[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007131940A - Electroless copper plating method - Google Patents

Electroless copper plating method Download PDF

Info

Publication number
JP2007131940A
JP2007131940A JP2006060020A JP2006060020A JP2007131940A JP 2007131940 A JP2007131940 A JP 2007131940A JP 2006060020 A JP2006060020 A JP 2006060020A JP 2006060020 A JP2006060020 A JP 2006060020A JP 2007131940 A JP2007131940 A JP 2007131940A
Authority
JP
Japan
Prior art keywords
plating
electroless copper
substrate
copper plating
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006060020A
Other languages
Japanese (ja)
Inventor
Satoshi Akazawa
諭 赤沢
Teruaki Omine
照明 大峯
Kiyoshi Hasegawa
清 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2006060020A priority Critical patent/JP2007131940A/en
Publication of JP2007131940A publication Critical patent/JP2007131940A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemically Coating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroless copper plating method where, in a horizontal carrier type electroless copper plating method, after a substratea is dipped in plating liquid, plating reaction can be smoothly started. <P>SOLUTION: In the horizontal carrier type electroless copper plating method where a copper clad laminate 12 is carried to a horizontal direction A, before the copper clad laminate 12 is dipped into a plating liquid stored in a plating tank 14, the reaction potential of the electroless copper plating is applied to the copper clad laminate 12. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、無電解銅めっき方法に関する。   The present invention relates to an electroless copper plating method.

標準的な無電解銅めっき方法は、(1)脱脂・親水化処理および水洗、(2)過硫酸ナトリウムなどによる粗化処理および水洗、(3)プリディップ、(4)めっき触媒(パラジウム)付与処理および水洗、(5)密着促進処理および水洗、(6)無電解銅めっき処理および水洗という各工程を含むことが一般的である。一般的な無電解銅めっき方法については、例えば、特許文献1に記載されている。水平搬送方式の無電解銅めっき方法の工程もこれに準じている(図4参照)。
特開平5−156459号公報
Standard electroless copper plating methods are (1) degreasing / hydrophilization treatment and water washing, (2) roughening treatment with sodium persulfate and water washing, (3) pre-dip, (4) plating catalyst (palladium) application Generally, it includes steps of treatment and washing, (5) adhesion promoting treatment and washing, (6) electroless copper plating treatment and washing. A general electroless copper plating method is described in Patent Document 1, for example. The process of the horizontal conveyance type electroless copper plating method is based on this (see FIG. 4).
Japanese Patent Laid-Open No. 5-156459

しかし、水平搬送方式の無電解銅めっき方法では、一般に、無電解銅めっき反応をスムーズに(短時間で)開始させることが難しく、めっき液自体の活性を上げ、反応性を高めていた。このため、無電解銅めっき液の活性が高くなり過ぎ、槽壁や搬送ロールに銅が異常析出することが多かった。   However, in the horizontal transfer type electroless copper plating method, it is generally difficult to start the electroless copper plating reaction smoothly (in a short time), increasing the activity of the plating solution itself and increasing the reactivity. For this reason, the activity of the electroless copper plating solution becomes too high, and copper is often abnormally deposited on the tank wall and the transport roll.

水平搬送方式では、従来の縦型めっき方式であるカゴ方式あるいはラック方式と比較し、薄板の作業性が良い事や、ブラインドビアホールへの処理液の流通性が良い点など種々の長所がある。しかし、無電解銅めっき反応をスムーズに確実に進行させる点では、次の短所が挙げられる。   The horizontal transfer method has various advantages such as better workability of the thin plate and better flowability of the processing liquid to the blind via hole as compared with the conventional vertical plating method such as the cage method or the rack method. However, the following disadvantages are mentioned in that the electroless copper plating reaction proceeds smoothly and reliably.

1点目は、次の通りである。水平搬送方式の場合、搬送ロールの絞り効果により、処理液、水洗水が銅張積層板表面に殆ど残らず、基板表面の銅箔が空気にさらされやすく、酸化しやすい。またこれにより、銅箔が酸化し、亜酸化銅又は酸化銅が生成することにより、めっき反応が阻害され、スムーズに進行しにくくなる。   The first point is as follows. In the case of the horizontal conveyance method, due to the squeezing effect of the conveyance roll, the treatment liquid and washing water hardly remain on the surface of the copper clad laminate, and the copper foil on the substrate surface is easily exposed to air and easily oxidized. This also oxidizes the copper foil and produces cuprous oxide or copper oxide, thereby inhibiting the plating reaction and making it difficult to proceed smoothly.

2点目は、次の通りである。水平搬送方式ではないカゴ方式またはラック方式の場合は、一般に複数の基板がめっき液に同時に投入されるため、その中のどれか1枚の基板が、めっき反応を開始すると、他の未反応の基板は、めっき反応を開始した基板から電位をもらい一緒にめっき反応を開始する。それに対し、水平搬送方式の場合は、複数の基板が1枚、1枚互いに独立しており、それぞれが確実な反応性を持たなければならない。   The second point is as follows. In the case of a cage method or a rack method that is not a horizontal conveyance method, a plurality of substrates are generally put into the plating solution at the same time, so when any one of the substrates starts the plating reaction, The substrate receives a potential from the substrate that has started the plating reaction and starts the plating reaction together. On the other hand, in the case of the horizontal transfer method, each of the plurality of substrates is independent from each other, and each must have a certain reactivity.

3点目は、次の通りである。水平搬送方式では、装置のコンパクト化のためにめっき時間を短く設定している。このため、めっき液に基板が浸漬し、めっき反応開始までの時間が長い場合は、十分なめっき厚が得られない。   The third point is as follows. In the horizontal conveyance method, the plating time is set short in order to make the apparatus compact. For this reason, when the substrate is immersed in the plating solution and the time until the start of the plating reaction is long, a sufficient plating thickness cannot be obtained.

本発明は、水平搬送方式の無電解銅めっき方法において、めっき液に基板が浸漬された後に、スムーズにめっき反応を開始させることができる無電解銅めっき方法を提供するものである。   The present invention provides an electroless copper plating method capable of smoothly starting a plating reaction after a substrate is immersed in a plating solution in an electroless copper plating method of a horizontal conveyance system.

上述の課題を解決するため、本発明の無電解銅めっき方法は、水平搬送方式の無電解銅めっき方法であって、めっき液に基板を浸漬させる前に、無電解銅めっきの反応電位を前記基板に付与する工程を含む。   In order to solve the above-mentioned problem, the electroless copper plating method of the present invention is an electroless copper plating method of a horizontal conveyance method, and before the substrate is immersed in a plating solution, the reaction potential of the electroless copper plating is Including a step of applying to the substrate.

ここで、「無電解銅めっきの反応電位」とは、めっき液に基板を浸漬させることによって無電解銅めっきを行う場合に、無電解銅めっき反応が進行している最中の基板の電位をいう。なお、基板の電位を測定するには、例えば酸化還元電位計(ORP電位計)を用いることができる。   Here, “electroless copper plating reaction potential” means the potential of the substrate during the electroless copper plating reaction when electroless copper plating is performed by immersing the substrate in a plating solution. Say. In order to measure the potential of the substrate, for example, an oxidation-reduction potentiometer (ORP electrometer) can be used.

本発明の無電解銅めっき方法によれば、無電解銅めっきの反応電位を基板に付与することによって、基板の標準電極電位(酸化還元電位)に対して基板の電位を予め卑とすることができる。したがって、基板を水平搬送によってめっき液に浸漬させた後、スムーズにめっき反応を開始させることができる。   According to the electroless copper plating method of the present invention, by applying a reaction potential of electroless copper plating to the substrate, the potential of the substrate can be preliminarily made lower than the standard electrode potential (oxidation reduction potential) of the substrate. it can. Therefore, the plating reaction can be smoothly started after the substrate is immersed in the plating solution by horizontal conveyance.

また、金属ロールを用いて前記基板を水平搬送し、前記金属ロールを介して前記基板に前記反応電位を付与することが好ましい。   Moreover, it is preferable that the said board | substrate is conveyed horizontally using a metal roll, and the said reaction potential is provided to the said board | substrate via the said metal roll.

この場合、基板に反応電位を付与する機構を別途設ける必要がなくなるので、簡便に反応電位を付与することができる。   In this case, it is not necessary to separately provide a mechanism for applying a reaction potential to the substrate, so that the reaction potential can be easily applied.

また、前記めっき液に別の基板を浸漬させて前記別の基板の無電解銅めっきを行い、前記別の基板と前記基板とを電気的に接続することによって、前記基板に前記反応電位を付与することが好ましい。   Further, the reaction potential is applied to the substrate by immersing another substrate in the plating solution to perform electroless copper plating on the other substrate and electrically connecting the other substrate and the substrate. It is preferable to do.

この場合、基板に反応電位を簡便に付与することができる。   In this case, a reaction potential can be easily applied to the substrate.

また、下記の電位付与方法も好ましい。
1.水平搬送無電解銅めっき工程において、無電解銅めっき液に基板が入った時点で、無電解銅めっきの自然反応電位が自動的に付与される電位付与方法。
2.無電解銅めっき液の自然反応電位は、金属ロールにより基板に付与される項1に記載の電位付与方法。
3.自然反応電位は、無電解銅めっき液中に銅箔付きボードあるいは、銅張積層板を浸漬しておき、この銅箔付きボードあるいは、銅張積層板がめっき反応をすることによる還元電位であり、かつこの電位をめっきしたい基板に付与させるために、めっき液中の銅箔付きボードと金属ロールを結線するものである項1に記載の電位付与方法。
The following potential application method is also preferable.
1. In the horizontal transfer electroless copper plating step, a potential applying method in which a natural reaction potential of electroless copper plating is automatically applied when a substrate enters the electroless copper plating solution.
2. Item 2. The potential applying method according to Item 1, wherein the natural reaction potential of the electroless copper plating solution is applied to the substrate by a metal roll.
3. The natural reaction potential is a reduction potential when a board with copper foil or a copper clad laminate is immersed in an electroless copper plating solution, and the board with copper foil or copper clad laminate undergoes a plating reaction. And the electric potential provision method of claim | item 1 which connects a board with a copper foil in a plating solution, and a metal roll, in order to give this electric potential to the board | substrate which wants to plate.

本発明によれば、水平搬送方式の無電解銅めっき方法において、めっき液に基板が浸漬された後に、スムーズにめっき反応を開始させることができる無電解銅めっき方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, in the electroless copper plating method of a horizontal conveyance system, after a board | substrate is immersed in a plating solution, the electroless copper plating method which can start a plating reaction smoothly is provided.

以下に本発明の実施形態を詳細に説明する。なお、図面の説明において、同一又は同等の要素には同一符号を用い、重複する説明を省略する。   Hereinafter, embodiments of the present invention will be described in detail. In the description of the drawings, the same reference numerals are used for the same or equivalent elements, and duplicate descriptions are omitted.

図1及び図2は、水平搬送方式の無電解銅めっき装置を模式的に示す図である。図1に示される無電解銅めっき装置10は、無電解銅めっき液を収容するためのめっき槽14と、銅張積層板12(基板)を水平方向Aに搬送する複数のSUSロール16(金属ロール)とを備える。銅張積層板12は、複数対のSUSロール16の間に挟まれている。SUSロール16を回転させることによって、銅張積層板12を搬送し、めっき液に浸漬させることができる。   FIG.1 and FIG.2 is a figure which shows typically the electroless copper plating apparatus of a horizontal conveyance system. An electroless copper plating apparatus 10 shown in FIG. 1 includes a plating tank 14 for containing an electroless copper plating solution, and a plurality of SUS rolls 16 (metals) that convey a copper-clad laminate 12 (substrate) in the horizontal direction A. Roll). The copper clad laminate 12 is sandwiched between a plurality of pairs of SUS rolls 16. By rotating the SUS roll 16, the copper clad laminate 12 can be conveyed and immersed in the plating solution.

めっき液は、銅塩、錯化剤、還元剤を主成分として含むことが好ましい。なお、めっき液は、添加剤、安定剤を含んでもよい。   The plating solution preferably contains a copper salt, a complexing agent, and a reducing agent as main components. The plating solution may contain an additive and a stabilizer.

めっき液には、銅箔付きボード18(別の基板)が浸漬されている。銅箔付きボード18とSUSロール16の回転軸とは、結線20によって電気的に接続されている。図2に示される無電解銅めっき装置は、無電解銅めっき装置10と同様の構成を有する。   A board 18 with copper foil (another substrate) is immersed in the plating solution. The board 18 with copper foil and the rotating shaft of the SUS roll 16 are electrically connected by a connection 20. The electroless copper plating apparatus shown in FIG. 2 has the same configuration as the electroless copper plating apparatus 10.

実施形態に係る無電解銅めっき方法は、上記無電解銅めっき装置10を用いて好適に実施される。本実施形態に係る無電解銅めっき方法は、水平搬送方式の無電解銅めっき方法である。この方法では、めっき液に銅張積層板12を浸漬(接触)させる前に、無電解銅めっきの反応電位を銅張積層板12に付与する。無電解銅めっきの反応電位は、−800mV以上−500mV以下であることが好ましく、例えば−650mVである。   The electroless copper plating method according to the embodiment is suitably implemented using the electroless copper plating apparatus 10. The electroless copper plating method according to the present embodiment is a horizontal conveyance type electroless copper plating method. In this method, a reaction potential of electroless copper plating is applied to the copper clad laminate 12 before the copper clad laminate 12 is immersed (contacted) in the plating solution. The reaction potential of electroless copper plating is preferably −800 mV or more and −500 mV or less, for example, −650 mV.

無電解銅めっきの反応電位を銅張積層板12に付与することによって、銅張積層板12の標準電極電位に対して銅張積層板12の電位を予め卑とすることができる。よって、銅張積層板12を水平方向Aに搬送することによってめっき液に浸漬させた後、短時間でスムーズにめっき反応を開始させることができる。したがって、上述の無電解銅めっき方法を用いてプリント配線板を製造すれば、プリント配線板の生産効率を向上させることができる。   By applying a reaction potential of electroless copper plating to the copper-clad laminate 12, the potential of the copper-clad laminate 12 can be preliminarily made lower than the standard electrode potential of the copper-clad laminate 12. Therefore, after the copper-clad laminate 12 is conveyed in the horizontal direction A and immersed in the plating solution, the plating reaction can be started smoothly in a short time. Therefore, if a printed wiring board is manufactured using the electroless copper plating method described above, the production efficiency of the printed wiring board can be improved.

本実施形態では、SUSロール16を用いて銅張積層板12を水平搬送し、SUSロール16を介して銅張積層板12に無電解銅めっきの反応電位を付与する。このため、銅張積層板12に反応電位を付与する機構を別途設ける必要がなくなる。よって、銅張積層板12に簡便に反応電位を付与することができる。   In the present embodiment, the copper clad laminate 12 is horizontally conveyed using the SUS roll 16, and a reaction potential for electroless copper plating is applied to the copper clad laminate 12 via the SUS roll 16. For this reason, it is not necessary to separately provide a mechanism for applying a reaction potential to the copper clad laminate 12. Therefore, a reaction potential can be easily applied to the copper clad laminate 12.

また、めっき液に銅箔付きボード18を浸漬させて銅箔付きボード18の無電解銅めっきを行い、銅箔付きボード18と銅張積層板12とを電気的に接続することによって、銅張積層板12に反応電位を付与することが好ましい。この場合、銅張積層板12に簡便に反応電位を付与することができる。   Moreover, the board 18 with a copper foil is immersed in a plating solution, electroless copper plating of the board 18 with a copper foil is performed, and the board 18 with a copper foil and the copper-clad laminate 12 are electrically connected to each other. It is preferable to apply a reaction potential to the laminate 12. In this case, a reaction potential can be easily applied to the copper clad laminate 12.

銅箔付きボード18において無電解銅めっきの反応が進行している場合、例えばホルマリン等の還元剤の還元作用によるカソード電流により標準電極電位と比較し、銅箔付きボード18の電位は卑となっている。またこのめっき反応が進行している基板(銅箔付きボード18)と新たに同じ無電解銅めっき液に投入される基板(銅張積層板12)とを結線すると、新たな基板(銅張積層板12)の表面電位は、反応している基板(銅箔付きボード18)のカソード電流により、標準電極電位と比較して卑となる。その結果、銅張積層板12の銅箔表面の無電解銅めっき反応がスムーズに進行することになる。   When the electroless copper plating reaction proceeds on the board 18 with copper foil, for example, the potential of the board 18 with copper foil becomes lower than the standard electrode potential due to the cathode current due to the reducing action of a reducing agent such as formalin. ing. Further, when the substrate on which the plating reaction is proceeding (board 18 with copper foil) and the substrate (copper-clad laminate 12) newly introduced into the same electroless copper plating solution are connected, a new substrate (copper-clad laminate) is obtained. The surface potential of the plate 12) is lower than the standard electrode potential due to the cathode current of the reacting substrate (board 18 with copper foil). As a result, the electroless copper plating reaction on the copper foil surface of the copper clad laminate 12 proceeds smoothly.

水平搬送無電解銅めっきの場合、あらかじめ無電解銅めっき槽(めっき槽14)の中に銅箔付きボード18を浸漬しておき、このめっき反応が進行している銅箔付きボード18とめっき槽14直前に設置した金属ロール(SUSロール16)を結線しておくことにより、銅箔付きボード18の電位が金属ロール(SUSロール16)を通じて、めっきしたい基板(銅張積層板12)に与えられ、速やかにめっき反応を開始することになる。これは、銅張積層板12表面の酸化銅、亜酸化銅が還元電位(無電解銅めっきの反応電位)により還元され、金属銅となり、無電解銅めっき液中の還元剤(ホルマリン)の還元反応のための触媒として働くことが原理となっていると考えられる。   In the case of horizontal transfer electroless copper plating, a board 18 with copper foil is immersed in an electroless copper plating tank (plating tank 14) in advance, and the board 18 with copper foil and the plating tank in which this plating reaction proceeds. 14 By connecting the metal roll (SUS roll 16) installed immediately before, the potential of the board 18 with copper foil is applied to the substrate (copper-clad laminate 12) to be plated through the metal roll (SUS roll 16). The plating reaction starts immediately. This is because copper oxide and cuprous oxide on the surface of the copper clad laminate 12 are reduced by a reduction potential (reaction potential of electroless copper plating) to become metallic copper, and reduction of the reducing agent (formalin) in the electroless copper plating solution. It is thought that the principle is to work as a catalyst for the reaction.

図3は、別の水平搬送方式の無電解銅めっき装置を模式的に示す図である。図3に示される無電解銅めっき装置10aは、銅箔付きボード18に代えて整流器22を備えたこと以外は無電解銅めっき装置10と同様の構成を有する。整流器22は、めっき槽14外に配置されている。整流器22とSUSロール16の回転軸とは、結線20によって電気的に接続されている。整流器22は、無電解銅めっきの反応電位を銅張積層板12に付与することができる。よって、無電解銅めっき装置10aでも、無電解銅めっき装置10と同様の作用効果が得られる。   FIG. 3 is a diagram schematically showing another horizontal conveyance type electroless copper plating apparatus. The electroless copper plating apparatus 10a shown in FIG. 3 has the same configuration as the electroless copper plating apparatus 10 except that a rectifier 22 is provided instead of the board 18 with copper foil. The rectifier 22 is disposed outside the plating tank 14. The rectifier 22 and the rotating shaft of the SUS roll 16 are electrically connected by a connection 20. The rectifier 22 can apply a reaction potential of electroless copper plating to the copper clad laminate 12. Therefore, the same effect as the electroless copper plating apparatus 10 can be obtained even in the electroless copper plating apparatus 10a.

本実施形態では、水平搬送式の無電解銅めっき処理において、基板(銅張積層板12)に無電解銅めっきの反応電位を付与することにより、基板(銅張積層板12)がめっき液に入った時点で、スムーズに無電解銅めっき反応が進行する。電位の付与は、図3に示される整流器22などによっても付与できるが、電位(電圧)が高い場合は、下地の銅箔と無電解銅めっき皮膜との間の密着性が低下することがある。これに対して、無電解銅めっき反応そのものの電位(無電解銅めっきの反応電位)を付与することより、その様な不具合の発生は、避けられる。   In the present embodiment, in the horizontal conveyance type electroless copper plating process, the substrate (copper-clad laminate 12) is applied to the plating solution by applying a reaction potential of electroless copper plating to the substrate (copper-clad laminate 12). When entering, the electroless copper plating reaction proceeds smoothly. The potential can be applied by the rectifier 22 shown in FIG. 3 or the like. However, when the potential (voltage) is high, the adhesion between the underlying copper foil and the electroless copper plating film may be lowered. . In contrast, the occurrence of such a problem can be avoided by applying the potential of the electroless copper plating reaction itself (reaction potential of the electroless copper plating).

以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施形態に限定されない。   As mentioned above, although preferred embodiment of this invention was described in detail, this invention is not limited to the said embodiment.

例えば、銅箔付きボード18に代えて銅張積層板、表面に銅層を有する基板、又は銅基板を用いてもよい。また、銅張積層板12に代えて、表面に銅層を有する基板、又は銅基板を用いてもよい。さらに、SUSロール16に代えて金属製ではないロールを用いてもよい。この場合、銅張積層板12に結線20を電気的に接続することが好ましい。   For example, instead of the board 18 with copper foil, a copper-clad laminate, a substrate having a copper layer on the surface, or a copper substrate may be used. Further, instead of the copper clad laminate 12, a substrate having a copper layer on the surface or a copper substrate may be used. Further, a roll that is not made of metal may be used instead of the SUS roll 16. In this case, it is preferable to electrically connect the connection wire 20 to the copper clad laminate 12.

以下、実施例を用いて本発明を詳細に説明する。ただし、本発明は以下の実施例に限定されない。   Hereinafter, the present invention will be described in detail using examples. However, the present invention is not limited to the following examples.

(実施例1)
Pdの吸着量が少なく、めっき反応の開始が遅い、穴のあいていない銅張積層板(日立化成工業(株)製、製品名MCL−E−67、板厚0.5t)に対し、以下の表1に示す手順で銅めっきを行った。実施例1では、図2に示すように、無電解銅めっき槽の直前のロールをSUSとし、あらかじめ無電解銅めっき槽に銅箔付きボード(日立化成工業(株)製、製品名MCL−E−67、板厚1.6t、300mm×300mm)を浸漬しておき、この銅箔付きボードとSUSロールを結線しておく。銅箔付きボードでは、無電解銅めっき反応が進行しているかどうかをORP電位計であらかじめチェックしておく。基板(銅張積層板)には下記(表1)の銅めっき工程を施して、めっき液に基板が浸漬(接触)してからめっき反応開始までの時間を測定した。なお、銅張積層板表面の電位をORP電位計で測定し、測定電位と標準電極電位との電位差が−600mv以下になった時点を無電解銅めっきの反応を開始した時点と定義した。また、サンプル数は10個とした。結果を表2に記す。
Example 1
For copper-clad laminates (made by Hitachi Chemical Co., Ltd., product name MCL-E-67, plate thickness 0.5t) with little Pd adsorption and slow initiation of plating reaction and without holes. Copper plating was performed according to the procedure shown in Table 1. In Example 1, as shown in FIG. 2, the roll immediately before the electroless copper plating tank is set to SUS, and a board with copper foil (product name: MCL-E, manufactured by Hitachi Chemical Co., Ltd.) in advance in the electroless copper plating tank. -67, plate thickness 1.6t, 300 mm x 300 mm) is immersed, and the board with copper foil and the SUS roll are connected. In the board with copper foil, it is checked beforehand with an ORP electrometer whether the electroless copper plating reaction is proceeding. The substrate (copper-clad laminate) was subjected to the following copper plating step (Table 1), and the time from when the substrate was immersed (contacted) in the plating solution until the start of the plating reaction was measured. The potential of the copper clad laminate surface was measured with an ORP electrometer, and the time when the potential difference between the measured potential and the standard electrode potential became −600 mV or less was defined as the time when the electroless copper plating reaction was started. The number of samples was 10. The results are shown in Table 2.

Figure 2007131940
Figure 2007131940

Figure 2007131940
Figure 2007131940

結果として、全ての基板が3秒以内にめっき反応を開始した。   As a result, all the substrates started the plating reaction within 3 seconds.

(実施例2〜6)
実施例1と同様に穴のあいていない銅張積層板(日立化成工業(株)製、製品名MCL−E−67、板厚0.5t)に対し、下記の表3に示す手順で銅めっきを行った。実施例1と同様に、図2に示すように、無電解銅めっき槽の直前のロールをSUSとし、あらかじめ無電解銅めっき槽に銅箔付きボード(日立化成工業(株)製、製品名MCL−E−67、板厚1.6t、300mm×300mm)を浸漬しておき、この銅箔付きボードとSUSロールを結線しておいた。実施例2〜6では、無電解銅めっき液の銅濃度、pH、温度、を変化させ、またコンベアー速度も標準(0.5m/分)と、2倍、3倍の速度で検討した。条件の種類は5種類とした。なお、無電解銅めっき液に希硫酸とNaOHとを適宜加えることによってpHを調整した。また、無電解銅めっき液中に通した配管に冷却水を流すことによる熱変換を用いて温度を調整した。また各条件のめっき厚みを、エッチングした銅張積層板表面のめっき厚みとして計測した。銅箔付きボードでは、無電解銅めっき反応が進行しているかどうかをORP電位計でチェックしておく。基板(銅張積層板)には次(表3)の銅めっき工程を施して、めっき液に基板が入った時点(基板がめっき液に接触した時点)からめっき反応開始までの時間を測定した。結果を表4に記す。
(Examples 2 to 6)
In the same manner as in Example 1, a copper-clad laminate (manufactured by Hitachi Chemical Co., Ltd., product name MCL-E-67, plate thickness 0.5 t) with no holes was subjected to the procedure shown in Table 3 below. Plating was performed. As in Example 1, as shown in FIG. 2, the roll immediately before the electroless copper plating tank is set to SUS, and the board with copper foil (product name: MCL, manufactured by Hitachi Chemical Co., Ltd.) in advance in the electroless copper plating tank. -E-67, plate thickness 1.6 t, 300 mm x 300 mm) was immersed, and the board with copper foil and the SUS roll were connected. In Examples 2 to 6, the copper concentration, pH, and temperature of the electroless copper plating solution were changed, and the conveyor speed was also examined at the standard (0.5 m / min) and twice or three times the speed. There were five types of conditions. The pH was adjusted by appropriately adding dilute sulfuric acid and NaOH to the electroless copper plating solution. Moreover, temperature was adjusted using the heat conversion by flowing cooling water through the piping passed through the electroless copper plating solution. Moreover, the plating thickness of each condition was measured as the plating thickness of the etched copper clad laminate surface. In the board with copper foil, it is checked with an ORP electrometer whether the electroless copper plating reaction is proceeding. The substrate (copper-clad laminate) was subjected to the following copper plating step (Table 3), and the time from when the substrate entered the plating solution (when the substrate contacted the plating solution) to the start of the plating reaction was measured. . The results are shown in Table 4.

Figure 2007131940
Figure 2007131940

Figure 2007131940
Figure 2007131940

結果として、めっき液の銅濃度、pH、温度を下げ、めっき活性を下げた場合、および、コンベアー速度を速くした場合等、めっき厚みが標準に対し大きく低下しているが、めっき反応開始までの時間は、3秒以内でスムーズに進行している。なお、実施例1〜6について、それぞれ10サンプルの実験を行った結果、めっき反応開始までの時間は全て3秒以内であった。   As a result, when the copper concentration, pH, and temperature of the plating solution are lowered, the plating activity is lowered, and when the conveyor speed is increased, the plating thickness is greatly reduced compared to the standard. The time is proceeding smoothly within 3 seconds. In addition, about Example 1-6, as a result of conducting experiment of 10 samples, respectively, time until the plating reaction start was all within 3 seconds.

(比較例1)
Pdの吸着量が少なく、めっき反応の開始が遅い、穴のあいていない銅張積層板(日立化成工業(株)製、製品名MCL−E−67、板厚0.5t、300mm×300mm)に対して、下記の表5に示す手順で銅めっきを行った。この時、めっき液中に銅張積層板を浸漬させてから反応を開始するまでの時間を測定した。なお、銅張積層板表面の電位をORP電位計で測定し、測定電位と標準電極電位との電位差が−600mv以下になった時点を無電解銅めっきの反応を開始した時点と定義した。結果を表6に記す。
(Comparative Example 1)
Copper-clad laminate with little Pd adsorption and slow initiation of plating reaction, with no holes (Hitachi Chemical Industry Co., Ltd., product name MCL-E-67, plate thickness 0.5t, 300mm x 300mm) On the other hand, copper plating was performed according to the procedure shown in Table 5 below. At this time, the time from when the copper clad laminate was immersed in the plating solution until the reaction was started was measured. The potential of the copper clad laminate surface was measured with an ORP electrometer, and the time when the potential difference between the measured potential and the standard electrode potential became −600 mV or less was defined as the time when the electroless copper plating reaction was started. The results are shown in Table 6.

Figure 2007131940
Figure 2007131940

Figure 2007131940
Figure 2007131940

結果として、3秒以内でめっき反応を開始する基板もあるが、めっき反応開始まで1分程度を要する基板もあった。   As a result, there are some substrates that start the plating reaction within 3 seconds, but there are also substrates that require about 1 minute to start the plating reaction.

水平搬送方式の無電解銅めっき装置を模式的に示す図である。It is a figure which shows typically the electroless copper plating apparatus of a horizontal conveyance system. 水平搬送方式の無電解銅めっき装置を模式的に示す図である。It is a figure which shows typically the electroless copper plating apparatus of a horizontal conveyance system. 別の水平搬送方式の無電解銅めっき装置を模式的に示す図である。It is a figure which shows typically the electroless copper plating apparatus of another horizontal conveyance system. 従来の水平搬送方式の無電解銅めっき装置を示す斜視図である。It is a perspective view which shows the conventional electroless copper plating apparatus of a horizontal conveyance system.

符号の説明Explanation of symbols

1 脱脂・親水化処理部
2 水洗部
3 粗化処理部
4 プリディップ処理部
5 触媒付与処理部
6 密着促進処理部
7 水平搬送無電解銅めっきライン部
8 無電解銅めっき処理部
10,10a 無電解銅めっき装置
12 銅張積層板(基板)
14 めっき槽
16 SUSロール(金属ロール)
18 銅箔付きボード(別の基板)
20 結線
22 整流器
DESCRIPTION OF SYMBOLS 1 Degreasing and hydrophilization processing part 2 Water washing part 3 Roughening processing part 4 Pre-dip processing part 5 Catalyst provision processing part 6 Adhesion promotion processing part 7 Horizontal conveyance electroless copper plating line part 8 Electroless copper plating processing part 10, 10a None Electrolytic copper plating equipment 12 Copper-clad laminate (substrate)
14 Plating tank 16 SUS roll (metal roll)
18 Board with copper foil (another board)
20 Connection 22 Rectifier

Claims (3)

水平搬送方式の無電解銅めっき方法であって、
めっき液に基板を浸漬させる前に、無電解銅めっきの反応電位を前記基板に付与する工程を含む、無電解銅めっき方法。
A horizontal transfer type electroless copper plating method,
An electroless copper plating method comprising a step of applying a reaction potential of electroless copper plating to the substrate before the substrate is immersed in a plating solution.
金属ロールを用いて前記基板を水平搬送し、
前記金属ロールを介して前記基板に前記反応電位を付与する、請求項1に記載の無電解銅めっき方法。
Use a metal roll to transport the substrate horizontally,
The electroless copper plating method according to claim 1, wherein the reaction potential is applied to the substrate through the metal roll.
前記めっき液に別の基板を浸漬させて前記別の基板の無電解銅めっきを行い、
前記別の基板と前記基板とを電気的に接続することによって、前記基板に前記反応電位を付与する、請求項1又は2に記載の無電解銅めっき方法。
Dipping another substrate in the plating solution to perform electroless copper plating on the other substrate,
The electroless copper plating method according to claim 1 or 2, wherein the reaction potential is applied to the substrate by electrically connecting the another substrate and the substrate.
JP2006060020A 2005-10-12 2006-03-06 Electroless copper plating method Pending JP2007131940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006060020A JP2007131940A (en) 2005-10-12 2006-03-06 Electroless copper plating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005297580 2005-10-12
JP2006060020A JP2007131940A (en) 2005-10-12 2006-03-06 Electroless copper plating method

Publications (1)

Publication Number Publication Date
JP2007131940A true JP2007131940A (en) 2007-05-31

Family

ID=38153833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006060020A Pending JP2007131940A (en) 2005-10-12 2006-03-06 Electroless copper plating method

Country Status (1)

Country Link
JP (1) JP2007131940A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144194A (en) * 2007-12-13 2009-07-02 Tokai Rubber Ind Ltd Manufacturing method of multi-layered metal plating base material, and metal plating base material
EP2430664A2 (en) * 2009-05-13 2012-03-21 Gebr. Schmid GmbH Method and device for treating a wafer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144194A (en) * 2007-12-13 2009-07-02 Tokai Rubber Ind Ltd Manufacturing method of multi-layered metal plating base material, and metal plating base material
EP2430664A2 (en) * 2009-05-13 2012-03-21 Gebr. Schmid GmbH Method and device for treating a wafer
JP2012526914A (en) * 2009-05-13 2012-11-01 ゲブリューダー シュミット ゲゼルシャフト ミット ベシュレンクテル ハフツング Method and device for processing a wafer

Similar Documents

Publication Publication Date Title
JP3314966B2 (en) Complexing agent for displacement tin plating
JPH0713304B2 (en) Copper surface treatment method
US20050178669A1 (en) Method of electroplating aluminum
JP2001089892A (en) Electrolytic copper foil with carrier foil, its producing method and copper-covered laminated sheet using the electrolytic copper foil with carrier foil
US9914115B2 (en) Catalysts for electroless metallization containing five-membered heterocyclic nitrogen compounds
JP4264679B2 (en) Method for manufacturing printed wiring board
JP3890542B2 (en) Method for manufacturing printed wiring board
JP2007131940A (en) Electroless copper plating method
JP5004336B2 (en) Catalyst solution used in electroless plating method, electroless plating method using the catalyst solution, and object to be plated on which a metal film is formed using the electroless plating method
US20170042040A1 (en) Composition and method for electroless plating of palladium phosphorus on copper, and a coated component therefrom
JP4143694B2 (en) Palladium catalyst remover for electroless plating
JP2884935B2 (en) Nickel or nickel alloy etching solution, method using this etching solution, and method for manufacturing wiring board using this etching solution
JP5858286B2 (en) Method for electrolytic plating long conductive substrate and method for producing copper clad laminate
EP0298422B1 (en) Wiring method
Siau et al. Processing quality results for electroless/electroplating of high-aspect ratio plated through holes in industrially produced printed circuit boards
JPH0621157A (en) Manufactured of copper polyimide substrate
JP3711565B2 (en) Method for removing chlorine ions in etching solution and method for producing wiring board using this etching solution
TWI355219B (en) Micro-etching process of pcb without causing galva
Nichols Lead‐Free Printed Wiring Board Surface Finishes
JPH05247666A (en) Surface treatment of steel
JP3951938B2 (en) Etching method and printed wiring board manufacturing method using the same
JP4555998B2 (en) Printed wiring board
JPS62149884A (en) Pretreatment for electroless copper plating
JP4577156B2 (en) Electroless nickel plating bath and electroless plating method using the same
JP2005194561A (en) Plating method, and method for manufacturing electronic component