[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007132704A - Microchip base plate made of glass, its manufacturing method and microchip - Google Patents

Microchip base plate made of glass, its manufacturing method and microchip Download PDF

Info

Publication number
JP2007132704A
JP2007132704A JP2005323679A JP2005323679A JP2007132704A JP 2007132704 A JP2007132704 A JP 2007132704A JP 2005323679 A JP2005323679 A JP 2005323679A JP 2005323679 A JP2005323679 A JP 2005323679A JP 2007132704 A JP2007132704 A JP 2007132704A
Authority
JP
Japan
Prior art keywords
microchip
base plate
glass
glass powder
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005323679A
Other languages
Japanese (ja)
Inventor
Takaomi Ikari
貴臣 碇
Shigeo Kimura
木村  茂雄
Keiji Honda
啓志 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Quartz Corp
Original Assignee
Tosoh Quartz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Quartz Corp filed Critical Tosoh Quartz Corp
Priority to JP2005323679A priority Critical patent/JP2007132704A/en
Publication of JP2007132704A publication Critical patent/JP2007132704A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a smooth long-life amorphous microchip base plate that is small of labor and time of the polishing processing, a microchip and a manufacturing method of them. <P>SOLUTION: An acrylic resin binder is added to a spherical quartz glass powder that is to be mixed with it so that the quartz glass powder is 77 wt.% and the resulting mixture is kneaded for one hr at 140°C by using a heating kneader. The kneaded matter is formed into a sheet, and this sheet is ground into a flaky form. The flakes of the kneaded matter is formed into a molded body 10, having grooves 2 becoming flow channels formed to its surface by an injection molding machine. The molded body 10 is heated to 500°C inside a vacuum atmosphere at a rate of 10°C/hr and held at 500°C for 2 hours to be degreased. The degreased matter is heated to 1,300°C at a heating rate of 200°C/hr in a vacuum atmosphere and is held to 1,300°C for 2 hours, to obtain a light-permeable microchip base plate 1. A cover 3, made of quartz glass, is adhered tightly to the microchip base plate 1 and is thermally fused to it at 1,300°C and the microchip 4 is obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、射出成形・焼結技術を応用して作成したマイクロチップベースプレート、マイクロチップ、及びその製造方法に関する。   The present invention relates to a microchip base plate created by applying injection molding / sintering technology, a microchip, and a manufacturing method thereof.

近年、マイクロ化技術はコンピューターなどの電子分野のみならず医療分野などいろいろな分野にて用いられてきている。マイクロ化による利点としては効率化、省資源、省エネルギー化が図れること等があるが、こうしたさまざまな分野への浸透は近年の微細加工技術の飛躍的な進歩による面が大きい。
最近の技術としては特願2002−209396のように測定サンプルの少量化に対応して分析機器のマイクロ化が進められ、微量試料であっても検出感度が低下することのないように分析用フローセルをマイクロ化した技術等があるが、従来のこうした分析装置でのマイクロ化から発展して、今後は食品分野、環境分野などにおいてもマイクロ化が期待されてきており、生物化学の分野においてもDNAマイクロチップなどの利用が活発に研究されてきている。
分析機器のマイクロ化に対応したフローセル等の製造においては、鏡面研磨したガラス表面に流路となる任意形状・長さの溝を形成し、その上に鏡面研磨した石英ガラス板をカバーとして融着して組み立てている。
ガラス製のマイクロチップの溝は、ガラス表面を機械加工やウェットエッチング、ドライエッチング、ショットブラスト等によって形成され、その後に同質のガラスを準備して熱融着により上面を覆う方法が一般的であった。
また、ガラス製品は、プレス成形、鋳込み成形、或いは射出成形(特許文献1及び2)等で成形して製造することが知られている。
In recent years, micro technology has been used in various fields such as medical fields as well as electronic fields such as computers. Advantages of microfabrication include efficiency, resource saving, and energy saving. However, the penetration into these various fields is largely due to recent advances in microfabrication technology.
As a recent technology, as in Japanese Patent Application No. 2002-209396, analysis instruments have been miniaturized in response to a reduction in the amount of measurement samples, and an analysis flow cell is used so that detection sensitivity does not decrease even with a small amount of sample. However, it has been expected to be micro-scaled in the food and environmental fields, and in the field of biochemistry, DNA has been developed. The use of microchips has been actively researched.
In the manufacture of flow cells, etc., that are compatible with micro-analysis of analytical instruments, a groove with an arbitrary shape and length to be a flow path is formed on the mirror-polished glass surface, and then the quartz glass plate that has been mirror-polished is fused as a cover. And assembled.
The groove of the glass microchip is generally formed by machining, wet etching, dry etching, shot blasting, etc. on the glass surface, and then preparing the same quality glass and covering the upper surface by thermal fusion. It was.
Further, it is known that glass products are manufactured by press molding, cast molding, injection molding (Patent Documents 1 and 2), or the like.

特開平9−48623号公報JP 9-48623 A 特開2004−203639号公報JP 2004-203639 A 特開2005−139018号公報JP 2005-139018 A 特開2005−145767号公報JP 2005-145767 A

石英ガラスインゴットを機械加工によって板を切り出し、精密に研磨加工して鏡面を有する板を得ることは時間を要し、コストを上げる原因であった。
また、プレス成形や鋳込み成形、さらには射出成形によって製造することができるが、これらの方法で得られる製品は、表面が粗いものであり、更に研磨を必要とするため、研磨加工に手間、コスト、時間がかかるという問題を有していた。研磨加工工程において、欠陥、割れ、ひずみ、応力が発生しやすいため、研磨加工製品の歩留まりが低く、得られた研磨加工製品が壊れやすく、寿命が短いという問題を有していた。さらにプレス成形や鋳込み成形ではマイクロ化の精度上も問題がある。
It was time-consuming and costly to obtain a plate having a mirror surface by cutting a quartz glass ingot by machining and precisely polishing it.
In addition, it can be manufactured by press molding, casting molding, or injection molding, but the products obtained by these methods have a rough surface and require further polishing. Had the problem of taking time. In the polishing process, defects, cracks, strains, and stresses are likely to occur, so that the yield of the polished product is low, and the obtained polished product is easily broken and has a short life. Furthermore, there is a problem in the accuracy of microfabrication in press molding and cast molding.

射出成形法によるガラス製品の製法としては、特許文献1で粒径が0.1〜20μmの範囲で、かつアルカリ金属含有率が100ppm以下である石英ガラス粉末100重量部に対して、アルカリ金属含有率が100ppm以下であるバインダー10〜70重量部を配合した混練物を射出成形し、得られた射出成形体からバインダーを加熱脱脂し、1000〜1800℃の範囲で焼結する方法が提案されている。この方法を更に改善した方法が特許文献2に記載されている。これは、粒径が0.01〜20μmの球状粒子からなり、粒径分布が0.1〜0.5μmの小径側と、1〜5μmの大径側に極大分布ピークを有し、大径側ピーク粒径/小径側ピーク粒径比が5〜10である石英ガラス粉末を用い、温度1200〜1400℃で真空焼結するものである。
また、同様の方法で、得られるガラスを不透明でありながら平滑な表面を有するものが特許文献3に、ガラスを黒色とする方法が特許文献4に開示されている。
そこで、本発明は、研磨加工の手間の負担が小さく、少なくとも1面が平滑で長寿命の非晶質マイクロチップベースプレート及びマイクロチップ、並びにそれらの製造方法を提供することにある。
As a method for producing a glass product by an injection molding method, it is disclosed in Patent Document 1 that the alkali metal content is 100 parts by weight of quartz glass powder having a particle diameter of 0.1 to 20 μm and an alkali metal content of 100 ppm or less. A method has been proposed in which a kneaded mixture containing 10 to 70 parts by weight of a binder having a rate of 100 ppm or less is injection molded, the binder is heated and degreased from the obtained injection molded body, and sintered in the range of 1000 to 1800 ° C. Yes. Japanese Patent Application Laid-Open No. 2005-228561 describes a method obtained by further improving this method. This consists of spherical particles having a particle size of 0.01 to 20 μm, the particle size distribution having a maximum distribution peak on the small diameter side of 0.1 to 0.5 μm and the large diameter side of 1 to 5 μm. A quartz glass powder having a side peak particle size / small diameter side peak particle size ratio of 5 to 10 is used, and vacuum sintering is performed at a temperature of 1200 to 1400 ° C.
Further, in the same manner, Patent Document 3 discloses a glass having a smooth surface while being opaque, and Patent Document 4 discloses a method of making the glass black.
Accordingly, the present invention is to provide an amorphous microchip base plate and a microchip that have a small burden on the polishing process, have at least one surface smooth and have a long lifetime, and methods for manufacturing the same.

ガラス粉末とバインダーの混練物を表面に流路となる所望形状の溝が形成されるように射出成形し、加熱脱脂してバインダーを除去し、更に焼結してマイクロチップベースプレートを得るものである。
石英ガラス粉末の粒径が0.01〜20μmの球状粒子であり、粒径分布が0.1〜0.5μmの小径側と、1〜5μmの大径側に極大分布ピークを有し、大径側ピーク粒径/小径側ピーク粒径比が5〜10であり、焼結温度1200〜1400℃であり、焼結雰囲気を真空としたものである。
A glass chip and a binder kneaded product are injection-molded so that a groove having a desired shape is formed on the surface, heat degreased to remove the binder, and further sintered to obtain a microchip base plate. .
The silica glass powder is a spherical particle having a particle size of 0.01 to 20 μm, and the particle size distribution has a maximum distribution peak on the small diameter side of 0.1 to 0.5 μm and the large diameter side of 1 to 5 μm. The diameter-side peak particle size / small-diameter side peak particle size ratio is 5 to 10, the sintering temperature is 1200 to 1400 ° C., and the sintering atmosphere is vacuum.

ベースプレートとなるガラスの材質は、光透過性を有する透明ガラスが一般的には好ましく、石英ガラス、ホウ珪酸ガラス、ソーダライムガラス等が挙げられるが、遠紫外線、紫外線、可視光線、赤外線及び遠赤外線の全域、または、その一部帯域においても光透過性に優れている石英ガラスがより好ましく、このためガラス粉末をシリカガラス粉末としてバインダーと混練したものを表面に流路となる所望形状の溝が形成されるように射出成形するのが望ましい。
本方法による溝を形成したガラス製ベースプレートは表面性状も滑らかであり、必要とされるマイクロメートルオーダーの精度も得られることから、ガラス製マイクロチップベースプレートの作製方法として本願の射出成形方法が適していることが知見された。
マイクロチップを得るための接合方法は、射出成形・焼結ガラスと透明ガラスの接合面とを予め鏡面状態とし、双方の接合面を合わせ、石英ガラスの軟化点(約1300℃)に加熱して一体接合するものである。
このとき、両者を加圧すると融着温度を下げることができると共に、強固な接合状態を得ることができる。
The material of the glass serving as the base plate is generally preferably a transparent glass having optical transparency, and examples thereof include quartz glass, borosilicate glass, and soda lime glass, but far ultraviolet rays, ultraviolet rays, visible rays, infrared rays, and far infrared rays. Quartz glass that is excellent in light transmittance even in the entire region or a part of the region is more preferable. For this reason, a groove having a desired shape serving as a flow path on the surface of a glass powder kneaded with a binder as silica glass powder. It is desirable to injection mold to form.
The glass base plate with grooves formed by this method has smooth surface properties and the required micrometer order accuracy can be obtained. Therefore, the injection molding method of the present application is suitable as a method for producing a glass microchip base plate. It was found that
The joining method for obtaining the microchip is that the joining surface of the injection-molded / sintered glass and the transparent glass is preliminarily mirror-finished, and both joining surfaces are combined and heated to the softening point of quartz glass (about 1300 ° C.). It is to be joined together.
At this time, when both are pressurized, the fusion temperature can be lowered and a strong bonded state can be obtained.

また、マイクロチップベースプレートとカバーの接合は、加熱融着方法を使用せず、表面の不純物、異物を除去するための洗浄をおこなったのち、純水等の流水の下でガラスの接合面が近接した状態で相対的に動かして気泡、異物を界面間から除去し、真空状態で接合面間の余剰水を乾燥除去することによっても強固に接合することができる。
このとき、接合面の間には水膜が介在して防護膜となり、ガラスの接合面同士の接触、異物によるキズの発生は極めて低く抑えられる。また、清浄な流水を用いているので、異物の除去効果が高くなると共に治具等からの再汚染を防ぐ効果がある。
In addition, the bonding between the microchip base plate and the cover does not use the heat-fusing method, and after cleaning is performed to remove impurities and foreign matter on the surface, the glass bonding surfaces are close together under running water such as pure water. It is also possible to bond firmly by moving relatively in such a state to remove bubbles and foreign matters from between the interfaces and drying and removing excess water between the bonding surfaces in a vacuum state.
At this time, a water film is interposed between the joint surfaces to form a protective film, and the contact between the glass joint surfaces and the generation of scratches due to foreign substances can be suppressed to a very low level. In addition, since clean running water is used, the effect of removing foreign matter is enhanced and the effect of preventing recontamination from a jig or the like is obtained.

流水は、純水を使用するのが好ましい。ガラス表面の汚れを取り除くために、有機物、無機物、金属不純物など汚れの種類、程度に応じて純水のほか、除去効果の高い水素水、オゾン水、アンモニア添加純水、HF添加純水を適宜選択して用いることが有効である。   The flowing water is preferably pure water. In order to remove stains on the glass surface, in addition to pure water depending on the type and degree of stains such as organic matter, inorganic matter, and metal impurities, hydrogen water, ozone water, ammonia-added pure water, and HF-added pure water with high removal effect are appropriately used. It is effective to select and use.

純水が接合面に介在し、接合面が直接接触していない状態で位置合わせをおこない、真空状態として接合面間の余剰水を乾燥させて除去すると、接合面の鏡面同士が接触して接合される。
真空状態における温度を上げると、接合面間の余剰水の蒸発が促進され効率があがるが、当初から水の沸点以上の温度とすると水分の急激な膨張が生じるため、接合面積、残余水量に応じて真空度、昇温パターンを設定してガラスの剥がれ、位置ずれを起こすことがないようにする。
When pure water is present in the joint surface and alignment is performed in a state where the joint surface is not in direct contact, and excess water between the joint surfaces is dried and removed in a vacuum state, the mirror surfaces of the joint surfaces come into contact with each other to join. Is done.
Increasing the temperature in a vacuum state increases the efficiency by evaporating excess water between the joint surfaces, but if the temperature is higher than the boiling point of water from the beginning, rapid expansion of moisture occurs, so depending on the joint area and the amount of residual water Then set the degree of vacuum and the temperature rising pattern so that the glass is not peeled off and misaligned.

真空度及び温度については予め真空度と昇温パターンをプログラムした多段制御、または、真空度と温度を個別に制御しても良い。
真空状態で加熱乾燥する場合は、真空度と昇温パターンのプログラムを組んで自動制御するが、水分の急激な膨張を防ぐために最初は比較的低温状態として乾燥させ、その後、温度を上げてよりしっかりとした接合状態を得ることが好ましい。
As for the degree of vacuum and temperature, multistage control in which the degree of vacuum and the temperature rising pattern are programmed in advance, or the degree of vacuum and temperature may be individually controlled.
When heating and drying in a vacuum state, it is automatically controlled with a program of the degree of vacuum and the temperature rising pattern, but in order to prevent sudden expansion of moisture, it is first dried at a relatively low temperature state, and then the temperature is increased. It is preferable to obtain a firm joined state.

真空状態とすることと加熱は同時におこなう必要はなく、真空状態として水分を蒸発させやすい環境にして蒸発を開始後、加熱処理して水分の蒸発を促進させる2段階方式でも構わない。または、石英ガラスの場合、真空状態で例えば常温〜900℃程度の温度に昇温加熱して乾燥させ余剰水の除去をおこなった後に、より強固な接合状態を得るために、更に1000〜1300℃程度の高温に加熱する処理をおこなっても構わない。   It is not necessary to perform the vacuum state and the heating at the same time, and a two-stage method may be used in which evaporation is started in an environment where the water is easily evaporated in a vacuum state, and then heat treatment is performed to promote the evaporation of the water. Alternatively, in the case of quartz glass, in order to obtain a stronger bonded state after heating and drying to a temperature of, for example, room temperature to about 900 ° C. in a vacuum state and removing excess water, 1000 to 1300 ° C. is further obtained. You may perform the process heated to about high temperature.

接合のプロセスは、以下のようであると考えられる。
常温または低温での真空雰囲気により接合面間の余剰水が脱水され、該接合面が余剰水のOH基により表面活性化され、清浄な接合界面の下でOH基による水素結合が生じ、更に加熱処理によりH2Oの蒸発に伴い、水素結合から共有結合への進行が起こり、接合面が密着、結合される。このように真空加熱乾燥で接合界面の余剰水を除去すると共に、清浄面を保ち、ガラスの接合界面のH2O膜の拡散過程を経ることで接合力が発生、強化されていくものと考えられる。
The joining process is considered as follows.
Excess water between the bonding surfaces is dehydrated in a vacuum atmosphere at room temperature or low temperature, the bonding surfaces are surface-activated by OH groups of excess water, and hydrogen bonding is generated by OH groups under a clean bonding interface, and further heating Along with the evaporation of H 2 O by the treatment, progress from a hydrogen bond to a covalent bond occurs, and the bonding surface is closely bonded and bonded. In this way, excess water at the bonding interface is removed by vacuum heating and drying, while maintaining a clean surface, the bonding force is generated and strengthened through the diffusion process of the H 2 O film at the glass bonding interface. It is done.

本発明のマイクロチップベースプレートは、その表面粗さRaが0.05〜0.5μmであり、特に0.05〜0.3μmであることが好ましい。表面粗さが0.5μmを超えると、研磨して鏡面を得るための時間がかかると共に、研磨加工工程で欠陥、割れ、歪み、応力等が発生して製品の寿命が短くなる。   The microchip base plate of the present invention has a surface roughness Ra of 0.05 to 0.5 μm, particularly preferably 0.05 to 0.3 μm. When the surface roughness exceeds 0.5 μm, it takes time to polish and obtain a mirror surface, and defects, cracks, strains, stresses, etc. are generated in the polishing process and the life of the product is shortened.

本発明のマイクロチップベースプレートは、非晶質である。石英ガラスは、焼結条件によって結晶質のクリストバライトが析出するが、結晶相が析出すると、製品表面が粗くなり、好ましくない。また、結晶化相が生成すると、それを起点として割れが発生しやすくなって好ましくない。   The microchip base plate of the present invention is amorphous. In quartz glass, crystalline cristobalite is precipitated depending on the sintering conditions. However, if a crystal phase is precipitated, the product surface becomes rough, which is not preferable. In addition, if a crystallized phase is generated, cracks are likely to occur starting from the crystallized phase, which is not preferable.

シリカガラス粉末の最大径が20μmを超えると、脱脂或いは焼結時に結晶質であるクリストバライトに転移しやすいので好ましくない。また、最大径が20μmを超えると、射出成形機や金型の表面を摩耗し、金属カスが異物となって成形体に混入する恐れがある。金属カスなどの異物は、不純物としてだけでなく、脱脂体の焼成において結晶化の起点となるため好ましくない。一方、最小径が0.01μm未満の原料粉末は、バインダーとの混練が困難であり、実質的に射出できる混練物は得られず、また、焼結活性が高すぎるため、内部応力の高い焼結体となるので好ましくない。   If the maximum diameter of the silica glass powder exceeds 20 μm, it is not preferable because it is easily transferred to crystalline cristobalite during degreasing or sintering. On the other hand, if the maximum diameter exceeds 20 μm, the surface of the injection molding machine or mold may be worn, and the metal residue may become a foreign substance and be mixed into the molded body. Foreign substances such as metal debris are not preferred because they become not only impurities but also a starting point for crystallization in firing the degreased body. On the other hand, a raw material powder having a minimum diameter of less than 0.01 μm is difficult to knead with a binder, so that a kneaded material that can be substantially injected cannot be obtained, and the sintering activity is too high. Since it becomes a ligation, it is not preferable.

シリカガラス粉末の形状は球状である。ガラスインゴットを破砕して得られる粉末は角を有する粒子であり、このような角を有する粉末を射出成形に用いると、射出成形機内の加熱シリンダー、及びスクリューなどの直接混練物が接触する金属製部品の表面を削り、それらが異物として射出成形体に取り込まれてしまう。このような異物は、脱脂時或いは焼結時に結晶化の起点となるため好ましくない。   The shape of the silica glass powder is spherical. The powder obtained by crushing the glass ingot is a particle having corners, and when such a powder having corners is used for injection molding, the heated cylinder in the injection molding machine and the metal directly contacted with the kneaded material such as a screw are in contact with each other. The surface of the part is shaved, and they are taken into the injection molded body as foreign matter. Such a foreign substance is not preferable because it becomes a starting point of crystallization during degreasing or sintering.

シリカガラスの球状粒子の調製方法としては、石英或いはシリカ粉末を酸水素火炎中に噴霧したり、或いは金属シリコン粉末を酸素気流中で燃焼させることによって得られる。本発明でいう球状粒子は、真球を意味するものでなく、角を有する形状でなければ良いという意味での球状であり、丸みをおびた饅頭型、へちま型等の変形したものも含む概念である。   The silica glass spherical particles can be prepared by spraying quartz or silica powder into an oxyhydrogen flame, or burning metal silicon powder in an oxygen stream. The spherical particles as used in the present invention are not meant to be true spheres, but are spherical in the sense that they should not have a shape with corners, and include concepts such as rounded buns, rounds, etc. It is.

シリカガラス粉末は、粒径分布が0.1〜0.5μmの小径側と、1〜5μmの大径側に極大分布ピークを有する。1つの極大ピークのみを有する粒子径分布のシリカガラス粉末を用いた場合、脱脂、焼結時に内部応力が発生し、変形しやすい。また1つの極大ピークのみからなる粒度分布のシリカ粉では、焼結時に緻密化が進行し難い上に、クリストバライト結晶質に転移しやすく、非晶質の石英ガラスが得られない。   The silica glass powder has a maximum distribution peak on the small diameter side with a particle size distribution of 0.1 to 0.5 μm and on the large diameter side with 1 to 5 μm. When silica glass powder having a particle size distribution having only one maximum peak is used, internal stress is generated during degreasing and sintering, and deformation is likely to occur. In addition, silica powder having a particle size distribution consisting of only one maximum peak is difficult to be densified at the time of sintering, and is easily transferred to cristobalite crystalline, so that amorphous quartz glass cannot be obtained.

シリカガラス粉末は、0.1〜20μmの粒度を有する粉末で、特に小径側の0.1〜0.5μmの範囲と、大径側の1〜5μmの限定された範囲における極大ピークの粒子径比(大径側ピーク径/小径側ピーク径)が5〜10の範囲であることが必要である。2つの極大ピークを有しても、ピーク粒子径比がこの範囲にないものでは、1つの極大ピークを示す粒子径分布を有する石英ガラス粉末と同様に、脱脂、或いは焼結時に応力変形、結晶化、多孔質化が生じやすく、また焼結後の表面が粗くなり、好ましくない。   The silica glass powder is a powder having a particle size of 0.1 to 20 μm, and the particle size of the maximum peak particularly in the range of 0.1 to 0.5 μm on the small diameter side and the limited range of 1 to 5 μm on the large diameter side. The ratio (large diameter side peak diameter / small diameter side peak diameter) needs to be in the range of 5-10. Even if it has two maximum peaks, if the peak particle size ratio is not in this range, stress deformation or crystal during degreasing or sintering, as in the case of quartz glass powder having a particle size distribution showing one maximum peak It is not preferable because it is likely to be made porous and porous, and the surface after sintering becomes rough.

シリカガラス粉末は、高純度であることが好ましく、特に、焼結中の結晶化を回避するために、結晶化の起点となるアルカリ金属、アルカリ土類金属、鉄の含有率が50ppm以下であることが望ましい。   The silica glass powder preferably has a high purity. In particular, in order to avoid crystallization during sintering, the content of alkali metal, alkaline earth metal, and iron that is the starting point of crystallization is 50 ppm or less. It is desirable.

射出成形は、シリカガラス粉末と樹脂製バインダーを混練して混練物を作成する。混練物は、シリカガラス粉末の含有量が60〜90重量%とする。シリカガラス粉末の比率が60重量%未満の場合、射出成形体を脱脂する際に脱脂体の強度低下を引き起こしてハンドリングのときに壊れやすく、一方、シリカガラス粉末が90重量%を超えると混練が困難であり、射出成形に使用できる混練物を得ることができない。   In injection molding, a silica glass powder and a resin binder are kneaded to create a kneaded product. The kneaded product has a silica glass powder content of 60 to 90% by weight. When the silica glass powder ratio is less than 60% by weight, the strength of the degreased body is reduced when the injection molded body is degreased, and it is easy to break during handling. On the other hand, when the silica glass powder exceeds 90% by weight, kneading occurs. It is difficult to obtain a kneaded material that can be used for injection molding.

バインダーは、例えば、ポリメチルメタクリレート、ポリブチルメタクリレート等のアクリル系樹脂、ポリエチレン、ポリプロピレンエチレン・酢酸ビニル共重合体、エチレン・エチルアクリレート共重合体等のオレフィン系樹脂、パラフィンワックス、マイクロクリスタリンワックス、蜜ロウ等のワックス類など広範囲の熱可塑性樹脂を使用することができる。また、シリカガラス粉末の有機バインダー中での分散性を上げると共に、混練物の流動性を向上させるためにステアリン酸などの脂肪酸、ステアリルアルコール等の高級アルコール類等を添加して用いても良い。
シリカガラス粉末とバインダーは、汎用の加熱ニーダー等を用いて混練りする。
混練物をフレーク状あるいはペレットの粒状とし、射出成形機で所望の形状に成形する。射出成形機は、通常のプラスチック等の射出成形に使用するものでよく、例えば、インラインスクリュー式の射出成形機を使用する。
Binders include, for example, acrylic resins such as polymethyl methacrylate and polybutyl methacrylate, olefin resins such as polyethylene, polypropylene ethylene / vinyl acetate copolymer, and ethylene / ethyl acrylate copolymer, paraffin wax, microcrystalline wax, and honey. A wide range of thermoplastic resins such as waxes such as wax can be used. Further, in order to improve the dispersibility of the silica glass powder in the organic binder and improve the fluidity of the kneaded product, fatty acid such as stearic acid, higher alcohols such as stearyl alcohol, and the like may be added.
The silica glass powder and the binder are kneaded using a general-purpose heating kneader.
The kneaded product is made into flakes or pellets and molded into a desired shape by an injection molding machine. The injection molding machine may be used for injection molding of ordinary plastics, for example, an inline screw type injection molding machine is used.

射出成形機の混練物と直接接触する箇所は、成形体への金属異物混入を抑制するために、窒化鋼など耐摩耗仕様とする。更に、射出成形に用いる金型表面は仕上げ磨きをし、表面平滑性を高めたものとする。   The part that comes into direct contact with the kneaded product of the injection molding machine is wear resistant such as nitrided steel in order to suppress metal foreign matter from entering the molded body. Further, the surface of the mold used for injection molding is finished and polished to improve surface smoothness.

射出成形で得られた成形体は脱脂、すなわち成形体を加熱してバインダーを分解、揮発除去する。脱脂は、例えば、汎用の加熱炉(電気炉)でおこなう。脱脂の加熱条件は、バインダーによっても異なるが、一般的には、400〜1000℃で1〜10時間加熱する。脱脂中の成形体の割れを防止するため、昇温速度は2〜50℃/hとする。脱脂の加熱雰囲気は大気、もしくは窒素等の不活性雰囲気とし、脱脂効率を高めるためには、換気しながら脱脂する。   The molded body obtained by injection molding is degreased, that is, the molded body is heated to decompose and volatilize and remove the binder. Degreasing is performed in, for example, a general-purpose heating furnace (electric furnace). Although the degreasing heating conditions vary depending on the binder, the heating is generally performed at 400 to 1000 ° C. for 1 to 10 hours. In order to prevent cracking of the molded body during degreasing, the rate of temperature rise is set to 2 to 50 ° C./h. The degreasing heating atmosphere is air or an inert atmosphere such as nitrogen. In order to increase the degreasing efficiency, degreasing is performed while ventilating.

脱脂後の成形体に鉄やアルカリ金属等の異物が混入していると、焼結時に異物が起点となってシリカ粉の結晶化が進行しやすい。異物が存在する場合には、脱脂体を塩素気流中にて500〜1000℃で0.5〜5時間加熱して異物を除去して純化する。
脱脂後の成形体を真空雰囲気下で1200〜1400℃で焼結し、マイクロチップベースプレートを得る。大気中で焼結すると、成形体の緻密化よりも結晶化の方が進行しやすいので避ける。
真空焼結の圧力は、0.1torr以下であることが好ましく、減圧状態とすることにより、石英ガラス体中の残留気孔を効率的に除去でき、表面が平滑になりやすくなると共に、結晶化を抑制する。
焼結温度及び保持時間は、非晶質維持のために非常に重要であり、1200〜1400℃の範囲が必須である。
1200℃未満では、石英ガラス粒子は十分に焼結せず、一方、1400℃を超えると結晶化が進みやすく、非晶質のブランクが得られない。
焼結の保持時間は5分〜5時間であることが好ましい。保持時間が5分未満の場合、緻密化が十分でなく、5時間を超える場合には、結晶化しやすい。
When foreign substances such as iron and alkali metal are mixed in the molded body after degreasing, the foreign substance becomes a starting point during sintering and the crystallization of the silica powder easily proceeds. If foreign matter is present, the degreased body is heated at 500 to 1000 ° C. in a chlorine stream for 0.5 to 5 hours to remove the foreign matter and purify it.
The compact after degreasing is sintered at 1200 to 1400 ° C. in a vacuum atmosphere to obtain a microchip base plate. Sintering in the atmosphere is avoided because crystallization is more likely to proceed than densification of the compact.
The pressure of vacuum sintering is preferably 0.1 torr or less, and by making the pressure reduced, residual pores in the quartz glass body can be efficiently removed, the surface tends to be smooth, and crystallization is facilitated. Suppress.
The sintering temperature and holding time are very important for maintaining an amorphous state, and a range of 1200 to 1400 ° C. is essential.
If it is less than 1200 degreeC, quartz glass particle | grains will not fully sinter. On the other hand, if it exceeds 1400 degreeC, crystallization will advance easily and an amorphous blank will not be obtained.
The sintering holding time is preferably 5 minutes to 5 hours. When the holding time is less than 5 minutes, densification is not sufficient, and when it exceeds 5 hours, crystallization is easy.

1200〜1400℃で真空焼結する前に、800〜1000℃の酸化雰囲気中で予備焼結することが好ましい。予備焼結することにより、真空焼結でのハンドリングが容易になるだけでなく、脱脂成形体の中に微量残存するバインダーに起因する異物(例えばカーボン等)がほぼ完全に除去され、焼結における結晶化が抑制される。予備焼結は、常圧もしくは、若干の加圧下でおこなう。   Prior to vacuum sintering at 1200 to 1400 ° C, presintering is preferably performed in an oxidizing atmosphere at 800 to 1000 ° C. Pre-sintering not only facilitates handling in vacuum sintering, but also removes foreign matters (for example, carbon) caused by binder remaining in a small amount in the degreased molded body almost completely, so that sintering can be performed. Crystallization is suppressed. Pre-sintering is performed under normal pressure or a slight pressure.

焼結体の少なくとも1つの面を研磨して表面粗さRaを0.05μm未満とする。研磨は、酸化セリウムを砥粒としたブラシ、研磨布を用いた研磨等の公知の方法でおこなう。   At least one surface of the sintered body is polished so that the surface roughness Ra is less than 0.05 μm. Polishing is performed by a known method such as a brush using cerium oxide as abrasive grains or polishing using a polishing cloth.

マイクロチップベースプレートとカバーの接合を、両ガラスの接合面を流水中で近接した状態で相対的に動かして接合面の異物を洗浄除去すると共に接合面における気泡の発生を防止し、更に、真空状態として接合面に残存する水分を除去する接合方法でおこなうことによって、接合面が気泡や不純物が介在しない強固な接合状態が得られる。接合面から除去された異物及び気泡は、流水により運び去られるため、再汚染の恐れがなく、高い除去効率が得られると共に洗浄後の清浄度が維持される。また、接合面間に水膜が介在した状態で異物の除去が行なわれるため、接合面のキズの発生を極めて小さいものに抑えることができる。   The bonding between the microchip base plate and the cover is relatively moved with the bonding surfaces of the two glasses close to each other in running water to clean and remove foreign substances on the bonding surfaces, and to prevent generation of bubbles on the bonding surfaces, and in a vacuum state. As described above, a strong bonding state in which bubbles and impurities are not present on the bonding surface can be obtained by performing a bonding method in which moisture remaining on the bonding surface is removed. Since the foreign matter and bubbles removed from the joint surface are carried away by running water, there is no fear of recontamination, high removal efficiency is obtained, and cleanliness after cleaning is maintained. In addition, since the foreign matter is removed with the water film interposed between the joining surfaces, it is possible to suppress the occurrence of scratches on the joining surfaces to be extremely small.

本発明のマイクロチップベースプレートは、射出成形によるものであり、簡易な方法によって表面が滑らかなものが得られ、マイクロチップ組み立てに必要な鏡面を容易に得ることができ、高歩留まりで、長寿命の製品を低コストで製造することができる。   The microchip base plate of the present invention is obtained by injection molding, and a smooth surface can be obtained by a simple method, and a mirror surface necessary for microchip assembly can be easily obtained, with a high yield and a long life. Products can be manufactured at low cost.

製造例1
最大径8μm、最小径が0.2μmであり、0.3μm及び2.2μmにおいて体積百分率の極大ピークを有する(ピーク粒径比2.2/0.3=7.33)粒子径分布からなり、アルカリ金属、アルカリ土類金属、鉄の含有率がICP分析でいずれも50ppm以下の球状石英ガラス粉末にアクリル樹脂系バインダーを加え、石英ガラス粉末を77重量%として混合し、加熱ニーダーを用いて140℃で1時間混練した。
Production Example 1
It consists of a particle size distribution with a maximum diameter of 8 μm, a minimum diameter of 0.2 μm, and a maximum peak in volume percentage at 0.3 μm and 2.2 μm (peak particle size ratio 2.2 / 0.3 = 7.33). In addition, an acrylic resin binder is added to spherical quartz glass powder having an alkali metal, alkaline earth metal, and iron content of 50 ppm or less by ICP analysis, and the silica glass powder is mixed at 77% by weight, and a heating kneader is used. It knead | mixed at 140 degreeC for 1 hour.

得られた混練物をシート化し、粉砕してフレーク状とした。このフレーク状の混練物を射出成形機で図1(1)に示すように、表面に流路となる幅200μm、深さ200μmの溝2を形成した10mm×20mm×0.5mmの成形体10を形成した。流路となる溝2に必要に応じて、貫通穴(図示しない)を形成し、この成形体10を大気中で500℃まで10℃/hで昇温し、500℃に2時間保持して脱脂し、成形体10から樹脂成分を除去して脱脂した。
得られた脱脂体を、真空雰囲気で1300℃まで200℃/hで昇温し、1300℃に2時間保持して図1(2)に示す透光性のマイクロチップベースプレート1を得た。
The obtained kneaded material was formed into a sheet and pulverized to form a flake. As shown in FIG. 1 (1), this flake-like kneaded product is a 10 mm × 20 mm × 0.5 mm molded body 10 in which grooves 2 having a width of 200 μm and a depth of 200 μm are formed on the surface as shown in FIG. Formed. If necessary, a through hole (not shown) is formed in the groove 2 serving as a flow path, and the molded body 10 is heated to 500 ° C. at a rate of 10 ° C./h and held at 500 ° C. for 2 hours. Degreasing was performed, and the resin component was removed from the molded body 10 for degreasing.
The obtained degreased body was heated to 1300 ° C. at 200 ° C./h in a vacuum atmosphere and held at 1300 ° C. for 2 hours to obtain a light-transmitting microchip base plate 1 shown in FIG.

このマイクロチップベースプレート1の溝2を形成した表面を更に必要に応じて研磨して鏡面とし、厚さ0.5mmの石英ガラス製のカバー3を密着させ、1300℃で熱融着して図1(3)に示すマイクロチップ4を得た。
マイクロチップベースプレートを白色不透明なものとする場合は、特許文献3に開示された方法を採用する。すなわち、最大径と最小径が0.01〜20μmの範囲の球状粒子であって、0.2μm以下の粒子が全体の5〜70重量%である石英ガラス粉末を、有機バインダーと混練し、混練物を射出成形した後、脱脂し、次いで温度1100〜1400℃で真空焼結することによって白色不透明石英ガラス成形体を製造することができる。
また、黒色とする場合は、特許文献4に開示された方法を採用する。すなわち、粒径が0.01〜20μmの球状粒子であって、0.2μm以下の粒子が5〜70重量%である石英ガラス粉末と有機バインダーとを重量比で70:30〜90:10の割合で混練し、射出成形した後、0.1〜5気圧の非酸化性ガス雰囲気で加熱脱脂し、次いで1200〜1400℃で真空焼結することにより黒色石英ガラス体を得ることができる。この黒色石英ガラス体は、厚さ1mmでの光直線透過率が200〜5000nmで5%以下、見掛密度が2.10〜2.20g/cm3、Na,K,Mg及びCa元素の合計が200ppm以下であって、少なくとも1面の表面粗さRaが0.05〜1μmである。
The surface on which the groove 2 of the microchip base plate 1 is formed is further polished as necessary to make a mirror surface, and a quartz glass cover 3 having a thickness of 0.5 mm is brought into intimate contact and thermally fused at 1300 ° C. The microchip 4 shown in (3) was obtained.
When the microchip base plate is white and opaque, the method disclosed in Patent Document 3 is adopted. That is, a quartz glass powder having spherical particles having a maximum diameter and a minimum diameter in a range of 0.01 to 20 μm and having a particle diameter of 0.2 μm or less being 5 to 70% by weight is kneaded with an organic binder and kneaded. A white opaque quartz glass molded body can be produced by injection molding, degreasing, and then vacuum sintering at a temperature of 1100 to 1400 ° C.
Moreover, when making it black, the method disclosed by patent document 4 is employ | adopted. That is, it is a spherical particle having a particle diameter of 0.01 to 20 μm, and a quartz glass powder and an organic binder having a particle diameter of 0.2 μm or less of 5 to 70% by weight and an organic binder in a weight ratio of 70:30 to 90:10. After kneading at a ratio and injection molding, a black quartz glass body can be obtained by heat degreasing in a non-oxidizing gas atmosphere of 0.1 to 5 atm and then vacuum sintering at 1200 to 1400 ° C. This black quartz glass body has a linear optical transmittance at a thickness of 1 mm of 200 to 5000 nm and 5% or less, an apparent density of 2.10 to 2.20 g / cm 3 , and a total of Na, K, Mg and Ca elements. Is 200 ppm or less, and the surface roughness Ra of at least one surface is 0.05 to 1 μm.

製造例2
製造例1と同様の射出成形・焼結で得たマイクロチップベースプレート1と鏡面研磨された石英ガラス板のカバー3を純水の流水中で、接合面を近接させて相対的に動かして気泡、異物を接合面間から除去して位置合わせをおこなう。位置合わせをした状態の石英ガラス板を0.01MPa、500℃で一昼夜真空加熱乾燥して接合した。
この接合状態の石英ガラス板を手で左右にずらして剥がそうとしたが、強力に接合しており、剥がれなかった。また、光学顕微鏡で接合面を観察したところ、泡・異物の存在は認められなかった。
Production Example 2
The microchip base plate 1 obtained by injection molding / sintering as in Production Example 1 and the mirror-polished quartz glass plate cover 3 are moved relative to each other in a pure water stream while bringing the joint surfaces close to each other, bubbles, The foreign matter is removed from between the joining surfaces to perform alignment. The quartz glass plates in the aligned state were dried by vacuum heating and drying at 0.01 MPa and 500 ° C. for a whole day and night.
The quartz glass plate in this bonded state was shifted by hand to the left and right, but it was strongly bonded and did not peel off. Further, when the joint surface was observed with an optical microscope, the presence of bubbles and foreign matters was not recognized.

製造例3
製造例1と同様の射出成形・焼結で得たマイクロチップベースプレート1と鏡面研磨された石英ガラス板を純水の流水中で、接合面を近接させて相対的に動かして気泡、異物を接合面間から除去して位置合わせをおこなう。流水を順次水素水、オゾン水、アンモニア添加純水、HF添加純水として、夫々の流水中でマイクロチップベースプレート1とカバーの石英ガラス板の接合面を相対的に動かして気泡、異物を接合面間から除去したのち、位置合わせをおこない、0.01MPa、500℃で一昼夜真空加熱乾燥して両者を接合した。
このケースにおいてもカバー3は強力に接合されており、手でずらして剥がすことはできず、また、接合面間に泡・異物等は観察されなかった。
なお、製造例として、マイクロチップの製造例を上記に掲げたが、本願の射出成形・焼結ガラスを用い、また、本願の接合技術等を組合わせてマイクロリアクターを製造することも可能である。
近年は高分子合成や有機合成の分野でのマイクロ化も研究されてきており、この中でも化学反応を行うためのものはマイクロリアクターと呼ばれているが、このマイクロリアクターは、マイクロ加工技術を用いて製作された幅が数マイクロメーターから数百マイクロメートルといったマイクロメートルオーダーの微細流路を持つ反応容器、反応装置であり、マイクロ化による化学反応試料の高速混合、温度や試料流量・流速などの精密制御により化学反応の高速化、精密制御が可能となるため、不安定な活性種の反応制御においても極めて有効であるとともに、実験室から工業生産への移行の高速化、効率化が図れるものと期待されており、本発明もこうしたマイクロ化製品群への応用性も高い。
Production Example 3
Microchip base plate 1 and mirror-polished quartz glass plate obtained by injection molding / sintering as in Production Example 1 are moved relative to each other in the pure water flow to bring bubbles and foreign objects together by moving the bonding surfaces close to each other. Remove from between the faces and align. The flowing water is sequentially hydrogenated water, ozone water, ammonia-added pure water, and HF-added pure water, and the bonding surface between the microchip base plate 1 and the quartz glass plate of the cover is moved relatively in each flowing water to bond bubbles and foreign matters. After removing from the gap, alignment was performed, and vacuum heating and drying were performed at 0.01 MPa and 500 ° C. for 24 hours to join the two.
Also in this case, the cover 3 was strongly bonded, and could not be removed by shifting by hand, and no bubbles, foreign matters, etc. were observed between the bonding surfaces.
As a manufacturing example, a microchip manufacturing example has been described above, but it is also possible to manufacture a microreactor by using the injection molding / sintered glass of the present application and combining the bonding technology of the present application. .
In recent years, microfabrication in the field of polymer synthesis and organic synthesis has also been studied, and among these, those for performing chemical reactions are called microreactors, but these microreactors use microfabrication technology. This is a reaction vessel and reaction device with a microchannel on the order of several micrometers to several hundreds of micrometers, and high speed mixing of chemical reaction samples by microfabrication, temperature, sample flow rate, flow rate, etc. Because precise control enables high-speed and precise control of chemical reactions, it is extremely effective for reaction control of unstable active species, and it can speed up and increase the efficiency of transition from laboratory to industrial production. The present invention is also highly applicable to such micro product groups.

本発明の製造方法は、特にマイクロチップに対して、その微細構造のため有利であるといえるが、電気泳動チップ、DNAチップ、タンパク質分析チップなどにも応用できる。
射出成形・焼結で得たガラスを用い、前記の接合技術等を組み合わせることによって、光学部品や、鏡面研磨した平面ガラス部材の表面に凹部加工を施したもの同士を組み立て接合して、任意形状の空間を有するガラス治工具類の作製、更には、マイクロリアクターなどのガラス部品を製造することができる。
The production method of the present invention is particularly advantageous for microchips because of its fine structure, but can also be applied to electrophoresis chips, DNA chips, protein analysis chips and the like.
Using glass obtained by injection molding / sintering, combining the above joining techniques, etc., assembling and joining optical parts and mirror-polished flat glass members that have been subjected to recess processing, can be arbitrarily shaped It is possible to manufacture glass jigs and tools having a space, and to manufacture glass parts such as a microreactor.

マイクロチップベースプレート及びマイクロチップの製造工程説明図。Manufacturing process explanatory drawing of a microchip baseplate and a microchip.

符号の説明Explanation of symbols

1 マイクロチップベースプレート
2 流路(溝)
3 カバー
4 マイクロチップ
1 Microchip base plate 2 Channel (groove)
3 Cover 4 Microchip

Claims (15)

ガラス粉末とバインダーの混練物を表面に流路となる所望形状の溝が形成されるように射出成形し、加熱脱脂し、更に焼結したマイクロチップベースプレート。 A microchip base plate in which a kneaded product of glass powder and a binder is injection-molded so that a groove having a desired shape to be a flow path is formed on the surface, heated and degreased, and further sintered. 請求項1において、ガラス粉末がシリカガラス粉末であるマイクロチップベースプレート。 The microchip base plate according to claim 1, wherein the glass powder is silica glass powder. 請求項2において、シリカガラス粉末の粒径が0.01〜20μmの球状粒子であり、粒径分布が0.1〜0.5μmの小径側と、1〜5μmの大径側に極大分布ピークを有し、大径側ピーク粒径/小径側ピーク粒径比が5〜10であり、焼結温度1200〜1400℃であり、焼結雰囲気が真空であるマイクロチップベースプレート。 In Claim 2, it is a spherical particle whose particle size of silica glass powder is 0.01-20 micrometers, and particle size distribution has the maximum distribution peak on the small diameter side of 0.1-0.5 micrometer, and the large diameter side of 1-5 micrometers. A microchip base plate having a large-diameter side peak particle size / small-diameter side peak particle size ratio of 5 to 10, a sintering temperature of 1200 to 1400 ° C., and a sintering atmosphere of vacuum. 請求項1〜3のいずれかにおいて、流路となる溝に貫通穴が形成してあるマイクロチップベースプレート。 4. The microchip base plate according to claim 1, wherein a through-hole is formed in a groove serving as a flow path. 請求項3〜4のいずれかにおいて、焼結条件をコントロールすることにより黒色ガラスもしくは白色不透明ガラスとしたマイクロチップベースプレート。 5. The microchip base plate according to claim 3, wherein black glass or white opaque glass is formed by controlling sintering conditions. 請求項1〜5のいずれかのベースプレートにガラスをカバーとして熱融着で接着したマイクロチップ。 A microchip bonded to the base plate according to any one of claims 1 to 5 using glass as a cover by heat fusion. 請求項6のベースプレート及びガラス製カバーの接合面を各々鏡面とし、次いで双方の接合面を合わせて組み立てた後、ガラスの軟化点以下の温度で接着したマイクロチップ。 7. A microchip bonded to each other at a temperature equal to or lower than the softening point of glass after assembling the base plate and glass cover joining surfaces of claim 6 as mirror surfaces, and then joining the joining surfaces together. 請求項1〜5のいずれかのベースプレートと鏡面を有するガラス製カバーを流水中で、接合面を近接した状態で相対的に動かして気泡、異物を接合面間から除去し、真空状態で接合面間の余剰水を乾燥除去して接着したマイクロチップ。 A glass cover having a mirror surface with the base plate according to any one of claims 1 to 5 is moved relatively in a state where the joining surfaces are close to each other to remove bubbles and foreign matters from between the joining surfaces, and the joining surfaces in a vacuum state. A microchip bonded by removing excess water between them. 請求項6〜8において、ガラス製カバーはガラス粉末とバインダーの混練物を板状に射出成形し、加熱脱脂し、更に焼結したものであるマイクロチップ。 9. The microchip according to claim 6, wherein the glass cover is obtained by injection-molding a kneaded product of glass powder and binder into a plate shape, heating and degreasing, and further sintering. ガラス粉末とバインダーの混練物を表面に流路となる所望形状の溝が形成されるように射出成形し、加熱脱脂し、更に焼結したマイクロチップベースプレートの製造方法。 A method for producing a microchip base plate, in which a kneaded product of glass powder and a binder is injection-molded so that a groove having a desired shape as a flow path is formed on the surface, heated and degreased, and further sintered. 請求項10において、ガラス粉末がシリカガラス粉末であるマイクロチップベースプレートの製造方法。 The method for producing a microchip base plate according to claim 10, wherein the glass powder is silica glass powder. 請求項11において、シリカガラス粉末の粒径が0.01〜20μmの球状粒子であり、粒径分布が0.1〜0.5μmの小径側と、1〜5μmの大径側に極大分布ピークを有し、大径側ピーク粒径/小径側ピーク粒径比が5〜10であり、焼結温度1200〜1400℃であり、焼結雰囲気が真空であるマイクロチップベースプレートの製造方法。 In Claim 11, it is a spherical particle whose particle size of silica glass powder is 0.01-20 micrometers, and particle size distribution has a maximum distribution peak on the small diameter side of 0.1-0.5 micrometer, and the large diameter side of 1-5 micrometers. The large-diameter side peak particle size / small-diameter side peak particle size ratio is 5 to 10, the sintering temperature is 1200 to 1400 ° C., and the sintering atmosphere is vacuum. 請求項12において、焼結条件をコントロールすることにより黒色ガラスもしくは白色不透明ガラスとしたマイクロチップベースプレートの製造方法。 13. The method for producing a microchip base plate according to claim 12, wherein the glass is made of black glass or white opaque glass by controlling sintering conditions. 請求項13において、0.01〜20μmの球状粒子からなり、かつ、0.2μm以下の粒子が全体の5〜70重量%であるシリカガラス粉末と、有機バインダーを重量比で70:30〜90:10の割合で混練し、当該混練物を射出成形した後、0.1〜5気圧(ゲージ圧)に加圧した非酸化性ガス雰囲気にて加熱脱脂し、次いで温度1200〜1400℃で真空焼結することによって黒色石英ガラスとしたマイクロチップベースプレートの製造方法。 In Claim 13, the silica glass powder which consists of spherical particle | grains of 0.01-20 micrometers, and 0.2 micrometer or less is 5 to 70 weight% of the whole, and organic binder by 70: 30-90 by weight ratio. : After kneading at a ratio of 10 and injection-molding the kneaded product, heat degreasing in a non-oxidizing gas atmosphere pressurized to 0.1 to 5 atm (gauge pressure), and then vacuuming at a temperature of 1200 to 1400 ° C. A manufacturing method of a microchip base plate which is made into black quartz glass by sintering. 請求項13において、最大径と最小径が0.01〜20μmの範囲の球状粒子であって、0.2μm以下の粒子が全体の5〜70重量%であるシリカガラス粉末を、有機バインダーと混練し、混練物を射出成形した後、脱脂し、次いで温度1100〜1400℃で真空焼結することによって白色不透明石英ガラスとしたマイクロチップベースプレートの製造方法。 14. The silica glass powder according to claim 13, wherein the silica glass powder is spherical particles having a maximum diameter and a minimum diameter in the range of 0.01 to 20 [mu] m, and the particle size of 0.2 [mu] m or less is 5 to 70% by weight of the whole. Then, after the kneaded material is injection-molded, it is degreased and then vacuum sintered at a temperature of 1100 to 1400 ° C. to produce a white opaque quartz glass.
JP2005323679A 2005-11-08 2005-11-08 Microchip base plate made of glass, its manufacturing method and microchip Pending JP2007132704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005323679A JP2007132704A (en) 2005-11-08 2005-11-08 Microchip base plate made of glass, its manufacturing method and microchip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005323679A JP2007132704A (en) 2005-11-08 2005-11-08 Microchip base plate made of glass, its manufacturing method and microchip

Publications (1)

Publication Number Publication Date
JP2007132704A true JP2007132704A (en) 2007-05-31

Family

ID=38154503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005323679A Pending JP2007132704A (en) 2005-11-08 2005-11-08 Microchip base plate made of glass, its manufacturing method and microchip

Country Status (1)

Country Link
JP (1) JP2007132704A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108393102A (en) * 2018-02-10 2018-08-14 北京工业大学 A kind of micro-fluidic chip and preparation method of achievable positive side observation simultaneously
JP2021088468A (en) * 2019-12-02 2021-06-10 日本電気硝子株式会社 Laminated substrate and method for producing the same
WO2022210260A1 (en) * 2021-03-30 2022-10-06 デンカ株式会社 Spherical inorganic powder and liquid sealing material
CN115368000A (en) * 2022-08-31 2022-11-22 歌尔股份有限公司 Preparation method of glass shell, glass shell and electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243734A (en) * 2001-02-14 2002-08-28 Inst Of Physical & Chemical Res Microchip
JP2003517591A (en) * 1999-12-09 2003-05-27 モトローラ・インコーポレイテッド Multilayer microfluidic device for reaction of analytical samples
JP2003195047A (en) * 2001-12-26 2003-07-09 Shin Etsu Chem Co Ltd Method for manufacturing optical device and optical device
JP2004203639A (en) * 2002-12-24 2004-07-22 Tosoh Corp Formed blank product of silica glass, its polished product, and method of manufacturing them
JP2005139018A (en) * 2003-11-05 2005-06-02 Tosoh Corp Opaque silica glass molding and method for producing the same
JP2005145767A (en) * 2003-11-17 2005-06-09 Tosoh Corp Black silica glass molding and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003517591A (en) * 1999-12-09 2003-05-27 モトローラ・インコーポレイテッド Multilayer microfluidic device for reaction of analytical samples
JP2002243734A (en) * 2001-02-14 2002-08-28 Inst Of Physical & Chemical Res Microchip
JP2003195047A (en) * 2001-12-26 2003-07-09 Shin Etsu Chem Co Ltd Method for manufacturing optical device and optical device
JP2004203639A (en) * 2002-12-24 2004-07-22 Tosoh Corp Formed blank product of silica glass, its polished product, and method of manufacturing them
JP2005139018A (en) * 2003-11-05 2005-06-02 Tosoh Corp Opaque silica glass molding and method for producing the same
JP2005145767A (en) * 2003-11-17 2005-06-09 Tosoh Corp Black silica glass molding and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108393102A (en) * 2018-02-10 2018-08-14 北京工业大学 A kind of micro-fluidic chip and preparation method of achievable positive side observation simultaneously
JP2021088468A (en) * 2019-12-02 2021-06-10 日本電気硝子株式会社 Laminated substrate and method for producing the same
JP7342665B2 (en) 2019-12-02 2023-09-12 日本電気硝子株式会社 Laminated substrate and its manufacturing method
WO2022210260A1 (en) * 2021-03-30 2022-10-06 デンカ株式会社 Spherical inorganic powder and liquid sealing material
CN115368000A (en) * 2022-08-31 2022-11-22 歌尔股份有限公司 Preparation method of glass shell, glass shell and electronic device

Similar Documents

Publication Publication Date Title
CN1104394C (en) Ceramic whiteware, ceramic body, processes for producing these, sanitary ware and process for producing the sanitary ware
CN105983786B (en) A method of glass processing is realized using laser
US7563480B1 (en) Method for fluoride salt coated magnesium aluminate
CN1990208A (en) Mold assembly for forming element and forming method thereof
CN102380830A (en) Porous ceramic bonding agent cubic boron nitride grinding tool
CN101052599A (en) Binding agent for binding element, method for binding element prepared by high content silicic acid material, and binding element obtained according to the said method
CN107216155B (en) PF/PVA double-coated ceramic powder for laser 3D printing/cold isostatic pressing composite molding and preparation method thereof
JP4729253B2 (en) Silicon monoxide sintered body and silicon monoxide sintered target
JP2007132704A (en) Microchip base plate made of glass, its manufacturing method and microchip
KR100907316B1 (en) Method for manufacturing silicon carbide sintered compact jig and silicon carbide sintered compact jig manufactured by the method
CN106927820A (en) High-purity high-strength high-ductility zirconia composite ceramics structural member and preparation method thereof
CN104428271B (en) Polycrystalline CaF2Component, for plasma processing apparatus component, plasma processing apparatus and focusing ring manufacture method
JP2007331962A (en) Member for microplate made of glass, method for manufacturing microplate made of glass, and microplate
JP5117905B2 (en) Manufacturing method of glass parts
CN109750290A (en) A kind of wear-resisting laser cladding coating powder of TiAl base and preparation method
JP4452059B2 (en) Method for producing opaque silica glass molded body
CN110204323A (en) A kind of energy-saving cordierite zircon composite diphase material and preparation method thereof
JP2004203639A (en) Formed blank product of silica glass, its polished product, and method of manufacturing them
JP4822534B2 (en) Manufacturing method of ceramics
CN101165001B (en) Method for preparing silicon carbide ceramic plasticized by sheet aluminum oxide particle and carbon fibre combination
EP1106582A2 (en) Silica soot and process for producing it
JP2002220278A (en) Light-transmitting ceramic and method of manufacturing the same
JP2018090440A (en) Method for manufacturing optical component having acute part
KR20210085581A (en) Manufacturing method for shaping of ceramics by 3D printing and container for slurry
JP6707409B2 (en) Silica sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081003

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110315