[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007123301A - Microminiature chip resistor and resistor paste for microminiature chip resistor - Google Patents

Microminiature chip resistor and resistor paste for microminiature chip resistor Download PDF

Info

Publication number
JP2007123301A
JP2007123301A JP2005309325A JP2005309325A JP2007123301A JP 2007123301 A JP2007123301 A JP 2007123301A JP 2005309325 A JP2005309325 A JP 2005309325A JP 2005309325 A JP2005309325 A JP 2005309325A JP 2007123301 A JP2007123301 A JP 2007123301A
Authority
JP
Japan
Prior art keywords
powder
copper
resistor
paste
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005309325A
Other languages
Japanese (ja)
Other versions
JP4796815B2 (en
Inventor
Tatsuki Hirano
立樹 平野
Akira Ri
旭 李
Nobuaki Morishima
信明 森嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kamaya Electric Co Ltd
Kyoto Elex Co Ltd
Original Assignee
Kamaya Electric Co Ltd
Kyoto Elex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kamaya Electric Co Ltd, Kyoto Elex Co Ltd filed Critical Kamaya Electric Co Ltd
Priority to JP2005309325A priority Critical patent/JP4796815B2/en
Publication of JP2007123301A publication Critical patent/JP2007123301A/en
Application granted granted Critical
Publication of JP4796815B2 publication Critical patent/JP4796815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Adjustable Resistors (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide resistor paste for microminiature chip resistor having a low resistance and a low TCR. <P>SOLUTION: In paste at least composed of: copper based conductive metal powder containing copper powder; glass frit; and an organic vehicle, silver powder is added to the copper based conductive metal powder. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子回路や電源回路に設ける電流検出回路等に使用されるチップ抵抗器に関し、さらに詳しくは、低抵抗値且つ低抵抗温度係数である超小形チップ抵抗器及び超小形チップ抵抗器用抵抗体ペーストに関する。   The present invention relates to a chip resistor used in a current detection circuit or the like provided in an electronic circuit or a power supply circuit, and more particularly, an ultra-small chip resistor having a low resistance value and a low resistance temperature coefficient, and a resistance for an ultra-small chip resistor. It relates to body paste.

近年、携帯電話やノートパソコンなどに代表されるように、小形の電子機器の需要は高まる一方であり、これらの電子機器の小形化、高性能化はこれに用いるチップ型電子部品の小形化、高性能化に大きく依存している。   In recent years, as typified by mobile phones and notebook computers, the demand for small electronic devices has been increasing, and the downsizing and high performance of these electronic devices have led to the downsizing of chip-type electronic components used in this, It depends heavily on high performance.

そこで、従来のチップ抵抗器の製造方法の一例について、図3(a)に基づいて説明する。図3(a)において、アルミナ基板(縦横に切断用溝が形成されたもの)21の上面の両端部に対向するように表電極22用ペーストを印刷し、アルミナ基板21の下面の両端部に対向するように裏電極23用ペーストを印刷する。これら表電極22用ペーストと裏電極23用ペーストを乾燥後、同時に焼成する。次に、アルミナ基板21の上面の両端部の表電極22、22を接続するようにアルミナ基板21の上面の中央部に抵抗体24用ペーストを印刷し、乾燥後焼成する。そして、必要に応じて抵抗値を調整するために、抵抗体24の一部がレーザートリミングなどの手段により除去される。さらに、抵抗体24を覆うようにガラス層25用ペーストを印刷し、乾燥後焼成する。次に、ガラス層25の上に保護膜26用ペーストが印刷され、乾燥後焼成される。そして、アルミナ基板21が紙面に対して直角方向の切断用溝に沿って短冊状に切断される。さらに、短冊状の各アルミナ基板21の対向する一対の両端面に表電極22と裏電極23を接続するように端面電極27用ペーストが塗布され、乾燥後焼成される。次に、各アルミナ基板21が紙面方向の切断用溝に沿って実際のチップ抵抗器の大きさに切断される。最後に、端面電極27を覆うように、銅メッキ膜28を電気メッキにより形成し、銅メッキ膜28を覆うようにニッケル膜29を電気メッキにより形成し、ニッケル膜29を覆うようにスズメッキ膜30を電気メッキにより形成する。   An example of a conventional chip resistor manufacturing method will be described with reference to FIG. In FIG. 3A, the paste for the surface electrode 22 is printed so as to face both end portions of the upper surface of the alumina substrate 21 (having cutting grooves formed vertically and horizontally). The back electrode 23 paste is printed so as to face each other. These surface electrode 22 paste and back electrode 23 paste are dried and fired simultaneously. Next, the resistor 24 paste is printed on the central portion of the upper surface of the alumina substrate 21 so as to connect the surface electrodes 22 and 22 on both ends of the upper surface of the alumina substrate 21, dried, and fired. Then, in order to adjust the resistance value as necessary, a part of the resistor 24 is removed by means such as laser trimming. Furthermore, a paste for the glass layer 25 is printed so as to cover the resistor 24, dried and fired. Next, the paste for the protective film 26 is printed on the glass layer 25, dried and fired. Then, the alumina substrate 21 is cut into a strip shape along a cutting groove perpendicular to the paper surface. Further, a paste for the end face electrode 27 is applied to a pair of opposing end faces of each strip-like alumina substrate 21 so as to connect the front electrode 22 and the back electrode 23, dried and fired. Next, each alumina substrate 21 is cut into an actual chip resistor size along the cutting groove in the paper surface direction. Finally, a copper plating film 28 is formed by electroplating so as to cover the end face electrode 27, a nickel film 29 is formed by electroplating so as to cover the copper plating film 28, and a tin plating film 30 is covered so as to cover the nickel film 29. Is formed by electroplating.

上記のような方法で製造されるチップ抵抗器において、抵抗体となる導電粒子として酸化ルテニウムを主成分とする厚膜抵抗体材料が用いられることが多い。酸化ルテニウムからなる抵抗体材料は抵抗値の温度変化を示す抵抗温度係数(以下、TCRともいう)を、金属酸化物などのTCR調整材料を添加することにより、±50ppm/℃以内という低い値にすることは可能である。しかし、酸化ルテニウムの比抵抗が高いために、低抵抗温度係数とともに低抵抗値を有するチップ抵抗器を提供することは困難である。そこで、以下に説明するようなチップ抵抗器または抵抗体ペーストが提案されている。   In the chip resistor manufactured by the method as described above, a thick film resistor material mainly composed of ruthenium oxide is often used as the conductive particles serving as a resistor. A resistor material made of ruthenium oxide has a temperature coefficient of resistance (hereinafter also referred to as TCR) indicating a change in temperature of the resistance value as low as ± 50 ppm / ° C. by adding a TCR adjusting material such as a metal oxide. It is possible to do. However, since the specific resistance of ruthenium oxide is high, it is difficult to provide a chip resistor having a low resistance temperature coefficient and a low resistance value. Therefore, a chip resistor or resistor paste as described below has been proposed.

例えば、特許文献1には、銅、マンガンおよびゲルマニウムの金属成分を100重量部としたとき、ガラス粉体および銅酸化物粉体を10重量部以下で含有する抵抗体を備えた抵抗器が開示されている。   For example, Patent Document 1 discloses a resistor including a resistor containing 10 parts by weight or less of glass powder and copper oxide powder when the metal components of copper, manganese, and germanium are 100 parts by weight. Has been.

特許文献2には、銅粉とニッケル粉の混合粉またはCu−Ni合金粉からなる導電性粉末100重量部に対して3〜20重量部のガラス粉末および1〜10重量部の銅酸化物粉末を、導電成分の割合が75〜90重量%となるように有機ビヒクルに分散させた抵抗体ペーストが開示されている。   Patent Document 2 discloses that 3 to 20 parts by weight of glass powder and 1 to 10 parts by weight of copper oxide powder with respect to 100 parts by weight of conductive powder made of mixed powder of copper powder and nickel powder or Cu-Ni alloy powder. Is disclosed in which a conductive paste is dispersed in an organic vehicle so that the proportion of the conductive component is 75 to 90% by weight.

特許文献3には、絶縁性基体と、絶縁性基体上に形成された銅とニッケルからなる金属成分100重量部に対して1乃至10重量部の銅酸化物と1乃至12重量部のアルミニウム酸化物と1乃至10重量部のガラス成分を有する抵抗体を備えた抵抗器が開示されている。   In Patent Document 3, 1 to 10 parts by weight of copper oxide and 1 to 12 parts by weight of aluminum oxide are used for 100 parts by weight of an insulating base and copper and nickel formed on the insulating base. A resistor comprising a resistor and a resistor having 1 to 10 parts by weight of a glass component is disclosed.

特許文献4には、銅およびニッケルからなる導電性粉末と、400〜500℃の軟化点を有するカドミウムを含まないガラス粉末と、金属酸化物と、ビヒクルを含む抵抗体ペーストが開示されている。   Patent Document 4 discloses a resistor paste including a conductive powder made of copper and nickel, a glass powder not containing cadmium having a softening point of 400 to 500 ° C., a metal oxide, and a vehicle.

特許文献5には、銅粉体とマンガン粉体とスズ粉体からなる第1の混合粉体と、銅とマンガンとスズの合金粉体と、第1の混合粉体と合金粉体からなる第2の混合粉体の少なくともいずれかの粉体からなる導電性金属粉体と、ガラス粉体と、銅酸化物粉体と、有機ビヒクルからなる抵抗体ペーストが開示されている。   Patent Document 5 includes a first mixed powder made of copper powder, manganese powder and tin powder, an alloy powder of copper, manganese and tin, and a first mixed powder and alloy powder. A resistor paste made of a conductive metal powder made of at least one of the second mixed powders, a glass powder, a copper oxide powder, and an organic vehicle is disclosed.

特許文献6には、絶縁性基体と、絶縁性基体上に形成された銅とニッケルとマンガンからなる金属成分と、銅酸化物と、ガラス成分を有する抵抗体を備えた抵抗器が開示されている。   Patent Document 6 discloses a resistor including an insulating base, a metal component formed of copper, nickel, and manganese formed on the insulating base, a copper oxide, and a resistor having a glass component. Yes.

特許文献7には、絶縁性基体と、絶縁性基体上に形成された銅とニッケルからなる金属成分と、銅酸化物と鉄酸化物からなる金属酸化物成分と、ガラス成分を有する抵抗体を備えた抵抗器が開示されている。
特開2004−104047号公報 特開平11−288801号公報 特開2003−347102号公報 特開平11−233302号公報 特開2004−119692号公報 特開2004−119561号公報 特開2003−324002号公報
Patent Document 7 discloses a resistor having an insulating base, a metal component made of copper and nickel formed on the insulating base, a metal oxide component made of copper oxide and iron oxide, and a glass component. A resistor is disclosed.
JP 2004-104047 A Japanese Patent Laid-Open No. 11-288801 JP 2003-347102 A JP 11-233302 A JP 2004-119692 A JP 2004-119561 A JP 2003-324002 A

ところで、抵抗器は、電極ならびに電極と重なる抵抗体部分および抵抗体のすべてを一体として性能を評価するが、抵抗器を小形化すると、抵抗値やTCRが大きくなりやすい。というのは、小形チップ抵抗器は、図3(b)に示すように、電極31と抵抗体32自体の寸法が小さいが、その寸法に比して電極31、31間の間隔Dが極めて短い。そのため、抵抗体全体の面積に占める電極と抵抗体が重なる部分(斜線部分)の比率が高くなる。その結果、チップ抵抗器の抵抗値が高くなりやすく、上記重なり部分における電極と抵抗体を構成する元素の相互拡散などによって抵抗体が電極特性の影響を受けやすいので、TCRが高くなる傾向にある。   By the way, the performance of the resistor is evaluated by integrating all of the electrode and the resistor portion and the resistor that overlap with the electrode. However, when the resistor is miniaturized, the resistance value and the TCR tend to increase. This is because, as shown in FIG. 3B, the small chip resistor has a small dimension between the electrode 31 and the resistor 32 itself, but the distance D between the electrodes 31 and 31 is extremely short compared to the dimension. . For this reason, the ratio of the portion where the electrode and the resistor overlap (the hatched portion) occupies the entire area of the resistor. As a result, the resistance value of the chip resistor tends to be high, and the TCR tends to be high because the resistor is easily affected by the electrode characteristics due to the mutual diffusion of the elements constituting the electrode and the resistor in the overlapping portion. .

この点で、特許文献1には、抵抗体のTCRとして300ppm/℃以内のものが得られ、3.2mm×1.6mmの大きさのチップ抵抗器に適用可能なことは記載されているが、本発明の対象とする超小形チップ抵抗器(1.0mm×0.5mmの大きさ)に適用可能なことは記載されていない。   In this regard, Patent Document 1 describes that a resistor having a TCR of 300 ppm / ° C. or less is obtained and can be applied to a chip resistor having a size of 3.2 mm × 1.6 mm. However, it is not described that the present invention can be applied to a micro chip resistor (size of 1.0 mm × 0.5 mm) which is an object of the present invention.

また、特許文献2に記載された抵抗体ペーストのシート抵抗値は50mΩ/□以下で、TCRは200ppm/℃以下であるが、超小形チップ抵抗器に適用可能なことは記載されていない。   Moreover, the sheet resistance value of the resistor paste described in Patent Document 2 is 50 mΩ / □ or less and the TCR is 200 ppm / ° C. or less, but it is not described that the resistor paste can be applied to an ultra-small chip resistor.

また、特許文献3には、3.2mm×1.6mmの大きさのチップ抵抗器において、シート抵抗値が200mΩ/□以下で、TCRが±100ppm/℃以内であることは記載されているが、超小形チップ抵抗器に適用可能なことは記載されていない。   Patent Document 3 describes that a chip resistor having a size of 3.2 mm × 1.6 mm has a sheet resistance value of 200 mΩ / □ or less and a TCR within ± 100 ppm / ° C. It is not described that it can be applied to a micro chip resistor.

また、特許文献4に記載された抵抗体ペーストのシート抵抗値は50mΩ/□以下で、TCRは±100ppm/℃以内であるが、超小形チップ抵抗器に適用可能なことは記載されていない。   Moreover, the sheet resistance value of the resistor paste described in Patent Document 4 is 50 mΩ / □ or less and the TCR is within ± 100 ppm / ° C., but it is not described that the resistor paste can be applied to an ultra-small chip resistor.

また、特許文献5には、3.2mm×1.6mmの大きさのチップ抵抗器において、抵抗値が50mΩ以下で、TCRが300ppm/℃以内であることは記載されているが、超小形チップ抵抗器に適用可能なことは記載されていない。   Patent Document 5 describes that a chip resistor having a size of 3.2 mm × 1.6 mm has a resistance value of 50 mΩ or less and a TCR of 300 ppm / ° C. or less. It is not described that it can be applied to resistors.

さらに、特許文献6には、3.2mm×1.6mmの大きさのチップ抵抗器において、抵抗値が50mΩ以下で、TCRが500ppm/℃以内であることは記載されているが、超小形チップ抵抗器に適用可能なことは記載されていない。   Further, Patent Document 6 describes that a chip resistor having a size of 3.2 mm × 1.6 mm has a resistance value of 50 mΩ or less and a TCR of 500 ppm / ° C. or less. It is not described that it can be applied to resistors.

そして、特許文献7に記載された抵抗体ペーストのシート抵抗値は100mΩ/□以下で、TCRは200ppm/℃以下であり、3.2mm×1.6mmの大きさのチップ抵抗器に適用可能なことは記載されているが、超小形チップ抵抗器に適用可能なことは記載されていない。   The sheet resistance value of the resistor paste described in Patent Document 7 is 100 mΩ / □ or less, and the TCR is 200 ppm / ° C. or less, which is applicable to a chip resistor having a size of 3.2 mm × 1.6 mm. Although it is described, it is not described that it is applicable to a micro chip resistor.

本発明は従来の技術の有するこのような問題点に鑑みてなされたものであって、その目的は、低抵抗値で且つ低TCRである超小形チップ抵抗器用抵抗体ペーストおよび係るペーストからなる抵抗体を備えた超小形チップ抵抗器を提供することにある。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a resistor paste for an ultra-small chip resistor having a low resistance value and a low TCR, and a resistor comprising such a paste. An object of the present invention is to provide an ultra-small chip resistor having a body.

上記目的を達成するために本発明の超小形チップ抵抗器用抵抗体ペーストは、少なくとも銅を含有する銅系導電性金属粉末とガラスフリットと有機ビヒクルからなる超小形チップ抵抗器用抵抗体ペーストにおいて、銅系導電性金属粉末に銀粉末を添加したことを特徴としている。   In order to achieve the above object, a resistor paste for an ultra-small chip resistor according to the present invention is an ultra-small chip resistor resistor paste comprising at least copper-containing copper-based conductive metal powder, glass frit, and an organic vehicle. It is characterized by adding silver powder to the system conductive metal powder.

銅系導電性金属粉末100重量部に銀粉末を1〜10重量部添加することが好ましい。   It is preferable to add 1 to 10 parts by weight of silver powder to 100 parts by weight of copper-based conductive metal powder.

銅系導電性金属粉末が銅粉末を必須とする銅粉末を含有する混合粉末であるとき、銅系導電性金属粉末100重量部中の銅粉末が40〜80重量部であることが好ましい。   When the copper-based conductive metal powder is a mixed powder containing a copper powder essentially containing the copper powder, the copper powder in 100 parts by weight of the copper-based conductive metal powder is preferably 40 to 80 parts by weight.

銅系導電性金属粉末が銅を必須とする銅含有合金粉末を含有する混合粉末であるとき、銅系導電性金属粉末100重量部中の銅含有合金粉末が50〜60重量部であることが好ましい。   When the copper-based conductive metal powder is a mixed powder containing a copper-containing alloy powder essential for copper, the copper-containing alloy powder in 100 parts by weight of the copper-based conductive metal powder may be 50 to 60 parts by weight. preferable.

銅系導電性金属粉末が、銅粉末を必須とし、この銅粉末と、ニッケル粉末、マンガン粉末、スズ粉末もしくは亜鉛粉末の中の少なくとも1種類以上の粉末とを混合した銅粉末を含有する混合粉末、銅を必須とし、この銅と、ニッケル、マンガン、スズもしくは亜鉛の中の少なくとも1種類以上の金属との合金からなる銅含有合金粉末、または、銅粉末、ニッケル粉末、マンガン粉末、スズ粉末もしくは亜鉛粉末の中の少なくとも1種類以上の粉末と上記銅含有合金粉末とを混合した銅含有合金粉末を含有する混合粉末であることが好ましい。   The copper-based conductive metal powder is essentially a copper powder, and a mixed powder containing a copper powder obtained by mixing this copper powder with at least one of nickel powder, manganese powder, tin powder or zinc powder. Copper-containing alloy powder consisting of an alloy of copper and at least one metal selected from nickel, manganese, tin or zinc, or copper powder, nickel powder, manganese powder, tin powder or A mixed powder containing a copper-containing alloy powder obtained by mixing at least one kind of powder in zinc powder and the copper-containing alloy powder is preferable.

本発明は銅系導電性金属粉末に銀粉末を添加することにより、抵抗値を下げるとともに、銀粉末はTCRをプラス側にシフトする特性があるので、マイナスTCR領域にある銅系導電性金属粉末のTCRを原点近傍の限られた範囲内に制御することができる。   The present invention lowers the resistance value by adding silver powder to the copper-based conductive metal powder, and the silver powder has the property of shifting the TCR to the positive side, so the copper-based conductive metal powder in the negative TCR region Can be controlled within a limited range near the origin.

従って、超小形チップ抵抗器用抵抗体ペーストとして、銅系導電性金属粉末に銀粉を添加したものを用いることにより、低抵抗で且つ低TCRである超小形チップ抵抗器を提供することが可能である。   Therefore, it is possible to provide an ultra-small chip resistor having a low resistance and a low TCR by using a copper-based conductive metal powder added with silver powder as a resistor paste for an ultra-small chip resistor. .

以下に本発明を実施するための最良の形態について説明する。   The best mode for carrying out the present invention will be described below.

本明細書において、銅系導電性金属粉末としては、銅粉末を必須とし、この銅粉末と、ニッケル粉末、マンガン粉末、スズ粉末もしくは亜鉛粉末の中の少なくとも1種類以上の粉末とを混合した銅粉末を含有する混合粉末、銅を必須とし、この銅と、ニッケル、マンガン、スズもしくは亜鉛の中の少なくとも1種類以上の金属との合金からなる銅含有合金粉末、または、銅粉末、ニッケル粉末、マンガン粉末、スズ粉末もしくは亜鉛粉末の中の少なくとも1種類以上の粉末と上記銅含有合金粉末とを混合した銅含有合金粉末を含有する混合粉末が好ましい。低コストで低抵抗値の抵抗体を得るために銅は必須成分であるが、銅単独のものはTCRが極めて大きく、抵抗体としての使用に適さない。ニッケルやマンガンやスズや亜鉛は銅に比べて抵抗値が高い。   In this specification, copper conductive powder is essential as copper-based conductive metal powder, and this copper powder is mixed with at least one powder of nickel powder, manganese powder, tin powder or zinc powder. Mixed powder containing powder, copper is essential, copper-containing alloy powder consisting of an alloy of this copper and at least one metal of nickel, manganese, tin or zinc, or copper powder, nickel powder, A mixed powder containing a copper-containing alloy powder obtained by mixing at least one kind of powder among manganese powder, tin powder or zinc powder and the copper-containing alloy powder is preferable. Copper is an essential component for obtaining a low-resistance resistor having a low resistance value, but copper alone has an extremely large TCR and is not suitable for use as a resistor. Nickel, manganese, tin, and zinc have higher resistance values than copper.

しかし、銅粉末にニッケル粉末、マンガン粉末、スズ粉末または亜鉛粉末を混合したものを焼成すると、粉末のもつ余分な表面エネルギーを減少させようとする方向、つまり表面積を減少させようとする方向に物質移動が起こり、粒子同士の結合が起こる。焼結過程における微細構造の変化は複雑であるが、次の3つの段階に分けて考えることができる。(1)初期段階では、粒子同士の癒着が起こり、この部分の面積が次第に増加する。この変化は頸部成長と呼ばれる。この段階で、相対密度(焼結体密度の理論密度に対する比)は約0.5〜0.6、収縮率では4〜5%程度になる。(2)中期段階では、チャネル状の空隙が次第に狭くなり、相対密度は0.6〜0.95、収縮率は5〜20%近くまでになり、粒子の成長が顕著に起こる。(3)終期段階では、相対密度が0.95以上になり、多面体化した粒子の角の部分や粒内に空隙が残るだけになる。この空隙の消滅によってさらに緻密化が進む。焼結の機構は、蒸発−凝縮機構、拡散機構、溶解−析出機構、流動機構に大別することができるが、実際の焼結現象は多くの場合、いくつかの機構が混ざり合って起こる複雑な現象である。   However, firing a mixture of copper powder with nickel powder, manganese powder, tin powder or zinc powder will reduce the excess surface energy of the powder, that is, in the direction of reducing the surface area. Movement occurs and bonding between particles occurs. Although the change of the microstructure in the sintering process is complicated, it can be considered in the following three stages. (1) In the initial stage, adhesion between particles occurs, and the area of this portion gradually increases. This change is called cervical growth. At this stage, the relative density (ratio of the sintered body density to the theoretical density) is about 0.5 to 0.6, and the shrinkage is about 4 to 5%. (2) In the middle stage, the channel-like voids are gradually narrowed, the relative density is 0.6 to 0.95, the shrinkage rate is close to 5 to 20%, and the particle growth is remarkable. (3) At the final stage, the relative density becomes 0.95 or more, and only voids remain in the corners and grains of the polyhedral particles. Densification further proceeds by the disappearance of the voids. Sintering mechanisms can be broadly divided into evaporation-condensation mechanisms, diffusion mechanisms, dissolution-precipitation mechanisms, and flow mechanisms, but the actual sintering phenomenon is often complicated by a mixture of several mechanisms. It is a phenomenon.

さらに、単相粉末の焼結と異なり、異種混合粉末の焼結の場合、成分の濃度勾配に比例する駆動力が表面応力による駆動力より大きいため、異種混合粉末間の相互拡散や相反応が粒子間結合や緻密化に主要な役割を果たす。しかし、一般に異種成分間の拡散係数値が異なるため、拡散流に不均一を生じ、いわゆるカーケンドール効果により結合ネック近傍に空隙や深い溝が形成されたり、粒子表面に凹凸が形成されるなど極めて複雑な形態変化を呈する。異種金属粉末の焼結体においては空孔の存在(焼結体の密度)が主たる原因となって同組成の溶製金属とは異なる電磁気的性質を示す。焼結体の密度以外にも、焼結組織や不純物の存在も異種金属粉末の焼結体の電磁気的性質に影響を及ぼす。従って、異種金属粉末の混合比率や粉末粒径により焼結体の電磁気的性質は変化する。   Furthermore, unlike the sintering of single-phase powders, in the case of sintering different types of mixed powders, the driving force proportional to the concentration gradient of the components is greater than the driving force due to surface stress. It plays a major role in interparticle bonding and densification. However, since the diffusion coefficient values between different components are generally different, the diffusion flow becomes non-uniform, and voids and deep grooves are formed near the coupling neck due to the so-called Kirkendall effect, and irregularities are formed on the particle surface. It exhibits complex morphological changes. In the sintered body of different metal powders, the presence of pores (sintered body density) is the main cause and exhibits different electromagnetic properties from the molten metal of the same composition. In addition to the density of the sintered body, the presence of the sintered structure and impurities also affects the electromagnetic properties of the sintered body of the dissimilar metal powder. Therefore, the electromagnetic properties of the sintered body vary depending on the mixing ratio of the different metal powders and the powder particle size.

このように、異種金属粉末の焼結体は同組成の溶製金属とは異なる電磁気的性質を示す。その結果、銅粉末にニッケル粉末、マンガン粉末、スズ粉末もしくは亜鉛粉末を混合した銅系導電性金属粉末とガラスフリットと有機ビヒクルからなるペーストを焼成した焼結体は、銅粉末単体とガラスフリットと有機ビヒクルからなるペーストを焼成した焼結体に比べて抵抗値は増加するが、焼成の結果生じる空孔の存在により一般的に抵抗温度係数は低下する。本発明において抵抗温度係数とは、以下で定義される数値である。試料を温度T0℃およびT1℃に30分間以上静置して、それぞれの温度における抵抗値R0とR1を測定し、次式(1)より抵抗温度係数は算出される。 As described above, the sintered body of the dissimilar metal powder exhibits different electromagnetic properties from the molten metal having the same composition. As a result, a sintered body obtained by firing a copper conductive metal powder in which nickel powder, manganese powder, tin powder or zinc powder is mixed with copper powder, a glass frit, and a paste made of an organic vehicle is obtained. Although the resistance value increases as compared with a sintered body obtained by firing an organic vehicle paste, the temperature coefficient of resistance generally decreases due to the presence of pores resulting from firing. In the present invention, the temperature coefficient of resistance is a numerical value defined below. The sample is allowed to stand at temperatures T 0 ° C and T 1 ° C for 30 minutes or more, and resistance values R 0 and R 1 at the respective temperatures are measured, and the resistance temperature coefficient is calculated from the following equation (1).

Figure 2007123301
Figure 2007123301

本発明に従って、銅系導電性金属粉末に適量の銀粉末を添加することにより、抵抗体の抵抗値を低下させることができる。銅の金属結合半径(1.28Å)に比べて銀の金属結合半径(1.44Å)は大きく、ニッケルやマンガンや亜鉛などは銅より金属結合半径が小さいか僅かに大きい程度である。そこで、これら銅系導電性金属粉末の焼結体の空孔状況と、銅系導電性金属粉末に銀粉末を添加した混合粉末の焼結体の空孔状況は異なり、銀粉末を添加することによりTCRはプラス側にシフトする傾向がある。その結果、マイナスTCR領域にある銅系導電性金属粉末の焼結体のTCRを原点近傍の限られた範囲内に制御することが可能である。   According to the present invention, the resistance value of the resistor can be reduced by adding an appropriate amount of silver powder to the copper-based conductive metal powder. The metal bond radius (1.44 mm) of silver is larger than the metal bond radius (1.48 mm) of copper, and nickel, manganese, zinc and the like have a metal bond radius smaller or slightly larger than copper. Therefore, the vacancy status of the sintered body of these copper-based conductive metal powders is different from the vacancy status of the sintered body of the mixed powder obtained by adding silver powder to the copper-based conductive metal powder. Therefore, the TCR tends to shift to the positive side. As a result, it is possible to control the TCR of the sintered body of copper-based conductive metal powder in the minus TCR region within a limited range near the origin.

銅系導電性金属粉末100重量部に対して銀粉末を1重量部以上添加することにより、抵抗体の抵抗値を低下させることができる。銀粉末はTCRをプラスにシフトさせる特性があるので、銀粉末を10重量部超添加すると、TCRの増加代が大きくなりすぎるので好ましくない。   By adding 1 part by weight or more of silver powder to 100 parts by weight of copper-based conductive metal powder, the resistance value of the resistor can be reduced. Since silver powder has the property of shifting TCR to plus, adding more than 10 parts by weight of silver powder is not preferable because the increase in TCR becomes too large.

銅系導電性金属粉末100重量部中の銅粉末の比率は銅粉末の粒径との関係で以下のようにするのが好ましい。   The ratio of the copper powder in 100 parts by weight of the copper-based conductive metal powder is preferably as follows in relation to the particle size of the copper powder.

銅系導電性金属粉末が銅粉末を必須とする銅粉末を含有する混合粉末であるとき(銅粉末の平均粒径=1.5〜2.5μm)、銅系導電性金属粉末100重量部中の銅粉末は80重量部以下とするのが好ましい。銅粉末が80重量部を超えると、初期のTCRが高くなりすぎるからである。一方、銅系導電性金属粉末100重量部中の銅粉末は40重量部以上とするのが好ましい。銅粉末が40重量部未満であると、初期の抵抗値が高くなりすぎるからである。   When the copper-based conductive metal powder is a mixed powder containing a copper powder essentially containing the copper powder (average particle diameter of the copper powder = 1.5 to 2.5 μm), in 100 parts by weight of the copper-based conductive metal powder The copper powder is preferably 80 parts by weight or less. This is because if the copper powder exceeds 80 parts by weight, the initial TCR becomes too high. On the other hand, the copper powder in 100 parts by weight of the copper-based conductive metal powder is preferably 40 parts by weight or more. This is because if the copper powder is less than 40 parts by weight, the initial resistance value becomes too high.

銅系導電性金属粉末が銅を必須とする銅含有合金粉末を含有する混合粉末であるとき(銅含有合金粉末の平均粒径=4.5〜5.5μm)、銅系導電性金属粉末100重量部中の銅含有合金粉末は60重量部以下とするのが好ましい。銅含有合金粉末が60重量部を超えると、初期のTCRが高くなりすぎるからである。一方、銅系導電性金属粉末100重量部中の銅含有合金粉末は50重量部以上とするのが好ましい。銅含有合金粉末が50重量部未満であると、初期の抵抗値が高くなりすぎるからである。   When the copper-based conductive metal powder is a mixed powder containing a copper-containing alloy powder essential for copper (average particle size of the copper-containing alloy powder = 4.5 to 5.5 μm), the copper-based conductive metal powder 100 The copper-containing alloy powder in parts by weight is preferably 60 parts by weight or less. This is because if the copper-containing alloy powder exceeds 60 parts by weight, the initial TCR becomes too high. On the other hand, the copper-containing alloy powder in 100 parts by weight of the copper-based conductive metal powder is preferably 50 parts by weight or more. This is because the initial resistance value becomes too high when the copper-containing alloy powder is less than 50 parts by weight.

銅を除く導電性金属粉末の粒径は0.1〜10μmであるのが好ましい。0.1μm未満であると、過焼結でブリスターが発生しやすいという不都合があり、10μmを超えると、焼結しにくいという不都合がある。   The particle size of the conductive metal powder excluding copper is preferably 0.1 to 10 μm. If it is less than 0.1 μm, there is a disadvantage that blistering is likely to occur due to oversintering, and if it exceeds 10 μm, there is a disadvantage that sintering is difficult.

ガラスフリットとしては、限定されるものではないが、硼珪酸バリウム系ガラス、硼珪酸カルシウム系ガラス、硼珪酸バリウムカルシウム系ガラス、硼珪酸亜鉛系ガラス、硼酸亜鉛系ガラス等を用いることができる。   The glass frit is not limited, and borosilicate barium glass, calcium borosilicate glass, barium calcium borosilicate glass, zinc borosilicate glass, zinc borate glass, and the like can be used.

ガラスフリットの粒径はスクリーン印刷で使用できる範囲内のものが好ましく、例えば、粒径0.1〜10μmであるのが好ましい。   The particle size of the glass frit is preferably within the range that can be used for screen printing, and for example, the particle size is preferably 0.1 to 10 μm.

有機ビヒクルに使用される樹脂としては、例えば、エチルセルロース、エチルアクリレート、ブチルアクリレート、エチルメタアクリレート、ブチルメタアクリレート等を挙げることができる。また、有機ビヒクルに使用される溶剤としては、例えば、ターピネオール、キシレン、トルエン等を挙げることができる。   Examples of the resin used in the organic vehicle include ethyl cellulose, ethyl acrylate, butyl acrylate, ethyl methacrylate, butyl methacrylate and the like. Examples of the solvent used in the organic vehicle include terpineol, xylene, toluene and the like.

銅系導電性金属粉末100重量部に対してガラスフリットは1〜10重量部であるのが好ましい。ガラスフリットが1重量部未満であると、接着強度が弱く、10重量部を超えると、抵抗値が高くなり、ガラスの滲み出しが起こり易くなるからである。   The glass frit is preferably 1 to 10 parts by weight with respect to 100 parts by weight of the copper-based conductive metal powder. This is because if the glass frit is less than 1 part by weight, the adhesive strength is weak, and if it exceeds 10 parts by weight, the resistance value increases and the glass tends to exude.

銅系導電性金属粉末とガラスフリットの合計100重量部に対して、有機ビヒクルは10〜30重量部であるのが好ましい。有機ビヒクルが10重量部未満であると抵抗体ペーストの粘度が高く印刷性が悪くなり、30重量部を超えると抵抗体ペーストの粘度が低くなりすぎ、印刷時にダレが生じるからである。   The organic vehicle is preferably 10 to 30 parts by weight with respect to 100 parts by weight of the total of the copper-based conductive metal powder and the glass frit. This is because when the organic vehicle is less than 10 parts by weight, the viscosity of the resistor paste is high and the printability is poor, and when it exceeds 30 parts by weight, the viscosity of the resistor paste becomes too low and sagging occurs during printing.

また、膜性状の調節のために、アルミナ粉末や分散剤などの添加剤を使用することができる。   In addition, additives such as alumina powder and a dispersant can be used for adjusting the film properties.

以下に本発明の実施例を説明するが、本発明は下記実施例に限定されるものでなく、本発明の技術的範囲を逸脱しない範囲において適宜変更と修正が可能である。
(1)超小形チップ抵抗器
図1(a)は、本発明の抵抗体ペーストを適用可能な超小形チップ抵抗器(1.0mm×0.5mm)の一部破断斜視図、図1(b)は図1(a)のB−B矢視断面図、図1(c)は図1(b)の端面部分の拡大図である。
Examples of the present invention will be described below. However, the present invention is not limited to the following examples, and can be appropriately changed and modified without departing from the technical scope of the present invention.
(1) Ultra-small chip resistor FIG. 1A is a partially broken perspective view of an ultra-small chip resistor (1.0 mm × 0.5 mm) to which the resistor paste of the present invention can be applied, FIG. ) Is a cross-sectional view taken along the line B-B in FIG. 1A, and FIG.

図1(a)(b)(c)において、1はアルミナ基板(縦横に切断用溝が形成されたもの)であり、アルミナ基板1の上面の中央部を残して両端部に対向するように第一表電極2、2を形成し、アルミナ基板1の上面の中央部を覆う抵抗体3で両端部の第一表電極2、2を接続し、両端部の第一表電極2上に積層した第二表電極4に抵抗体3の一部を収容し、抵抗体3上に積層した保護膜5で第二表電極4の一部を保護し、アルミナ基板1の下面の両端部に対向するように裏電極6、6を形成し、アルミナ基板1の対向する一対の両端面に第二表電極4,第一表電極2および裏電極6を接続するようにクロム薄膜7を形成し、クロム薄膜7を覆うようにニッケル薄膜8を形成し、さらに、第二表電極4の保護膜5で保護されていない部分、ニッケル薄膜8および裏電極6を覆うように、銅メッキ膜9、ニッケルメッキ膜10、スズメッキ膜11を順次形成する。   In FIGS. 1A, 1B, and 1C, reference numeral 1 denotes an alumina substrate (having cutting grooves formed in the vertical and horizontal directions) so as to be opposed to both ends with the central portion of the upper surface of the alumina substrate 1 being left. The first front electrodes 2 and 2 are formed, the first front electrodes 2 and 2 at both ends are connected by a resistor 3 that covers the central portion of the upper surface of the alumina substrate 1, and laminated on the first front electrodes 2 at both ends. A part of the resistor 3 is accommodated in the second surface electrode 4, a part of the second surface electrode 4 is protected by the protective film 5 laminated on the resistor 3, and opposed to both ends of the lower surface of the alumina substrate 1. The back electrodes 6 and 6 are formed, and the chromium thin film 7 is formed so as to connect the second front electrode 4, the first front electrode 2 and the back electrode 6 to a pair of opposite end faces of the alumina substrate 1, A nickel thin film 8 is formed so as to cover the chromium thin film 7, and further, a portion of the second front electrode 4 that is not protected by the protective film 5, To cover the Kell film 8 and back electrode 6, the copper plating film 9, a nickel plating film 10 are sequentially formed tin plating film 11.

上記のように構成される超小形チップ抵抗器は以下のように製造することができる。まず、第一表電極2用ペースト組成物と裏電極6用ペースト組成物を印刷し、乾燥後、不活性ガス雰囲気下で同時に焼成する。次に、抵抗体3用ペースト組成物を印刷し、乾燥後、不活性ガス雰囲気下で焼成する。次に、第二表電極4用ペースト組成物を印刷し、乾燥後、不活性ガス雰囲気下で焼成する。必要に応じて所望の抵抗値に調整するために、抵抗体3の一部をレーザートリミングなどの手段により除去する。さらに、保護膜5用樹脂ペーストを印刷し、焼き付ける。次に、アルミナ基板1を紙面に対して直角方向の切断用溝に沿って短冊状に切断する。短冊状の各アルミナ基板1の対向する一対の両端面にクロム薄膜7をスパッタリングにより形成し、クロム薄膜7を覆うニッケル薄膜8をスパッタリングにより形成する。次に、各アルミナ基板1を紙面方向の切断用溝に沿って実際のチップ抵抗器の大きさに切断する。最後に、第二表電極4の保護膜5で保護されていない部分、ニッケル薄膜8および裏電極6を覆うように、銅メッキ膜9、ニッケルメッキ膜10、スズメッキ膜11を電気メッキにより順次形成する。
(2)抵抗体ペースト
図1のチップ抵抗器と図3(a)のチップ抵抗器を比較した場合、図1のチップ抵抗器は、表電極が2層からなる点が異なる。ところが、表電極を2層とすることで低抵抗化を図ることができるが、1.0mm×0.5mmの大きさの超小形チップ抵抗器では、電極と抵抗体の導電性ペーストを構成する合金粉の組成および合金粉とガラスフリットの比率を調整しても、低抵抗値(100mΩ以下)と低TCR化(300ppm/℃以下)を実現することができなかった。その理由としては、超小形チップ抵抗器では、図3(b)に示す抵抗体全体の面積に対する抵抗体と電極の重なり部分(斜線部分)の面積の比率が大きくなり、従来のペースト組成では低抵抗値と低TCR化を実現することができなかったと考えられる。
The microchip resistor configured as described above can be manufactured as follows. First, the paste composition for the first front electrode 2 and the paste composition for the back electrode 6 are printed, dried and then simultaneously fired in an inert gas atmosphere. Next, the paste composition for the resistor 3 is printed, dried, and fired in an inert gas atmosphere. Next, the paste composition for the second front electrode 4 is printed, dried, and fired in an inert gas atmosphere. In order to adjust to a desired resistance value as required, a part of the resistor 3 is removed by means such as laser trimming. Further, a resin paste for the protective film 5 is printed and baked. Next, the alumina substrate 1 is cut into strips along a cutting groove perpendicular to the paper surface. A chromium thin film 7 is formed by sputtering on a pair of opposite end faces of each strip-shaped alumina substrate 1, and a nickel thin film 8 covering the chromium thin film 7 is formed by sputtering. Next, each alumina substrate 1 is cut into the size of an actual chip resistor along the cutting groove in the paper surface direction. Finally, a copper plating film 9, a nickel plating film 10, and a tin plating film 11 are sequentially formed by electroplating so as to cover the portion of the second front electrode 4 that is not protected by the protective film 5, the nickel thin film 8 and the back electrode 6. To do.
(2) Resistor Paste When the chip resistor of FIG. 1 is compared with the chip resistor of FIG. 3A, the chip resistor of FIG. 1 is different in that the surface electrode is composed of two layers. However, although the resistance can be reduced by making the surface electrode into two layers, the ultra-small chip resistor having a size of 1.0 mm × 0.5 mm constitutes a conductive paste of the electrode and the resistor. Even when the composition of the alloy powder and the ratio between the alloy powder and the glass frit were adjusted, a low resistance value (100 mΩ or less) and a low TCR (300 ppm / ° C. or less) could not be realized. The reason for this is that in the ultra-small chip resistor, the ratio of the area of the overlapping portion (shaded portion) of the resistor and the electrode to the area of the entire resistor shown in FIG. It is considered that the resistance value and the low TCR could not be realized.

そこで、本発明者は超小形チップ抵抗器用抵抗体ペーストを開発したのである。具体的には、表1に示すように、平均粒径2.2μmの銅粉末と平均粒径0.7μmのニッケル粉末と平均粒径1.8μmの銀粉末からなる銅粉末を含有する混合金属粉末(試料No=1〜12)または平均粒径5.0μmの銅含有合金粉末と平均粒径0.7μmのニッケル粉末と平均粒径1.8μmの銀粉末からなる銅含有合金粉末を含有する混合金属粉末(試料No=13〜25)について、銅粉末または銅含有合金粉末とニッケル粉末を同表記載のような重量比率で配合したもの100重量部に対して、銀粉末を1〜10重量部配合し、さらに、ガラスフリット(硼珪酸ガラス)を6重量部配合し、有機ビヒクル(エチルセルロースのターピネオール溶液)を19重量部配合し、3本ロールミルで混練して抵抗体ペーストを作製した。なお、上記銅含有合金粉末は、Cu:Mn:Sn=92:6:2の重量比率の合金からなる粉末である。   Therefore, the present inventor has developed a resistor paste for ultra-small chip resistors. Specifically, as shown in Table 1, a mixed metal containing copper powder comprising copper powder having an average particle size of 2.2 μm, nickel powder having an average particle size of 0.7 μm, and silver powder having an average particle size of 1.8 μm. Contains a copper-containing alloy powder comprising a powder (sample No = 1 to 12) or a copper-containing alloy powder having an average particle diameter of 5.0 μm, a nickel powder having an average particle diameter of 0.7 μm, and a silver powder having an average particle diameter of 1.8 μm. For mixed metal powder (sample No = 13-25), copper powder or copper-containing alloy powder and nickel powder blended at a weight ratio as shown in the same table, silver powder is 1-10 wt. Further, 6 parts by weight of glass frit (borosilicate glass) was blended, 19 parts by weight of organic vehicle (terpineol solution of ethyl cellulose) was blended, and kneaded by a three roll mill to prepare a resistor paste. The copper-containing alloy powder is a powder made of an alloy having a weight ratio of Cu: Mn: Sn = 92: 6: 2.

このペーストを、アルミナ基板上に図2に示すようなパターン(配線幅W=1mm、L=配線の全長、L/W=220)でスクリーン印刷し、乾燥後、窒素雰囲気下で900℃で10分間焼成し、テスト用抵抗体パターンを形成した。そして、この抵抗体パターンのシート抵抗(mΩ/□/10μm)とTCRを測定した。その結果を表1に示す。   This paste is screen-printed on an alumina substrate with a pattern as shown in FIG. 2 (wiring width W = 1 mm, L = full length of wiring, L / W = 220), dried, and dried at 900 ° C. in a nitrogen atmosphere at 900 ° C. The test resistor pattern was formed by baking for a minute. Then, the sheet resistance (mΩ / □ / 10 μm) and TCR of this resistor pattern were measured. The results are shown in Table 1.

なお、抵抗値は、試料を温度25℃、相対湿度65%の恒温・恒湿雰囲気下に30分間静置した後、テスターを用いて4端子法にて測定した。   The resistance value was measured by a four-terminal method using a tester after the sample was allowed to stand for 30 minutes in a constant temperature and constant humidity atmosphere at a temperature of 25 ° C. and a relative humidity of 65%.

また、TCRは、試料を25℃(T0)および125℃(T1)の雰囲気に30分間静置した後、テスターを用いて4端子法にてそれぞれの抵抗値(R0、R1)を5回繰り返して測定し、式(1)より算出した数値の5回の平均値を採用した。
(3)超小形チップ抵抗器
さらに、図1に示す構造の超小形チップ抵抗器において、抵抗体3を上記組成のペーストとし、第一表電極2と第二表電極4と裏電極6形成用の導電性ペースト組成物は、導電性金属粉末を銅粉末とし、ガラスフリットを硼珪酸ガラスとし、有機ビヒクルをエチルセルロースのターピネオール溶液とし、導電性金属粉末を100重量部、ガラスフリットを6重量部、有機ビヒクルを19重量部配合してなる組成の超小形チップ抵抗器を作製した。
In addition, TCR is a method in which a sample is left in an atmosphere of 25 ° C. (T 0 ) and 125 ° C. (T 1 ) for 30 minutes, and then each resistance value (R 0 , R 1 ) is measured by a four-terminal method using a tester. Was repeated 5 times, and the average value of 5 times of the numerical value calculated from the formula (1) was adopted.
(3) Ultra-small chip resistor Further, in the ultra-small chip resistor having the structure shown in FIG. 1, the resistor 3 is made of the paste having the above composition, and the first front electrode 2, the second front electrode 4, and the back electrode 6 are formed. In the conductive paste composition, the conductive metal powder is copper powder, the glass frit is borosilicate glass, the organic vehicle is terpineol solution of ethyl cellulose, the conductive metal powder is 100 parts by weight, the glass frit is 6 parts by weight, An ultra-small chip resistor having a composition comprising 19 parts by weight of an organic vehicle was produced.

そして、この超小形チップ抵抗器の抵抗値とTCRを上記方法で測定した。その結果を表1に示す。   And the resistance value and TCR of this ultra-small chip resistor were measured by the above method. The results are shown in Table 1.

Figure 2007123301
Figure 2007123301

表1から以下の点が明らかである。
(1)銅粉末または銅含有合金粉末の配合比率が低くなるほど、抵抗値は増加しているが、一方、TCRは低くなる傾向にある。
(2)銅粉末単体のTCRは極めて大きいが、ニッケル粉末を配合することによって急激にTCRを小さくすることができる。しかし、ニッケル粉末を配合すると抵抗が増加するという不都合がある。
From Table 1, the following points are clear.
(1) The resistance value increases as the blending ratio of the copper powder or the copper-containing alloy powder decreases, whereas the TCR tends to decrease.
(2) Although the TCR of the copper powder alone is extremely large, the TCR can be rapidly reduced by adding nickel powder. However, when nickel powder is blended, there is a disadvantage that the resistance increases.

そこで、試料No4〜7や試料No18〜22のように適正量の銀粉末を添加すると、抵抗値を低くし、しかも、TCRを一定範囲内に収めることができる。   Therefore, when an appropriate amount of silver powder is added as in sample Nos. 4 to 7 and sample Nos. 18 to 22, the resistance value can be lowered and the TCR can be kept within a certain range.

銅系導電性金属粉末として銅粉末を必須とする銅粉末を含有する混合粉末(銅粉末の平均粒径=2.2μm)を使用する場合において、銅粉末とニッケル粉末を、80:20〜40:60の重量比率で配合したもの100重量部に銀粉末を1〜10重量部を添加した導電性金属粉末を使用することによって、抵抗値が約100mΩ以下で、TCRが約300ppm/℃以下の低抵抗・低TCRの超小形チップ抵抗器を得ることが可能である。   In the case of using a mixed powder (copper powder average particle size = 2.2 μm) containing copper powder that essentially requires copper powder as the copper-based conductive metal powder, the copper powder and nickel powder are mixed with 80:20 to 40 : By using a conductive metal powder in which 1 to 10 parts by weight of silver powder is added to 100 parts by weight of a compound with a weight ratio of 60, the resistance value is about 100 mΩ or less and the TCR is about 300 ppm / ° C. or less. It is possible to obtain a very small chip resistor having a low resistance and a low TCR.

しかし、銅系導電性金属粉末として銅粉末を必須とする銅粉末を含有する混合粉末(銅粉末の平均粒径=2.2μm)を使用する場合において、銅粉末とニッケル粉末の混合粉末中の銅粉末の配合比率が90%以上になると、初期のTCRが高すぎるので、銀粉末を添加しても、低抵抗・低TCRの超小形チップ抵抗器を得ることは困難である。また、銅粉末とニッケル粉末の混合粉末中の銅粉末の配合比率が30%以下になると、初期のTCRが高すぎるので、銀粉末を添加しても、低抵抗・低TCRの超小形チップ抵抗器を得ることは困難である。   However, in the case of using a mixed powder containing copper powder that essentially requires copper powder as the copper-based conductive metal powder (average particle diameter of copper powder = 2.2 μm), the mixed powder of copper powder and nickel powder When the blending ratio of the copper powder is 90% or more, the initial TCR is too high, so that it is difficult to obtain a small chip resistor with low resistance and low TCR even if silver powder is added. Also, if the blending ratio of the copper powder in the mixed powder of copper powder and nickel powder is 30% or less, the initial TCR is too high, so even if silver powder is added, low resistance and low TCR ultra-small chip resistance It is difficult to obtain a vessel.

銅系導電性金属粉末として銅を必須とする銅含有合金粉末を含有する混合粉末(銅含有合金粉末の平均粒径=5μm)を使用する場合において、銅含有合金粉末とニッケル粉末を、60:40〜50:50の重量比率で配合したもの100重量部に銀粉末を1〜10重量部を添加した導電性金属粉末を使用することによって、抵抗値が約100mΩ以下で、TCRが約300ppm/℃以下の低抵抗・低TCRの超小形チップ抵抗器を得ることが可能である。   In the case of using a mixed powder containing a copper-containing alloy powder that essentially requires copper as the copper-based conductive metal powder (average particle diameter of the copper-containing alloy powder = 5 μm), the copper-containing alloy powder and the nickel powder are: By using a conductive metal powder in which 1 to 10 parts by weight of silver powder is added to 100 parts by weight of 40 to 50:50, the resistance value is about 100 mΩ or less and the TCR is about 300 ppm / It is possible to obtain an ultra-small chip resistor having a low resistance and a low TCR of ℃ or less.

しかし、銅系導電性金属粉末として銅を必須とする銅含有合金粉末を含有する混合粉末(銅含有合金粉末の平均粒径=5μm)を使用する場合において、銅含有合金粉末とニッケル粉末の混合粉末中の銅含有合金粉末の配合比率が70%以上になると、初期のTCRが高すぎるので、銀粉末を添加しても、低抵抗・低TCRの超小形チップ抵抗器を得ることは困難である。また、銅含有合金粉末とニッケル粉末の混合粉末中の銅含有合金粉末の配合比率が40%になると、初期の抵抗値が高くなり、その銅含有合金粉末の配合比率が30%以下になると、初期のTCRが高すぎるので、銀粉末を添加しても、低抵抗・低TCRの超小形チップ抵抗器を得ることは困難である。   However, when using a mixed powder containing a copper-containing alloy powder in which copper is essential as the copper-based conductive metal powder (average particle diameter of the copper-containing alloy powder = 5 μm), the mixture of the copper-containing alloy powder and the nickel powder is used. If the compounding ratio of the copper-containing alloy powder in the powder is 70% or more, the initial TCR is too high, so even if silver powder is added, it is difficult to obtain an ultra-small chip resistor with low resistance and low TCR. is there. Moreover, when the blending ratio of the copper-containing alloy powder in the mixed powder of the copper-containing alloy powder and the nickel powder is 40%, the initial resistance value is increased, and when the blending ratio of the copper-containing alloy powder is 30% or less, Since the initial TCR is too high, it is difficult to obtain an ultra-small chip resistor having a low resistance and a low TCR even if silver powder is added.

図1(a)は、本発明の抵抗体ペーストを適用可能な超小形チップ抵抗器(1.0mm×0.5mm)の一部破断斜視図、図1(b)は図1(a)のB−B矢視断面図、図1(c)は図1(b)の端面部分の拡大図である。FIG. 1A is a partially broken perspective view of an ultra-small chip resistor (1.0 mm × 0.5 mm) to which the resistor paste of the present invention can be applied, and FIG. 1B is a diagram of FIG. BB arrow sectional drawing, FIG.1 (c) is an enlarged view of the end surface part of FIG.1 (b). 抵抗体ペーストの印刷パターンの一例を示す平面図である。It is a top view which shows an example of the printing pattern of a resistor paste. 図3(a)は従来の小形チップ抵抗器の断面図、図3(b)は抵抗体と電極の重なり状態を説明する平面図である。FIG. 3A is a sectional view of a conventional small chip resistor, and FIG. 3B is a plan view for explaining the overlapping state of the resistor and the electrode.

符号の説明Explanation of symbols

1 アルミナ基板
2 第一表電極
3 抵抗体
4 第二表電極
5 保護膜
6 裏電極
7 クロム薄膜
8 ニッケル薄膜
9 銅メッキ膜
10 ニッケルメッキ膜
11 スズメッキ膜
21 アルミナ基板
22 表電極
23 裏電極
24 抵抗体
25 ガラス層
26 保護膜
27 端面電極
28 銅メッキ膜
29 ニッケルメッキ膜
30 スズメッキ膜
31 電極
32 抵抗体
DESCRIPTION OF SYMBOLS 1 Alumina substrate 2 1st surface electrode 3 Resistor 4 2nd surface electrode 5 Protective film 6 Back electrode 7 Chromium thin film 8 Nickel thin film 9 Copper plating film 10 Nickel plating film 11 Tin plating film 21 Alumina substrate 22 Front electrode 23 Back electrode 24 Resistance Body 25 Glass layer 26 Protective film 27 End electrode 28 Copper plating film 29 Nickel plating film 30 Tin plating film 31 Electrode 32 Resistor

Claims (6)

少なくとも銅を含有する銅系導電性金属粉末とガラスフリットと有機ビヒクルからなる超小形チップ抵抗器用抵抗体ペーストにおいて、銅系導電性金属粉末に銀粉末を添加したことを特徴とする超小形チップ抵抗器用抵抗体ペースト。   An ultra-small chip resistor characterized by adding silver powder to a copper-based conductive metal powder in a resistor paste for an ultra-small chip resistor comprising a copper-based conductive metal powder containing at least copper, glass frit, and an organic vehicle. A resistor paste. 銅系導電性金属粉末100重量部に銀粉末を1〜10重量部添加したことを特徴とする請求項1記載の超小形チップ抵抗器用抵抗体ペースト。   The resistor paste for an ultra-small chip resistor according to claim 1, wherein 1 to 10 parts by weight of silver powder is added to 100 parts by weight of copper-based conductive metal powder. 銅系導電性金属粉末が、銅粉末を必須とし、この銅粉末と、ニッケル粉末、マンガン粉末、スズ粉末もしくは亜鉛粉末の中の少なくとも1種類以上の粉末とを混合した銅粉末を含有する混合粉末、銅を必須とし、この銅と、ニッケル、マンガン、スズもしくは亜鉛の中の少なくとも1種類以上の金属との合金からなる銅含有合金粉末、または、銅粉末、ニッケル粉末、マンガン粉末、スズ粉末もしくは亜鉛粉末の中の少なくとも1種類以上の粉末と上記銅含有合金粉末とを混合した銅含有合金粉末を含有する混合粉末であることを特徴とする請求項1または2記載の超小形チップ抵抗器用抵抗体ペースト。   The copper-based conductive metal powder is essentially a copper powder, and a mixed powder containing a copper powder obtained by mixing this copper powder with at least one of nickel powder, manganese powder, tin powder or zinc powder. Copper-containing alloy powder consisting of an alloy of copper and at least one metal selected from nickel, manganese, tin or zinc, or copper powder, nickel powder, manganese powder, tin powder or 3. The resistance for an ultra-small chip resistor according to claim 1, wherein the resistor is a mixed powder containing a copper-containing alloy powder obtained by mixing at least one kind of powder in zinc powder and the copper-containing alloy powder. Body paste. 銅系導電性金属粉末が銅粉末を含有する混合粉末であるとき、銅系導電性金属粉末100重量部中の銅粉末が40〜80重量部であることを特徴とする請求項3記載の超小形チップ抵抗器用抵抗体ペースト。   4. The superconducting powder according to claim 3, wherein when the copper-based conductive metal powder is a mixed powder containing copper powder, the copper powder in 100 parts by weight of the copper-based conductive metal powder is 40 to 80 parts by weight. Resistor paste for small chip resistors. 銅系導電性金属粉末が銅含有合金粉末を含有する混合粉末であるとき、銅系導電性金属粉末100重量部中の銅含有合金粉末が50〜60重量部であることを特徴とする請求項3記載の超小形チップ抵抗器用抵抗体ペースト。   The copper-containing alloy powder in 100 parts by weight of the copper-based conductive metal powder is 50-60 parts by weight when the copper-based conductive metal powder is a mixed powder containing a copper-containing alloy powder. 3. The resistor paste for an ultra-small chip resistor according to 3. 請求項1ないし5記載のペーストを焼成したものを抵抗体として用いたことを特徴とする超小形チップ抵抗器。   6. An ultra-small chip resistor using a paste obtained by firing the paste according to claim 1 as a resistor.
JP2005309325A 2005-10-25 2005-10-25 Ultra-small chip resistor and resistor paste for ultra-small chip resistor. Active JP4796815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005309325A JP4796815B2 (en) 2005-10-25 2005-10-25 Ultra-small chip resistor and resistor paste for ultra-small chip resistor.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005309325A JP4796815B2 (en) 2005-10-25 2005-10-25 Ultra-small chip resistor and resistor paste for ultra-small chip resistor.

Publications (2)

Publication Number Publication Date
JP2007123301A true JP2007123301A (en) 2007-05-17
JP4796815B2 JP4796815B2 (en) 2011-10-19

Family

ID=38146862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005309325A Active JP4796815B2 (en) 2005-10-25 2005-10-25 Ultra-small chip resistor and resistor paste for ultra-small chip resistor.

Country Status (1)

Country Link
JP (1) JP4796815B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444617A (en) * 1987-08-12 1989-02-17 Seiko Epson Corp Protecting circuit
JP2011171272A (en) * 2010-01-25 2011-09-01 Hitachi Chem Co Ltd Paste composition for electrode, and solar cell
JP2013254988A (en) * 2008-09-05 2013-12-19 Vishay Dale Electronics Inc Metal strip resistor and manufacturing method thereof
WO2014061765A1 (en) * 2012-10-19 2014-04-24 ナミックス株式会社 Electroconductive paste
WO2015015865A1 (en) * 2013-07-31 2015-02-05 株式会社村田製作所 Conductive paste, ceramic electronic component, and method for producing ceramic electronic component
JP2015092579A (en) * 2014-11-26 2015-05-14 日立化成株式会社 Element, solar cell, and paste composition for electrode
WO2015141816A1 (en) * 2014-03-20 2015-09-24 ナミックス株式会社 Conductive paste, laminated ceramic component, printed circuit board, and electronic device
JP2016066618A (en) * 2010-01-25 2016-04-28 日立化成株式会社 Paste composition for electrode and solar cell
JP2016122840A (en) * 2015-12-18 2016-07-07 日立化成株式会社 Device and solar battery, and paste composition for electrodes
US9390829B2 (en) 2010-01-25 2016-07-12 Hitachi Chemical Company, Ltd. Paste composition for electrode and photovoltaic cell
WO2018062373A1 (en) * 2016-09-29 2018-04-05 京セラ株式会社 Resistor, circuit board provided with same, and electronic device
DE112018004778T5 (en) 2017-08-31 2020-06-18 Koa Corporation Thick film resistor element paste and use of a thick film resistor element paste in a resistor
WO2022030071A1 (en) * 2020-08-07 2022-02-10 Koa株式会社 Resistance alloy to be used in shunt resistor, use of resistance alloy in shunt resistor, and shunt resistor using resistance alloy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333752B1 (en) * 1966-11-12 1978-09-16
JPH04129103A (en) * 1990-09-19 1992-04-30 Hitachi Ltd Copper conductive paste composition and electronic circuit board
JPH08148031A (en) * 1994-11-25 1996-06-07 Murata Mfg Co Ltd Conductive paste
JPH11126731A (en) * 1997-10-22 1999-05-11 Tdk Corp R-c composite electronic component and manufacture thereof
JPH11283866A (en) * 1998-03-31 1999-10-15 Tdk Corp Electronic component and manufacture therefor
JP2002075774A (en) * 2000-09-04 2002-03-15 Furuya Kinzoku:Kk Electronic component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333752B1 (en) * 1966-11-12 1978-09-16
JPH04129103A (en) * 1990-09-19 1992-04-30 Hitachi Ltd Copper conductive paste composition and electronic circuit board
JPH08148031A (en) * 1994-11-25 1996-06-07 Murata Mfg Co Ltd Conductive paste
JPH11126731A (en) * 1997-10-22 1999-05-11 Tdk Corp R-c composite electronic component and manufacture thereof
JPH11283866A (en) * 1998-03-31 1999-10-15 Tdk Corp Electronic component and manufacture therefor
JP2002075774A (en) * 2000-09-04 2002-03-15 Furuya Kinzoku:Kk Electronic component

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444617A (en) * 1987-08-12 1989-02-17 Seiko Epson Corp Protecting circuit
JP2013254988A (en) * 2008-09-05 2013-12-19 Vishay Dale Electronics Inc Metal strip resistor and manufacturing method thereof
JP2011171272A (en) * 2010-01-25 2011-09-01 Hitachi Chem Co Ltd Paste composition for electrode, and solar cell
KR101859236B1 (en) * 2010-01-25 2018-05-18 히타치가세이가부시끼가이샤 Paste composition for electrodes, and solar cell
JP2017195195A (en) * 2010-01-25 2017-10-26 日立化成株式会社 Paste composition for electrode and solar cell
US9390829B2 (en) 2010-01-25 2016-07-12 Hitachi Chemical Company, Ltd. Paste composition for electrode and photovoltaic cell
JP2016066618A (en) * 2010-01-25 2016-04-28 日立化成株式会社 Paste composition for electrode and solar cell
CN105869704A (en) * 2012-10-19 2016-08-17 纳美仕有限公司 Conductive paste
KR20150076189A (en) * 2012-10-19 2015-07-06 나믹스 가부시끼가이샤 Electroconductive paste
CN104737238A (en) * 2012-10-19 2015-06-24 纳美仕有限公司 Electroconductive paste
CN105869704B (en) * 2012-10-19 2018-06-29 纳美仕有限公司 Conductive paste
KR102079148B1 (en) * 2012-10-19 2020-02-19 나믹스 가부시끼가이샤 Electroconductive paste
JPWO2014061765A1 (en) * 2012-10-19 2016-09-05 ナミックス株式会社 Conductive paste
WO2014061765A1 (en) * 2012-10-19 2014-04-24 ナミックス株式会社 Electroconductive paste
TWI618095B (en) * 2012-10-19 2018-03-11 納美仕有限公司 Conductive paste, print circuit, and electronic device
US9574091B2 (en) 2012-10-19 2017-02-21 Namics Corporation Conductive paste
WO2015015865A1 (en) * 2013-07-31 2015-02-05 株式会社村田製作所 Conductive paste, ceramic electronic component, and method for producing ceramic electronic component
JP6020728B2 (en) * 2013-07-31 2016-11-02 株式会社村田製作所 Conductive paste, ceramic electronic component, and method of manufacturing ceramic electronic component
WO2015141816A1 (en) * 2014-03-20 2015-09-24 ナミックス株式会社 Conductive paste, laminated ceramic component, printed circuit board, and electronic device
EP3121819A4 (en) * 2014-03-20 2017-11-01 Namics Corporation Conductive paste, laminated ceramic component, printed circuit board, and electronic device
KR20160135123A (en) * 2014-03-20 2016-11-24 나믹스 가부시끼가이샤 Conductive paste, laminated ceramic component, printed circuit board, and electronic device
KR102302357B1 (en) * 2014-03-20 2021-09-16 나믹스 가부시끼가이샤 Conductive paste, laminated ceramic component, printed circuit board, and electronic device
CN106104702A (en) * 2014-03-20 2016-11-09 纳美仕有限公司 Conductive paste, multilayer ceramic component, printed wiring board and electronic installation
JPWO2015141816A1 (en) * 2014-03-20 2017-04-13 ナミックス株式会社 Conductive paste, multilayer ceramic component, printed wiring board, and electronic device
US10702954B2 (en) 2014-03-20 2020-07-07 Namics Corporation Conductive paste
JP2015092579A (en) * 2014-11-26 2015-05-14 日立化成株式会社 Element, solar cell, and paste composition for electrode
JP2016122840A (en) * 2015-12-18 2016-07-07 日立化成株式会社 Device and solar battery, and paste composition for electrodes
JP6393012B2 (en) * 2016-09-29 2018-09-19 京セラ株式会社 Resistor, circuit board including the same, and electronic device
JPWO2018062373A1 (en) * 2016-09-29 2018-09-27 京セラ株式会社 Resistor, circuit board including the same, and electronic device
WO2018062373A1 (en) * 2016-09-29 2018-04-05 京セラ株式会社 Resistor, circuit board provided with same, and electronic device
DE112018004778T5 (en) 2017-08-31 2020-06-18 Koa Corporation Thick film resistor element paste and use of a thick film resistor element paste in a resistor
US11136257B2 (en) 2017-08-31 2021-10-05 Koa Corporation Thick-film resistive element paste and use of thick-film resistive element paste in resistor
WO2022030071A1 (en) * 2020-08-07 2022-02-10 Koa株式会社 Resistance alloy to be used in shunt resistor, use of resistance alloy in shunt resistor, and shunt resistor using resistance alloy
JP2022030348A (en) * 2020-08-07 2022-02-18 Koa株式会社 Resistance alloy used for shunt resistor, use of the resistance alloy to the shunt resistor, and shunt resistor using the resistance alloy

Also Published As

Publication number Publication date
JP4796815B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
KR101892750B1 (en) chip resistor and fabricating method thereof
JP3209089B2 (en) Conductive paste
JP4796815B2 (en) Ultra-small chip resistor and resistor paste for ultra-small chip resistor.
JP4893371B2 (en) Varistor element
JP4623921B2 (en) Resistive composition and resistor
EP3196904B1 (en) Chip-type ceramic semiconductor electronic component
JP4431052B2 (en) Resistor manufacturing method
KR102441705B1 (en) Conductive paste for forming external electrodes of multilayer ceramic electronic components
US11136257B2 (en) Thick-film resistive element paste and use of thick-film resistive element paste in resistor
JP2004119692A (en) Resistor composition and resistor
CN106548840B (en) A kind of lamination sheet type zno varistor and preparation method thereof
JPWO2005073146A1 (en) Ceramic substrate composition, ceramic substrate, method for producing ceramic substrate, and glass composition
JP6428797B2 (en) Negative characteristic thermistor and manufacturing method thereof
JP5301852B2 (en) Multilayer chip varistor
JP4292057B2 (en) Thermistor composition and thermistor element
JP2003347102A (en) Resistance element paste, resistor, and manufacturing method thereof
JP4811465B2 (en) Multilayer coil parts
CN109994246B (en) Powder composition for forming thick-film conductor and slurry for forming thick-film conductor
JP2827902B2 (en) Resistance paste
JP2017010998A (en) Method of manufacturing laminated ceramic electronic component
JP2004214643A (en) Laminated chip varistor and manufacturing method therefor
JP2007273256A (en) Conductive paste and ceramic electronic component
JPH09275002A (en) Thick-film resistor and chip resistor using the resistor and its manufacture
KR101148259B1 (en) Chip resistor device and preparing method of the same
KR20150028014A (en) Magnetic composition and multilayered electronic component by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110603

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

R150 Certificate of patent or registration of utility model

Ref document number: 4796815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250