JP2007131288A - Energy-saving type jet plane - Google Patents
Energy-saving type jet plane Download PDFInfo
- Publication number
- JP2007131288A JP2007131288A JP2005356900A JP2005356900A JP2007131288A JP 2007131288 A JP2007131288 A JP 2007131288A JP 2005356900 A JP2005356900 A JP 2005356900A JP 2005356900 A JP2005356900 A JP 2005356900A JP 2007131288 A JP2007131288 A JP 2007131288A
- Authority
- JP
- Japan
- Prior art keywords
- air
- jet
- duct
- flow velocity
- exhaust port
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007599 discharging Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000000428 dust Substances 0.000 description 4
- 238000009423 ventilation Methods 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D33/00—Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
- B64D33/02—Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C21/00—Influencing air flow over aircraft surfaces by affecting boundary layer flow
- B64C21/02—Influencing air flow over aircraft surfaces by affecting boundary layer flow by use of slot, ducts, porous areas or the like
- B64C21/025—Influencing air flow over aircraft surfaces by affecting boundary layer flow by use of slot, ducts, porous areas or the like for simultaneous blowing and sucking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/10—Drag reduction
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Jet Pumps And Other Pumps (AREA)
Abstract
Description
本発明は、ジェットエンジンを搭載した飛行機に関し、特に飛行機の前面に当たる空気抵抗を低減し、飛行の省エネルギー化を図る技術に関する。The present invention relates to an airplane equipped with a jet engine, and more particularly to a technique for reducing air resistance hitting the front of an airplane and saving energy in flight.
飛行機の前面に当たる空気抵抗を低減し、省エネルギーを図る発明としては次のものがある。
背景技術の発明は、飛行機胴体先端部にファンを設け、ファンの回転により生じる負の圧力により飛行機の前面に当たる空気抵抗を低減し、省エネルギーを図るものであるが、音速に近いスピードで飛行する旅客機などの場合は、それを上回るスピードでファンを回転させることは困難であり、これを実現するファンの駆動系は高価なものとなる。The invention of the background art provides a fan at the tip of the airplane fuselage and reduces air resistance hitting the front of the airplane due to negative pressure generated by the rotation of the fan, thereby saving energy. In such a case, it is difficult to rotate the fan at a speed higher than that, and the drive system of the fan that realizes this is expensive.
飛行機胴体先端部から飛行機胴体内を通りジェットエンジンの噴射口近傍に至る送風用ダクトを機体に設ける。A blower duct is provided in the fuselage from the tip of the airplane fuselage through the airplane fuselage to the vicinity of the jet engine injection port.
更に、上述の送風用ダクト内の気圧または風速を感知するセンサーを設け、そのセンサーからの気圧情報または風速情報をもとに、送風用ダクトの内径または送風用ダクトの排出口とジェットエンジンの噴出口から排出されるコアジェットまたはファンジェットとの距離または接触面積を制御する流速制御手段を機体に設ける。Further, a sensor for detecting the air pressure or wind speed in the above-described air duct is provided, and based on the air pressure information or wind speed information from the sensor, the inner diameter of the air duct or the discharge port of the air duct and the jet engine jet The airframe is provided with a flow velocity control means for controlling the distance or contact area with the core jet or fan jet discharged from the outlet.
ジェットエンジンの噴出口近傍では、ジェットの噴出により低い気圧の部位が生じるが、本発明はこの低い気圧を送風用ダクトを通して胴体先端部に導く。In the vicinity of the jet outlet of the jet engine, a low pressure portion is generated by jet jetting, but the present invention guides this low pressure to the front end of the body through the air duct.
これにより胴体先端部に空気の吸引力が生じる。As a result, an air suction force is generated at the front end of the body.
本発明により、飛行機胴体先端部に当たった空気はジェットエンジン近傍に排出され、その分、機体の空気抵抗を減少することができる。According to the present invention, the air hitting the tip of the airplane fuselage is discharged in the vicinity of the jet engine, and the air resistance of the airframe can be reduced accordingly.
また胴体先端部から吸引した空気は、ジェット推進力の一部となる。Air sucked from the front end of the body becomes part of the jet propulsion force.
本発明は、背景技術より廉価な仕組みで飛行機の前面に当たる空気抵抗を低減し、これにより飛行の省エネルギー化を図る。The present invention reduces the air resistance hitting the front of an airplane with a mechanism that is less expensive than the background art, thereby saving energy in flight.
図1に、本発明を適用したジェット機の底面図を示す。FIG. 1 shows a bottom view of a jet aircraft to which the present invention is applied.
図1中において、1はジェット機の胴体前方部、2は胴体後方部、3は主翼、4は尾翼、5はジェットエンジンを示す。In FIG. 1, 1 is a fuselage front part of a jet aircraft, 2 is a fuselage rear part, 3 is a main wing, 4 is a tail wing, and 5 is a jet engine.
また図1の機体は、胴体先端部が開放されており吸気口6を形成しており、吸気口6を一端として送風用ダクト7が胴体内を通りジェットエンジン5の噴出口近傍まで続いている。Further, the fuselage of FIG. 1 has an open front end portion of the fuselage to form an
さらに、送風用ダクト7は、途中にダスト捕獲スポット8を備えている。Further, the
図2に、本発明を適用したジェット機の主翼の断面図を示す。FIG. 2 shows a cross-sectional view of the main wing of a jet aircraft to which the present invention is applied.
図2は、主翼3にジェットエンジン5が埋め込む形で搭載されていることを示す。FIG. 2 shows that the
図2中において、ジェットエンジン5は、吸気ファン9,空気圧縮室10,燃焼室11,コアジェット噴出口12から成り、エンジンステイ13により主翼3に固定されている。In FIG. 2, the
また図2中において、送風用ダクト7は主翼3の内側を通り、エンジンステイ13の近傍で排気口14を開口している。In FIG. 2, the
この排気口14の形状は一部切り欠きとなっており、この切り欠き部分に密接し送風用ダクト7と平行して移動し、その移動量に応じて切り欠き部分を覆う面積を自由に変更できる排気口カバー15と、モーターと歯車を内蔵し排気口カバーを送風用ダクト7と平行して移動させる排気口カバー駆動部16が排気口14の近傍に設置されている。The shape of the exhaust port 14 is partially cut out, moves in close contact with the cutout portion and moves in parallel with the
図3に、請求項2および請求項3に対応した流速制御手段の最良の形態を示す。FIG. 3 shows the best mode of the flow rate control means corresponding to
図3中において、17aは、送風用ダクト7の吸気口6内に設置された風速計であり、送風用ダクト7を流れる空気の流速に応じ風車の回転数が増加し、それに応じて出力電圧18aを出力する。In FIG. 3, reference numeral 17 a denotes an anemometer installed in the
出力電圧18aは、A/D変換器19aによりデジタル信号20aに変換され、コンピュータ21に入力される。The output voltage 18a is converted into a digital signal 20a by the A / D converter 19a and input to the
図3中において、17bは、吸気口6近傍の胴体前方部1に設置された風速計であり、胴体前方部1近傍を流れる空気の流速に応じ風車の回転数が増加し、それに応じて出力電圧18bを出力する。In FIG. 3, 17b is an anemometer installed in the
出力電圧18bは、A/D変換19bによりデジタル信号20bに変換され、コンピュータ21に入力される。The output voltage 18b is converted into a digital signal 20b by an A / D conversion 19b and input to the
コンピュータ21は、排気口カバー駆動部16を制御するためのデジタル制御信号24を出力する。The
このデジタル制御信号24は、D/A変換器25によりアナログ制御信号26に変換され、排気口カバー駆動部16に内蔵された駆動モーター27に入力される。The
駆動モーター27は、アナログ制御信号26に従い所定量だけ回転または逆回転を行い、その回転力は排気口カバー駆動部16に内蔵された歯車を介して排気口カバー15に伝えられ、これにより排気口カバー15は排気口14の切り欠き部分の開閉動作を行なう。The
また、排気口カバー15にはスライド式電気抵抗器28が取り付けられており、その移動量に応じてスライド式電気抵抗器28の抵抗値が増減するようにしておく。In addition, a slide type electric resistor 28 is attached to the exhaust port cover 15 so that the resistance value of the slide type electric resistor 28 increases or decreases according to the amount of movement.
このスライド式電気抵抗器28に定電流電源を接続することにより、スライド式電気抵抗器28の両端に抵抗値に応じた電位差が生じる。By connecting a constant current power source to the slide type electric resistor 28, a potential difference corresponding to the resistance value is generated at both ends of the slide type electric resistor 28.
この電位差をアナログ信号29として取り出し、A/D変換器19cによりデジタル信号30としてコンピュータ21に入力する。This potential difference is taken out as an
コンピュータ21は、バス22を介してハードディスク23と接続している。The
ハードディスク23には、流速制御手段全体を統制する制御プログラムが格納されており、コンピュータ21は、この制御プログラムに従いデジタル制御信号24を出力する。The hard disk 23 stores a control program for controlling the entire flow rate control means, and the
図4に、この制御プログラムのフローチャートを示す。FIG. 4 shows a flowchart of this control program.
図4によれば制御プログラムは、通風用ダクト7の吸気口6内の空気の流速を示す出力電圧18aが吸気口6近傍の胴体前方部1における空気の流速を示す出力電圧18bの130%を超える場合は、排気口14の切り欠き部分の面積を拡大させ、出力電圧18aが出力電圧18bの110%未満の場合は、排気口14の切り欠き部分の面積を縮小させるように制御する。According to FIG. 4, the control program outputs 130% of the output voltage 18 b indicating the air flow rate in the
この排気口14の切り欠き部分の面積を拡大/縮小する制御は、コンピュータ21が出力するデジタル制御信号24によってなされる。Control for enlarging / reducing the area of the cutout portion of the exhaust port 14 is performed by a
またスライド式電気抵抗器28は、排気口カバー15の動きを監視するためのものであり、排気口14の切り欠き部分の現在の面積がどの程度であるかは、デジタル信号30によって知ることができる。The slide type electric resistor 28 is used for monitoring the movement of the exhaust port cover 15, and the current area of the cutout portion of the exhaust port 14 can be known from the digital signal 30. it can.
図5は、ジェットエンジン5近傍の空気の流れを示すものであり、図中、31は吸気ファン9により圧縮されて排出されたファンジェットの流れを示し、32はそのファンジェットに接触し排出口14から排出された送風用ダクト7内の空気の流れを示す。FIG. 5 shows the flow of air in the vicinity of the
ファンジェットは、高い圧力の空気の流れであり、直進運動性が高い。A fan jet is a flow of high-pressure air and has high straight movement.
送風用ダクト7内の排気口14近傍の空気がファンジェットに接触するとそれに巻き込まれ、排気口14より排出されることになる。When the air in the vicinity of the exhaust port 14 in the
このため、送風用ダクト7内の排気口14近傍は常に空気が薄く、減圧することになり、これが送風用ダクト7の吸気口6における吸引力となる。For this reason, in the vicinity of the exhaust port 14 in the
排気口カバー15および排気口カバー駆動部16は、送風用ダクト7内の排気口14近傍の空気とファンジェットとの接触面積を制御することによって、送風用ダクト7の吸気口6における吸引力を制御する。The exhaust port cover 15 and the exhaust port cover driving unit 16 control the contact area between the air in the vicinity of the exhaust port 14 in the
図1におけるダスト捕獲スポット8は、送風用ダクト7の吸気口6に飛び込んだ鳥などを捕獲するためのものであり、送風用ダクト7が詰まることを防止する。The
図1に示すように通風用ダクト7が曲がる地点に窪みを用意することで、質量を持ち直進運動性の強い鳥などは、曲がりきれずにこの窪み即ちダスト捕獲スポット8に捕獲される。As shown in FIG. 1, by preparing a depression at a point where the
1は、ジェット機の胴体前方部。
2は、ジェット機の胴体後方部。
3は、ジェット機の主翼。
4は、ジェット機の尾翼。
5は、ジェットエンジン。
6は、吸気口。
7は、送風用ダクト。
8は、ダスト捕獲スポット。
9は、吸気ファン。
10は、空気圧縮室。
11は、燃焼室。
12は、コアジェット噴出口。
13は、エンジンステイ。
14は、排気口14。
15は、排気口カバー。
16は、排気口カバー駆動部。
17aは、吸気口6内に設置された風速計。
17bは、胴体前方部1に設置された風速計。
18aは、風速計17aの出力電圧。
18bは、風速計17bの出力電圧。
19a,19b,19cは、A/D変換器。
20aは、A/D変換後の出力電圧18a。
20bは、A/D変換後の出力電圧18b。
21は、コンピュータ。
22は、バス。
23は、ハードディスク。
24は、デジタル制御信号。
25は、D/A変換器。
26は、アナログ制御信号。
27は、駆動モーター。
28は、スライド式電気抵抗器。
29は、スライド式電気抵抗器28の両端の電位差を示すアナログ信号。
30は、A/D変換によりデジタル信号となったアナログ信号29。
31は、ファンジェットの流れ。
32は、排出口14から排出される空気の流れ。1 is the front part of the fuselage.
2 is a fuselage rear part of a jet aircraft.
3 is the jet wing.
4 is the tail of the jet.
5 is a jet engine.
6 is an intake port.
7 is a duct for ventilation.
8 is a dust capture spot.
9 is an intake fan.
10 is an air compression chamber.
11 is a combustion chamber.
12 is a core jet outlet.
13 is an engine stay.
Reference numeral 14 denotes an exhaust port 14.
15 is an exhaust port cover.
Reference numeral 16 denotes an exhaust port cover driving unit.
An anemometer 17 a is installed in the
17b is an anemometer installed in the
18a is an output voltage of the anemometer 17a.
18b is an output voltage of the anemometer 17b.
19a, 19b, 19c are A / D converters.
20a is an output voltage 18a after A / D conversion.
20b is an output voltage 18b after A / D conversion.
21 is a computer.
22 is a bus.
23 is a hard disk.
24 is a digital control signal.
25 is a D / A converter.
26 is an analog control signal.
27 is a drive motor.
28 is a slide type electric resistor.
Reference numeral 30 denotes an
31 is the flow of the fan jet.
32 is a flow of air discharged from the discharge port 14.
Claims (3)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005356900A JP2007131288A (en) | 2005-11-11 | 2005-11-11 | Energy-saving type jet plane |
PCT/JP2006/320883 WO2007055088A1 (en) | 2005-11-11 | 2006-10-13 | Energy-saving jet aircraft |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005356900A JP2007131288A (en) | 2005-11-11 | 2005-11-11 | Energy-saving type jet plane |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007131288A true JP2007131288A (en) | 2007-05-31 |
Family
ID=38023095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005356900A Pending JP2007131288A (en) | 2005-11-11 | 2005-11-11 | Energy-saving type jet plane |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2007131288A (en) |
WO (1) | WO2007055088A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2029790A1 (en) | 2006-06-02 | 2009-03-04 | L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude | Method of forming high-k dielectric films based on novel titanium, zirconium, and hafnium precursors and their use for semiconductor manufacturing |
CN104386237A (en) * | 2014-11-17 | 2015-03-04 | 朱晓义 | High-speed aircraft and cartridge |
CN104443080A (en) * | 2014-11-17 | 2015-03-25 | 朱晓义 | Energy-saving automobile |
CN104386236A (en) | 2014-11-17 | 2015-03-04 | 朱晓义 | Aircraft with great lift force |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3794274A (en) * | 1969-12-19 | 1974-02-26 | O Eknes | Aircraft structure to reduce sonic boom intensity |
US4114836A (en) * | 1977-03-09 | 1978-09-19 | Blair M. Graham | Airplane configuration designed for the simultaneous reduction of drag and sonic boom |
-
2005
- 2005-11-11 JP JP2005356900A patent/JP2007131288A/en active Pending
-
2006
- 2006-10-13 WO PCT/JP2006/320883 patent/WO2007055088A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2007055088A1 (en) | 2007-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8424279B2 (en) | Particle separator and debris control system | |
EP2072398A3 (en) | Nacelle assembly having inlet bleed | |
US9726112B2 (en) | Reverse flow gas turbine engine airflow bypass | |
EP2098714A2 (en) | High bypass-ratio turbofan jet engine | |
JP2019051922A (en) | Hybrid electric propulsion system for aircraft | |
EP3505450A1 (en) | Apparatus to vary an air intake of aircraft engines | |
US9644537B2 (en) | Free stream intake with particle separator for reverse core engine | |
JP2012506823A (en) | Aircraft having an engine partially embedded in the fuselage | |
EP2071155A3 (en) | Nacelle assembly with turbulators | |
WO2004094817A3 (en) | Advanced aerodynamic control system (26) for a high output wind turbine (10) | |
EP1517022A3 (en) | Method and system for reduction of jet engine noise | |
US20100074739A1 (en) | Passive boundary layer bleed system for nacelle inlet airflow control | |
US10371095B2 (en) | Nacelle-integrated air-driven augmentor fan for increasing propulsor bypass ratio and efficiency | |
JPH07503427A (en) | Method for controlling boundary layer of an aircraft aerodynamic surface and aircraft provided with boundary layer control device | |
EP2469076A3 (en) | System And Method Of Operating An Active Flow Control System To Manipulate A Boundary Layer Across A Rotor Blade Of A Wind Turbine | |
EP1445449A3 (en) | Auxiliary power unit supplied with bypass air from fan | |
EP1998029A3 (en) | Nacelle for an aircraft engine with inlet flow control system and corresponding operating method | |
US9512821B2 (en) | Active bleed for airfoils | |
FR2899201B1 (en) | AIRCRAFT WING ARRANGEMENT COMPRISING A MOTOR ATTACHING MATTING DEFINING IN ZONE BEFORE A SIDE CHANNEL OF AIR FLOW | |
CN103471150A (en) | Axially spiral exhaust type range hood applying cold accelerant decomposition technique | |
WO2007055088A1 (en) | Energy-saving jet aircraft | |
WO2019014795A1 (en) | Novel low-noise thruster | |
JP4618142B2 (en) | Turbocharger | |
CN202118011U (en) | Fan without blades | |
CN103562068B (en) | For the inlet structure of turbojet engine nacelle |