[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007123736A - Radiator - Google Patents

Radiator Download PDF

Info

Publication number
JP2007123736A
JP2007123736A JP2005317092A JP2005317092A JP2007123736A JP 2007123736 A JP2007123736 A JP 2007123736A JP 2005317092 A JP2005317092 A JP 2005317092A JP 2005317092 A JP2005317092 A JP 2005317092A JP 2007123736 A JP2007123736 A JP 2007123736A
Authority
JP
Japan
Prior art keywords
layer
heat
radiator
water
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005317092A
Other languages
Japanese (ja)
Inventor
Naohiro Konosu
直広 鴻巣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2005317092A priority Critical patent/JP2007123736A/en
Publication of JP2007123736A publication Critical patent/JP2007123736A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat radiation structure of a radiator with a water path and a radiating fin formed in it by laminating a heat receiving element capable of effectively radiating a heat with a low pressure-loss, and capable of satisfactorily removing the heat from a heating element even though without using a large cooling-water circulation device. <P>SOLUTION: A plurality of a first to fifth plate-like heat receiving elements for receiving the heat are laminated and bonded, the water path of the cooling-water for cooling the heating elements 99 bonded on the surface of its top layer is guided from a water supply outlet of the undermost layer 11 and then passing through the layers 11 to 15 lying below part 7 of the heating elements 99, comb-shaped heat radiating fins 2, 3 are formed below it between fins with the water path, and a communicating hole is formed for communicating the water path between fins with the water path connecting to the water supply outlet and a water discharge outlet in an up-and-down direction. Each fin 2h, 2i, 2j, 4i, 4j, 4k of the heat radiating fins is formed in a step state out of alignment at the predetermined pitch in the fin adjacent direction as shown by the 2i and 2j, and 4j and 4k at the position of an approximate half of the thickness of the layer with the radiating fins formed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高出力LD(レーザーダイオード)アレイ等の高熱を発生する装置に適用される水冷式の放熱器に関する。   The present invention relates to a water-cooled radiator that is applied to a device that generates high heat, such as a high-power LD (laser diode) array.

この種の従来技術として例えば、図19〜図27に示す高出力LDアレイ用の5層構造の放熱器がある。
図19(a)は、従来の放熱器100の全体の構造を示す斜視図、(b)は(a)の放熱器100をJ1−J2線で縦方向に切断した際の断面図である。
図20は、放熱器100の第1(1層目)の受熱体1の構造を示す斜視図である。
As a conventional technique of this type, for example, there is a five-layer heat radiator for a high-power LD array shown in FIGS.
FIG. 19A is a perspective view showing the entire structure of a conventional radiator 100, and FIG. 19B is a cross-sectional view of the radiator 100 in FIG. 19A cut along the J1-J2 line in the vertical direction.
FIG. 20 is a perspective view showing the structure of the first (first layer) heat receiving body 1 of the radiator 100.

図21は、放熱器100の第2(2層目)の受熱体2の構造を示す斜視図である。
図22は、放熱器100の第3(3層目)の受熱体3の構造を示す斜視図である。
図23は、放熱器100の第4(4層目)の受熱体4の構造を示す斜視図である。
図24は、放熱器100の第5(5層目)の受熱体5の構造を示す斜視図である。
図25は、第1の受熱体1に第2の受熱体2を積層した構造を示す斜視図である。
FIG. 21 is a perspective view showing the structure of the second (second layer) heat receiving body 2 of the radiator 100.
FIG. 22 is a perspective view showing the structure of the third (third layer) heat receiving body 3 of the radiator 100.
FIG. 23 is a perspective view showing the structure of the fourth (fourth layer) heat receiving body 4 of the radiator 100.
FIG. 24 is a perspective view showing the structure of the fifth (fifth layer) heat receiving body 5 of the radiator 100.
FIG. 25 is a perspective view showing a structure in which the second heat receiving body 2 is stacked on the first heat receiving body 1.

図26は、第1〜第3の受熱体1〜3を順次積層した構造を示す斜視図である。
図27(a)は、第1〜第4の受熱体1〜4を順次積層した構造を示す斜視図、(b)は(a)の構造に更に第5の受熱体5を積層すると共にLDアレイ99を固定した構造をI1−I2線で横方向に切断した際の断面図である。
高出力のLDアレイ99は、発熱密度が数十〜数百W/cm2程度と大きいため、LDアレイ99の温度上昇によりレーザー出力、効率、発信波長、素子寿命に大きな影響を与える。従って、LDアレイ99で発生した熱をいかに除去するかが非常に重要な課題になる。
FIG. 26 is a perspective view showing a structure in which the first to third heat receiving bodies 1 to 3 are sequentially laminated.
FIG. 27A is a perspective view showing a structure in which the first to fourth heat receiving bodies 1 to 4 are sequentially laminated, and FIG. 27B is a diagram in which a fifth heat receiving body 5 is further laminated on the structure of FIG. It is sectional drawing when the structure which fixed the array 99 was cut | disconnected by the I1-I2 line at the horizontal direction.
Since the high-power LD array 99 has a large heat generation density of about several tens to several hundreds W / cm 2 , the laser output, efficiency, transmission wavelength, and element lifetime are greatly affected by the temperature rise of the LD array 99. Therefore, how to remove the heat generated in the LD array 99 is a very important issue.

また、このLDアレイ99の大きさが長さ10mm×幅1〜1.5mm程度と受熱体105との接触面積が非常に小さく、空冷式では温度上昇が押えきれないため、この種の放熱器100では内部に水路を設け水冷式の放熱を行っている。
この放熱器100の水路は通常熱伝道の良い銅、アルミニュウムなどで製作されており、水路の形成については化学エッチングや精密プレスなどにより形成されるのが一般的である。
In addition, since the LD array 99 has a length of about 10 mm × width of about 1 to 1.5 mm and a contact area with the heat receiving body 105 is very small, the temperature rise cannot be suppressed by the air-cooling type. In 100, a water channel is provided inside to perform water-cooled heat dissipation.
The water channel of the radiator 100 is usually made of copper, aluminum or the like having good heat conduction, and the water channel is generally formed by chemical etching or precision press.

そこで、放熱器100は、各々長方形で板状の第1〜第5の受熱体1〜5の各々に、給水口inとなる円形状の貫通口1c,2c,3c,4c,5cと、排水口outとなる円形状の貫通口1b,2b,3b,4b,5bとを設けて1層目から5層目まで順次積層し、各受熱体1〜5を気密状で且つ熱的に接合して構成されている。
また、第1〜第5の受熱体1〜5の1a,2a,3a,4a,5aは、円形状の貫通口であり放熱器をねじ等で固定する際に使用される。なお、斜視図には省略しているが、断面図に示すように、放熱器100の先端部7にはLDアレイ99が搭載固定されている。
Therefore, the radiator 100 includes a circular through-hole 1c, 2c, 3c, 4c, 5c serving as a water supply port in each of the first and fifth heat receiving bodies 1 to 5 each having a rectangular shape and a drain. Circular through-holes 1b, 2b, 3b, 4b, and 5b serving as the mouth out are provided and sequentially laminated from the first layer to the fifth layer, and the heat receiving bodies 1 to 5 are airtight and thermally bonded. Configured.
Moreover, 1a, 2a, 3a, 4a, 5a of the 1st-5th heat receiving bodies 1-5 are circular through-holes, and are used when fixing a radiator with a screw etc. Although not shown in the perspective view, as shown in the cross-sectional view, an LD array 99 is mounted and fixed on the distal end portion 7 of the radiator 100.

更に、放熱器100は水路を板材にハーフエッチングをせず、上記のように穴を貫通させて形成しているので、水路面積の大きい部分についてはリブ(例えば2e,3e,4f)を用い流路面積と放熱器100の強度を確保している。
また、放熱器100の給水、排水口周辺は、パッキンなどにより気密にシールされるが、その際、パッキンを潰す時の力により板材に変形が生じ冷却水漏れが発生しないように、リブ(例えば図21に示す2e,2k、図22に示す3g,3h)を設け、これによって剛性を確保している。
図23に示す第4の受熱体4のリブ4eは、放熱器100をスタックした場合のシール材を収納する部分になり面積を大きくしてある。図24に示す第5の受熱体5は最上層であって、その上面の先端部7に図19(b)に示すようにLDアレイ99を搭載する。また円状の開口部5c,5bは、上記のシール材収納時のガイドとなる。
Further, since the radiator 100 is formed by penetrating the holes as described above without half-etching the water channel in the plate material, ribs (for example, 2e, 3e, and 4f) are used for the portion having a large water channel area. The road area and the strength of the radiator 100 are ensured.
Further, the water supply and drain outlet periphery of the radiator 100 is hermetically sealed by packing or the like, but at this time, ribs (for example, so as not to cause cooling water leakage due to deformation of the plate material due to the force when crushing the packing) 2e and 2k shown in FIG. 21 and 3g and 3h) shown in FIG. 22 are provided to ensure rigidity.
The rib 4e of the 4th heat receiving body 4 shown in FIG. 23 becomes a part which accommodates the sealing material at the time of stacking | stacking the heat radiator 100, and has enlarged the area. The fifth heat receiving body 5 shown in FIG. 24 is the uppermost layer, and an LD array 99 is mounted on the tip 7 on the upper surface thereof as shown in FIG. 19B. The circular openings 5c and 5b serve as a guide when the sealing material is stored.

次に、このような構造の放熱器100による放熱動作を説明する。
図示せぬ冷却水循環装置(ポンプ)から図25に示すように、放熱器100の給水口inに導かれた冷却水は、第2の受熱体2の給水口2cまで到達する。この冷却水は、リブ2kがあるため、図26に示す更に上層の第3の受熱体3に設けられた開口部3yから流入し、再び下層の第2の受熱体2の空間2gまで到達する。更にこの冷却水は、放熱フィン2mの間2vを通り、ここで熱交換されながら末端まで到達する。
Next, the heat radiation operation by the heat radiator 100 having such a structure will be described.
As shown in FIG. 25 from a cooling water circulation device (pump) (not shown), the cooling water led to the water inlet in of the radiator 100 reaches the water inlet 2c of the second heat receiving body 2. Since this cooling water has the rib 2k, the cooling water flows in from the opening 3y provided in the upper third heat receiving body 3 shown in FIG. 26 and reaches the space 2g of the second lower heat receiving body 2 again. . Further, this cooling water passes through 2v between the radiation fins 2m and reaches the end while undergoing heat exchange.

その後、冷却水は上層の第3の受熱体3に設けられた連通孔3kを通り、図27に示す第4の受熱体4の放熱フィン4hの間4iを、3層目とは逆方向に熱交換されながら空間4dまで導かれる。ここで、冷却水は、リブ4fにより流れがせき止められ、空間4dから図26に示す第2及び第3の受熱体2,3に設けられた空間部3d,2dに流れ込む。この流れ込んだ冷却水は、リブ3e,2eにより一旦流れが堰き止められ、上方の第5の受熱体5の空間部5dに流入する。   Thereafter, the cooling water passes through the communication holes 3k provided in the upper third heat receiving body 3, and passes through the heat radiation fins 4h 4i of the fourth heat receiving body 4 shown in FIG. 27 in the direction opposite to the third layer. It is guided to the space 4d while being subjected to heat exchange. Here, the cooling water is blocked by the ribs 4f, and flows from the space 4d into the space portions 3d and 2d provided in the second and third heat receiving bodies 2 and 3 shown in FIG. The flowing cooling water is once blocked by the ribs 3e and 2e and flows into the space 5d of the upper fifth heat receiving body 5.

このような動作を繰り返しながら冷却水は排水口outに向かう。ここで、排水口outの直前に第2の受熱体2のリブ2eにより流れが堰きとめられるので、冷却水は一旦上昇し、第3の受熱体3の空間部3zを通過し、排水口outより外部に排出される。
この種の従来の放熱器として、例えば特許文献1及び特許文献2に記載のものがある。
WO00/11922号公報 特開平8−139479号公報
The cooling water goes to the drain outlet out while repeating such an operation. Here, since the flow is blocked by the rib 2e of the second heat receiving body 2 immediately before the drain outlet out, the cooling water once rises and passes through the space 3z of the third heat receiving body 3, and the drain outlet out More discharged to the outside.
Examples of this type of conventional radiator include those described in Patent Document 1 and Patent Document 2, for example.
WO00 / 11922 Japanese Patent Laid-Open No. 8-139479

上述したように、従来の放熱器100においては、LDアレイ99で発生した熱を直接最上層の受熱体5に熱伝導させ、その下部の第4の受熱体4に設けられた放熱フィン4hにより効率良く熱を除去することができる。しかし、放熱フィン4hの間隔や幅などは製作上の制約から実装数を増加させるには限界があり、高出力LDアレイ99を搭載した場合、充分に熱を除去することができないという問題がある。   As described above, in the conventional radiator 100, the heat generated in the LD array 99 is directly conducted to the uppermost heat receiving body 5, and the heat radiation fins 4 h provided on the lower fourth heat receiving body 4 are used. Heat can be removed efficiently. However, there is a limit to increase the number of mounted heat sink fins 4h due to manufacturing restrictions, and there is a problem that heat cannot be removed sufficiently when the high-power LD array 99 is mounted. .

また、放熱器100では、板状部材を貫通して水路を形成しているので給排水口周辺が強度的に弱くなる。これを補ってシール材による強度を確保するためリブ2k,2eを形成している。しかし、そのリブ2k,2eにより流路断面積が狭められ、冷却水の流入時や排水時に圧力損失が著しく大きくなるという問題がある。
更に、その圧力損失については流路断面積が大きい給水口inから放熱器100内に冷却水が流入する際、急激な流路断面積の縮小により圧力損失が増大する。逆に冷却水が排水口outに流出する際にも流路断面積の急拡大により圧力損失が増大する。圧力損失が増大することによる弊害として、冷却水循環装置(ポンプ)の負荷が大きくなるので、その装置を大型化しなければならないという問題がある。
Moreover, in the heat radiator 100, since the water channel is formed by penetrating the plate-like member, the vicinity of the water supply / drainage port becomes weak in strength. In order to compensate for this, the ribs 2k and 2e are formed to ensure the strength of the sealing material. However, the ribs 2k and 2e reduce the cross-sectional area of the flow path, and there is a problem that the pressure loss becomes significantly large when cooling water flows in or drains.
Further, with respect to the pressure loss, when cooling water flows into the radiator 100 from the water supply port in having a large flow path cross-sectional area, the pressure loss increases due to a rapid reduction of the flow cross-sectional area. Conversely, when the cooling water flows out to the drain outlet out, the pressure loss increases due to the rapid expansion of the cross-sectional area of the flow path. As an adverse effect of the increased pressure loss, there is a problem that the load of the cooling water circulation device (pump) becomes large and the device must be enlarged.

本発明は、このような課題に鑑みてなされたものであり、受熱体を積層して内部に水路及び放熱フィンを形成した放熱構造であって、低圧力損失で放熱効果が高く、大型の冷却水循環装置を用いなくとも発熱体の熱を十分に除去することができる放熱器を提供することを目的としている。   The present invention has been made in view of such a problem, and is a heat dissipation structure in which a heat receiving body is laminated and a water channel and a heat dissipation fin are formed therein. It aims at providing the heat radiator which can fully remove the heat | fever of a heat generating body, without using a water circulation apparatus.

上記目的を達成するために、本発明の請求項1による放熱器は、受熱を行う板状の受熱体が複数積層されて接合され、最上層の表面に接合された発熱体の冷却用の冷却水の水路が、最下層の給水口から導かれたのち発熱体の下方の層を通過して排水口まで連通して形成され、且つその下方に櫛歯状の放熱フィンがフィン間に水路を伴って形成され、このフィン間の水路と給水口又は排水口へつながる水路とを上下方向で連通する連通孔が形成される放熱器において、前記放熱フィンの各フィンを、当該放熱フィンが形成された層の厚みの略半分の位置で、フィン隣接方向に所定ピッチずれた段差状態に形成したことを特徴とする。
この構成によれば、放熱フィンの各フィンが所定ピッチずれた段差状態に形成されているので、フィン自体の表面積が拡大し、これに応じて放熱面積が拡大するため放熱効率が向上する。これによって、放熱フィン間に流入した冷却水が効率よく発熱体の熱を冷却する。
In order to achieve the above object, a radiator according to claim 1 of the present invention is a cooling for cooling a heating element in which a plurality of plate-like heat receiving bodies for receiving heat are stacked and bonded together and bonded to the surface of the uppermost layer. A water channel is formed after being led from the lowermost water supply port, passing through the lower layer of the heating element to the drain port, and comb-shaped radiating fins below the channel between the fins In the radiator that is formed with the communication hole formed in the vertical direction to connect the water channel between the fins and the water channel connected to the water supply port or the drain port, each of the fins of the heat dissipation fin is formed with the heat dissipation fin. It is characterized in that it is formed in a stepped state shifted by a predetermined pitch in the fin adjacent direction at a position approximately half the thickness of the layer.
According to this configuration, since the fins of the heat radiating fins are formed in a stepped state shifted by a predetermined pitch, the surface area of the fin itself is enlarged, and the heat radiating area is increased accordingly, so that the heat radiating efficiency is improved. As a result, the cooling water flowing between the radiating fins efficiently cools the heat of the heating element.

また、本発明による請求項2による放熱器は、請求項1において、前記連通孔の内壁を、当該連通孔が形成された層の厚みの略半分の位置で、前記フィン隣接方向と同方向に所定ピッチずれた段差状態に形成したことを特徴とする。
この構成によれば、連通孔の内壁がフィン隣接方向と同方向に所定ピッチずれた段差状態、つまり冷却水が通過する上下方向と直交方向に段差状にずれた状態に形成されているので、内壁に上下方向の垂直面と、この垂直面に直交する水平面とができる。このため、冷却水が連通孔を発熱体のある上方向へ向かう際に水平面に衝突して乱流が生じるので、熱伝達率が大幅に向上する。
A radiator according to a second aspect of the present invention is the radiator according to the first aspect, wherein the inner wall of the communication hole is positioned in the same direction as the fin adjacent direction at a position approximately half the thickness of the layer in which the communication hole is formed. It is characterized by being formed in a stepped state shifted by a predetermined pitch.
According to this configuration, the inner wall of the communication hole is formed in a stepped state shifted by a predetermined pitch in the same direction as the fin adjacent direction, that is, in a state shifted in a stepped shape in a direction perpendicular to the vertical direction through which the cooling water passes. A vertical plane in the vertical direction and a horizontal plane perpendicular to the vertical plane are formed on the inner wall. For this reason, since the cooling water collides with the horizontal plane when the communication hole moves upward in the direction where the heating element is located, turbulent flow is generated, so that the heat transfer coefficient is greatly improved.

また、本発明による請求項3による放熱器は、請求項1または2において、前記所定ピッチずれた段差状態は、層の上下面からエッチングで削り取って成形することを特徴とする。
この構成によれば、放熱フィン又は連通孔の内壁の段差状のずれを、通常の両面エッチング方法で簡単に実現することができるので、低コストで実現することができる。
According to a third aspect of the present invention, the radiator according to the first or second aspect is characterized in that the stepped state shifted by the predetermined pitch is formed by etching away from the upper and lower surfaces of the layer by etching.
According to this configuration, the step-like deviation of the inner wall of the radiating fin or the communication hole can be easily realized by a normal double-sided etching method, so that it can be realized at low cost.

また、本発明による請求項4による放熱器は、請求項1から3の何れか1項において、前記放熱フィンの形成された層が、前記連通孔の形成された層の上下に配置され、その上下の放熱フィンのフィン間の水路が前記連通孔で連通された層構造の場合に、前記上下の放熱フィンの各フィンが、前記所定ピッチずれた段差状態に形成されていることを特徴とする。
この構成によれば、各フィンが所定ピッチずれた段差状態に形成された放熱フィンが更に発熱体の下方に配置されるので、更にフィンの表面積が拡大し、これに応じて放熱面積が更に拡大するため放熱効率がより向上する。これによって、放熱フィン間に流入した冷却水が、より効率よく発熱体の熱を冷却する。
A radiator according to a fourth aspect of the present invention is the radiator according to any one of the first to third aspects, wherein the layer in which the radiation fin is formed is disposed above and below the layer in which the communication hole is formed. In the case of a layer structure in which water paths between the fins of the upper and lower radiating fins communicate with each other through the communication hole, each fin of the upper and lower radiating fins is formed in a stepped state shifted by the predetermined pitch. .
According to this configuration, since the fins formed in the stepped state in which the fins are shifted by a predetermined pitch are further disposed below the heating element, the surface area of the fins is further expanded, and the heat dissipation area is further expanded accordingly. Therefore, the heat dissipation efficiency is further improved. Thereby, the cooling water that has flowed in between the radiating fins cools the heat of the heating element more efficiently.

また、本発明による請求項5による放熱器は、請求項4において、前記連通孔の上下に放熱フィンが配置された層構造において、当該連通孔を挟んだ放熱フィンの層部分の断面形状がジグザグの段差状態に形成されていることを特徴とする。
この構成によれば、上下方向の冷却水通路がジグザグになるので、冷却水の乱流化が促進され、更に冷却性能を向上させることができる。
According to a fifth aspect of the present invention, there is provided a radiator according to the fourth aspect, wherein the cross-sectional shape of the layer portion of the radiating fin sandwiching the communication hole is zigzag in the layer structure in which the radiating fin is arranged above and below the communication hole. It is formed in the level | step difference state of this.
According to this configuration, since the cooling water passages in the vertical direction are zigzag, the turbulence of the cooling water is promoted, and the cooling performance can be further improved.

また、本発明による請求項6による放熱器は、請求項1から5の何れか1項において、前記給水口が形成された最下層の上に積層され、前記放熱フィンが形成された層において、前記給水口に組み合わされる環状のリブを前記給水口の中心から同心円状に拡大させ、この拡大によって前記リブが、前記最下層への積層時に前記給水口の周囲面に対して当該周囲面が所定幅露出されて段差状態に組み合わされ、その露出面が水路となるようにし、また、前記拡大されたリブ上に所定間隔で複数の凸部を設け、これら凸部の形成層上に前記連通孔の形成された層が積層された際に、前記複数の凸部間の凹部が水路となるようにしたことを特徴とする。
この構成によれば、給水口から放熱フィンへいたる水路が徐々に縮小された形状となるので、流路断面積の急縮小がなくなり、圧力損失を低減させることができる。また、放熱フィンの形成された層の受熱体の加工は、放熱フィンと同様にエッチングのマスクにより容易に可能となるのでコストアップにはならない。
Further, a radiator according to claim 6 of the present invention is laminated on the lowermost layer where the water supply port is formed in any one of claims 1 to 5, and in the layer where the radiation fin is formed, An annular rib combined with the water supply port is expanded concentrically from the center of the water supply port, and this enlargement causes the rib to have a predetermined peripheral surface with respect to the peripheral surface of the water supply port when stacked on the lowermost layer. The width is exposed and combined in a stepped state so that the exposed surface becomes a water channel, and a plurality of protrusions are provided on the enlarged rib at predetermined intervals, and the communication holes are formed on the formation layer of these protrusions. When the layers formed are stacked, the recesses between the plurality of protrusions become water channels.
According to this configuration, since the water channel from the water supply port to the heat radiating fin has a gradually reduced shape, there is no sudden reduction in the flow path cross-sectional area, and pressure loss can be reduced. Further, the processing of the heat receiving body in the layer in which the heat radiating fin is formed can be easily performed by the etching mask in the same manner as the heat radiating fin, so that the cost is not increased.

また、本発明による請求項7による放熱器は、請求項1から6の何れか1項において、前記排水口が形成された最下層の上に積層され、前記放熱フィンが形成された層において、前記排水口に組み合わされる環状のリブを前記排水口の中心から同心円状に拡大させ、この拡大によって前記リブが、前記最下層への積層時に前記排水口の周囲面に対して当該周囲面が所定幅露出されて段差状態に組み合わされ、その露出面が水路となるようにし、また、前記拡大されたリブ上に所定間隔で複数の凸部を設け、これら凸部の形成層上に前記連通孔の形成された層が積層された際に、前記複数の凸部間の凹部が水路となるようにしたことを特徴とする。   A radiator according to claim 7 of the present invention is laminated on the lowermost layer in which the drainage port is formed in any one of claims 1 to 6, and in the layer in which the radiation fin is formed, An annular rib combined with the drain port is expanded concentrically from the center of the drain port, and this enlargement causes the rib to have a predetermined peripheral surface with respect to the peripheral surface of the drain port when stacked on the lowermost layer. The width is exposed and combined in a stepped state so that the exposed surface becomes a water channel, and a plurality of convex portions are provided at predetermined intervals on the enlarged rib, and the communication hole is formed on the formation layer of these convex portions. When the layers formed are stacked, the recesses between the plurality of protrusions become water channels.

この構成によれば、連通孔の上層の放熱フィンから排水口へいたる水路が徐々に拡大された形状となるので、流路断面積の急拡大がなくなり、圧力損失を低減させることができる。また、給水口及び排水口の双方に本発明の特徴構造が適用されている場合は、給水口から徐々に流路断面積が縮小し、排水口へは徐々に流路断面積が拡大するので、圧力損失を大幅に低減させることができる。従って、小型の冷却水循環装置で十分に冷却水の供給を行うことが可能になる。   According to this configuration, since the water channel extending from the upper fin of the communication hole to the drain outlet is gradually expanded, the channel cross-sectional area is not rapidly expanded, and the pressure loss can be reduced. In addition, when the characteristic structure of the present invention is applied to both the water supply port and the drain port, the channel cross-sectional area gradually decreases from the water supply port, and the channel cross-sectional area gradually increases to the drain port. The pressure loss can be greatly reduced. Therefore, it is possible to sufficiently supply the cooling water with a small cooling water circulation device.

以上説明したように本発明によれば、受熱体を積層して内部に水路及び放熱フィンを形成した放熱構造であって、低圧力損失で放熱効果が高く、大型の冷却水循環装置を用いなくとも発熱体の熱を十分に除去することができるという効果がある。   As described above, according to the present invention, a heat radiating structure in which heat receiving bodies are stacked and water passages and heat radiating fins are formed therein, has a low heat loss and a high heat radiating effect, and without using a large cooling water circulation device. There is an effect that the heat of the heating element can be sufficiently removed.

以下、本発明の実施の形態を、図面を参照して説明する。但し、本明細書中の全図において相互に対応する部分には同一符号を付し、重複部分においては後述での説明を適時省略する。
(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る5層構造の放熱器10の全体の構造を示す斜視図である。
図2は、放熱器10の第1(1層目)の受熱体11の構造を示す斜視図である。
図3は、放熱器10の第2(2層目)の受熱体12の構造を示す斜視図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, parts corresponding to each other in all the drawings in this specification are denoted by the same reference numerals, and description of the overlapping parts will be omitted as appropriate.
(First embodiment)
FIG. 1 is a perspective view showing the overall structure of a heat radiator 10 having a five-layer structure according to a first embodiment of the present invention.
FIG. 2 is a perspective view showing the structure of the first (first layer) heat receiving body 11 of the radiator 10.
FIG. 3 is a perspective view showing the structure of the second (second layer) heat receiving body 12 of the radiator 10.

図4(a)は、図3に示す第2の受熱体12のA枠線部の拡大図、(b)は(a)の放熱フィン部分をB1−B2線で横方向に切断した際の断面図である。
図5は、放熱器10の第3(3層目)の受熱体13の構造を示す斜視図である。
図6(a)は、図5に示す第3の受熱体13のC枠線部の拡大図、(b)は(a)の間通行部分をD1−D2線で横方向に切断した際の断面図である。
図7は、放熱器10の第4(4層目)の受熱体14の構造を示す斜視図である。
図8(a)は、図7に示す第4の受熱体14のE枠線部の拡大図、(b)は(a)の放熱フィン部分をF1−F2線で横方向に切断した際の断面図である。
4A is an enlarged view of the A frame line portion of the second heat receiving body 12 shown in FIG. 3, and FIG. 4B is a view when the radiating fin portion of FIG. It is sectional drawing.
FIG. 5 is a perspective view showing the structure of the third (third layer) heat receiving body 13 of the radiator 10.
6A is an enlarged view of the C frame line portion of the third heat receiving body 13 shown in FIG. 5, and FIG. 6B is a cross-sectional view taken along line D1-D2 in the horizontal direction of FIG. It is sectional drawing.
FIG. 7 is a perspective view showing the structure of the fourth (fourth layer) heat receiving body 14 of the radiator 10.
FIG. 8A is an enlarged view of the E frame line portion of the fourth heat receiving body 14 shown in FIG. 7, and FIG. 8B is a view when the radiating fin portion of FIG. It is sectional drawing.

図9は、放熱器10の第5(5層目)の受熱体15の構造を示す斜視図である。
図10は、第1の受熱体11に第2の受熱体12を積層した構造を示す斜視図である。
図11は、第1〜第3の受熱体11〜13を順次積層した構造を示す斜視図である。
図12は、第1〜第4の受熱体11〜14を順次積層した構造を示す斜視図である。
図13は、図1に示す放熱器10をG1−G2線で横方向に切断した際の断面図である。
FIG. 9 is a perspective view showing the structure of the fifth (fifth layer) heat receiving body 15 of the radiator 10.
FIG. 10 is a perspective view showing a structure in which the second heat receiving body 12 is laminated on the first heat receiving body 11.
FIG. 11 is a perspective view showing a structure in which first to third heat receiving bodies 11 to 13 are sequentially laminated.
FIG. 12 is a perspective view showing a structure in which the first to fourth heat receiving bodies 11 to 14 are sequentially laminated.
FIG. 13 is a cross-sectional view when the heat radiator 10 shown in FIG. 1 is cut in the horizontal direction along line G1-G2.

図14(a)は、図13に示す放熱器10の先端部7におけるH枠線部の拡大図、(b)は(a)の先端部7の冷却水の流れを示す断面図である。
図15(a)は、図13に示す放熱器10の先端部7におけるH枠線部の拡大図、(b)は(a)に示す第3の受熱体13を上下面逆にして積層した構成の断面図である。
14A is an enlarged view of the H frame line portion at the tip 7 of the radiator 10 shown in FIG. 13, and FIG. 14B is a cross-sectional view showing the flow of cooling water at the tip 7 of FIG.
15A is an enlarged view of the H frame line portion at the tip 7 of the radiator 10 shown in FIG. 13, and FIG. 15B is a diagram in which the third heat receiving body 13 shown in FIG. It is sectional drawing of a structure.

第1の実施の形態の放熱器10が従来の放熱器100と異なる点は、図4に2p,2qで示すように第2の受熱体12の放熱フィン2h,2i,2jを、この厚みの半分の位置で隣接方向に0より大きい値〜1/2ピッチ程度の若干ずれた段差状態(以降、所定ピッチずれた段差状態と表現する)で形成し、また、図6に3p,3qで示すように第3の受熱体13の連通孔3kの内壁を、上記の放熱フィン2h,2i,2jと同様に所定ピッチずれた段差状態で形成し、更に、図8に4p,4qで示すように、第4の受熱体14の放熱フィン4i,4j,4kを、上記の連通孔3kと同様に所定ピッチずれた段差状態で形成したことにある。
その所定ピッチずれた段差状態に形成する方法は、化学エッチングによって各受熱体12,13,14の上下面から板厚の1/2までエッチングを行って成形する。
The heat radiator 10 of the first embodiment is different from the conventional heat radiator 100 in that the heat radiation fins 2h, 2i, 2j of the second heat receiving body 12 have the thickness as shown by 2p, 2q in FIG. Formed in a stepped state slightly shifted from a value greater than 0 to about ½ pitch in the adjacent direction at a half position (hereinafter referred to as a stepped state shifted by a predetermined pitch), and indicated by 3p and 3q in FIG. In this way, the inner wall of the communication hole 3k of the third heat receiving body 13 is formed in a stepped state shifted by a predetermined pitch as in the case of the heat radiating fins 2h, 2i, 2j. Further, as shown by 4p, 4q in FIG. This is because the radiating fins 4i, 4j, 4k of the fourth heat receiving body 14 are formed in a stepped state shifted by a predetermined pitch in the same manner as the communication holes 3k.
In the method of forming the stepped state deviated by a predetermined pitch, etching is performed from the upper and lower surfaces of each of the heat receiving bodies 12, 13, 14 to 1/2 of the plate thickness by chemical etching.

次に、このような構造の放熱器10による放熱動作を説明する。
図示せぬ冷却水循環装置(ポンプ)から図10に示すように、放熱器10の給水口inに導かれた冷却水は、第2の受熱体12のリブ2kを乗り越え空間2gに到達し、放熱フィン間2lに流入する。
ここで、図14に示すように、放熱フィン2h,2i,2jは所定ピッチずれた段差状態に形成されているので、そのずれ位置の水平部2p,2qによって放熱面積が拡大され、これによって放熱効率が向上している。このため、放熱フィン間2lに流入した冷却水は効率よく熱を冷却し、第3の受熱体13の連通孔3kに上方向に流れを変えて流入する。
Next, the heat radiation operation by the heat radiator 10 having such a structure will be described.
As shown in FIG. 10 from a cooling water circulation device (pump) (not shown), the cooling water led to the water inlet in of the radiator 10 gets over the rib 2k of the second heat receiving body 12 and reaches the space 2g to radiate heat. It flows into 2 l between the fins.
Here, as shown in FIG. 14, since the radiation fins 2h, 2i, 2j are formed in a stepped state shifted by a predetermined pitch, the heat radiation area is expanded by the horizontal portions 2p, 2q at the shifted positions, thereby radiating heat. Efficiency has improved. For this reason, the cooling water that has flowed into the space between the radiating fins 21 efficiently cools the heat, and flows into the communication hole 3k of the third heat receiving body 13 while changing the flow upward.

この流入した冷却水は、連通孔3kの水平部3pに衝突するので、ここで乱流が発生する。このため熱伝達率も大幅に向上する。即ち、このように連通孔3kに流入した冷却水は、水平部3p,3qによる放熱面積拡大と、水平部3pへの衝突による乱流とによって熱伝達率が大幅に向上する。
更に、冷却水は、連通孔3kから第4の受熱体14の放熱フィン間4lに到達し、この際、水平部4qに衝突して乱流が生じるので、熱伝達率が大幅に向上する。この後、放熱フィン4i,4j,4kを通過する際に、水平部4p,4qによって放熱面積が増大しているので、ここでも大幅に放熱効率が向上する。
Since the inflowing cooling water collides with the horizontal portion 3p of the communication hole 3k, a turbulent flow is generated here. For this reason, the heat transfer coefficient is also greatly improved. That is, the cooling water that has flowed into the communication hole 3k in this way has a greatly improved heat transfer rate due to the expansion of the heat radiation area by the horizontal portions 3p and 3q and the turbulent flow caused by the collision with the horizontal portion 3p.
Further, the cooling water reaches between the heat radiation fins 4l of the fourth heat receiving body 14 from the communication hole 3k, and at this time, it collides with the horizontal portion 4q to generate turbulent flow, so that the heat transfer rate is greatly improved. Thereafter, when passing through the heat radiation fins 4i, 4j, 4k, the heat radiation area is increased by the horizontal portions 4p, 4q, so that the heat radiation efficiency is also greatly improved here.

このように、第1の実施の形態の放熱器10によれば、冷却水の乱流化と放熱フィン表面積拡大により著しい熱伝達効率を向上させ、LDアレイ99で発生した熱を良好に冷却できる。言い換えれば、放熱器10の冷却性能が著しく改善されるので、LDアレイ99の温度上昇を適正に抑制することが可能になる。
また、第1〜第5の受熱体11〜15を形成する際に、片面のエッチングマスクパターンでピッチを予めずらしたものを用意しておけば、後は通常の両面エッチング方法で簡単に製作することが可能となる。つまり、コストアップになる要因は無い。
この他、図15(a)に示す上記の放熱器10の構造において、(b)に示すように、第3の受熱体13を上下面逆に配置すれば、上下方向の冷却水通路がジグザグになるので、冷却水の乱流化が促進され、更に冷却性能を向上させることができる。
As described above, according to the radiator 10 of the first embodiment, the heat transfer efficiency can be significantly improved by turbulent cooling water and expansion of the surface area of the radiating fin, and the heat generated in the LD array 99 can be cooled well. . In other words, since the cooling performance of the radiator 10 is remarkably improved, the temperature rise of the LD array 99 can be appropriately suppressed.
In addition, when the first to fifth heat receiving bodies 11 to 15 are formed, if one having a single-sided etching mask pattern with a pitch shifted in advance is prepared, the subsequent simple fabrication by a normal double-sided etching method. It becomes possible. That is, there is no factor that increases the cost.
In addition, in the structure of the radiator 10 shown in FIG. 15A, if the third heat receiving body 13 is arranged upside down as shown in FIG. 15B, the vertical cooling water passage is zigzag-shaped. Therefore, the turbulent flow of the cooling water is promoted, and the cooling performance can be further improved.

(第2の実施の形態)
本発明の第2の実施の形態の放熱器が、第1の実施の形態の放熱器10と異なる点は、図16に示すように、第2の受熱体22の構造を変えたことにある。即ち、第2の受熱体22のリブ22e,22gの形状を、給排水口の中心から同心円状に拡大させることによって、図17に示すように、第1の受熱体11に積層した際に第1の空間部22h,22iができるように形成した。
(Second Embodiment)
The radiator of the second embodiment of the present invention is different from the radiator 10 of the first embodiment in that the structure of the second heat receiving body 22 is changed as shown in FIG. . That is, when the ribs 22e and 22g of the second heat receiving body 22 are concentrically enlarged from the center of the water supply / drain port, the first heat receiving body 11 is laminated when it is laminated as shown in FIG. The space portions 22h and 22i are formed.

更に、第2の受熱体22にリブ凸部22d,22fを設けることによって、凸部間に凹部22e,22gを形成し、この凹部が第2の空間部22e,22gとなり、図18に示すように、第3の受熱体13を積層した際に当該受熱体13の空間部3y,3zと、第2の空間部22e,22gとが合わさって流路面積が徐々に縮小又は拡大するようにした。
また、リブ凸部22d,22fは、補強部となるが、これは板厚の約1/2程度をハーフエッチングにて形成する。
Further, by providing rib convex portions 22d and 22f on the second heat receiving body 22, concave portions 22e and 22g are formed between the convex portions, and these concave portions become the second space portions 22e and 22g, as shown in FIG. In addition, when the third heat receiving body 13 is stacked, the space portions 3y and 3z of the heat receiving body 13 and the second space portions 22e and 22g are combined to gradually reduce or enlarge the flow path area. .
The rib convex portions 22d and 22f serve as reinforcing portions, which are formed by half etching about half of the plate thickness.

このような構成の第2の実施の形態の放熱器において、給水口inから導かれた冷却水は、第1の空間部22hへ流入する。この際、第1の空間部22h,22iは、給水口よりも広いので流路断面積の急縮小がない。このため、冷却水が給水口inから第1の空間部22hへ流入する際の圧力損失の増大が抑制される。
次に、冷却水はリブ22gを通過するが、リブ凸部22fによる第2の空間部22gによって流路断面積が縮小しているので、圧力損失の増大が抑制される。
In the radiator of the second embodiment having such a configuration, the cooling water led from the water supply port in flows into the first space 22h. At this time, since the first space portions 22h and 22i are wider than the water supply port, there is no rapid reduction in the flow path cross-sectional area. For this reason, increase of the pressure loss at the time of cooling water flowing in into the 1st space part 22h from the water supply opening in is suppressed.
Next, although the cooling water passes through the rib 22g, the flow path cross-sectional area is reduced by the second space 22g by the rib convex portion 22f, so that an increase in pressure loss is suppressed.

この後の冷却水の流れは上述と同様なので割愛する。そして、冷却水は、最終的に排水口outに到達するが、この際、第3の受熱体13の空間部3zと第2の空間部22eとが合わさり、これに流れ方向に連続して第1の空間部22iが存在するので、流路段面積が徐々に拡大し、これによって冷却水の圧力損失の増大が大幅に抑制される。   Since the flow of the cooling water after this is the same as that described above, it is omitted. The cooling water finally reaches the drain outlet out. At this time, the space portion 3z and the second space portion 22e of the third heat receiving body 13 are combined, and the cooling water continuously flows in the flow direction. Since one space portion 22i exists, the flow path step area gradually increases, and thereby the increase in the pressure loss of the cooling water is greatly suppressed.

このように、第2の実施の形態の放熱器によれば、給水口inから徐々に流路断面積を縮小させ、排水口outへは徐々に流路断面積を拡大させる構成としたので、従来のような流路断面積の急縮小や急拡大がなくなる。このため圧力損失を大幅に低減させることができる。従って、従来のように大型の冷却水循環装置を用いなくとも、言い換えれば小型の冷却水循環装置で十分に冷却水の供給を行うことが可能になる。
また、第2の受熱体22を作成する場合、第1の実施の形態での放熱フィンと同様にエッチングのマスクにより容易に可能となるのでコストアップにはならない。
Thus, according to the radiator of the second embodiment, the flow passage cross-sectional area is gradually reduced from the water supply port in, and the flow passage cross-sectional area is gradually increased to the drain port out. There is no sudden reduction or rapid expansion of the cross-sectional area of the channel as in the prior art. For this reason, a pressure loss can be reduced significantly. Therefore, even if a large cooling water circulation device is not used as in the prior art, in other words, it is possible to sufficiently supply the cooling water with a small cooling water circulation device.
Further, when the second heat receiving member 22 is formed, the cost is not increased because the etching can be easily performed by the etching mask in the same manner as the heat radiation fin in the first embodiment.

本発明の第1の実施の形態に係る5層構造の放熱器の全体の構造を示す斜視図である。It is a perspective view which shows the whole structure of the heat radiator of the 5 layer structure which concerns on the 1st Embodiment of this invention. 第1の実施の形態に係る放熱器の第1(1層目)の受熱体の構造を示す斜視図である。It is a perspective view which shows the structure of the 1st (1st layer) heat receiving body of the heat radiator which concerns on 1st Embodiment. 第1の実施の形態に係る放熱器の第2(2層目)の受熱体の構造を示す斜視図である。It is a perspective view which shows the structure of the 2nd (2nd layer) heat receiving body of the heat radiator which concerns on 1st Embodiment. (a)は、図3に示す第2の受熱体のA枠線部の拡大図、(b)は(a)の放熱フィン部分をB1−B2線で横方向に切断した際の断面図である。(A) is an enlarged view of A frame line part of the 2nd heat receiving body shown in FIG. 3, (b) is sectional drawing when the radiation fin part of (a) is cut | disconnected by B1-B2 line at a horizontal direction. is there. 第1の実施の形態に係る放熱器の第3(3層目)の受熱体の構造を示す斜視図である。It is a perspective view which shows the structure of the 3rd (3rd layer) heat receiving body of the heat radiator which concerns on 1st Embodiment. (a)は、図5に示す第3の受熱体のC枠線部の拡大図、(b)は(a)の間通行部分をD1−D2線で横方向に切断した際の断面図である。(A) is an enlarged view of the C frame line portion of the third heat receiving body shown in FIG. 5, (b) is a cross-sectional view when the in-line portion of (a) is cut in the horizontal direction along the D1-D2 line. is there. 第1の実施の形態に係る放熱器の第4(4層目)の受熱体の構造を示す斜視図である。It is a perspective view which shows the structure of the 4th (4th layer) heat receiving body of the heat radiator which concerns on 1st Embodiment. (a)は、図7に示す第4の受熱体のE枠線部の拡大図、(b)は(a)の放熱フィン部分をF1−F2線で横方向に切断した際の断面図である。(A) is an enlarged view of E frame line part of the 4th heat receiving body shown in FIG. 7, (b) is sectional drawing when the radiation fin part of (a) is cut | disconnected by F1-F2 line in the horizontal direction. is there. 第1の実施の形態に係る放熱器の第5(5層目)の受熱体の構造を示す斜視図である。It is a perspective view which shows the structure of the 5th (5th layer) heat receiving body of the heat radiator which concerns on 1st Embodiment. 第1の実施の形態に係る放熱器の第1の受熱体に第2の受熱体を積層した構造を示す斜視図である。It is a perspective view which shows the structure which laminated | stacked the 2nd heat receiving body on the 1st heat receiving body of the heat radiator which concerns on 1st Embodiment. 第1の実施の形態に係る放熱器の第1〜第3の受熱体を順次積層した構造を示す斜視図である。It is a perspective view which shows the structure which laminated | stacked the 1st-3rd heat receiving body of the heat radiator which concerns on 1st Embodiment sequentially. 第1の実施の形態に係る放熱器の第1〜第4の受熱体を順次積層した構造を示す斜視図である。It is a perspective view which shows the structure which laminated | stacked the 1st-4th heat receiving body of the heat radiator which concerns on 1st Embodiment sequentially. 図1に示す放熱器をG1−G2線で横方向に切断した際の断面図である。It is sectional drawing when the heat radiator shown in FIG. 1 is cut | disconnected by the G1-G2 line at the horizontal direction. 図13に示す放熱器の先端部におけるH枠線部の拡大図、(b)は(a)の先端部の冷却水の流れを示す断面図である。FIG. 14B is an enlarged view of the H frame line at the tip of the radiator shown in FIG. 13, and FIG. 図13に示す放熱器の先端部におけるH枠線部の拡大図、(b)は(a)に示す第3の受熱体を上下面逆にして積層した構成の断面図である。FIG. 14B is an enlarged view of the H frame line portion at the tip of the radiator shown in FIG. 13, and FIG. 14B is a cross-sectional view of a configuration in which the third heat receiving body shown in FIG. 本発明の第2の実施の形態に係る5層構造の放熱器における第2の受熱体の構造を示す斜視図である。It is a perspective view which shows the structure of the 2nd heat receiving body in the heat radiator of the 5-layer structure which concerns on the 2nd Embodiment of this invention. 第2の実施の形態に係る放熱器の第1の受熱体に第2の受熱体を積層した構造を示す斜視図である。It is a perspective view which shows the structure which laminated | stacked the 2nd heat receiving body on the 1st heat receiving body of the heat radiator which concerns on 2nd Embodiment. 第2の実施の形態に係る放熱器の第1〜第3の受熱体を順次積層した構造を示す斜視図である。It is a perspective view which shows the structure which laminated | stacked the 1st-3rd heat receiving body of the heat radiator which concerns on 2nd Embodiment sequentially. 従来の放熱器の全体の構造を示す斜視図、(b)は(a)の放熱器をJ1−J2線で縦方向に切断した際の断面図である。The perspective view which shows the whole structure of the conventional heat radiator, (b) is sectional drawing when the heat radiator of (a) is cut | disconnected longitudinally by the J1-J2 line. 従来の放熱器の第1(1層目)の受熱体の構造を示す斜視図である。It is a perspective view which shows the structure of the 1st (1st layer) heat receiving body of the conventional heat radiator. 従来の放熱器の第2(2層目)の受熱体の構造を示す斜視図である。It is a perspective view which shows the structure of the 2nd (2nd layer) heat receiving body of the conventional heat radiator. 従来の放熱器の第3(3層目)の受熱体の構造を示す斜視図である。It is a perspective view which shows the structure of the 3rd (3rd layer) heat receiving body of the conventional heat radiator. 従来の放熱器の第4(4層目)の受熱体の構造を示す斜視図である。It is a perspective view which shows the structure of the 4th (4th layer) heat receiving body of the conventional heat radiator. 従来の放熱器の第5(5層目)の受熱体の構造を示す斜視図である。It is a perspective view which shows the structure of the 5th (5th layer) heat receiving body of the conventional heat radiator. 従来の放熱器の第1の受熱体1に第2の受熱体を積層した構造を示す斜視図である。It is a perspective view which shows the structure which laminated | stacked the 2nd heat receiving body on the 1st heat receiving body 1 of the conventional heat radiator. 従来の放熱器の第1〜第3の受熱体を順次積層した構造を示す斜視図である。It is a perspective view which shows the structure which laminated | stacked the 1st-3rd heat receiving body of the conventional heat radiator sequentially. (a)は、従来の放熱器の第1〜第4の受熱体を順次積層した構造を示す斜視図、(b)は(a)の構造に更に第5の受熱体を積層すると共にLDアレイを固定した構造をI1−I2線で横方向に切断した際の断面図である。(A) is a perspective view which shows the structure which laminated | stacked the 1st-4th heat receiving body of the conventional heat radiator one by one, (b) is further laminated | stacked on the structure of (a), and a LD array It is sectional drawing at the time of cut | disconnecting the structure which fixed this to the horizontal direction by I1-I2 line.

符号の説明Explanation of symbols

1a〜5a,1b〜5b,1c〜5c,2d,2g 貫通口
2e,3e,2f,2k,3e,3f,3g,4e,4f,4g リブ
2h,2i,2j,4i,4j,4k 放熱フィン
2p,2q,3p,3q 水平部
3k 連通孔
3y,3z 空間部
2l,4l 放熱フィン間
7 放熱器の先端部
10 放熱器
11 第1の受熱体
12,22 第2の受熱体
13 第3の受熱体
14 第4の受熱体
15 第5の受熱体
22d,22f リブ凸部
22e,22g リブ凹部(第2の空間部)
22h,22i 第1の空間部
99 LDアレイ
1a to 5a, 1b to 5b, 1c to 5c, 2d, 2g Through-hole 2e, 3e, 2f, 2k, 3e, 3f, 3g, 4e, 4f, 4g Rib 2h, 2i, 2j, 4i, 4j, 4k 2p, 2q, 3p, 3q Horizontal portion 3k Communication hole 3y, 3z Space portion 2l, 4l Between radiating fins 7 Radiator tip 10 Radiator 11 First heat receiving element 12, 22 Second heat receiving element 13 Third Heat receiving body 14 4th heat receiving body 15 5th heat receiving body 22d, 22f Rib convex part 22e, 22g Rib recessed part (2nd space part)
22h, 22i first space 99 LD array

Claims (7)

受熱を行う板状の受熱体が複数積層されて接合され、最上層の表面に接合された発熱体の冷却用の冷却水の水路が、最下層の給水口から導かれたのち発熱体の下方の層を通過して排水口まで連通して形成され、且つその下方に櫛歯状の放熱フィンがフィン間に水路を伴って形成され、このフィン間の水路と給水口又は排水口へつながる水路とを上下方向で連通する連通孔が形成される放熱器において、
前記放熱フィンの各フィンを、当該放熱フィンが形成された層の厚みの略半分の位置で、フィン隣接方向に所定ピッチずれた段差状態に形成した
ことを特徴とする放熱器。
A plurality of plate-shaped heat receiving bodies that receive heat are laminated and joined, and the cooling water channel for cooling the heating element joined to the surface of the uppermost layer is led from the water inlet of the lowermost layer, and then below the heating element A water channel that is formed to communicate with the drainage port through the layer, and that has a comb-like radiating fin with a water channel between the fins, and that leads to the water channel between the fins and the water supply or drainage port. In a radiator in which a communication hole that communicates with each other in the vertical direction is formed,
Each radiator fin is formed in a stepped state shifted by a predetermined pitch in the fin adjacent direction at a position approximately half the thickness of the layer on which the radiator fin is formed.
前記連通孔の内壁を、当該連通孔が形成された層の厚みの略半分の位置で、前記フィン隣接方向と同方向に所定ピッチずれた段差状態に形成した
ことを特徴とする請求項1に記載の放熱器。
The inner wall of the communication hole is formed in a stepped state shifted by a predetermined pitch in the same direction as the fin adjacent direction at a position approximately half the thickness of the layer in which the communication hole is formed. The radiator described.
前記所定ピッチずれた段差状態は、層の上下面からエッチングで削り取って成形する
ことを特徴とする請求項1または2に記載の放熱器。
The radiator according to claim 1 or 2, wherein the stepped state shifted by a predetermined pitch is formed by etching away from the upper and lower surfaces of the layer.
前記放熱フィンの形成された層が、前記連通孔の形成された層の上下に配置され、その上下の放熱フィンのフィン間の水路が前記連通孔で連通された層構造の場合に、前記上下の放熱フィンの各フィンが、前記所定ピッチずれた段差状態に形成されている
ことを特徴とする請求項1から3の何れか1項に記載の放熱器。
In the case of the layer structure in which the layer in which the radiating fin is formed is disposed above and below the layer in which the communication hole is formed, and the water channel between the fins of the upper and lower radiating fins is communicated by the communication hole, 4. The radiator according to claim 1, wherein each of the fins is formed in a stepped state shifted by the predetermined pitch. 5.
前記連通孔の上下に放熱フィンが配置された層構造において、当該連通孔を挟んだ放熱フィンの層部分の断面形状がジグザグの段差状態に形成されている
ことを特徴とする請求項4に記載の放熱器。
The cross-sectional shape of the layer part of the radiation fin which pinched | interposed the said communicating hole is formed in the zigzag level | step difference state in the layer structure where the radiation fin was arrange | positioned at the upper and lower sides of the said communicating hole. Heatsink.
前記給水口が形成された最下層の上に積層され、前記放熱フィンが形成された層において、前記給水口に組み合わされる環状のリブを前記給水口の中心から同心円状に拡大させ、この拡大によって前記リブが、前記最下層への積層時に前記給水口の周囲面に対して当該周囲面が所定幅露出されて段差状態に組み合わされ、その露出面が水路となるようにし、また、前記拡大されたリブ上に所定間隔で複数の凸部を設け、これら凸部の形成層上に前記連通孔の形成された層が積層された際に、前記複数の凸部間の凹部が水路となるようにした
ことを特徴とする請求項1から5の何れか1項に記載の放熱器。
By laminating on the lowermost layer where the water supply port is formed and in the layer where the radiation fin is formed, an annular rib combined with the water supply port is expanded concentrically from the center of the water supply port, and by this expansion When the rib is laminated on the lowermost layer, the peripheral surface is exposed to a predetermined width with respect to the peripheral surface of the water supply port and is combined in a stepped state, and the exposed surface becomes a water channel, and the enlarged When a plurality of convex portions are provided on the ribs at predetermined intervals, and the layer in which the communication holes are formed is laminated on the formation layer of the convex portions, the concave portions between the plurality of convex portions become water channels. The radiator according to any one of claims 1 to 5, wherein
前記排水口が形成された最下層の上に積層され、前記放熱フィンが形成された層において、前記排水口に組み合わされる環状のリブを前記排水口の中心から同心円状に拡大させ、この拡大によって前記リブが、前記最下層への積層時に前記排水口の周囲面に対して当該周囲面が所定幅露出されて段差状態に組み合わされ、その露出面が水路となるようにし、また、前記拡大されたリブ上に所定間隔で複数の凸部を設け、これら凸部の形成層上に前記連通孔の形成された層が積層された際に、前記複数の凸部間の凹部が水路となるようにした
ことを特徴とする請求項1から6の何れか1項に記載の放熱器。
By laminating on the lowermost layer where the drainage port is formed and in the layer where the radiation fin is formed, an annular rib combined with the drainage port is expanded concentrically from the center of the drainage port, When the rib is laminated on the lowermost layer, the peripheral surface is exposed to a predetermined width with respect to the peripheral surface of the drain outlet and is combined in a stepped state so that the exposed surface becomes a water channel, and the enlarged When a plurality of convex portions are provided on the ribs at predetermined intervals, and the layer in which the communication holes are formed is laminated on the formation layer of the convex portions, the concave portions between the plurality of convex portions become water channels. The radiator according to any one of claims 1 to 6, wherein the radiator is any one of the above.
JP2005317092A 2005-10-31 2005-10-31 Radiator Pending JP2007123736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005317092A JP2007123736A (en) 2005-10-31 2005-10-31 Radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005317092A JP2007123736A (en) 2005-10-31 2005-10-31 Radiator

Publications (1)

Publication Number Publication Date
JP2007123736A true JP2007123736A (en) 2007-05-17

Family

ID=38147217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005317092A Pending JP2007123736A (en) 2005-10-31 2005-10-31 Radiator

Country Status (1)

Country Link
JP (1) JP2007123736A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021520646A (en) * 2018-05-18 2021-08-19 ロジャーズ ジャーマニー ゲーエムベーハーRogers Germany GmbH Systems for cooling metal-ceramic substrates, metal-ceramic substrates, and methods of manufacturing systems

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021520646A (en) * 2018-05-18 2021-08-19 ロジャーズ ジャーマニー ゲーエムベーハーRogers Germany GmbH Systems for cooling metal-ceramic substrates, metal-ceramic substrates, and methods of manufacturing systems
JP7130775B2 (en) 2018-05-18 2022-09-05 ロジャーズ ジャーマニー ゲーエムベーハー System for cooling a metal-ceramic substrate, metal-ceramic substrate, and method of manufacturing the system

Similar Documents

Publication Publication Date Title
US7537047B2 (en) Liquid-cooling heat sink
US7017655B2 (en) Forced fluid heat sink
US6431260B1 (en) Cavity plate and jet nozzle assemblies for use in cooling an electronic module, and methods of fabrication thereof
US20120182695A1 (en) Semiconductor device
US20080264604A1 (en) Cooling appartaus, cooled electronic module and methods of fabrication employing a manifold structure with interleaved coolant inlet and outlet passageways
JP2005166855A (en) Electronic apparatus
JP2003008273A (en) Cooler and light source apparatus
WO2007145352A1 (en) Heat sink and cooler
JP2008004667A (en) Cooling structure, and manufacturing method thereof
US20050145379A1 (en) Flat tube cold plate assembly
JP5332115B2 (en) Power element mounting unit
JP2009266937A (en) Stacked cooler
JP4041437B2 (en) Semiconductor device cooling device
JP4619387B2 (en) Semiconductor device cooling device
JP2008282969A (en) Cooler and electronic instrument
TWI726806B (en) Water-cooling heat dissipation device and manufacturing method thereof
JP2007123736A (en) Radiator
JP7106013B2 (en) Heat sinks and semiconductor modules
JP2019194512A (en) Integrated vapor chamber module allowing communication between multiple vapor chambers with extended capillary layer
JP2010016295A (en) Semiconductor device
JP4305253B2 (en) Radiator
JP2006313038A (en) Manufacturing method of heat pipe circuit board and heat pipe circuit board
JP4984955B2 (en) Power element mounting unit, power element mounting unit manufacturing method, and power module
JP2005166789A (en) Heat dissipator
KR102605791B1 (en) Semiconductor device thermal management module and manufacturing method thereof