[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007136516A - Bonded flux for submerged arc welding - Google Patents

Bonded flux for submerged arc welding Download PDF

Info

Publication number
JP2007136516A
JP2007136516A JP2005334938A JP2005334938A JP2007136516A JP 2007136516 A JP2007136516 A JP 2007136516A JP 2005334938 A JP2005334938 A JP 2005334938A JP 2005334938 A JP2005334938 A JP 2005334938A JP 2007136516 A JP2007136516 A JP 2007136516A
Authority
JP
Japan
Prior art keywords
mass
flux
submerged arc
arc welding
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005334938A
Other languages
Japanese (ja)
Other versions
JP4489009B2 (en
Inventor
Katsutake Kobayashi
克壮 小林
Munenori Sato
統宣 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005334938A priority Critical patent/JP4489009B2/en
Publication of JP2007136516A publication Critical patent/JP2007136516A/en
Application granted granted Critical
Publication of JP4489009B2 publication Critical patent/JP4489009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bonded flux for one side submerged arc welding, a bonded flux having capability for securing welding workability for a plate joint, appearance and shape of beads, and mechanical performance of weld metal, in multiple electrode, one side submerged arc welding of two or more electrodes and, in addition, capability for resolving conventional problem of submerged arc welding particularly conspicuous in a sheet joint as well as obtaining sound front and rear beads. <P>SOLUTION: The bonded flux for submerged arc welding contains 25-35% MgO, 16-29% SiO<SB>2</SB>, 6-12% Al<SB>2</SB>O<SB>3</SB>, 0.6-7% TiO<SB>2</SB>, 8-14% CaO, 2-8% CO<SB>2</SB>, 1-5% Na<SB>2</SB>O, 1-10% CaF<SB>2</SB>, 0.2-3.0% B<SB>2</SB>O<SB>3</SB>, 0.1-3.0% Si and 0.3-3.0% Ti. Also, the total Fe is controlled to ≤5%, with the balance of ≤5% and with TiO<SB>2</SB>/SiO<SB>2</SB>of 0.03-0.30. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、サブマージアーク溶接用のボンドフラックスに関する。   The present invention relates to a bond flux for submerged arc welding.

サブマージアーク溶接は、被覆アーク溶接及びガスシールドアーク溶接等の溶接方法と比べて、高電流及び高速度で溶接が行えるという特徴を有しており、造船、鉄骨、及び
橋梁分野等の大型鋼構造物の製作において、溶接能率の観点から欠かすことができない溶接方法である。
Submerged arc welding is characterized by the ability to perform welding at high current and high speed compared to welding methods such as covered arc welding and gas shielded arc welding, and large steel structures such as shipbuilding, steel frames, and bridge fields. This is a welding method that is indispensable from the viewpoint of welding efficiency in the production of objects.

特に、近時、溶接工程の能率向上だけでなく、その前工程である各種切断・加工工程の能率向上及び後工程である手直し・修正作業の省略といった一連の施工能率の向上が求められている。これらのために、溶接施工においては、従来と比較して、ビード外観・形状についてより厳格な品質が強く求められている。また、当然ながら、各工程における高能率化と併せて、溶接金属の機械的性能に対する要求も厳しくなる傾向にある。これらの分野では、大入熱を用いた片面溶接に1パス施工が多用されており、その代表的な例として、フラックスを裏当材とするフラックスバッキング法(RF法)、フラックスと銅板を裏当材とするフラックス銅バッキング法(FCB法)、及び、ガラステープ、固形フラックス、又は耐火物等で構成された裏当材を押し当てる方法(FAB法)等が挙げられる。   In particular, in recent years, not only the efficiency of the welding process has been improved, but also a series of improvements in the efficiency of various cutting and machining processes, which are the previous processes, and the omission of rework and correction work, which are the subsequent processes, have been demanded. . For these reasons, in welding construction, more stringent quality is strongly demanded for bead appearance and shape as compared with the prior art. Naturally, the demand for the mechanical performance of the weld metal also tends to be stricter with the improvement of efficiency in each process. In these fields, one-pass construction is frequently used for single-sided welding using high heat input. Typical examples of this are the flux backing method (RF method) using a flux as the backing material, and the flux and copper plate on the back. Examples thereof include a flux copper backing method (FCB method) and a method of pressing a backing material composed of glass tape, solid flux, refractory, or the like (FAB method).

これらのサブマージアーク溶接の従来技術として、両面と片面のサブマージアーク溶接用ボンドフラックスが提案されている(特許文献1,2)。   As a conventional technique of these submerged arc weldings, double-sided and single-sided submerged arc welding bond fluxes have been proposed (Patent Documents 1 and 2).

特開平2−151393JP-A-2-151393 特開平6−277878JP-A-6-277878

しかしながら、上述の特許文献1及び2に記載された片面サブマージアーク溶接においては、特に板厚が16mm以下の溶接継手に使用されることが多いI形開先において、表面のビードの形状が凸型になり、余盛は高く、オーバーラップが発生するという問題点がある。   However, in the single-sided submerged arc welding described in Patent Documents 1 and 2 described above, the shape of the surface bead is convex, particularly in an I-shaped groove that is often used for a welded joint having a plate thickness of 16 mm or less. Therefore, there is a problem that the surplus is high and overlap occurs.

一方、表面ビードの余盛高さを下げるためには、一般的に溶接電流を下げる等、溶接入熱を下げる方法が採用されるが、I形開先において適正な表面ビードの余盛高さを得ることができる溶接条件においては、適正な裏面ビードの形状を得ることができず、結果としていずれの場合も、多くの場合、手直し又は修正作業が必要であった。   On the other hand, in order to lower the surplus height of the surface bead, generally, a method of lowering the welding heat input, such as lowering the welding current, is adopted. In the welding conditions that can obtain the above, it is impossible to obtain a proper backside bead shape, and as a result, in either case, reworking or correction work is often required.

また、表面ビードのオーバーラップを抑制するため、溶接継手の開先形状をY形開先とすることも有効であるが、切断・加工工程における施工能率が極端に下がるといった問題点が生じる。   Moreover, in order to suppress the overlap of the surface bead, it is effective to use a Y-shaped groove as the groove shape of the welded joint, but there arises a problem that the construction efficiency in the cutting / processing process is extremely lowered.

また、従来の片面サブマージアーク溶接用ボンドフラックスにおいては、厚肉鋼板を溶接する場合にも十分な溶着金属量を確保するため、フラックス中にFe成分が例えば10乃至30質量%と多く含有されている。そのため、板厚が16mm以下であって、特にI形開先においては、表面ビードの凸型形状とオーバーラップを助長させることとなる。また、形成されるビードの表面にはFeを主成分とする突起が必ず発生する。その鉄粒突起はビードの外観を損ない、場合によってはグラインダーなどによる除去作業といった余分な工程を要するという問題点があった。この鉄粒突起の主要因は、溶接金属の凝固過程終了間際において、スラグ内の比較的質量の大きいFe成分がビード表面に付着するためであり、その発生量及び溶着金属量はフラックスに含有する鉄粉量に依存する。   Moreover, in the conventional bond flux for single-sided submerged arc welding, in order to ensure a sufficient amount of deposited metal even when welding thick steel plates, the flux contains a large amount of Fe component, for example, 10 to 30% by mass. Yes. Therefore, the plate thickness is 16 mm or less, and particularly in the I-shaped groove, the convex shape of the surface bead and the overlap are promoted. Further, protrusions containing Fe as a main component are always generated on the surface of the formed bead. The iron grain projections have a problem in that the appearance of the bead is damaged, and in some cases, an extra process such as a removal operation by a grinder or the like is required. The main factor of this iron grain protrusion is that the Fe component with a relatively large mass in the slag adheres to the bead surface just before the end of the solidification process of the weld metal, and the generated amount and the amount of deposited metal are contained in the flux. Depends on the amount of iron powder.

本発明はかかる問題点に鑑みてなされたものであって、2電極以上の多電極片面サブマージアーク溶接においても、厚板継手での溶接作業性、ビード外観、形状、及び溶接金属の機械的性能を確保できる性能を有した上で、特に薄板継手で顕著な従来のサブマージアーク溶接の問題点を解消し、健全な表裏面ビードを得ることができる片面サブマージアーク溶接用ボンドフラックスを提供することを目的とする。   The present invention has been made in view of such problems, and also in multi-electrode single-sided submerged arc welding of two or more electrodes, welding workability at a thick plate joint, bead appearance, shape, and mechanical performance of the weld metal It is possible to provide a bond flux for single-sided submerged arc welding that solves the problems of conventional submerged arc welding, which is particularly noticeable with thin plate joints, and can obtain sound front and back bead. Objective.

本発明に係るサブマージアーク溶接用ボンドフラックスは、MgO:25乃至35質量%、SiO:16乃至29質量%、Al:6乃至12質量%、TiO:0.6乃至7質量%、CaO:8乃至14質量%、CO:2乃至8質量%、NaO:1乃至5質量%、CaF:1乃至10質量%、B:0.2乃至3.0質量%、Si:0.1乃至3.0質量%、Ti:0.3乃至3.0質量%を含有し、かつ、TotalFeが5質量%以下に規制され、残部が5質量%以下であり、更にTiOとSiOとの質量比TiO/SiOが0.03乃至0.30であることを特徴とする。 Submerged arc welding bonded flux according to the present invention, MgO: 25 to 35 wt%, SiO 2: 16 to 29 wt%, Al 2 O 3: 6 to 12 wt%, TiO 2: 0.6 to 7 wt% , CaO: 8 to 14 wt%, CO 2: 2 to 8 wt%, Na 2 O: 1 to 5 wt%, CaF 2: 1 to 10 wt%, B 2 O 3: 0.2 to 3.0 mass %, Si: 0.1 to 3.0% by mass, Ti: 0.3 to 3.0% by mass, and TotalFe is regulated to 5% by mass or less, and the balance is 5% by mass or less, Furthermore the weight ratio of TiO 2 and SiO 2 TiO 2 / SiO 2 is characterized in that 0.03 to 0.30.

このサブマージアーク溶接用ボンドフラックスは、例えば、2電極以上の多電極片面サブマージアーク溶接用ボンドフラックスである。また、板厚が16mm以下の継手用のボンドフラックスとして好適である。   This bond flux for submerged arc welding is, for example, a bond flux for multi-electrode single-sided submerged arc welding of two or more electrodes. Moreover, it is suitable as a bond flux for a joint having a plate thickness of 16 mm or less.

本発明によれば、2電極以上の多電極片面サブマージアーク溶接においても、厚板継手での溶接作業性、ビード外観、形状、及び溶接金属の機械的性能を確保できると共に、特に薄板継手で健全な表裏面ビードを得ることができる。   According to the present invention, even in multi-electrode single-sided submerged arc welding of two or more electrodes, it is possible to ensure welding workability, bead appearance, shape and weld metal mechanical performance with thick plate joints, and particularly with thin plate joints. A good front and back bead can be obtained.

本発明者等は主に板厚16mm以下の薄板I形開先継手のサブマージアーク溶接においても、表面ビードにオーバーラップが生じない適正な余盛高さ及び形状を得ることができるボンドフラックスを開発すべく、種々実験研究を行った結果、
(1)I形開先において、表面ビードにオーバーラップが生じない適正な余盛高さ及び形状を確保するためには、TiO/SiO比が0.03乃至0.30であることが必要であること、
(2)薄板I形関先継手において、適正な溶着金属量を得て、かつ鉄粒突起の発生を抑制するには、フラックスに含まれるFe成分の合計含有量(TotalFe)が5%以下であることが必要であること、
(3)更に、厚板及び薄板継手の両方において、良好なビード外観と靭性を得るためには、スラグ形成剤と合金元素量を適正化することが必要であること
を見出した。
The inventors have developed a bond flux that can obtain an appropriate height and shape that does not cause overlap in the surface bead even in submerged arc welding of a thin plate I-shaped groove joint with a plate thickness of 16 mm or less. As a result of conducting various experimental studies,
(1) In the I-shaped groove, in order to ensure an appropriate height and shape that does not cause overlap in the surface bead, the TiO 2 / SiO 2 ratio should be 0.03 to 0.30. What you need,
(2) In the thin plate I-shaped joint, in order to obtain an appropriate amount of deposited metal and suppress the occurrence of iron grain protrusions, the total content of Fe components contained in the flux (TotalFe) is 5% or less. It must be,
(3) Further, it has been found that in order to obtain a good bead appearance and toughness in both the thick plate and the thin plate joint, it is necessary to optimize the slag forming agent and the amount of alloy elements.

このような知見から、本発明に係るボンドフラックスの組成を、
MgO:25乃至35質量%、
SiO:16乃至29質量%、
Al:6乃至12質量%、
TiO:0.6乃至7質量%、
CaO:8乃至14質量%、
CO:2乃至8質量%、
NaO:1乃至5質量%、
CaF:1乃至10質量%、
:0.2乃至3.0質量%、
Si:0.1乃至3.0質量%、
Ti:0.3乃至3.0質量%、
を含有し、
TotalFeが5質量%以下に規制され、
残部が5質量%以下であり、
TiOとSiOとの質量比TiO/SiOが0.03乃至0.30である
ものとすることにより、本発明を完成したものである。
From such knowledge, the composition of the bond flux according to the present invention is
MgO: 25 to 35% by mass,
SiO 2 : 16 to 29% by mass,
Al 2 O 3 : 6 to 12% by mass,
TiO 2 : 0.6 to 7% by mass,
CaO: 8 to 14% by mass,
CO 2 : 2 to 8% by mass,
Na 2 O: 1 to 5% by mass,
CaF 2 : 1 to 10% by mass,
B 2 O 3 : 0.2 to 3.0% by mass,
Si: 0.1 to 3.0% by mass,
Ti: 0.3 to 3.0% by mass,
Containing
TotalFe is regulated to 5% by mass or less,
The balance is 5% by mass or less,
By mass ratio TiO 2 / SiO 2 of TiO 2 and SiO 2 is assumed to be 0.03 to 0.30, and completed the present invention.

以下、上述のフラックスの各成分の組成限定理由について説明する。
MgO:25乃至35質量%
MgOは塩基性成分であり、溶接金属中の酸素量を低減し、靭性を確保するために有効な成分である。また、MgOはスラグの粘性を低下させる作用を有している。MgOが25質量%未満では酸素量の低減効果が少なく、靭性が劣化し、表面ビードにオーバーラップが発生する。MgOが35質量%を超えると、スラグが焼き付き、スラグ剥離性が劣化するとともに、ポックマークが発生しやすい。
Hereinafter, the reasons for limiting the composition of each component of the flux will be described.
MgO: 25 to 35% by mass
MgO is a basic component and is an effective component for reducing the amount of oxygen in the weld metal and ensuring toughness. Moreover, MgO has the effect | action which reduces the viscosity of slag. If MgO is less than 25% by mass, the effect of reducing the amount of oxygen is small, the toughness is deteriorated, and the surface bead is overlapped. When MgO exceeds 35 mass%, the slag is seized, the slag peelability is deteriorated, and a pock mark is easily generated.

SiO :16乃至29質量%
SiOは酸性成分であり、スラグの粘性を調整するのに有効な成分である。SiOが16質量%未満では、スラグの粘性が低下し、表面ビードのオーバーラップの発生は抑制される傾向を示すものの、ビード幅の揃い(均一性)が劣化する。一方、SiOが29質量%を超えると、スラグ粘性が過剰となり、ビードの広がりが悪くなり、オーバーラップが発生するとともに、塩基度が低下するため、溶接金属の酸素量が増加し、靭性が劣化する。
SiO 2 : 16 to 29% by mass
SiO 2 is an acidic component, and is an effective component for adjusting the viscosity of slag. If the SiO 2 content is less than 16% by mass, the viscosity of the slag decreases and the occurrence of surface bead overlap tends to be suppressed, but the uniformity of the bead width (uniformity) deteriorates. On the other hand, if SiO 2 exceeds 29% by mass, the slag viscosity becomes excessive, the spread of the beads worsens, overlap occurs, and the basicity decreases, so the oxygen content of the weld metal increases and the toughness increases. to degrade.

Al :6乃至12質量%
Alは中性成分であり、スラグの粘性及び凝固温度を調整するのに有効な成分である。Alが6質量%未満では、スラグの粘性及び凝固温度が低くなり、ビード幅の揃いが劣化する。一方、Alが12質量%を超えると、スラグの凝固温度が高くなり過ぎるため、ビードの広がりが悪くなるため、オーバーラップが発生し、ビード形状が凸型となる。
Al 2 O 3 : 6 to 12% by mass
Al 2 O 3 is a neutral component and is an effective component for adjusting the viscosity and solidification temperature of slag. When Al 2 O 3 is less than 6% by mass, the viscosity and solidification temperature of the slag are lowered, and the alignment of the bead width is deteriorated. On the other hand, if Al 2 O 3 exceeds 12% by mass, the solidification temperature of the slag becomes too high, and the spread of the beads deteriorates, so that overlap occurs and the bead shape becomes convex.

TiO :0.6乃至7質量%
TiOは酸性成分でありスラグの流動性を調整し、さらに溶接金属中でTi酸化物や窒化物として存在し靭性向上に有効な成分である。TiOが0.6質量%未満では、溶接金属中のTi量が不足し、靭性が劣化する。一方、TiOが7質量%を超えると、スラグが焼き付き、スラグ剥離性が劣化するとともに、表面ビード止端部のなじみ性が劣化し、オーバーラップが発生する。
TiO 2 : 0.6 to 7% by mass
TiO 2 is an acidic component that adjusts the fluidity of the slag, and further exists as a Ti oxide and nitride in the weld metal and is an effective component for improving toughness. When TiO 2 is less than 0.6% by mass, the amount of Ti in the weld metal is insufficient, and the toughness deteriorates. On the other hand, when TiO 2 exceeds 7% by mass, the slag is seized, the slag peelability is deteriorated, the conformability of the surface bead toe portion is deteriorated, and the overlap occurs.

CaO:8乃至14質量%
CaOは塩基性成分であり、フラックスの塩基度を高め、溶接金属中の酸素量の低減に極めて効果的な成分である。CaOが8質量%未満では、シールド性低下により溶接金属の酸素量が高くなり、靭性が劣化する。一方、CaOが14質量%を超えると、スラグが焼付き、スラグ剥離性が劣化する。
CaO: 8 to 14% by mass
CaO is a basic component and is an extremely effective component for increasing the basicity of the flux and reducing the amount of oxygen in the weld metal. If CaO is less than 8% by mass, the amount of oxygen in the weld metal increases due to a decrease in shielding properties, and toughness deteriorates. On the other hand, when CaO exceeds 14 mass%, slag will seize and slag peelability will deteriorate.

CO :2乃至8質量%
COは溶接金属への窒素の侵入と、拡散性水素量の低減に有効な成分である。COが2質量%未満では、溶接金属中の拡散性水素量が高くなり、低温割れ性が劣化する。一方、COが8質量%を超えると、ガス発生量が過大となり、ポックマークが発生する。なお、CO成分は、金属炭酸塩としてフラックス中に添加される。
CO 2 : 2 to 8% by mass
CO 2 is an effective component for the penetration of nitrogen into the weld metal and the reduction of the amount of diffusible hydrogen. When CO 2 is less than 2% by mass, the amount of diffusible hydrogen in the weld metal increases, and the low temperature cracking property deteriorates. On the other hand, when CO 2 exceeds 8% by mass, the amount of gas generated becomes excessive and a pock mark is generated. The CO 2 component is added to the flux as a metal carbonate.

Na O:1乃至5質量%
NaOはアーク安定性の確保のための重要な成分である。NaOが1質量%未満では、アークの安定性が極端に不安定となり、アーク切れが発生し、ビード形状及び溶込みが不均一となる。一方、NaOが5質量%を超えると、耐吸湿性が劣化し、耐低温割れ性が劣化する。
Na 2 O: 1 to 5% by mass
Na 2 O is an important component for ensuring arc stability. If Na 2 O is less than 1% by mass, the stability of the arc becomes extremely unstable, arc breakage occurs, and the bead shape and penetration become uneven. On the other hand, when Na 2 O exceeds 5% by mass, the hygroscopic resistance deteriorates and the low temperature cracking resistance deteriorates.

CaF :1乃至10質量%
CaFは塩基性成分であり、溶接金属中の酸素量を低下させるとともに、スラグの流動性を調整し、スラグ−メタル反応を促進させるために有効な成分である。CaFが1質量%未満では、溶接金属中の酸素量が高くなり靭性が劣化し、更に溶接スラグを形成するスラグ量が不足するため、ビードが蛇行し、揃いが劣化する。一方、CaFが10質量%を超えると、アーク安定性が劣化し、アーク切れが発生しやすくなる。
CaF 2 : 1 to 10% by mass
CaF 2 is a basic component, and is an effective component for reducing the oxygen content in the weld metal, adjusting the fluidity of the slag, and promoting the slag-metal reaction. When CaF 2 is less than 1% by mass, the amount of oxygen in the weld metal is increased and the toughness is deteriorated, and further, the amount of slag forming the weld slag is insufficient, so that the beads meander and the alignment deteriorates. On the other hand, when CaF 2 exceeds 10% by mass, the arc stability deteriorates and arc breakage is likely to occur.

:0.2乃至3質量%
は溶接熱で還元され、Bとして溶接金属中に存在し、靱性を確保する効果を有する。Bが0.2質量%未満では、その効果が発揮されず、靱性が劣化する。Bが3.0質量%を超えると、強度が過大となり、高温割れが発生する。
B 2 O 3 : 0.2 to 3% by mass
B 2 O 3 is reduced by welding heat and is present in the weld metal as B and has the effect of ensuring toughness. If B 2 O 3 is less than 0.2% by mass, the effect is not exhibited, and the toughness deteriorates. If B 2 O 3 exceeds 3.0% by mass, the strength becomes excessive and high temperature cracking occurs.

Si:1乃至3質量%
Siは溶接金属中の脱酸作用により酸素量を低減するのに有効な成分である。Siが1質量%未満では、溶接金属中の酸素が高くなり、靱性が劣化する。一方、Siが3質量%を超えると、スラグが焼付き、スラグ剥離性が劣化するとともに、溶接金属の強度が過大となり、靱性が劣化する。なお、Siは単体の他、Fe−Si等で添加できる。
Si: 1 to 3% by mass
Si is a component effective for reducing the amount of oxygen by deoxidation in the weld metal. When Si is less than 1% by mass, oxygen in the weld metal becomes high and toughness deteriorates. On the other hand, when Si exceeds 3 mass%, the slag is seized and the slag peelability is deteriorated, and the strength of the weld metal is excessively increased and the toughness is deteriorated. In addition to Si, Si can be added as Fe-Si or the like.

Ti:0.3乃至3質量%
Tiは溶接金属中でTi酸化物及び窒化物として存在し、靭性向上に有効な成分である。Tiが0.3質量%未満では、溶接金属中のTi量が不足し、靭性が劣化する。一方、Tiが3質量%を超えると、Ti酸化物及び窒化物が過大となり、強度の過剰な上昇により、低温割れが発生する。
Ti: 0.3 to 3% by mass
Ti exists as a Ti oxide and nitride in the weld metal and is an effective component for improving toughness. When Ti is less than 0.3% by mass, the amount of Ti in the weld metal is insufficient, and the toughness deteriorates. On the other hand, when Ti exceeds 3% by mass, Ti oxides and nitrides become excessive, and cold cracking occurs due to excessive increase in strength.

TotalFe:5質量%以下
Feは溶着金属量を補うという利点があるものの、Feが5質量%を超えると、表面ビードに鉄粒突起が発生し、外観及び表面状態が劣化するとともに、溶着金属量が過大となり、オーバーラップが発生する。Feが5質量%以下としたのはFe―Si、Fe−Moなどの合金成分などに不可避的に含まれるためであるが、極力少ないことが望ましい。
TotalFe: 5 mass% or less Fe has the advantage of supplementing the amount of deposited metal, but when Fe exceeds 5 mass%, iron grain protrusions are generated on the surface beads, the appearance and surface state deteriorate, and the amount of deposited metal Becomes excessive and overlap occurs. The reason why Fe is 5% by mass or less is that it is inevitably contained in alloy components such as Fe-Si and Fe-Mo, but it is desirable that Fe be as small as possible.

TiO /SiO :0.03乃至0.30
質量比TiO/SiOは健全なビード形状と良好な靭性を得るために制限する必要がある。TiO/SiOが0.02未満であると、スラグの流動性が過剰となり、ビードが蛇行するとともに、靭性が劣化する。一方、TiO/SiOが0.30を超えると、スラグの粘性が低下し、表面ビードの止端部のなじみ性が劣化し、オーバーラップが発生する。
TiO 2 / SiO 2 : 0.03 to 0.30
The mass ratio TiO 2 / SiO 2 needs to be limited to obtain a healthy bead shape and good toughness. When TiO 2 / SiO 2 is less than 0.02, the fluidity of the slag becomes excessive, the beads meander and the toughness deteriorates. On the other hand, when TiO 2 / SiO 2 exceeds 0.30, the viscosity of the slag decreases, the conformability of the toe portion of the surface bead deteriorates, and overlap occurs.

残部:5質量以下
また上記成分の他に、フラックスにはKO、BaO、FeO、ZrO等の酸化物、また溶接金属の機械的性能の面からMn、Mo等の金属成分を単体又は合金等で添加することができ、その含有量はすべての総量が5質量%以下とする。
Remainder: 5 mass or less In addition to the above components, the flux contains oxides such as K 2 O, BaO, FeO, ZrO 2 , and metal components such as Mn and Mo alone or in terms of the mechanical performance of the weld metal It can be added by an alloy or the like, and the total content is 5% by mass or less.

次に、本発明の効果を実証するために行った試験の結果について、本発明の範囲に入る実施例と本発明の範囲から外れる比較例とを比較して説明する。下記表1に示す鋼板及び表2に示すワイヤを使用し、下記表3、4、5、6及び図1に示す溶接条件により、前述のRF法により、2電極又は3電極で片面サブマージアーク溶接を行った。溶接後に目視によるオーバーラップの有無、ポックマークの有無、ビード幅の揃い等を官能(総合では)評価した。その後、超音波探傷試験(UT試験)により割れの有無を確認し、溶接金属の酸素量の測定、−20℃でのシャルピー衝撃試験を実施した。表7に供試したフラックス中の成分含有量、表8、9、10、11に各板厚と電極での試験結果を示す。   Next, the results of tests conducted to demonstrate the effects of the present invention will be described by comparing an example that falls within the scope of the present invention and a comparative example that falls outside the scope of the present invention. The steel plate shown in Table 1 and the wire shown in Table 2 are used, and under the welding conditions shown in Tables 3, 4, 5, 6 and 1 shown below, single-sided submerged arc welding with two or three electrodes by the RF method described above Went. After welding, the presence or absence of visual overlap, the presence or absence of a pock mark, the alignment of the bead width, and the like were sensory (totally) evaluated. Thereafter, the presence or absence of cracks was confirmed by an ultrasonic flaw detection test (UT test), the oxygen content of the weld metal was measured, and a Charpy impact test at −20 ° C. was performed. Table 7 shows the content of components in the tested flux, and Tables 8, 9, 10, and 11 show the test results for each plate thickness and electrode.

Figure 2007136516
Figure 2007136516

Figure 2007136516
Figure 2007136516

Figure 2007136516
Figure 2007136516

Figure 2007136516
Figure 2007136516

Figure 2007136516
Figure 2007136516

Figure 2007136516
Figure 2007136516

Figure 2007136516
Figure 2007136516

Figure 2007136516
Figure 2007136516

Figure 2007136516
Figure 2007136516

Figure 2007136516
Figure 2007136516

Figure 2007136516
Figure 2007136516

本発明の実施例No.1乃至10のサブマージアーク溶接方法においては、板厚12mm継手の3電極RF溶接(表8)、板厚12mm継手の2電極RF継手(表9)、板厚35mm継手の3電極RF溶接(表10)、板厚32mm継手の2電極RF溶接(表11)のいずれの場合も、溶接作業性、非破壊検査、靱性の結果が良好であった。   Example No. 5 of the present invention. In the submerged arc welding methods 1 to 10, three-electrode RF welding of a 12 mm thick joint (Table 8), two electrode RF joint of 12 mm thick joint (Table 9), and three electrode RF welding of 35 mm thick joint (Table 8). 10) The results of welding workability, non-destructive inspection, and toughness were good in both cases of two-electrode RF welding (Table 11) of a joint with a plate thickness of 32 mm.

これに対し、比較例No.11は、フラックス中のMgOの含有量が本発明範囲の下限値未満であるので、オーバーラップが発生するとともに、溶接金属中の酸素量が増加し、靭性が劣化した。比較例No.12は、フラックス中のMgOの含有量が本発明範囲の上限値を超えているので、スラグ剥離性が劣化し、ポックマークが発生した。   In contrast, Comparative Example No. In No. 11, the content of MgO in the flux was less than the lower limit of the range of the present invention, so that overlap occurred, the amount of oxygen in the weld metal increased, and toughness deteriorated. Comparative Example No. No. 12, since the content of MgO in the flux exceeded the upper limit of the range of the present invention, the slag peelability deteriorated and a pock mark was generated.

比較例No.13は、フラックス中のSiOの含有量が本発明範囲の下限値未満であるので、ビード幅の揃いが劣化した。比較例No.14は、フラックス中のSiOの含有量が本発明範囲の上限値を超えているので、オーバーラップが発生するとともに、溶接金属中の酸素量が増加し、靭性が劣化した。 Comparative Example No. In No. 13, since the content of SiO 2 in the flux was less than the lower limit of the range of the present invention, the uniformity of the bead width deteriorated. Comparative Example No. No. 14, since the content of SiO 2 in the flux exceeded the upper limit of the range of the present invention, overlap occurred, the amount of oxygen in the weld metal increased, and the toughness deteriorated.

比較例No.15は、フラックス中のAlの含有量が本発明範囲の下限値未満であるので、ビード幅の揃いが劣化した。比較例No.16は、フラックス中のAlの含有量が本発明範囲の上限値を超えているので、ビード幅が過小となり、凸型ビードとなり、オーバーラップが発生した。 Comparative Example No. No. 15, since the content of Al 2 O 3 in the flux was less than the lower limit of the range of the present invention, the bead width alignment deteriorated. Comparative Example No. In No. 16, since the content of Al 2 O 3 in the flux exceeded the upper limit of the range of the present invention, the bead width was excessively small, forming a convex bead, and overlapping occurred.

比較例No.17は、フラックス中のTiOの含有量が本発明範囲の下限値未満であるので、靭性が劣化した。比較例No.18は、フラックス中のTiOの含有量が本発明範囲の上限値を超えているので、スラグが焼付き、スラグ剥離性が劣化するとともに、オーバーラップが発生した。 Comparative Example No. In No. 17, since the content of TiO 2 in the flux was less than the lower limit of the range of the present invention, toughness deteriorated. Comparative Example No. No. 18, since the content of TiO 2 in the flux exceeded the upper limit of the range of the present invention, the slag was seized, the slag peelability deteriorated, and an overlap occurred.

比較例No.19は、フラックス中のCaOの含有量が本発明範囲の下限値未満であるので、溶接金属中の酸素量が増加し、靭性が劣化した。比較例No.20は、フラックス中のCaOの含有量が本発明範囲の上限値を超えているので、スラグが焼付き、剥離性が劣化した。   Comparative Example No. In No. 19, since the content of CaO in the flux was less than the lower limit of the range of the present invention, the amount of oxygen in the weld metal increased and the toughness deteriorated. Comparative Example No. In No. 20, since the content of CaO in the flux exceeds the upper limit of the range of the present invention, the slag was seized and the peelability deteriorated.

比較例No.21は、フラックス中のCOの含有量が本発明範囲の下限値未満であるので、溶接金属中の拡散性水素量が増加し、低温割れが発生した。比較例No.22は、フラックス中のCOの含有量が本発明範囲の上限値を超えているので、ポックマークが発生した。 Comparative Example No. In No. 21, the content of CO 2 in the flux was less than the lower limit of the range of the present invention, so the amount of diffusible hydrogen in the weld metal increased and cold cracking occurred. Comparative Example No. As for No. 22, since the content of CO 2 in the flux exceeded the upper limit of the range of the present invention, a pock mark was generated.

比較例No.23は、フラッワス中のNaOの含有量が本発明範囲の下限値未満であるので、溶接中にアーク切れが発生した。比較例No.24は、フラックス中のNaOの含有量が本発明範囲の上限値を超えているので、耐吸湿性が劣化し、低温割れが発生した。 Comparative Example No. In No. 23, since the content of Na 2 O in the flawas was less than the lower limit of the range of the present invention, arc breakage occurred during welding. Comparative Example No. In No. 24, the Na 2 O content in the flux exceeded the upper limit of the range of the present invention, so the moisture absorption resistance deteriorated and low temperature cracking occurred.

比較例No.25は、フラックス中のCaFの含有量が本発明範囲の下限値未満であるので、ビードの揃いが劣化し、さらに溶接金属中の酸素量が増加し、靭性が劣化した。比較例No.26は、フラックス中のCaFの含有量が本発明範囲の上限値を超えているので、溶接中にアーク切れが発生した。 Comparative Example No. No. 25, since the content of CaF 2 in the flux was less than the lower limit of the range of the present invention, the bead alignment deteriorated, the oxygen content in the weld metal increased, and the toughness deteriorated. Comparative Example No. In No. 26, since the content of CaF 2 in the flux exceeds the upper limit of the range of the present invention, arc breakage occurred during welding.

比較例No.27は、Bの含有量が本発明範囲の下限値未満であるので、靭性が劣化した。比較例No.28は、フラックス中のBの含有量が本発明範囲の上限値を超えているので、高温割れが発生した。 Comparative Example No. In No. 27, since the content of B 2 O 3 was less than the lower limit of the range of the present invention, toughness deteriorated. Comparative Example No. In No. 28, since the content of B 2 O 3 in the flux exceeded the upper limit of the range of the present invention, hot cracking occurred.

比較例No.29は、フラックス中のSiの含有量が本発明範囲の下限値未満であるので、溶接金属中の酸素量が増加し、靭性が劣化した。比較例No.30は、フラックス中のSiの含有量が本発明範囲の上限値を超えているので、スラグが焼付き、剥離性が劣化すると共に、靱性が劣化した。   Comparative Example No. For No. 29, the content of Si in the flux was less than the lower limit of the range of the present invention, so the amount of oxygen in the weld metal increased and the toughness deteriorated. Comparative Example No. In No. 30, since the content of Si in the flux exceeds the upper limit of the range of the present invention, the slag was seized, the peelability deteriorated, and the toughness deteriorated.

比較例No.31は、フラックス中のTiの含有量が本発明範囲の下限値未満であるので、靭性が劣化した。比較例No.32は、フラックス中のTiの含有量が本発明範囲の上限値を超えているので、強度が過大となり、低温割れが発生した。   Comparative Example No. In No. 31, the toughness deteriorated because the Ti content in the flux was less than the lower limit of the range of the present invention. Comparative Example No. In No. 32, the Ti content in the flux exceeded the upper limit of the range of the present invention, so the strength was excessive and cold cracking occurred.

比較例No.33は、フラックス中のFeの含有量が本発明範囲の上限値を超えているので、オーバーラップが発生するとともに、ビード表面に鉄粒突起が発生し外観が損なわれた。   Comparative Example No. In No. 33, since the Fe content in the flux exceeded the upper limit of the range of the present invention, overlap occurred, and iron grain protrusions occurred on the bead surface, and the appearance was impaired.

比較例No.34、35は、フラックス中のTiO/SiO比が本発明範囲の下限値未満であるので、ビードの揃いが劣化した。また、溶接金属の酸素量も増加し、靱性も劣化した。比較例No.36、37は、フラックス中のTiO/SiO比が本発明範囲の上限値を超えているので、オーバーラップが発生した。 Comparative Example No. Since the TiO 2 / SiO 2 ratio in the flux was less than the lower limit of the range of the present invention, the bead alignment deteriorated. In addition, the oxygen content of the weld metal increased and the toughness deteriorated. Comparative Example No. Nos. 36 and 37 were overlapped because the TiO 2 / SiO 2 ratio in the flux exceeded the upper limit of the range of the present invention.

上述の如く、本発明の実施例1乃至10によれば、片面サブマージアーク溶接用のボンドフラックスにおける成分系を適切に規制しているので良好な溶接作業性と靭性を得ることができる。   As described above, according to Examples 1 to 10 of the present invention, since the component system in the bond flux for single-sided submerged arc welding is appropriately regulated, good welding workability and toughness can be obtained.

なお、本実施例では、RF法で試験を行っているが、FCB法、FAB法においても同様の結果であり、いずれの方法でも適用できる。また、裏当フラックスについても従来のフラックスがそのまま適用でき、裏当方法により限定されるものではない。   In this example, the test is performed by the RF method, but the same result is obtained by the FCB method and the FAB method, and any method can be applied. Also, the conventional flux can be applied as it is for the backing flux, and is not limited by the backing method.

実施例・比較例の溶接条件を示す図であり、板厚が12mmの場合はI開先、板厚が32mm及び35mmの場合はY開先である。It is a figure which shows the welding conditions of an Example and a comparative example, when a plate | board thickness is 12 mm, it is I groove | channel, when plate | board thickness is 32 mm and 35 mm.

Claims (3)

MgO:25乃至35質量%、SiO:16乃至29質量%、Al:6乃至12質量%、TiO:0.6乃至7質量%、CaO:8乃至14質量%、CO:2乃至8質量%、NaO:1乃至5質量%、CaF:1乃至10質量%、B:0.2乃至3.0質量%、Si:0.1乃至3.0質量%、Ti:0.3乃至3.0質量%を含有し、かつ、TotalFeが5質量%以下に規制され、残部が5質量%以下であり、更にTiOとSiOとの質量比TiO/SiOが0.03乃至0.30であることを特徴とするサブマージアーク溶接用ボンドフラックス。 MgO: 25 to 35 wt%, SiO 2: 16 to 29 wt%, Al 2 O 3: 6 to 12 wt%, TiO 2: 0.6 to 7 mass%, CaO: 8 to 14 wt%, CO 2: 2 to 8 wt%, Na 2 O: 1 to 5 wt%, CaF 2: 1 to 10 wt%, B 2 O 3: 0.2 to 3.0 wt%, Si: 0.1 to 3.0 mass %, Ti: contains 0.3 to 3.0 wt%, and, TotalFe is restricted to 5 wt% or less, the balance is not more than 5 wt%, further the weight ratio of TiO 2 TiO 2 and SiO 2 Bond flux for submerged arc welding, wherein / SiO 2 is 0.03 to 0.30. 2電極以上の多電極片面サブマージアーク溶接用であることを特徴とする請求項1に記載のサブマージアーク溶接用ボンドフラックス。 The bond flux for submerged arc welding according to claim 1, which is for multi-electrode single-sided submerged arc welding of two or more electrodes. 板厚が16mm以下の継手用であることを特徴とする請求項2に記載のサブマージアーク溶接用ボンドフラックス。

The bond flux for submerged arc welding according to claim 2, wherein the bond flux is for joints having a plate thickness of 16 mm or less.

JP2005334938A 2005-11-18 2005-11-18 Bond flux for submerged arc welding Active JP4489009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005334938A JP4489009B2 (en) 2005-11-18 2005-11-18 Bond flux for submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005334938A JP4489009B2 (en) 2005-11-18 2005-11-18 Bond flux for submerged arc welding

Publications (2)

Publication Number Publication Date
JP2007136516A true JP2007136516A (en) 2007-06-07
JP4489009B2 JP4489009B2 (en) 2010-06-23

Family

ID=38199993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005334938A Active JP4489009B2 (en) 2005-11-18 2005-11-18 Bond flux for submerged arc welding

Country Status (1)

Country Link
JP (1) JP4489009B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012176435A (en) * 2011-01-31 2012-09-13 Kobe Steel Ltd Bonded flux and solid wire for submerged arc welding, and method for submerged arc welding of steel for low temperature service
JP2014091135A (en) * 2012-11-01 2014-05-19 Kobe Steel Ltd Bonded flux for submerged arc welding
KR101464853B1 (en) * 2012-01-10 2014-11-25 가부시키가이샤 고베 세이코쇼 Bond flux, wire, welding metal and welding method for submerged arc welding
WO2015087843A1 (en) * 2013-12-13 2015-06-18 株式会社神戸製鋼所 Flux for submerged arc welding
JP2015155111A (en) * 2014-01-15 2015-08-27 日鐵住金溶接工業株式会社 Bond flux for multielectrode one-side submerged arc welding

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109530975B (en) * 2018-12-29 2020-11-27 天津市永昌焊丝有限公司 High-alkali high-strength high-toughness submerged arc sintered flux and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137195A (en) * 1983-01-28 1984-08-07 Kobe Steel Ltd Baked flux for submerged arc welding
JPS6356396A (en) * 1986-08-23 1988-03-10 Kobe Steel Ltd Submerged arc welding method
JP2001170795A (en) * 1999-12-14 2001-06-26 Kawasaki Steel Corp Sintered flux for submerged arc welding and method for manufacturing the same and submerged arc fillet welding method
JP2002018595A (en) * 2000-07-03 2002-01-22 Nippon Steel Corp One side submerged arc welding method for steel for low temperature use
JP2003245794A (en) * 2002-02-26 2003-09-02 Jfe Steel Kk Manufacturing method for sintered flux for submerged arc welding
JP2006272348A (en) * 2005-03-28 2006-10-12 Kobe Steel Ltd Bonded flux for submerged arc welding

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137195A (en) * 1983-01-28 1984-08-07 Kobe Steel Ltd Baked flux for submerged arc welding
JPS6356396A (en) * 1986-08-23 1988-03-10 Kobe Steel Ltd Submerged arc welding method
JP2001170795A (en) * 1999-12-14 2001-06-26 Kawasaki Steel Corp Sintered flux for submerged arc welding and method for manufacturing the same and submerged arc fillet welding method
JP2002018595A (en) * 2000-07-03 2002-01-22 Nippon Steel Corp One side submerged arc welding method for steel for low temperature use
JP2003245794A (en) * 2002-02-26 2003-09-02 Jfe Steel Kk Manufacturing method for sintered flux for submerged arc welding
JP2006272348A (en) * 2005-03-28 2006-10-12 Kobe Steel Ltd Bonded flux for submerged arc welding

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012176435A (en) * 2011-01-31 2012-09-13 Kobe Steel Ltd Bonded flux and solid wire for submerged arc welding, and method for submerged arc welding of steel for low temperature service
KR101464853B1 (en) * 2012-01-10 2014-11-25 가부시키가이샤 고베 세이코쇼 Bond flux, wire, welding metal and welding method for submerged arc welding
JP2014091135A (en) * 2012-11-01 2014-05-19 Kobe Steel Ltd Bonded flux for submerged arc welding
CN103801859A (en) * 2012-11-01 2014-05-21 株式会社神户制钢所 Bonded flux for submerged arc welding
KR20150130954A (en) * 2012-11-01 2015-11-24 가부시키가이샤 고베 세이코쇼 Bonded flux for submerged arc welding
KR101583197B1 (en) 2012-11-01 2016-01-06 가부시키가이샤 고베 세이코쇼 Bonded flux for submerged arc welding
WO2015087843A1 (en) * 2013-12-13 2015-06-18 株式会社神戸製鋼所 Flux for submerged arc welding
JP2015112633A (en) * 2013-12-13 2015-06-22 株式会社神戸製鋼所 Flux for submerged arc welding
JP2015155111A (en) * 2014-01-15 2015-08-27 日鐵住金溶接工業株式会社 Bond flux for multielectrode one-side submerged arc welding

Also Published As

Publication number Publication date
JP4489009B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
JP5179073B2 (en) Flux-cored wire for gas shielded arc welding
JP2013154363A (en) Flux for one side submerged arc welding
JP5557790B2 (en) Flux-cored wire for 2-electrode horizontal fillet CO2 gas shielded arc welding
JP5179114B2 (en) Flux for submerged arc welding of steel for low temperature and its welding method
JP4537310B2 (en) Low temperature steel single-sided submerged arc welding method and weld metal
JP4489009B2 (en) Bond flux for submerged arc welding
JP2006289404A (en) Flux cored wire for gas shielded arc welding
JP4297880B2 (en) Bond flux for submerged arc welding
JP7179639B2 (en) Sintered flux for submerged arc welding for high-strength steel
US20030196997A1 (en) Flux-cored wire for stainless steel arc welding
CN109967918B (en) Ceramic welding flux for submerged arc welding of duplex stainless steel
JP6227513B2 (en) Firing flux for submerged arc welding of high strength steel
JP3552375B2 (en) Large heat input latent arc welding method for thick steel plate with excellent toughness of weld metal
JP3765761B2 (en) Bond flux for submerged arc welding
JP2711130B2 (en) Gas shielded arc welding wire
JP4836262B2 (en) Bond flux for submerged arc welding
GB2084501A (en) Method for submerged-arc welding a very low carbon steel
JP5339870B2 (en) Bond flux for downward fillet submerged arc welding
JP6071798B2 (en) Flux for single-sided submerged arc welding
JP3458452B2 (en) High heat input latent arc welding method for thick steel plate with excellent toughness of weld metal
JP3157060B2 (en) Highly basic molten flux
JPH09206945A (en) Multi-electrode gas shielded one-side welding method
JP2005144539A (en) Flux-cored wire for gas shielded arc welding for reducing welding deformation, and method of reducing welding deformation with flux-cored wire
JPS6357154B2 (en)
WO2016167098A1 (en) Coating agent and coated arc welding rod

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4