fuel assembly |
-
2005
- 2005-11-18 JP JP2005334851A patent/JP4559957B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04301591A (en) * | 1991-03-29 | 1992-10-26 | Hitachi Ltd | Fuel assembly |
JP2003294878A (en) * | 2002-04-03 | 2003-10-15 | Yoshiaki Oka | Fuel assembly |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2375420A2 (en) * | 2010-04-08 | 2011-10-12 | Global Nuclear Fuel-Americas, LLC | Exposure boost zone for boiling water reactor nuclear bundles |
EP2375420A3 (en) * | 2010-04-08 | 2014-07-30 | Global Nuclear Fuel-Americas, LLC | Exposure boost zone for boiling water reactor nuclear bundles |
US8953736B2 (en) | 2010-04-08 | 2015-02-10 | Global Nuclear Fuel—Americas, LLC | Exposure boost zone for boiling water reactor nuclear bundles |
JP2013007678A (en) * | 2011-06-24 | 2013-01-10 | Toshiba Corp | Fuel assembly |
CN102354539A (en) * | 2011-09-15 | 2012-02-15 | 西安交通大学 | Annular fuel element and annular fuel supercritical water reactor |
CN102768863A (en) * | 2012-07-12 | 2012-11-07 | 华北电力大学 | MOX (Mixed Oxide) fuel assembly structure suitable for supercritical water reactor |
CN102855946A (en) * | 2012-09-12 | 2013-01-02 | 华北电力大学 | Water rod used in supercritical water-cooled reactor |
CN102855946B (en) * | 2012-09-12 | 2015-10-21 | 华北电力大学 | A kind of water rod being applicable to Supercritical-Pressure Light Water Cooled Reactor |
FR3030099A1 (en) * | 2014-12-11 | 2016-06-17 | Dcns | NUCLEAR REACTOR WITH PRESSURIZED WATER |
Also Published As
Publication number | Publication date |
---|---|
JP4559957B2 (en) | 2010-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106782681B (en) | Three cold type fuel rod and fuel assembly | |
JPH058797B2 (en) | ||
EP1093129B1 (en) | Fuel assembly and nuclear reactor | |
JP2010237223A (en) | Fuel assembly | |
JP4559957B2 (en) | Reactor with fuel assembly and core loaded with this fuel assembly | |
JP2008045874A (en) | Boiling water type light water reactor core | |
JPS58135989A (en) | Fuel assembly for bwr type reactor | |
JP4496272B2 (en) | Fuel assembly | |
JP2856728B2 (en) | Fuel assembly | |
JP2011064568A (en) | Core of boiling water reactor | |
JP2000241582A (en) | Fuel assembly, fuel rod and reactor core | |
JP4558477B2 (en) | Boiling water reactor fuel assemblies | |
JP4040888B2 (en) | Fuel assembly | |
JP2006208391A (en) | Fuel assembly and core of reactor | |
JPH07311291A (en) | Fuel assembly | |
JP4351798B2 (en) | Fuel assemblies and reactors | |
JP4101944B2 (en) | Fuel assembly | |
JP4313898B2 (en) | Fuel assembly | |
JP2009250894A (en) | Fuel assembly loaded in boiling water reactor, and reactor core using the same | |
JP4397007B2 (en) | Fuel assemblies for boiling water reactors | |
JP2008145359A (en) | Reactor core and operation method for boiling water reactor | |
JP2004109085A (en) | Fuel assembly for boiling water reactor | |
JP3884192B2 (en) | MOX fuel assembly, reactor core, and operating method of reactor | |
JPH11258374A (en) | Fuel element for thermal neutron furnace and fuel assembly | |
JP2003185774A (en) | Fuel assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080423 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100316 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100427 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100629 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100723 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4559957 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130730 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |