[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007127326A - Engine drive type heat pump comprising refrigerant filling circuit - Google Patents

Engine drive type heat pump comprising refrigerant filling circuit Download PDF

Info

Publication number
JP2007127326A
JP2007127326A JP2005320111A JP2005320111A JP2007127326A JP 2007127326 A JP2007127326 A JP 2007127326A JP 2005320111 A JP2005320111 A JP 2005320111A JP 2005320111 A JP2005320111 A JP 2005320111A JP 2007127326 A JP2007127326 A JP 2007127326A
Authority
JP
Japan
Prior art keywords
refrigerant
path
engine
compressor
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005320111A
Other languages
Japanese (ja)
Inventor
Ikuo Mizuno
郁男 水野
Takahiko Masuda
貴彦 増田
Hiroshi Sawada
浩 澤田
Masafumi Shinomiya
将文 篠宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2005320111A priority Critical patent/JP2007127326A/en
Publication of JP2007127326A publication Critical patent/JP2007127326A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To protect a wet operation in a refrigerant sudden change operation of an engine drive type heat pump, and to improve reliability in filling an appropriate amount of refrigerant. <P>SOLUTION: In this engine drive type heat pump 1 having a compressor 10 by driving of an engine, and a waste heat recovering unit 15 for evaporating a refrigerant by waste heat of the engine, a refrigerant filling circuit 69 having a refrigerant filling solenoid valve 31 and a charge valve 42 is joined with an upstream-side path of the waste heat recovering unit 15, and a refrigerant relief circuit 68 is branched to a discharge path of the compressor 10 from a path connecting the refrigerant filling solenoid valve 31 and the charge valve 42 of the refrigerant filling circuit 69. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、エンジン駆動式ヒートポンプの冷媒充填技術に関係する。   The present invention relates to a refrigerant charging technique for an engine-driven heat pump.

一般に、エンジン駆動式ヒートポンプ等の空気調和装置の据付工事において室外機と室内機を接続するために使用される連絡配管の必要配管長は、据付現場における配管条件によって異なるものである。従って、空気調和装置の現場据付に際しては、室外機と室内機の据付条件を考慮して、適正な配管長をもつ連絡配管を選択して使用するようにしている。
一方、空気調和装置の工場生産の過程においては、予め室外機に所定の冷媒量を充填しておき、現地据付時に連絡配管の長さに応じて不足する冷媒量を追加するという方法が採用されていた。
Generally, the required piping length of communication piping used to connect an outdoor unit and an indoor unit in installation work of an air conditioner such as an engine-driven heat pump varies depending on piping conditions at the installation site. Therefore, when installing the air conditioner on site, communication pipes having an appropriate pipe length are selected and used in consideration of the installation conditions of the outdoor unit and the indoor unit.
On the other hand, in the process of factory production of the air conditioner, a method is adopted in which the outdoor unit is filled with a predetermined amount of refrigerant in advance and the amount of refrigerant that is deficient is added according to the length of the connecting pipe at the time of local installation. It was.

特許文献1は、冷媒充填終了手段として、最適な冷媒量を充填できる冷凍装置を開示している。この冷凍装置は、レシーバ内部の所定高さ位置と吸入経路とをバイパス経路で接続し、このバイパス回路途上に、電磁弁、キャピラリ及び温度センサの順にてこれらを設ける構成としている。この冷凍装置は、追加冷媒充填中に、レシーバ内部において、液冷媒の液面が所定高さ位置を越えると、液冷媒が前記バイパス経路を通過するので、その温度変化を前記温度センサにて検出し、適正冷媒量の充填終了を検知している。
さらに、この冷凍装置は、冷媒充填運転制御手段として、高圧圧力を一定に維持する室外ファン制御をしつつ、吸入管の過熱度を所定置以上になるよう膨張弁制御をして、圧縮機湿り運転を保護している。
特開2002−350014号公報
Patent Document 1 discloses a refrigeration apparatus that can be filled with an optimal amount of refrigerant as a refrigerant filling end means. This refrigeration apparatus has a configuration in which a predetermined height position inside the receiver and the suction path are connected by a bypass path, and these are provided in this order in the bypass circuit in the order of an electromagnetic valve, a capillary, and a temperature sensor. In this refrigeration system, when the liquid level of the liquid refrigerant exceeds the predetermined height position inside the receiver while the additional refrigerant is being charged, the liquid refrigerant passes through the bypass path, and the temperature change is detected by the temperature sensor. Then, the completion of charging of the appropriate amount of refrigerant is detected.
Further, this refrigeration apparatus performs expansion valve control so that the degree of superheat of the suction pipe is not less than a predetermined position while controlling the outdoor fan that maintains the high pressure constant as a refrigerant charging operation control means, and thereby compresses the compressor. Protects driving.
JP 2002-350014 A

しかし、キャピラリ通過後の1ヶ所の冷媒温度検知では、突発的にキャピラリに侵入した冷媒温度を検知して充填終了と判断してしまう可能性もあり、検知精度が低い。
また、通常、追加冷媒は冷媒ボンベより気液混合状態にて、ガス側連絡配管(蒸発器と圧縮機の間)より充填される。従って、電気エアコンでは外部加熱手段を介さなければ、圧縮機湿り運転となってしまい、圧縮機寿命に影響を与える。
さらに、追加冷媒充填運転時に冷媒ボンベが空になる状況も予想されるが、通常、作業者が気付いてボンベを交換する以外方法がない。そのため、冷媒ボンベの残量の確認作業が必要となり、その分の作業工数が必要となる。
However, detection of the refrigerant temperature at one location after passing through the capillary may detect the temperature of the refrigerant suddenly entering the capillary and determine the end of filling, and the detection accuracy is low.
Further, normally, the additional refrigerant is charged from the gas side communication pipe (between the evaporator and the compressor) in a gas-liquid mixed state from the refrigerant cylinder. Therefore, in an electric air conditioner, if it does not go through an external heating means, it will become a compressor wet operation and will affect a compressor lifetime.
Further, although it is expected that the refrigerant cylinder will be empty during the additional refrigerant charging operation, there is usually no method other than replacing the cylinder when the operator notices it. For this reason, it is necessary to confirm the remaining amount of the refrigerant cylinder, and the man-hours for that amount are required.

そこで、解決しようとする課題は、エンジン駆動式ヒートポンプにおいて、冷媒充填終了時期の判断の精度向上、圧縮機湿り運転防止および冷媒ボンベ空状態検出を実現することである。   Therefore, the problem to be solved is to realize improvement in accuracy of determination of refrigerant filling end time, prevention of compressor wet operation, and detection of an empty state of a refrigerant cylinder in an engine-driven heat pump.

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。   The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.

即ち、請求項1においては、エンジン駆動による圧縮機と、前記エンジンの廃熱により冷媒を蒸発させる廃熱回収器を有するエンジン駆動式ヒートポンプにおいて、前記廃熱回収器の上流側経路で、開閉弁と冷媒ボンベ取付部を有する冷媒充填回路を合流したこと特徴とするエンジン駆動式ヒートポンプである。   That is, in claim 1, in an engine-driven heat pump having a compressor driven by an engine and a waste heat recovery device that evaporates a refrigerant by waste heat of the engine, an on-off valve is provided in an upstream path of the waste heat recovery device. An engine-driven heat pump characterized by merging a refrigerant charging circuit having a refrigerant cylinder mounting portion.

請求項2においては、前記冷媒充填回路の開閉弁と冷媒ボンベ取付部を接続する経路より、前記圧縮機の吐出経路へ冷媒逃し回路を分岐したものである。   According to a second aspect of the present invention, a refrigerant escape circuit is branched to a discharge path of the compressor from a path connecting the on-off valve of the refrigerant charging circuit and a refrigerant cylinder mounting portion.

請求項3においては、前記圧縮機の吸入経路の冷媒吸入温度を検知する吸入温度センサと、前記圧縮機の吸入経路の冷媒吸入圧力を検知する吸入圧力センサと、前記冷媒吸入温度と前記冷媒吸入圧力により算出される吸入過熱度が、所定値以下になったときに前記開閉弁を閉とする開閉弁制御手段を備えるものである。   According to a third aspect of the present invention, there is provided a suction temperature sensor that detects a refrigerant suction temperature in the suction path of the compressor, a suction pressure sensor that detects a refrigerant suction pressure in the suction path of the compressor, the refrigerant suction temperature, and the refrigerant suction. There is provided on-off valve control means for closing the on-off valve when the suction superheat degree calculated by the pressure becomes a predetermined value or less.

請求項4においては、前記圧縮機の吐出経路の冷媒吐出温度を検知する吐出温度センサと、前記開閉弁が開であり、かつ前記冷媒吐出温度が所定値以上になったときに冷媒ボンベが空と判断する冷媒ボンベ空検知手段を備えるものである。   According to a fourth aspect of the present invention, there is provided a discharge temperature sensor that detects a refrigerant discharge temperature of the discharge path of the compressor, and the on-off valve is open, and the refrigerant cylinder is empty when the refrigerant discharge temperature becomes a predetermined value or more. It is provided with a refrigerant cylinder empty detection means for judging that.

請求項5においては、高圧の液冷媒を貯留するレシーバを設け、一端が前記レシーバ内の適正液面位置と開口され、その開口より順に、開閉弁、減圧機構及び前記レシーバ内部に配設される過冷却熱交換器を有する充填検知回路を前記廃熱回収器の上流側経路に接続し、前記充填検知回路の前記過冷却熱交換器の上流側経路に第一温度センサを設け、前記充填検知回路の過冷却熱交換器の下流側経路に第二温度センサを設け、前記第一温度センサと前記第二温度センサの各検出温度の差が所定値内になったときに冷媒充填終了と判断する充填検知手段を備えるものである。   According to a fifth aspect of the present invention, a receiver for storing high-pressure liquid refrigerant is provided, and one end is opened to an appropriate liquid surface position in the receiver, and the opening / closing valve, the pressure reducing mechanism, and the receiver are arranged in that order from the opening. A filling detection circuit having a supercooling heat exchanger is connected to the upstream path of the waste heat recovery unit, and a first temperature sensor is provided in the upstream path of the supercooling heat exchanger of the filling detection circuit, and the filling detection A second temperature sensor is provided in the downstream path of the supercooling heat exchanger of the circuit, and it is determined that the refrigerant charging is completed when the difference between the detected temperatures of the first temperature sensor and the second temperature sensor falls within a predetermined value. The filling detection means is provided.

本発明の効果として、以下に示すような効果を奏する。   As effects of the present invention, the following effects can be obtained.

請求項1においては、気液混合状態の充填冷媒を、廃熱回収器上流側より充填し廃熱回収器にて蒸発させることで、圧縮機の湿りを防止できる。   According to the first aspect of the present invention, it is possible to prevent the compressor from getting wet by filling the refrigerant in the gas-liquid mixed state from the upstream side of the waste heat recovery unit and evaporating it in the waste heat recovery unit.

請求項2においては、請求項1の効果に加え、冷媒充填後において、冷媒回路内に残留する冷媒の密封を防止できる。   According to the second aspect, in addition to the effect of the first aspect, it is possible to prevent the refrigerant remaining in the refrigerant circuit from being sealed after the refrigerant is charged.

請求項3においては、請求項1の効果に加え、湿り検知後、直ちに冷媒充填回路を遮断可能となるので、さらに圧縮機の湿りを防止できる。   In the third aspect, in addition to the effect of the first aspect, the refrigerant charging circuit can be shut off immediately after the wetness detection, so that the compressor can be further prevented from getting wet.

請求項4においては、請求項3の効果に加え、作業者が、冷媒充填運転中に冷媒ボンベが空になったことを早期に検知でき、確認作業の工数を省略できる。   In the fourth aspect, in addition to the effect of the third aspect, the operator can detect at an early stage that the refrigerant cylinder has become empty during the refrigerant charging operation, and the man-hour for the confirmation operation can be omitted.

請求項5においては、請求項1の効果に加え、据付条件によって異なる配管長に対応した適正量の追加冷媒充填の精度が向上し、ひいては、過剰な追加冷媒充填を防止できる。   According to the fifth aspect, in addition to the effect of the first aspect, the accuracy of charging an appropriate amount of additional refrigerant corresponding to different pipe lengths depending on the installation conditions is improved, and consequently, excessive additional refrigerant charging can be prevented.

次に、発明の実施の形態を説明する。
図1は本発明の実施例に係るエンジン駆動式ヒートポンプの全体的な構成を示した冷媒回路図、図2は本発明の実施例である冷媒充填運転状態の冷媒挙動を示した冷媒回路図、図3は同じく冷媒充填運転終了状態の冷媒挙動を示した冷媒回路図である。図4は同じく冷媒充填運転終了後に、冷媒ボンベを取り外した状態の冷媒挙動を示した冷媒回路図である。
Next, embodiments of the invention will be described.
FIG. 1 is a refrigerant circuit diagram illustrating an overall configuration of an engine-driven heat pump according to an embodiment of the present invention, and FIG. 2 is a refrigerant circuit diagram illustrating refrigerant behavior in a refrigerant charging operation state according to an embodiment of the present invention. FIG. 3 is a refrigerant circuit diagram showing the refrigerant behavior in the same state after completion of the refrigerant charging operation. FIG. 4 is a refrigerant circuit diagram illustrating the refrigerant behavior in a state where the refrigerant cylinder is removed after the refrigerant charging operation is completed.

図1を用いて、本発明の実施例であるエンジン駆動式ヒートポンプ1の冷媒回路構成について説明する。本実施例では、説明を簡略にするため、1台の室外機2に対し1台の室内機3が接続されるエンジン駆動式ヒートポンプ1を例示しているが、実際には、1台の室外機2に対し複数台の室内機3・・3が接続されることが多い。   The refrigerant circuit configuration of an engine-driven heat pump 1 that is an embodiment of the present invention will be described with reference to FIG. In the present embodiment, for simplicity of explanation, the engine-driven heat pump 1 in which one indoor unit 3 is connected to one outdoor unit 2 is illustrated, but actually, one outdoor unit In many cases, a plurality of indoor units 3... 3 are connected to the unit 2.

エンジン駆動式ヒートポンプ1は、駆動源としてのエンジン(図示略)から動力を得て冷媒を圧縮する圧縮機10と、該圧縮機10の吐出側に接続され冷房時及び暖房時で冷媒の流れを切り換える四方弁20と、冷房時に圧縮機10から四方弁20を介して吐出冷媒が供給される室外熱交換器12と、該室外熱交換器12を室外空気と熱交換させる室外ファン5と、暖房時に圧縮機10から四方弁20を介して吐出冷媒が供給される室内熱交換器13と、該室内熱交換器13を室内空気と熱交換させる室内ファン6と、室外熱交換器12及び室内熱交換器13間に配設される室外熱交換器膨張弁21とを有しており、これらで構成される冷媒サイクルを用いるものである。   The engine-driven heat pump 1 includes a compressor 10 that obtains power from an engine (not shown) as a drive source and compresses the refrigerant, and is connected to the discharge side of the compressor 10 to flow the refrigerant during cooling and heating. A four-way valve 20 for switching, an outdoor heat exchanger 12 to which discharged refrigerant is supplied from the compressor 10 via the four-way valve 20 during cooling, an outdoor fan 5 for exchanging heat between the outdoor heat exchanger 12 and outdoor air, and heating An indoor heat exchanger 13 that is sometimes supplied with refrigerant discharged from the compressor 10 via the four-way valve 20, an indoor fan 6 that exchanges heat between the indoor heat exchanger 13 and indoor air, an outdoor heat exchanger 12 and indoor heat. It has the outdoor heat exchanger expansion valve 21 arrange | positioned between the exchangers 13, and uses the refrigerant cycle comprised by these.

前記圧縮機10は、その吸入側からガス冷媒を吸引・圧縮し、高温・高圧のガス冷媒を吐出する。圧縮機10の吐出側には、吐出経路を構成する経路60を介して前記四方弁20が接続されており、この経路60にはガス冷媒中に含まれる冷凍機油を分離して圧縮機10の吸入側に戻すためのオイルセパレータ11が設けられている。すなわち、圧縮機10から吐出されるガス冷媒は、オイルセパレータ11を介して前記四方弁20へと流入し、この四方弁20にて所定の方向に導かれる。また、圧縮機10に吸引されるガス冷媒も四方弁20にて導かれるため、圧縮機10の冷媒吸入側と四方弁20とは吸入経路を構成する経路61により接続されている。なお、吐出温度センサ80は圧縮機10により吐出される高温・高圧のガス冷媒温度を検知するため、経路60の圧縮機10側に設けられる。   The compressor 10 sucks and compresses the gas refrigerant from the suction side and discharges the high-temperature and high-pressure gas refrigerant. The four-way valve 20 is connected to the discharge side of the compressor 10 via a path 60 that constitutes a discharge path. In this path 60, refrigeration oil contained in the gas refrigerant is separated and the compressor 10 is connected. An oil separator 11 for returning to the suction side is provided. That is, the gas refrigerant discharged from the compressor 10 flows into the four-way valve 20 through the oil separator 11 and is guided in a predetermined direction by the four-way valve 20. Further, since the gas refrigerant sucked into the compressor 10 is also guided by the four-way valve 20, the refrigerant suction side of the compressor 10 and the four-way valve 20 are connected by a path 61 that constitutes a suction path. The discharge temperature sensor 80 is provided on the compressor 10 side of the path 60 in order to detect the temperature of the high-temperature and high-pressure gas refrigerant discharged from the compressor 10.

前記四方弁20は、前記室外熱交換器12の一端側に接続されており、この室外熱交換器12の他端側には、レシーバ14が接続されている。一方、室内熱交換器13は、一端が、液側連絡配管50を介して、レシーバ14に接続されており、他端は、ガス側連絡配管51を介して、四方弁20に接続されている。これら液側連絡配管50及びガス側連絡配管51は、建物内部に据付されている場合が多く、最近では、空調機更新時にはそのまま利用される場合がある。また、これら連絡配管50・51の室外機2側には、それぞれ液閉鎖弁40及びガス閉鎖弁41が設けられている。これら液閉鎖弁40、ガス閉鎖弁41および後述する閉鎖弁43〜45は、ボールバルブで構成され、手動により開閉される。   The four-way valve 20 is connected to one end side of the outdoor heat exchanger 12, and a receiver 14 is connected to the other end side of the outdoor heat exchanger 12. On the other hand, one end of the indoor heat exchanger 13 is connected to the receiver 14 via the liquid side communication pipe 50, and the other end is connected to the four-way valve 20 via the gas side communication pipe 51. . In many cases, the liquid side communication pipe 50 and the gas side communication pipe 51 are installed inside a building, and recently, they may be used as they are when the air conditioner is updated. Further, a liquid closing valve 40 and a gas closing valve 41 are provided on the side of the outdoor unit 2 of these communication pipes 50 and 51, respectively. These liquid closing valve 40, gas closing valve 41, and closing valves 43 to 45 described later are constituted by ball valves and are manually opened and closed.

廃熱回収器15は、前記室外熱交換器膨張弁21とレシーバ14の間から分岐し、経路61に接続される経路63に設けられている。該経路63には、経路61に向かって廃熱回収器膨張弁22、過冷却熱交換器17、廃熱回収器15の順にて、これらが直列に接続されている。前記経路63を通過する冷媒は、蒸発潜熱によりレシーバ14の液冷媒を過冷却熱交換器17にて過冷却し、廃熱回収器15でエンジン冷却水からエンジンの廃熱を回収して蒸発する。   The waste heat recovery unit 15 branches from the outdoor heat exchanger expansion valve 21 and the receiver 14 and is provided in a path 63 connected to the path 61. To the path 63, the waste heat recovery device expansion valve 22, the supercooling heat exchanger 17, and the waste heat recovery device 15 are connected in series toward the path 61. The refrigerant passing through the path 63 is supercooled by the supercooling heat exchanger 17 with the liquid refrigerant of the receiver 14 by latent heat of evaporation, and the waste heat of the engine is recovered from the engine cooling water by the waste heat recovery unit 15 and evaporated. .

経路64は、冷媒充填終了を検知するための回路である。該経路64は、前記レシーバ14内において、適正液面位置からレシーバ14底面より取り出される。詳しくは後述するが、エンジン駆動式ヒートポンプ1の充填冷媒量は、連絡配管50・51の長さによってその量が異なる。ここで、レシーバ14は、液冷媒を貯留する圧力容器であることから、エンジン駆動式ヒートポンプ1において適正冷媒量充填を示す適正液面位置を持つ。つまり、どのような長さの連絡配管50・51が据付されても、適正冷媒量は据付後のレシーバ14の適正液面位置によって決められる。
前記経路64は、充填検知電磁弁30及びキャピラリ26を介して、経路63上の廃熱回収器膨張弁22と過冷却熱交換器17との間に接続される。経路64は、後述する充填検知制御のみに使用される経路であり、通過する冷媒循環量は、経路63に比べて少なくなるように、経路64の配管及びキャピラリ26を選定する。
また、後述する充填検知制御には、第一温度センサ83及び第二温度センサ84を使用する。第一温度センサ83は、前記経路63上において、過冷却熱交換器17の上流側に設けられる。一方、第二温度センサ84は、前記経路63上において、過冷却熱交換器17の下流側に設けられる。
The path 64 is a circuit for detecting the end of refrigerant charging. The path 64 is taken out from the bottom surface of the receiver 14 from an appropriate liquid surface position in the receiver 14. As will be described in detail later, the amount of refrigerant charged in the engine-driven heat pump 1 varies depending on the length of the communication pipes 50 and 51. Here, since the receiver 14 is a pressure vessel that stores liquid refrigerant, the engine-driven heat pump 1 has an appropriate liquid level position that indicates appropriate refrigerant amount filling. That is, no matter how long the connecting pipes 50 and 51 are installed, the appropriate refrigerant amount is determined by the appropriate liquid level position of the receiver 14 after installation.
The path 64 is connected between the waste heat recovery device expansion valve 22 and the supercooling heat exchanger 17 on the path 63 via the filling detection electromagnetic valve 30 and the capillary 26. The path 64 is a path used only for filling detection control described later, and the piping of the path 64 and the capillary 26 are selected so that the refrigerant circulation amount passing therethrough is smaller than that of the path 63.
Further, the first temperature sensor 83 and the second temperature sensor 84 are used for the filling detection control described later. The first temperature sensor 83 is provided on the upstream side of the supercooling heat exchanger 17 on the path 63. On the other hand, the second temperature sensor 84 is provided on the downstream side of the supercooling heat exchanger 17 on the path 63.

経路65及び経路66は、吐出経路である経路60と吸入経路である経路61とを短絡するバイパス経路である。経路65には、減圧機構としてバイパス膨張弁24が、経路66には、バイパス電磁弁32が設けられている。これらバイパス経路65・66は、圧縮機10の吐出ガスを短絡して吸入経路に戻すことで、エンジン駆動式ヒートポンプ1の高圧側圧力の異常上昇を防止する。   A path 65 and a path 66 are bypass paths that short-circuit the path 60 that is the discharge path and the path 61 that is the suction path. The path 65 is provided with a bypass expansion valve 24 as a pressure reducing mechanism, and the path 66 is provided with a bypass electromagnetic valve 32. These bypass paths 65 and 66 prevent an abnormal increase in the high-pressure side pressure of the engine-driven heat pump 1 by short-circuiting the discharge gas of the compressor 10 and returning it to the suction path.

経路67は、前記レシーバ14の上面から、前記吐出経路である経路60に向かう経路である。該経路67は、レシーバ14の高圧が異常上昇したとき、ガス冷媒を吐出経路へ逃すことができる。また、経路67は、逆止弁75・76を介して、高温・高圧の吐出ガス冷媒が、レシーバ14に逆流することを防止している。   The path 67 is a path from the upper surface of the receiver 14 toward the path 60 that is the discharge path. The path 67 can release the gas refrigerant to the discharge path when the high pressure of the receiver 14 rises abnormally. Further, the path 67 prevents the high-temperature and high-pressure discharged gas refrigerant from flowing back to the receiver 14 via the check valves 75 and 76.

経路69は、冷媒充填ボンベ91と経路63とを接続する経路である。経路69によって、冷媒ボンベ91より追加冷媒を充填することができる。通常、室外機2には、工場出荷時に標準量の冷媒が予め充填されているが、連絡配管50・51が長い場合は、追加充填冷媒量が必要となる。このような場合は、据付時に冷媒ボンベ91を、チャージホース92を介してチャージバルブ42に接続して、冷媒充填電磁弁31を開いて経路69を介して追加冷媒を充填する(図2参照)。
一方、経路68は、経路69から、逆止弁77を介して経路67に接続される。この経路68は、冷媒追加充填終了時に経路69に残留する冷媒が高圧となった場合に経路67を介して圧縮機10の吐出側へ逃すためのものである。
The path 69 is a path that connects the refrigerant filling cylinder 91 and the path 63. The additional refrigerant can be charged from the refrigerant cylinder 91 through the path 69. Normally, the outdoor unit 2 is pre-filled with a standard amount of refrigerant at the time of shipment from the factory. However, if the connecting pipes 50 and 51 are long, an additional amount of refrigerant is required. In such a case, the refrigerant cylinder 91 is connected to the charge valve 42 via the charge hose 92 at the time of installation, and the refrigerant filling electromagnetic valve 31 is opened to fill the additional refrigerant via the path 69 (see FIG. 2). .
On the other hand, the path 68 is connected from the path 69 to the path 67 via the check valve 77. This path 68 is for allowing the refrigerant remaining in the path 69 at the end of the additional refrigerant charging to escape to the discharge side of the compressor 10 via the path 67.

経路70は、オイルタンク16を介して、吸入経路である経路61に並列に接続されている。オイルタンク16は、ガス冷媒中のコンタミ物質を除去する装置であり、その内部構造は除去形式により様々である。除去方式としては、遠心分離式、バッフル式又は金網式が主流であり、本実施例では、除去形式は特に限定しないとする。
経路70は、前記経路61と経路63との接続部に対し、並列に設けられている。該経路70は、廃熱回収器15の出口より閉鎖弁43を介してオイルタンク16の上部に接続され、オイルタンク16上部からはオイルタンク電磁弁34及び閉鎖弁45を介して経路61に接続される。また、オイルタンク16下部からは、経路71が、油戻し電磁弁35を介して前記経路70に接続されている。ガス冷媒は、オイルタンク16の上方より内部に流入し、コンタミ物質が除去された後、再度上方より流出する。下方に落下した冷凍機油は、経路71によって経路70に戻されるのである。
また、吸入温度センサ82が、前記経路63上で廃熱回収器15並びに経路70と経路63との接続部の間に設けられている。即ち、経路70よりも上流側に設けられている。さらに、吸入圧力センサ85が、前記経路61上に設けられている。
なお、これら温度センサ及び圧力センサにより、コントローラ100は冷媒状態を検知して、電磁弁、電子膨張弁、及び四方弁を開閉作動又は開閉制御する。一方、閉鎖弁は、通常、作業者の手によって開閉作動される。
The path 70 is connected in parallel to the path 61 that is the suction path via the oil tank 16. The oil tank 16 is a device that removes contaminants in the gas refrigerant, and its internal structure varies depending on the type of removal. As a removal method, a centrifugal separation method, a baffle method, or a wire mesh method is mainly used, and in this embodiment, the removal method is not particularly limited.
The path 70 is provided in parallel to the connection portion between the path 61 and the path 63. The path 70 is connected to the upper part of the oil tank 16 through the closing valve 43 from the outlet of the waste heat recovery unit 15, and is connected to the path 61 through the oil tank electromagnetic valve 34 and the closing valve 45 from the upper part of the oil tank 16. Is done. A path 71 is connected to the path 70 through the oil return solenoid valve 35 from the lower part of the oil tank 16. The gas refrigerant flows into the interior from above the oil tank 16, and after the contaminants are removed, it flows out again from above. The refrigerating machine oil that has dropped downward is returned to the path 70 by the path 71.
An intake temperature sensor 82 is provided on the path 63 between the waste heat recovery unit 15 and the connection between the path 70 and the path 63. That is, it is provided on the upstream side of the path 70. Further, a suction pressure sensor 85 is provided on the path 61.
The controller 100 detects the refrigerant state by using the temperature sensor and the pressure sensor, and performs opening / closing operation or opening / closing control of the electromagnetic valve, the electronic expansion valve, and the four-way valve. On the other hand, the closing valve is normally opened and closed by an operator's hand.

エンジン駆動式ヒートポンプ1の据付工事において、室外機2と室内機3を接続するために使用される連絡配管50・51の必要配管長は、据付現場における配管条件によって異なるものである。しかし、エンジン駆動式ヒートポンプ1の工場生産の過程においては、予め室外機2に所定の冷媒量を充填しておき、現地据付時に連絡配管50・51の長さに応じて不足する冷媒量を追加充填するという冷媒充填運転を実施する。
以下に、上述したエンジン駆動式ヒートポンプ1の冷媒充填運転において、冷媒充填運転中の過熱度制御、冷媒ボンベ空検知制御、充填終了検知及び残留冷媒の密封防止手段について順に説明する。なお、冷媒充填運転の運転形式については、冷房運転、暖房運転或いは室外機2を凝縮器とし廃熱回収器15を蒸発器とする運転でも構わない。
In the installation work of the engine-driven heat pump 1, the required pipe lengths of the communication pipes 50 and 51 used for connecting the outdoor unit 2 and the indoor unit 3 differ depending on the piping conditions at the installation site. However, in the process of factory production of the engine-driven heat pump 1, the outdoor unit 2 is filled with a predetermined amount of refrigerant in advance, and an insufficient amount of refrigerant is added according to the length of the connecting pipes 50 and 51 at the time of field installation. The refrigerant charging operation of charging is performed.
Below, in the refrigerant | coolant filling operation of the engine drive type heat pump 1 mentioned above, the superheat degree control during refrigerant | coolant filling operation, refrigerant | coolant cylinder empty detection control, completion | finish detection of filling, and the sealing prevention means of a residual refrigerant | coolant are demonstrated in order. The operation mode of the refrigerant charging operation may be a cooling operation, a heating operation, or an operation in which the outdoor unit 2 is a condenser and the waste heat recovery device 15 is an evaporator.

図2において、太い実線は冷媒充填運転状態の冷媒挙動を示している。この運転状態では、室外熱交換器12を凝縮器とし、室内熱交換器膨張弁23は全開で室内ファン6をОFFとして室内熱交換器13の熱交換機能を停止させ、レシーバ14から廃熱回収器15までの長い経路を減圧機構とし、廃熱回収器15を蒸発器とし、閉鎖弁44を閉としてオイルタンク16を通過させてガス冷媒を洗浄する、という冷媒回路にて圧縮機10を運転する。   In FIG. 2, a thick solid line indicates the refrigerant behavior in the refrigerant charging operation state. In this operating state, the outdoor heat exchanger 12 is a condenser, the indoor heat exchanger expansion valve 23 is fully opened, the indoor fan 6 is turned off, the heat exchange function of the indoor heat exchanger 13 is stopped, and the waste heat is recovered from the receiver 14. The compressor 10 is operated in a refrigerant circuit in which a long path to the compressor 15 is a decompression mechanism, the waste heat recovery device 15 is an evaporator, the shut-off valve 44 is closed, and the oil refrigerant is passed through the oil tank 16 to wash the gas refrigerant. To do.

ここで、冷媒充填運転について説明する。
図2に示すように、冷媒ボンベ91はチャージホース92を介してチャージバルブ42に取り付けられ、チャージバルブ42及び冷媒充填電磁弁31が開とされて、冷媒ボンベ91から、チャージホース92、経路69を介して廃熱回収器15の上流側に流入する。なお、この冷媒ボンベ91より充填される冷媒は、気液混合状態である。
Here, the refrigerant charging operation will be described.
As shown in FIG. 2, the refrigerant cylinder 91 is attached to the charge valve 42 via the charge hose 92, and the charge valve 42 and the refrigerant charging electromagnetic valve 31 are opened. And flows into the upstream side of the waste heat recovery unit 15. The refrigerant charged from the refrigerant cylinder 91 is in a gas-liquid mixed state.

前記オイルタンク16は、連絡配管50・51等のコンタミ物質を除去するものであり、液冷媒が内部に流入すると、その冷媒は圧縮機10へ戻ることができない。つまり、液冷媒がオイルタンク16に流入すると、その分だけ、余分に冷媒を充填せねばならず、充填量の適正精度が低下する。しかも、このオイルタンク16を有する経路70は、冷媒充填時のみに使用されるものであるために、オイルタンク16に液冷媒が流入すると、その冷媒が充填運転終了後に密封されてしまう。また、オイルタンク16が備えられていないエンジン駆動式ヒートポンプ1であっても、圧縮機10の湿り運転は、液圧縮・油上がりなど不具合の原因となるため、同様に吸入経路61の湿り運転は防止する必要がある。
そこで、冷媒充填回路である経路69を廃熱回収器15の上流側経路で合流することで、前記冷媒ボンベ91より充填する冷媒が気液混合であっても、該冷媒は、廃熱回収器15においてエンジン冷却水を介してエンジン廃熱を回収してガス冷媒となる。即ち、充填冷媒を廃熱回収器15に通過させることで、オイルタンク16への液冷媒の流入を防止でき、ひいては、圧縮機10の湿り運転を防止している。
The oil tank 16 removes contaminants such as the connecting pipes 50 and 51. When the liquid refrigerant flows into the oil tank 16, the refrigerant cannot return to the compressor 10. That is, when the liquid refrigerant flows into the oil tank 16, it is necessary to fill the refrigerant by that amount, and the appropriate accuracy of the filling amount is lowered. Moreover, since the path 70 having the oil tank 16 is used only when the refrigerant is charged, when the liquid refrigerant flows into the oil tank 16, the refrigerant is sealed after the completion of the filling operation. Further, even in the engine-driven heat pump 1 that is not provided with the oil tank 16, since the wet operation of the compressor 10 causes problems such as liquid compression and oil rise, the wet operation of the suction path 61 is similarly performed. There is a need to prevent.
Therefore, by joining the path 69, which is a refrigerant charging circuit, in the upstream path of the waste heat recovery unit 15, even if the refrigerant charged from the refrigerant cylinder 91 is gas-liquid mixed, the refrigerant is used as the waste heat recovery unit. At 15, the engine waste heat is recovered via the engine cooling water to become a gas refrigerant. That is, by allowing the charged refrigerant to pass through the waste heat recovery device 15, it is possible to prevent the liquid refrigerant from flowing into the oil tank 16, and thus the wet operation of the compressor 10 is prevented.

さらに、オイルタンク16への液冷媒の流入を防止するため、オイルタンク16に流入する冷媒は所定値以上の過熱度を持ったガス冷媒となるように制御する。
コントローラ100は、オイルタンク16入口の過熱度が所定値以下であれば、冷媒充填電磁弁31を閉として冷媒充填を一旦中止する。このオイルタンク16入口の過熱度は、コントローラ100によって、前記吸入圧力センサ85の検知圧力の飽和圧力相当温度を算出し、前記吸入温度センサ82の検知温度から該飽和圧力相当温度を減算し算出する。
Further, in order to prevent the liquid refrigerant from flowing into the oil tank 16, the refrigerant flowing into the oil tank 16 is controlled to be a gas refrigerant having a degree of superheat greater than a predetermined value.
If the degree of superheat at the inlet of the oil tank 16 is equal to or less than a predetermined value, the controller 100 closes the refrigerant charging electromagnetic valve 31 and temporarily stops the refrigerant charging. The degree of superheat at the inlet of the oil tank 16 is calculated by calculating the saturation pressure equivalent temperature of the detection pressure of the suction pressure sensor 85 by the controller 100 and subtracting the saturation pressure equivalent temperature from the detection temperature of the suction temperature sensor 82. .

このように、冷媒充填回路である経路69を廃熱回収器15の上流側に設け、所定値の過熱度以下であれば、該経路69を直接冷媒充填電磁弁31で遮断することで、冷媒充填運転中のオイルタンク16への液冷媒の流入及び圧縮機10の湿り運転防止が図れる。   In this way, the path 69 which is a refrigerant charging circuit is provided on the upstream side of the waste heat recovery unit 15, and if the degree of superheat is equal to or less than a predetermined value, the path 69 is directly blocked by the refrigerant charging electromagnetic valve 31, The inflow of liquid refrigerant into the oil tank 16 during the filling operation and the damp operation of the compressor 10 can be prevented.

上述の冷媒充填運転中に、冷媒ボンベ91が空になると、冷媒ボンベ91を取り替える必要がある。そこで、冷媒ボンベ空状態検知として、前記吐出温度センサ80が所定値以上となれば、冷媒ボンベ91が空であると判断する。該判断表示は、作業者が確認できれば良いものとし、例えば、操作部に警告ランプにて表示する方法などがある。   If the refrigerant cylinder 91 becomes empty during the above-described refrigerant charging operation, the refrigerant cylinder 91 needs to be replaced. Therefore, as the refrigerant cylinder empty state detection, if the discharge temperature sensor 80 is equal to or higher than a predetermined value, it is determined that the refrigerant cylinder 91 is empty. The determination display only needs to be confirmed by the operator. For example, there is a method of displaying a warning lamp on the operation unit.

従来、冷媒充填運転中の冷媒ボンベ91の残留確認は、作業者が行なっていた。これを、本実施例のように、冷媒ボンベ91が空の状態を作業者に自動的に知らせることで、残量確認を省略でき、エンジン駆動式ヒートポンプの現地据付工事の作業性が向上する。   Conventionally, the operator has checked whether the refrigerant cylinder 91 remains during the refrigerant charging operation. By automatically notifying the operator of the empty state of the refrigerant cylinder 91 as in this embodiment, the remaining amount check can be omitted, and the workability of the field installation work of the engine-driven heat pump is improved.

図3を用いて、冷媒充填運転を終了させるための充填終了検知について説明する。なお、図3中の太線は、冷媒挙動を示している。
前記レシーバ14内部に貯留される液冷媒の液面が適正液面位置を越えると、液冷媒は経路64に流入する。液冷媒は、キャピラリ26にて膨張し、過冷却熱交換器17にてレシーバ14に貯留する液冷媒の熱により蒸発し、ガス冷媒となって廃熱回収器15に合流する。
前述したが、過冷却熱交換器17の入口及び出口には、前記第一温度センサ83及び前記第二温度センサ84が設けられている。ここで、液冷媒が経路63を通過する前と後における、第一温度センサ83の検知する温度と第二温度センサ84の検知する温度との温度差(以下温度差α)について比較する。
液冷媒が経路63を通過する前は、経路63にはほとんど冷媒が流れないため、温度差αはほとんどない。液冷媒が経路63を通過すると、キャピラリ26によって膨張され気液混合状態となり、過冷却熱交換器17にて熱を奪われ、過熱ガス冷媒となり廃熱回収器15へ流入する。ここで、過冷却熱交換器17の前後に設けられた第一温度センサ83及び第二温度センサ84によって、ガス冷媒と気液混合冷媒との過熱度相当の温度差αが検出できる。
そこで、充填終了検知として、コントローラ100は、所定の温度差αが算出されれば、エンジン駆動式ヒートポンプ1の冷媒回路内に適正冷媒量が充填されたと判断し、冷媒充填電磁弁31を閉とし冷媒充填を終了する。
With reference to FIG. 3, detection of the completion of charging for ending the refrigerant charging operation will be described. In addition, the thick line in FIG. 3 has shown the refrigerant | coolant behavior.
When the liquid level of the liquid refrigerant stored in the receiver 14 exceeds the appropriate liquid level position, the liquid refrigerant flows into the path 64. The liquid refrigerant expands in the capillary 26, evaporates due to the heat of the liquid refrigerant stored in the receiver 14 in the supercooling heat exchanger 17, becomes a gas refrigerant, and joins the waste heat recovery unit 15.
As described above, the first temperature sensor 83 and the second temperature sensor 84 are provided at the inlet and the outlet of the supercooling heat exchanger 17. Here, the temperature difference (hereinafter, temperature difference α) between the temperature detected by the first temperature sensor 83 and the temperature detected by the second temperature sensor 84 before and after the liquid refrigerant passes through the path 63 will be compared.
Before the liquid refrigerant passes through the path 63, the refrigerant hardly flows through the path 63, so there is almost no temperature difference α. When the liquid refrigerant passes through the path 63, it is expanded by the capillary 26 to be in a gas-liquid mixed state, deprived of heat in the supercooling heat exchanger 17, becomes superheated gas refrigerant, and flows into the waste heat recovery unit 15. Here, the temperature difference α corresponding to the degree of superheat between the gas refrigerant and the gas-liquid mixed refrigerant can be detected by the first temperature sensor 83 and the second temperature sensor 84 provided before and after the supercooling heat exchanger 17.
Therefore, as detection of the completion of charging, if the predetermined temperature difference α is calculated, the controller 100 determines that an appropriate amount of refrigerant has been filled in the refrigerant circuit of the engine-driven heat pump 1, and closes the refrigerant charging electromagnetic valve 31. The refrigerant charging is finished.

本実施例のように、2つの温度センサを経路63の蒸発器である過冷却熱交換器17の前後に設けることで、キャピラリ26に定常的に冷媒が侵入する状態に達したことを確実に検知でき、液冷媒が定常的に適正液面位置を超えるタイミングを確実に検知することができる。そのため、キャピラリ26への突発的な冷媒侵入による誤検知を防止できるので、適正冷媒量の充填終了時期の検知精度が向上する。   As in this embodiment, by providing two temperature sensors before and after the supercooling heat exchanger 17 that is the evaporator of the path 63, it is ensured that the state where the refrigerant has steadily entered the capillary 26 has been reached. It is possible to detect, and it is possible to reliably detect the timing at which the liquid refrigerant constantly exceeds the appropriate liquid level position. As a result, erroneous detection due to sudden refrigerant intrusion into the capillary 26 can be prevented, so that the detection accuracy of the timing of completion of filling the appropriate refrigerant amount is improved.

図4は、冷媒充填運転が終了した状態を示している。本実施例では、冷媒充填運転を終了する場合は、コントローラ100が冷媒充填電磁弁31を閉とした後、チャージホース92を取り外し、チャージバルブ42は閉となる。このとき、経路69におけるチャージバルブ42と冷媒充填電磁弁31との間には閉回路となるため、冷媒充填時の残留冷媒(図4中太線)が密封状態となる。
密封された冷媒が周囲から熱を吸収して熱膨張すると、著しく高圧になって弁や配管に亀裂・破壊が発生する。
そこで、本実施例では、経路69における密封防止対策のため、冷媒逃し回路として経路68を設けることによって、冷媒を、経路68より経路67に逃す(図4中太破線)ことができる。
FIG. 4 shows a state in which the refrigerant charging operation is finished. In the present embodiment, when the refrigerant charging operation is terminated, the controller 100 closes the refrigerant charging electromagnetic valve 31, then removes the charge hose 92, and the charge valve 42 is closed. At this time, since a closed circuit is formed between the charge valve 42 and the refrigerant charging electromagnetic valve 31 in the path 69, the residual refrigerant (thick line in FIG. 4) at the time of charging the refrigerant is in a sealed state.
When the sealed refrigerant absorbs heat from the surroundings and expands, the pressure becomes extremely high, causing cracks and breakage in the valves and piping.
Therefore, in the present embodiment, by providing the path 68 as a refrigerant escape circuit as a countermeasure for preventing sealing in the path 69, the refrigerant can escape from the path 68 to the path 67 (thick broken line in FIG. 4).

本発明の実施例に係るエンジン駆動式ヒートポンプの全体的な構成を示した冷媒回路図。The refrigerant circuit figure which showed the whole structure of the engine drive type heat pump which concerns on the Example of this invention. 本発明の実施例である冷媒充填運転状態の冷媒挙動を示した冷媒回路図。The refrigerant circuit figure which showed the refrigerant | coolant behavior in the refrigerant | coolant filling operation state which is an Example of this invention. 同じく冷媒充填運転終了状態の冷媒挙動を示した冷媒回路図。The refrigerant circuit figure which showed the refrigerant | coolant behavior of the refrigerant | coolant filling operation completion state similarly. 同じく冷媒充填運転終了後に、冷媒ボンベを取り外した状態の冷媒挙動を示した冷媒回路図。Similarly, the refrigerant circuit diagram which showed the refrigerant | coolant behavior in the state which removed the refrigerant cylinder after completion | finish of a refrigerant | coolant filling operation.

符号の説明Explanation of symbols

1 エンジン駆動式ヒートポンプ
10 圧縮機
14 レシーバ
15 廃熱回収器
31 冷媒充填電磁弁
60 吐出経路
61 吸入経路
69 冷媒充填回路である経路
91 冷媒ボンベ
DESCRIPTION OF SYMBOLS 1 Engine drive type heat pump 10 Compressor 14 Receiver 15 Waste heat recovery device 31 Refrigerant filling solenoid valve 60 Discharge route 61 Intake route 69 Route which is a refrigerant filling circuit 91 Refrigerant cylinder

Claims (5)

エンジン駆動による圧縮機と、
前記エンジンの廃熱により冷媒を蒸発させる廃熱回収器を有するエンジン駆動式ヒートポンプにおいて、
前記廃熱回収器の上流側経路で、開閉弁と冷媒ボンベ取付部を有する冷媒充填回路を合流したこと特徴とするエンジン駆動式ヒートポンプ。
An engine driven compressor;
In an engine-driven heat pump having a waste heat recovery device that evaporates a refrigerant by waste heat of the engine,
An engine-driven heat pump characterized in that a refrigerant charging circuit having an on-off valve and a refrigerant cylinder mounting portion is joined in an upstream path of the waste heat recovery unit.
前記冷媒充填回路の開閉弁と冷媒ボンベ取付部を接続する経路より、前記圧縮機の吐出経路へ冷媒逃し回路を分岐したことを特徴とする請求項1記載のエンジン駆動式ヒートポンプ。   2. The engine-driven heat pump according to claim 1, wherein a refrigerant escape circuit is branched from a path connecting the on-off valve of the refrigerant charging circuit and a refrigerant cylinder mounting portion to a discharge path of the compressor. 前記圧縮機の吸入経路の冷媒吸入温度を検知する吸入温度センサと、
前記圧縮機の吸入経路の冷媒吸入圧力を検知する吸入圧力センサと、
前記冷媒吸入温度と前記冷媒吸入圧力により算出される吸入過熱度が、所定値以下になったときに前記開閉弁を閉とする開閉弁制御手段を備えることを特徴とする請求項1記載のエンジン駆動式ヒートポンプ。
A suction temperature sensor for detecting a refrigerant suction temperature of a suction path of the compressor;
A suction pressure sensor for detecting a refrigerant suction pressure in the suction path of the compressor;
2. The engine according to claim 1, further comprising an on-off valve control means for closing the on-off valve when an intake superheat degree calculated from the refrigerant intake temperature and the refrigerant intake pressure becomes a predetermined value or less. Driven heat pump.
前記圧縮機の吐出経路の冷媒吐出温度を検知する吐出温度センサと、
前記開閉弁が開であり、かつ前記冷媒吐出温度が所定値以上になったときに冷媒ボンベが空と判断する冷媒ボンベ空検知手段を備えることを特徴とする請求項3記載のエンジン駆動式ヒートポンプ。
A discharge temperature sensor for detecting a refrigerant discharge temperature of a discharge path of the compressor;
4. The engine-driven heat pump according to claim 3, further comprising refrigerant cylinder empty detecting means for determining that the refrigerant cylinder is empty when the on-off valve is open and the refrigerant discharge temperature reaches a predetermined value or more. .
高圧の液冷媒を貯留するレシーバを設け、
一端が前記レシーバ内の適正液面位置と開口され、その開口より順に、開閉弁、減圧機構及び前記レシーバ内部に配設される過冷却熱交換器を有する充填検知回路を前記廃熱回収器の上流側経路に接続し、
前記充填検知回路の前記過冷却熱交換器の上流側経路に第一温度センサを設け、
前記充填検知回路の過冷却熱交換器の下流側経路に第二温度センサを設け、
前記第一温度センサと前記第二温度センサの各検出温度の差が所定値内になったときに冷媒充填終了と判断する充填検知手段を備えることを特徴とする請求項1記載のエンジン駆動式ヒートポンプ。
Provide a receiver to store high-pressure liquid refrigerant,
One end is opened with an appropriate liquid level position in the receiver, and in order from the opening, an on-off valve, a pressure reducing mechanism, and a filling detection circuit having a supercooling heat exchanger disposed inside the receiver are provided in the waste heat recovery unit. Connected to the upstream path,
A first temperature sensor is provided in the upstream path of the supercooling heat exchanger of the filling detection circuit,
A second temperature sensor is provided in the downstream path of the supercooling heat exchanger of the filling detection circuit,
2. The engine drive type according to claim 1, further comprising charging detection means for determining that the refrigerant charging is completed when a difference between detected temperatures of the first temperature sensor and the second temperature sensor falls within a predetermined value. heat pump.
JP2005320111A 2005-11-02 2005-11-02 Engine drive type heat pump comprising refrigerant filling circuit Pending JP2007127326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005320111A JP2007127326A (en) 2005-11-02 2005-11-02 Engine drive type heat pump comprising refrigerant filling circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005320111A JP2007127326A (en) 2005-11-02 2005-11-02 Engine drive type heat pump comprising refrigerant filling circuit

Publications (1)

Publication Number Publication Date
JP2007127326A true JP2007127326A (en) 2007-05-24

Family

ID=38150125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005320111A Pending JP2007127326A (en) 2005-11-02 2005-11-02 Engine drive type heat pump comprising refrigerant filling circuit

Country Status (1)

Country Link
JP (1) JP2007127326A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261622A (en) * 2008-05-12 2008-10-30 Daikin Ind Ltd Air conditioner
JP2008298335A (en) * 2007-05-30 2008-12-11 Fujitsu General Ltd Refrigerating device, additional refrigerant filling kit used in the same, and additional refrigerant filling method of refrigerating device
US20100192639A1 (en) * 2009-02-05 2010-08-05 Kim Na Eun Laundry treatment device
US7980086B2 (en) 2006-01-25 2011-07-19 Daikin Industries, Ltd. Air conditioner
US8495822B2 (en) 2009-02-05 2013-07-30 Lg Electronics Inc. Heat pump module and drying apparatus using the same
US8656745B2 (en) 2009-02-23 2014-02-25 Lg Electronics Inc. Washing machine
US9163351B2 (en) 2009-03-03 2015-10-20 Lg Electronics Inc. Heat pump module and laundry treatment device using the same
JP2017009275A (en) * 2015-06-16 2017-01-12 大阪瓦斯株式会社 Inspection method of heat pump system
JP2017009276A (en) * 2015-06-16 2017-01-12 大阪瓦斯株式会社 Inspection method of heat pump system
JP2020133957A (en) * 2019-02-15 2020-08-31 ダイキン工業株式会社 Refrigerant filling work assist kit or refrigerant filling work assist system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101176U (en) * 1982-12-23 1984-07-07 エムケ−精工株式会社 Refrigerant filling device
JPH05240528A (en) * 1992-02-28 1993-09-17 Tokyo Gas Co Ltd Heat pump and air conditioner
JPH08210736A (en) * 1995-02-03 1996-08-20 Sanyo Electric Co Ltd Non-azeotrope refrigerant filling system and filling method
JPH08261607A (en) * 1995-03-24 1996-10-11 Mitsubishi Electric Corp Mixed refrigerant feeding device and mixed refrigerant feeding method
JP2000283598A (en) * 1999-03-29 2000-10-13 Yanmar Diesel Engine Co Ltd Method for controlling engine heat pump
JP2000292037A (en) * 1999-04-06 2000-10-20 Sanyo Electric Co Ltd Air conditioner
JP2002350014A (en) * 2001-05-22 2002-12-04 Daikin Ind Ltd Refrigerating equipment
JP2002372346A (en) * 2001-06-13 2002-12-26 Daikin Ind Ltd Refrigerant circuit, its operation checking method, method for filling refrigerant, and closing valve for filling refrigerant
JP2004324949A (en) * 2003-04-23 2004-11-18 Mitsubishi Electric Corp Refrigerant circuit and refrigerating machine comprising the same
JP2005114184A (en) * 2003-10-03 2005-04-28 Hitachi Ltd Refrigerant filling device and refrigerant filling method
JP2005241172A (en) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd Refrigerant filling method for refrigeration cycle and its device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101176U (en) * 1982-12-23 1984-07-07 エムケ−精工株式会社 Refrigerant filling device
JPH05240528A (en) * 1992-02-28 1993-09-17 Tokyo Gas Co Ltd Heat pump and air conditioner
JPH08210736A (en) * 1995-02-03 1996-08-20 Sanyo Electric Co Ltd Non-azeotrope refrigerant filling system and filling method
JPH08261607A (en) * 1995-03-24 1996-10-11 Mitsubishi Electric Corp Mixed refrigerant feeding device and mixed refrigerant feeding method
JP2000283598A (en) * 1999-03-29 2000-10-13 Yanmar Diesel Engine Co Ltd Method for controlling engine heat pump
JP2000292037A (en) * 1999-04-06 2000-10-20 Sanyo Electric Co Ltd Air conditioner
JP2002350014A (en) * 2001-05-22 2002-12-04 Daikin Ind Ltd Refrigerating equipment
JP2002372346A (en) * 2001-06-13 2002-12-26 Daikin Ind Ltd Refrigerant circuit, its operation checking method, method for filling refrigerant, and closing valve for filling refrigerant
JP2004324949A (en) * 2003-04-23 2004-11-18 Mitsubishi Electric Corp Refrigerant circuit and refrigerating machine comprising the same
JP2005114184A (en) * 2003-10-03 2005-04-28 Hitachi Ltd Refrigerant filling device and refrigerant filling method
JP2005241172A (en) * 2004-02-27 2005-09-08 Mitsubishi Heavy Ind Ltd Refrigerant filling method for refrigeration cycle and its device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7980086B2 (en) 2006-01-25 2011-07-19 Daikin Industries, Ltd. Air conditioner
JP2008298335A (en) * 2007-05-30 2008-12-11 Fujitsu General Ltd Refrigerating device, additional refrigerant filling kit used in the same, and additional refrigerant filling method of refrigerating device
JP2008261622A (en) * 2008-05-12 2008-10-30 Daikin Ind Ltd Air conditioner
JP4655107B2 (en) * 2008-05-12 2011-03-23 ダイキン工業株式会社 Air conditioner
US20100192639A1 (en) * 2009-02-05 2010-08-05 Kim Na Eun Laundry treatment device
US8490438B2 (en) * 2009-02-05 2013-07-23 Lg Electronics Inc. Laundry treatment device
US8495822B2 (en) 2009-02-05 2013-07-30 Lg Electronics Inc. Heat pump module and drying apparatus using the same
US8656745B2 (en) 2009-02-23 2014-02-25 Lg Electronics Inc. Washing machine
US9163351B2 (en) 2009-03-03 2015-10-20 Lg Electronics Inc. Heat pump module and laundry treatment device using the same
JP2017009275A (en) * 2015-06-16 2017-01-12 大阪瓦斯株式会社 Inspection method of heat pump system
JP2017009276A (en) * 2015-06-16 2017-01-12 大阪瓦斯株式会社 Inspection method of heat pump system
JP2020133957A (en) * 2019-02-15 2020-08-31 ダイキン工業株式会社 Refrigerant filling work assist kit or refrigerant filling work assist system

Similar Documents

Publication Publication Date Title
JP6380500B2 (en) Refrigeration equipment
CN100529604C (en) Loss of refrigerant charge and expansion valve malfunction detection
JP5484930B2 (en) Air conditioner
JP6156528B1 (en) Refrigeration equipment
JP6191671B2 (en) Refrigerant leak location identification method
EP1923647A1 (en) Refrigeration device
JP6468300B2 (en) Air conditioner
WO2007097238A1 (en) Air conditioner and heat source unit
JP2007127326A (en) Engine drive type heat pump comprising refrigerant filling circuit
JP2019184150A (en) Air conditioner
CN102449405A (en) Air conditioner special for heating
JP5138292B2 (en) Air conditioner
JP2008121926A (en) Refrigeration air conditioner
EP3163220B1 (en) Heat pump type chiller
EP3859248B1 (en) Heat exchange unit
JP3882841B2 (en) Air conditioner, heat source unit, and method of updating air conditioner
KR102243654B1 (en) Air conditioner
US11391496B2 (en) Refrigerating cycle apparatus
JP5445577B2 (en) Refrigeration apparatus and method of detecting different refrigerant filling
CN112097364A (en) Air conditioner and electronic expansion valve fault detection method thereof
JP7275754B2 (en) air conditioner
CN116465032A (en) Air conditioner and control method thereof
JP2005274085A (en) Refrigerating device
JP2008202833A (en) Air conditioner comprising acid component removing filter in oil return line
JP4605784B2 (en) Engine-driven heat pump having an operation mode for cleaning the connecting pipe between the outdoor unit and the indoor unit, and its operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706