[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007115510A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2007115510A
JP2007115510A JP2005305327A JP2005305327A JP2007115510A JP 2007115510 A JP2007115510 A JP 2007115510A JP 2005305327 A JP2005305327 A JP 2005305327A JP 2005305327 A JP2005305327 A JP 2005305327A JP 2007115510 A JP2007115510 A JP 2007115510A
Authority
JP
Japan
Prior art keywords
catalyst
separator
fuel cell
flow path
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005305327A
Other languages
Japanese (ja)
Inventor
Yasuaki Tanaka
泰明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005305327A priority Critical patent/JP2007115510A/en
Publication of JP2007115510A publication Critical patent/JP2007115510A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell using no catalyst of an MEA to obtain heat by reacting hydrogen and oxygen in starting at low temperature, capable of preventing damage of the MEA, and deterioration of the drainage capacity in a passage even if a catalyst is arranged on the surface of a gas passage of a separator. <P>SOLUTION: (1) In the fuel cell interposing a membrane-electrode assembly between a pair of separators, a water repellent 51 is arranged together with the catalyst 50 on the surface of the gas passage of the separator. (2) In the fuel cell interposing the membrane-electrode assembly between the pair of separators, the catalyst 50 is arranged on the surface of only an oxidation gas passage out of a fuel gas passage and the oxidation gas passage of the separator. (3) The water repellent 51 is arranged together with the catalyst. (4) In the starting at low temperature, the predetermined amount of fuel gas is supplied to the gas passage where the catalyst 50 is arranged in order to warm the fuel cell. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池に関し、とくにセル昇温を助けるとともに生成水の凍結を防止できる燃料電池に関する。   The present invention relates to a fuel cell, and more particularly, to a fuel cell that can help increase the temperature of the cell and prevent the generated water from freezing.

燃料電池はMEAをセパレータで挟んだものから形成される。セパレータには、燃料ガス流路、酸化ガス流路、冷媒流路が形成されている。燃料ガス流路に燃料ガスが流され、酸化ガス流路に酸化ガスが流される燃料電池は発電するとともに水を生成する。
低温時の始動時には、燃料電池が未だ十分には暖機されていないので、発電で水が生成されると、いったん生成された生成水が触媒層、拡散層、ガス流路で凍結し、ガス流路を流れる反応ガスの触媒への供給が阻害されて低温時発電性能(始動性)が損なわれる。
A fuel cell is formed from a MEA sandwiched between separators. A fuel gas channel, an oxidizing gas channel, and a refrigerant channel are formed in the separator. A fuel cell in which a fuel gas is flowed through the fuel gas flow channel and an oxidizing gas is flowed through the oxidizing gas flow channel generates power and generates water.
When starting at low temperatures, the fuel cell is not yet fully warmed up. When water is generated by power generation, the generated water is frozen in the catalyst layer, diffusion layer, and gas flow path, The supply of the reaction gas flowing through the flow path to the catalyst is hindered, and the power generation performance (startability) at low temperatures is impaired.

これを抑制するためにはつぎの方法が考えられる。
(イ) 低温時の始動時にカソードに水素を供給し、膜−電極アッセンブリ(MEA)の触媒層で水素と酸素を反応させることで熱を得ることが考えられる。
(ロ) 特開2001−338653号公報に開示されているように、CO(一酸化炭素)による触媒(Pt)被毒を防止するために、改質燃料に含まれるCOの低減を目的として、セパレータのガス流路表面に触媒を担持し、改質燃料に含まれるCOを触媒に吸着させ、一定の時間間隔で微量の空気を添加して、吸着したCOを酸化して取り除く方法。吸着COを酸化させるときに熱が出るのでそれを凍結防止に利用する。
特開2001−338653号公報
In order to suppress this, the following method can be considered.
(B) It is conceivable to obtain heat by supplying hydrogen to the cathode at the time of starting at low temperature and reacting hydrogen and oxygen in the catalyst layer of the membrane-electrode assembly (MEA).
(B) As disclosed in JP 2001-338653 A, in order to prevent catalyst (Pt) poisoning by CO (carbon monoxide), for the purpose of reducing CO contained in the reformed fuel, A method in which a catalyst is supported on the gas flow path surface of the separator, CO contained in the reformed fuel is adsorbed on the catalyst, and a small amount of air is added at regular time intervals to oxidize and remove the adsorbed CO. Since heat is generated when oxidizing the adsorbed CO, it is used to prevent freezing.
JP 2001-338653 A

しかし、上記(イ)、(ロ)の方法には以下の課題がある。
(イ)の方法では、MEAの熱容量がセパレータや燃料電池冷却水の熱容量に比べて小さいため、セパレータや冷却水が加熱される前に選択的にMEAが異常に昇温し、MEAの電解質膜、触媒層(の電解質)を熱で劣化させる。
(ロ)の方法にはつぎの課題がある。
(ロ−1)燃料ガス中にCOが含まれていない場合、たとえば燃料ガスに純水素を用いる場合には利用できない。
水が生成されるのは酸化ガス流路の方であるから、燃料ガス流路に触媒を配置してCOを吸着し、COを一定時間間隔で燃焼させても、酸化ガス流路における生成水の凍結防止に直接的には働かない。
また、CO吸着中はCOを燃焼させないので、低温始動時の十分な量のCO吸着がないと、低温始動時の燃料電池昇温には貢献しない。
(ロ−2)また、セパレータのガス流路表面に触媒を配置すると流路の排水性が悪化し、フラッディングの発生頻度が多くなり、フラッディングにより反応ガスの電極への供給が少なくなり、燃料電池性能が悪化するおそれがある。
However, the methods (a) and (b) have the following problems.
In the method (a), since the heat capacity of the MEA is smaller than the heat capacity of the separator and the fuel cell cooling water, the MEA is selectively heated abnormally before the separator and the cooling water are heated. The catalyst layer (electrolyte) is deteriorated by heat.
The method (b) has the following problems.
(B-1) When CO is not contained in the fuel gas, for example, when pure hydrogen is used for the fuel gas, it cannot be used.
Since water is generated in the oxidizing gas flow path, even if a catalyst is arranged in the fuel gas flow path to adsorb CO and burn the CO at regular time intervals, the generated water in the oxidizing gas flow path Does not work directly to prevent freezing.
Also, since CO is not burned during CO adsorption, it does not contribute to the temperature increase of the fuel cell at low temperature start unless there is a sufficient amount of CO adsorption at low temperature start.
(B-2) Further, if a catalyst is disposed on the gas flow path surface of the separator, the drainage performance of the flow path deteriorates, the frequency of flooding increases, and the flooding reduces the supply of reaction gas to the electrode. Performance may deteriorate.

本発明の第1の目的は、低温始動時に水素と酸素を反応させて熱を得るのに、MEAの触媒を利用しない、したがってMEAを傷めることを防止でき、かつ、セパレータのガス流路表面に触媒を配置しても流路の排水性を悪化させない燃料電池を提供することにある。−−−上記(イ)、(ロ−2)の課題の解決。
本発明の第2の目的は、低温始動時に水素と酸素を反応させて熱を得るのにMEAの触媒を利用しないで済み、COを含まない燃料ガスを用いる燃料電池でも昇温でき、また酸化ガス流路を直接加熱でき、低温始動中燃料電池を昇温できる燃料電池を提供することにある。−−−上記(イ)、(ロ−1)の課題の解決。
本発明の第3の目的は、第2の目的に加えて、セパレータのガス流路表面に触媒を配置しても流路の排水性を悪化させない燃料電池を提供することにある。−−−上記(イ)、(ロ−1)、(ロ−2)の課題の解決。
The first object of the present invention is to prevent the MEA catalyst from being used to react with hydrogen and oxygen at low temperature start to obtain heat, so that the MEA can be prevented from being damaged, and the separator has a gas channel surface. An object of the present invention is to provide a fuel cell that does not deteriorate the drainage performance of the flow path even if a catalyst is disposed. --- Solving the problems (b) and (b-2) above.
The second object of the present invention is to avoid the use of an MEA catalyst to obtain heat by reacting hydrogen and oxygen at a low temperature start-up, and it is possible to raise the temperature even in a fuel cell using a fuel gas not containing CO. An object of the present invention is to provide a fuel cell that can directly heat a gas flow path and that can raise the temperature of the fuel cell during cold start. --- Solving the above problems (a) and (b-1).
In addition to the second object, a third object of the present invention is to provide a fuel cell that does not deteriorate the drainage of the flow channel even if a catalyst is disposed on the surface of the gas flow channel of the separator. --- Solving the problems (b), (b-1) and (b-2) above.

上記課題を解決する、そして上記目的を達成する、本発明は、つぎのとおりである。
(1) 膜−電極アッセンブリを一対のセパレータで挟んだ燃料電池であって、前記セパレータのガス流路の表面に触媒とともに撥水剤を設けた燃料電池。
(2) 膜−電極アッセンブリを一対のセパレータで挟んだ燃料電池であって、前記セパレータの燃料ガス流路と酸化ガス流路のうち酸化ガス流路のみの表面に触媒を設けた燃料電池。
(3) 前記触媒とともに撥水剤を設けた(2)記載の燃料電池。
(4) 低温始動時に、前記触媒を設けた前記ガス流路に、燃料電池を暖機するために、前記ガス流路が燃料ガス流路の場合は所定量の酸化ガスを、前記ガス流路が酸化ガス流路の場合は所定量の燃料ガスを供給するようにした(1)、(3)の何れかに記載の燃料電池。
The present invention for solving the above problems and achieving the above object is as follows.
(1) A fuel cell in which a membrane-electrode assembly is sandwiched between a pair of separators, wherein a water repellent is provided together with a catalyst on the surface of a gas flow path of the separator.
(2) A fuel cell in which a membrane-electrode assembly is sandwiched between a pair of separators, wherein a catalyst is provided on the surface of only the oxidizing gas channel among the fuel gas channel and the oxidizing gas channel of the separator.
(3) The fuel cell according to (2), wherein a water repellent is provided together with the catalyst.
(4) In order to warm up the fuel cell in the gas flow path provided with the catalyst at a low temperature start, when the gas flow path is a fuel gas flow path, a predetermined amount of oxidizing gas is supplied to the gas flow path. The fuel cell according to any one of (1) and (3), wherein a predetermined amount of fuel gas is supplied when is an oxidizing gas flow path.

上記(1)の燃料電池によれば、セパレータのガス流路の表面に触媒とともに撥水剤を設けたので、MEAの触媒によらずに、セパレータの表面の触媒によって水素と酸素を反応させて熱を得ることができ、MEAを傷めることを防止できる。
また、セパレータの触媒には、触媒とともに撥水剤を設けたので、セパレータのガス流路表面に触媒を配置しても流路の排水性を悪化させない。
上記(2)の燃料電池によれば、セパレータの燃料ガス流路と酸化ガス流路のうち酸化ガス流路のみの表面に触媒を設けたので、MEAの触媒によらずに、セパレータの表面の触媒によって水素と酸素を反応させて熱を得ることができ、MEAを傷めることを防止できる。
また、酸化ガス流路のみの表面に触媒を設けたので、COを含まない燃料ガスを用いる燃料電池でも昇温でき、また酸化ガス流路を直接加熱でき、低温始動中燃料電池を昇温できる。
上記(3)の燃料電池によれば、セパレータの触媒には、触媒とともに撥水剤を設けたので、セパレータのガス流路表面に触媒を配置しても流路の排水性を悪化させない。
上記(4)の燃料電池によれば、低温始動時に、燃料電池を暖機するために、前記触媒を設けた前記ガス流路に、前記ガス流路が燃料ガス流路の場合は所定量の酸化ガスを、前記ガス流路が酸化ガス流路の場合は所定量の燃料ガスを供給するようにしたので、ガスを供給している期間中、燃料電池を昇温できる。
According to the fuel cell of the above (1), since the water repellent is provided together with the catalyst on the surface of the gas flow path of the separator, hydrogen and oxygen are allowed to react with the catalyst on the surface of the separator without using the MEA catalyst. Heat can be obtained and damage to the MEA can be prevented.
Further, since the separator catalyst is provided with a water repellent agent together with the catalyst, even if the catalyst is disposed on the gas channel surface of the separator, the drainage property of the channel is not deteriorated.
According to the fuel cell of the above (2), since the catalyst is provided only on the surface of the oxidant gas channel among the fuel gas channel and the oxidant gas channel of the separator, the surface of the separator is not dependent on the MEA catalyst. Heat can be obtained by reacting hydrogen and oxygen with a catalyst, and the MEA can be prevented from being damaged.
In addition, since the catalyst is provided only on the surface of the oxidizing gas flow path, the temperature of the fuel cell using a fuel gas not containing CO can be raised, and the oxidizing gas flow path can be directly heated, so that the temperature of the fuel cell can be raised during low-temperature startup. .
According to the fuel cell of the above (3), since the separator catalyst is provided with the water repellent together with the catalyst, even if the catalyst is disposed on the gas channel surface of the separator, the drainage property of the channel is not deteriorated.
According to the fuel cell of the above (4), in order to warm up the fuel cell at a low temperature start, a predetermined amount of the gas flow path provided with the catalyst is provided when the gas flow path is a fuel gas flow path. Since a predetermined amount of fuel gas is supplied when the gas channel is an oxidizing gas channel, the temperature of the fuel cell can be raised during the period during which the gas is supplied.

以下に、本発明の燃料電池を図1−図5を参照して説明する。
図中、図3〜図5は本発明の全実施例に共通に適用でき、図1は本発明の実施例1を示し、図2は本発明の実施例2を示す。
本発明の全実施例に共通する構成部分には本発明の全実施例にわたって同じ符号を付してある。
Hereinafter, the fuel cell of the present invention will be described with reference to FIGS.
3 to 5 are commonly applicable to all the embodiments of the present invention, FIG. 1 shows a first embodiment of the present invention, and FIG. 2 shows a second embodiment of the present invention.
Components common to all the embodiments of the present invention are denoted by the same reference numerals throughout the embodiments of the present invention.

まず、本発明の全実施例に共通な部分の構成、作用・効果を、図1、図3−図5を参照して、説明する。
本発明が適用される燃料電池は、たとえば固体高分子電解質型燃料電池10である。燃料電池10は、たとえば燃料電池自動車に搭載される。ただし、自動車以外に用いられてもよい。
固体高分子電解質型燃料電池(セル)10は、図3−図5に示すように、膜−電極アッセンブリ(MEA:Membrane-Electrode Assembly )19とセパレータ18とを積層したものである。
膜−電極アッセンブリ19は、イオン交換膜からなる電解質膜11とこの電解質膜11の一面に配置された触媒層からなる電極(アノード、燃料極)14および電解質膜の他面に配置された触媒層からなる電極(カソード、空気極)17とからなる。膜−電極アッセンブリとセパレータ18との間には、アノード側、カソード側にそれぞれ拡散層13、16が設けられてもよい。アノード側拡散層13、膜−電極アッセンブリ19、カソード側拡散層16を順に積層したものは、膜−電極−拡散層アッセンブリを構成する。
膜−電極アッセンブリ19(膜−電極−拡散層アッセンブリでもよい、以下、同じ)とセパレータ18を重ねてセル10を構成し、セル10を積層してセル積層体とし、セル積層体のセル積層方向両端に、ターミナル20、インシュレータ21、エンドプレート22を配置し、両端のエンドプレート22をセル積層体の外側でセル積層方向に延びる締結部材(たとえば、テンションプレート24)に、ボルト・ナット25にて固定し、セル積層体にセル積層方向の締め付け力を付与して、燃料電池スタック23を構成する。
First, the configuration, operation, and effects of portions common to all the embodiments of the present invention will be described with reference to FIGS. 1 and 3 to 5.
The fuel cell to which the present invention is applied is, for example, a solid polymer electrolyte fuel cell 10. The fuel cell 10 is mounted on, for example, a fuel cell vehicle. However, it may be used other than an automobile.
As shown in FIGS. 3 to 5, the solid polymer electrolyte fuel cell (cell) 10 is formed by stacking a membrane-electrode assembly (MEA) 19 and a separator 18.
The membrane-electrode assembly 19 includes an electrolyte membrane 11 made of an ion exchange membrane, an electrode (anode, fuel electrode) 14 made of a catalyst layer disposed on one surface of the electrolyte membrane 11, and a catalyst layer disposed on the other surface of the electrolyte membrane. Electrode (cathode, air electrode) 17. Between the membrane-electrode assembly and the separator 18, diffusion layers 13 and 16 may be provided on the anode side and the cathode side, respectively. A structure in which the anode side diffusion layer 13, the membrane-electrode assembly 19, and the cathode side diffusion layer 16 are sequentially laminated constitutes a membrane-electrode-diffusion layer assembly.
A cell 10 is formed by stacking a membrane-electrode assembly 19 (which may be a membrane-electrode-diffusion layer assembly, hereinafter the same) and a separator 18 to form a cell stack by stacking the cells 10, and a cell stacking direction of the cell stack Terminals 20, insulators 21, and end plates 22 are arranged at both ends, and end plates 22 at both ends are attached to fastening members (for example, tension plates 24) extending in the cell stacking direction outside the cell stack by bolts and nuts 25. The fuel cell stack 23 is configured by fixing and applying a clamping force in the cell stacking direction to the cell stack.

セパレータ18には、発電領域において、MEA19に対向する面に、アノード14に燃料ガス(水素)を供給するための燃料ガス流路27が形成され、MEA19を挟んで対向するセパレータ18には、発電領域において、MEA19に対向する面に、カソード17に酸化ガス(酸素、通常は空気)を供給するための酸化ガス流路28が形成されている。また、セパレータ18には、MEA19に対向する面と反対側の面に、冷媒(通常、冷却水)を流すための冷媒流路26も形成されている。セパレータ18には、発電領域の周囲の非発電領域において、燃料ガスマニホールド30、酸化ガスマニホールド31、冷媒マニホールド29が形成されている。燃料ガスマニホールド30は燃料ガス流路27と連通しており、酸化ガスマニホールド31は酸化ガス流路28と連通しており、冷媒マニホールド29は冷媒流路26と連通している。   The separator 18 is formed with a fuel gas flow path 27 for supplying fuel gas (hydrogen) to the anode 14 on the surface facing the MEA 19 in the power generation region. In the region, an oxidizing gas passage 28 for supplying an oxidizing gas (oxygen, usually air) to the cathode 17 is formed on the surface facing the MEA 19. The separator 18 is also formed with a refrigerant flow path 26 for flowing a refrigerant (usually cooling water) on the surface opposite to the surface facing the MEA 19. In the separator 18, a fuel gas manifold 30, an oxidizing gas manifold 31, and a refrigerant manifold 29 are formed in a non-power generation region around the power generation region. The fuel gas manifold 30 is in communication with the fuel gas passage 27, the oxidizing gas manifold 31 is in communication with the oxidizing gas passage 28, and the refrigerant manifold 29 is in communication with the refrigerant passage 26.

各セル10の、アノード14側では、水素を水素イオン(プロトン)と電子に変換する電離反応が行われ、水素イオンは電解質膜11中をカソード17側に移動し、カソード17側では酸素と水素イオンおよび電子(隣りのMEAのアノードで生成した電子がセパレータを通してくる、またはセル積層方向一端のセルのアノードで生成した電子が外部回路を通して他端のセルのカソードにくる)から水が生成され、次式にしたがって発電が行われる。
アノード側:H2 →2H+ +2e-
カソード側:2H+ +2e- +(1/2)O2 →H2
An ionization reaction that converts hydrogen into hydrogen ions (protons) and electrons is performed on the anode 14 side of each cell 10, and the hydrogen ions move through the electrolyte membrane 11 to the cathode 17 side. Water is generated from ions and electrons (electrons generated at the anode of the adjacent MEA come through the separator, or electrons generated at the anode of the cell at one end in the cell stacking direction come to the cathode of the other end cell through an external circuit), Power generation is performed according to the following formula.
Anode side: H 2 → 2H + + 2e
Cathode side: 2H + + 2e + (1/2) O 2 → H 2 O

各種流体は、互いから、かつ、外部から、それぞれシールされる。各セル10のMEAを挟む2つのセパレータ18間およびMEA19とセパレータ18間は、第1のシール部材32によってシールされており、隣接するセル10同士の間は、第2のシール部材33によってシールされている。
第1のシール部材32は、たとえば接着剤(シール接着剤)からなり、第2のシール部材33は、たとえば、シリコーンゴム、フッ素ゴム、EPDM(エチレンプロピレンジエンゴム)等のガスケットからなる。ただし、第1のシール部材32、第2のシール部材33とも、接着剤、またはガスケットから構成されてもよい。
Various fluids are sealed from each other and from the outside. Between the two separators 18 that sandwich the MEA of each cell 10 and between the MEA 19 and the separator 18 are sealed by a first seal member 32, and between adjacent cells 10 is sealed by a second seal member 33. ing.
The first seal member 32 is made of, for example, an adhesive (seal adhesive), and the second seal member 33 is made of, for example, a gasket such as silicone rubber, fluorine rubber, or EPDM (ethylene propylene diene rubber). However, both the first seal member 32 and the second seal member 33 may be made of an adhesive or a gasket.

セパレータ18は、カーボンセパレータ、またはメタルセパレータ、またはメタルセパレータと樹脂フレームとの組み合わせ、または導電性樹脂セパレータなどから構成される。メタルセパレータ18の場合は、メタルセパレータ18の材料は、たとえば、ステンレススチール、アルミニウムまたはその合金、チタンまたはその合金、マグネシウムまたはその合金、等である。メタルセパレータ18は表面処理(接触抵抗を下げるための導電性処理、たとえば、貴金属コート)され、防食材が塗布され防食材層(不飽和ポリエステル、シリコーンゴム、フッ素ゴム、EPDM(エチレンプロピレンジエンゴム)等)が形成される。後述する触媒50や撥水剤51は、防食材層のさらに上に配置される。   The separator 18 is composed of a carbon separator, a metal separator, a combination of a metal separator and a resin frame, a conductive resin separator, or the like. In the case of the metal separator 18, the material of the metal separator 18 is, for example, stainless steel, aluminum or an alloy thereof, titanium or an alloy thereof, magnesium or an alloy thereof, and the like. The metal separator 18 is subjected to surface treatment (conductive treatment for reducing contact resistance, for example, precious metal coating), and an anticorrosion material is applied and an anticorrosion material layer (unsaturated polyester, silicone rubber, fluororubber, EPDM (ethylene propylene diene rubber)) Etc.) are formed. A catalyst 50 and a water repellent 51, which will be described later, are disposed further on the anticorrosive layer.

図1に示すように、膜−電極アッセンブリ19(膜−電極−拡散層アッセンブリであってもよい)を一対のセパレータ18(燃料ガス側セパレータ、酸化ガス側セパレータ)で挟んだ燃料電池10において、セパレータ18のガス流路(酸化ガス流路28と燃料ガス流路27との少なくとも一方の流路)の表面52(リブの頂面53を除くことが望ましい)に触媒50(たとえば、貴金属触媒、たとえばPtなど)とともに撥水剤51(たとえば、ポリテトラフルオロエチレンなど)が設けられている。撥水剤51は、撥水剤51で触媒50の全表面を覆うことがないようにして、触媒50の少なくとも一部の表面がガス流路を流れる反応ガスに接触するようにすることが望ましい。   As shown in FIG. 1, in a fuel cell 10 in which a membrane-electrode assembly 19 (which may be a membrane-electrode-diffusion layer assembly) is sandwiched between a pair of separators 18 (fuel gas side separator, oxidizing gas side separator) A catalyst 50 (for example, a noble metal catalyst, a surface of the gas channel (at least one of the oxidizing gas channel 28 and the fuel gas channel 27) of the separator 18 is preferably removed). For example, a water repellent 51 (for example, polytetrafluoroethylene or the like) is provided together with Pt or the like. It is desirable that the water repellent 51 does not cover the entire surface of the catalyst 50 with the water repellent 51 so that at least a part of the surface of the catalyst 50 is in contact with the reaction gas flowing in the gas flow path. .

セパレータ18の燃料ガス流路27と酸化ガス流路28のうち、一方のガス流路のみの表面52(リブの頂面53を除くことが望ましい)に触媒50(たとえば、貴金属触媒、たとえばPtなど)を設けるようにしてもよい。たとえば、セパレータ18の燃料ガス流路27と酸化ガス流路28のうち、生成水が生じる酸化ガス流路28のみの表面52(リブの頂面53を除くことが望ましい)に触媒50を設けるようにしてもよい。
また、セパレータ18の燃料ガス流路27と酸化ガス流路28のうち、一方のガス流路のみに触媒50を設ける場合、触媒50とともに撥水剤51を設けてもよい。ただし、撥水剤51を設けずに、触媒50のみ(触媒50をセパレータ表面に付着させる接着剤54は含んでもよい)を設けてもよい。撥水剤51を設ける場合、撥水剤51で触媒50の全表面を覆うことがないようにして、触媒50の少なくとも一部の表面がガス流路を流れる反応ガスに接触するようにすることが望ましい。
Of the fuel gas channel 27 and the oxidizing gas channel 28 of the separator 18, a catalyst 50 (for example, a noble metal catalyst such as Pt) is provided on the surface 52 (desirably excluding the top surface 53 of the rib) of only one gas channel. ) May be provided. For example, the catalyst 50 is provided on the surface 52 (desirably excluding the top surface 53 of the rib) of only the oxidant gas channel 28 in which the generated water is generated out of the fuel gas channel 27 and the oxidant gas channel 28 of the separator 18. It may be.
Further, when the catalyst 50 is provided only in one of the fuel gas channel 27 and the oxidizing gas channel 28 of the separator 18, the water repellent 51 may be provided together with the catalyst 50. However, without providing the water repellent 51, only the catalyst 50 (the adhesive 54 for attaching the catalyst 50 to the separator surface may be included) may be provided. When the water repellent 51 is provided, the entire surface of the catalyst 50 is not covered with the water repellent 51 so that at least a part of the surface of the catalyst 50 is in contact with the reaction gas flowing through the gas flow path. Is desirable.

そして、低温始動時(生成水が凍る温度での始動時)に、触媒50を設けたガス流路に、燃料電池を暖機するために、ガス流路が燃料ガス流路27の場合は所定量の酸化ガスを、ガス流路が酸化ガス流路28の場合は所定量の燃料ガスを、供給するようにする。ここで、所定量とは、急激な燃焼を起こさずに緩慢な化学燃焼を起こして膜11を傷つけることなく燃料電池を暖機できる量(少量)を意味する。そして、暖機が終了すると、低温始動時の暖機のための反応ガスの供給を停止する。   When the gas flow path is the fuel gas flow path 27 in order to warm up the fuel cell in the gas flow path provided with the catalyst 50 at the low temperature start time (starting temperature at which the generated water is frozen). A fixed amount of oxidizing gas is supplied, and when the gas channel is the oxidizing gas channel 28, a predetermined amount of fuel gas is supplied. Here, the predetermined amount means an amount (small amount) at which the fuel cell can be warmed up without causing rapid combustion and causing slow chemical combustion without damaging the membrane 11. Then, when the warm-up is completed, the supply of the reaction gas for warm-up at the time of cold start is stopped.

また、上記の暖機に加えて、あるいは上記の暖機とは独立に、低温始動時に、セルスタック23のうち端セル(端部にある1セル)を選択的に、または端セルと端セルの近傍のセル(端部セルを含む2〜3セル分)を選択的に、酸素欠によるカソードでのプロトン再結合(によりカソードにH2 が移動する現象)を利用して温度上昇させるようにしてもよい。 Further, in addition to the warm-up described above or independently of the warm-up described above, the end cell (one cell at the end) of the cell stack 23 is selectively selected or the end cell and the end cell at the time of cold start. In the vicinity of the cell (2 to 3 cells including the end cells), the temperature is raised by utilizing proton recombination at the cathode due to lack of oxygen (a phenomenon in which H 2 moves to the cathode). May be.

つぎに、全実施例に共通な作用、効果を説明する。
セパレータ18のガス流路27、28の表面に触媒50とともに撥水剤51を設けた場合は、MEA19の触媒によらずに、セパレータ18の表面の触媒50によって水素と酸素を反応させて熱を得ることができ、MEA19を傷めることを防止できる。MEAの触媒を利用して熱を得るとその熱で膜11が傷められるおそれがあるが、本発明ではセパレータ18の表面の触媒50を利用するので、膜11を傷めるおそれが、無くなるか、または、大幅に低減する。
また、セパレータ18の触媒50には、触媒50とともに撥水剤51を設けたので、セパレータ18のガス流路表面に触媒50を配置しても、ガス流路27、28の表面が水をはじき水の停滞をなくすので、ガス流路27、28の排水性は悪化しない。
Next, operations and effects common to all the embodiments will be described.
When the water repellent 51 is provided together with the catalyst 50 on the surfaces of the gas flow paths 27 and 28 of the separator 18, heat is generated by reacting hydrogen and oxygen with the catalyst 50 on the surface of the separator 18, not depending on the catalyst of the MEA 19. Can be obtained, and the MEA 19 can be prevented from being damaged. If heat is obtained by using the MEA catalyst, the film 11 may be damaged by the heat. However, in the present invention, the catalyst 50 on the surface of the separator 18 is used, so that the possibility of damaging the film 11 is eliminated. , Greatly reduced.
In addition, since the catalyst 50 of the separator 18 is provided with the water repellent 51 together with the catalyst 50, the surfaces of the gas flow paths 27 and 28 repel water even when the catalyst 50 is disposed on the surface of the gas flow path of the separator 18. Since the stagnation of water is eliminated, the drainage performance of the gas flow paths 27 and 28 does not deteriorate.

セパレータ18の燃料ガス流路27と酸化ガス流路28のうち酸化ガス流路28のみの表面に触媒50を設けた場合は、上記と同様に、MEA19の触媒によらずに、セパレータ18の表面の触媒50によって水素と酸素を反応させて熱を得ることができ、暖機時にMEA19を傷めることを防止できる。
また、酸化ガス流路28のみの表面に触媒50を設けたので、COを含まない燃料ガスを用いる燃料電池でも昇温でき、また酸化ガス流路28を直接加熱でき、低温始動中、燃料電池10を昇温できる。
When the catalyst 50 is provided on the surface of only the oxidizing gas channel 28 of the fuel gas channel 27 and the oxidizing gas channel 28 of the separator 18, the surface of the separator 18 is not dependent on the catalyst of the MEA 19 as described above. The catalyst 50 can react hydrogen and oxygen to obtain heat, and can prevent the MEA 19 from being damaged during warm-up.
In addition, since the catalyst 50 is provided only on the surface of the oxidizing gas flow path 28, the temperature of the fuel cell using a fuel gas not containing CO can be increased, and the oxidizing gas flow path 28 can be directly heated. 10 can be heated.

セパレータ18の燃料ガス流路27と酸化ガス流路28のうち酸化ガス流路28のみの表面に触媒50を設けるとともに、セパレータ18の触媒50には、触媒50とともに撥水剤51を設けた場合は、セパレータ18のガス流路28の表面に触媒50を配置しても流路28の排水性を悪化させない。   When the catalyst 50 is provided on the surface of only the oxidizing gas channel 28 of the fuel gas channel 27 and the oxidizing gas channel 28 of the separator 18, and the water repellent 51 is provided together with the catalyst 50 on the catalyst 50 of the separator 18. Even if the catalyst 50 is disposed on the surface of the gas flow path 28 of the separator 18, the drainage performance of the flow path 28 is not deteriorated.

低温始動時(のみ)に、燃料電池10を暖機するために、触媒50を設けたガス流路に、ガス流路が燃料ガス流路の場合は所定量の酸化ガスを、ガス流路が酸化ガス流路の場合は所定量の燃料ガスを供給するようにしたので、ガスを供給している期間中、燃料電池を昇温できる。所定量のガス供給であるから、水素の酸化反応は緩慢であり、セルを傷めることはない。暖機後は暖機のための反対ガスの供給は停止する。   At the time of cold start (only), in order to warm up the fuel cell 10, when the gas flow path is a fuel gas flow path, a predetermined amount of oxidizing gas is added to the gas flow path provided with the catalyst 50. In the case of the oxidizing gas flow path, since a predetermined amount of fuel gas is supplied, the temperature of the fuel cell can be raised during the period of supplying the gas. Since a predetermined amount of gas is supplied, the oxidation reaction of hydrogen is slow and does not damage the cell. After warm-up, the supply of counter gas for warm-up is stopped.

つぎに、本発明の各実施例に特有な構成、作用、効果を説明する。
〔実施例1〕−−−図1
本発明の実施例1では、セパレータ18の燃料ガス流路27と酸化ガス流路28の少なくとも一方のガス流路(たとえば、酸化ガス流路28)に、触媒50だけ(ただし、触媒50をセパレータ18に付着させる接着剤54などはあってもよい)が設けられている。撥水剤51は設けられない。
その作用、効果については、触媒50が、撥水剤51に覆われないので、触媒50の機能をフルに発揮できる。ただし、撥水剤51を設けた場合に比べて、撥水性が低下する場合がある。
Next, configurations, operations, and effects unique to each embodiment of the present invention will be described.
[Example 1] --- FIG.
In Example 1 of the present invention, only the catalyst 50 (however, the catalyst 50 is used as the separator) in at least one of the fuel gas channel 27 and the oxidizing gas channel 28 (for example, the oxidizing gas channel 28) of the separator 18. 18 may be provided). The water repellent 51 is not provided.
With respect to its action and effect, since the catalyst 50 is not covered with the water repellent 51, the function of the catalyst 50 can be fully exhibited. However, the water repellency may be lower than when the water repellent 51 is provided.

〔実施例2〕−−−図2
本発明の実施例2では、セパレータ18の燃料ガス流路27と酸化ガス流路28の少なくとも一方のガス流路(たとえば、酸化ガス流路28、ただし燃料ガス流路27のみであってもよい)に、触媒50と撥水剤51の両方が設けられている。
その作用、効果については、撥水剤51が設けられるので、ガス流路の撥水性が向上し、フラッディングを抑制できる。ただし、触媒50の一部が、撥水剤51に覆われるので、触媒50の機能が若干低下する場合がある。
[Example 2] --- FIG.
In the second embodiment of the present invention, at least one of the fuel gas channel 27 and the oxidizing gas channel 28 of the separator 18 (for example, the oxidizing gas channel 28, but only the fuel gas channel 27 may be provided. ), Both the catalyst 50 and the water repellent 51 are provided.
With respect to its function and effect, since the water repellent 51 is provided, the water repellency of the gas flow path is improved and flooding can be suppressed. However, since a part of the catalyst 50 is covered with the water repellent 51, the function of the catalyst 50 may be slightly deteriorated.

本発明の実施例1の燃料電池のセパレータのガス流路の一部の断面図である。It is sectional drawing of a part of gas flow path of the separator of the fuel cell of Example 1 of this invention. 本発明の実施例2の燃料電池のセパレータのガス流路の一部の断面図である。It is sectional drawing of a part of gas flow path of the separator of the fuel cell of Example 2 of this invention. 本発明の燃料電池を組み込んだ燃料電池スタックの側面図である。It is a side view of the fuel cell stack incorporating the fuel cell of the present invention. 図3の一部の拡大断面図である。FIG. 4 is an enlarged sectional view of a part of FIG. 3. 図3のセルの正面図である。FIG. 4 is a front view of the cell of FIG. 3.

符号の説明Explanation of symbols

10 (固体高分子電解質型)燃料電池
11 電解質膜
13、16 拡散層
14 アノード
17 カソード
18 セパレータ
19 MEA
20 ターミナル
21 インシュレータ
22 エンドプレート
23 燃料電池スタック
24 締結部材(テンションプレート)
25 ボルト
26 冷媒流路(冷却水流路)
27 燃料ガス流路
28 酸化ガス流路
29 冷媒マニホールド
30 燃料ガスマニホールド
31 酸化ガスマニホールド
32 第1のシール部材
33 第2のシール部材
50 触媒
51 撥水剤
52 ガス流路(酸化ガス流路と燃料ガス流路との少なくとも一方の流路)の表面
53 リブの頂面
54 接着剤
10 (Solid Polymer Electrolyte Type) Fuel Cell 11 Electrolyte Membranes 13 and 16 Diffusion Layer 14 Anode 17 Cathode 18 Separator 19 MEA
20 Terminal 21 Insulator 22 End plate 23 Fuel cell stack 24 Fastening member (tension plate)
25 Bolt 26 Refrigerant flow path (cooling water flow path)
27 Fuel gas channel 28 Oxidizing gas channel 29 Refrigerant manifold 30 Fuel gas manifold 31 Oxidizing gas manifold 32 First seal member 33 Second seal member 50 Catalyst 51 Water repellent 52 Gas channel (oxidant gas channel and fuel Surface 53 of at least one flow path with gas flow path) top surface 54 of rib

Claims (4)

膜−電極アッセンブリを一対のセパレータで挟んだ燃料電池であって、前記セパレータのガス流路の表面に触媒とともに撥水剤を設けた燃料電池。   A fuel cell in which a membrane-electrode assembly is sandwiched between a pair of separators, wherein a water repellent is provided along with a catalyst on the surface of a gas flow path of the separator. 膜−電極アッセンブリを一対のセパレータで挟んだ燃料電池であって、前記セパレータの燃料ガス流路と酸化ガス流路のうち酸化ガス流路のみの表面に触媒を設けた燃料電池。   A fuel cell in which a membrane-electrode assembly is sandwiched between a pair of separators, wherein a catalyst is provided on the surface of only the oxidizing gas channel of the fuel gas channel and the oxidizing gas channel of the separator. 前記触媒とともに撥水剤を設けた請求項2記載の燃料電池。   The fuel cell according to claim 2, wherein a water repellent is provided together with the catalyst. 低温始動時に、前記触媒を設けた前記ガス流路に、燃料電池を暖機するために、前記ガス流路が酸化ガス流路の場合は所定量の燃料ガスを、前記ガス流路が燃料ガス流路の場合は所定量の酸化ガスを供給するようにした請求項1−請求項3の何れか一項記載の燃料電池。   In order to warm up the fuel cell in the gas flow path provided with the catalyst at a low temperature start, a predetermined amount of fuel gas is supplied when the gas flow path is an oxidizing gas flow path, and the gas flow path is a fuel gas. The fuel cell according to any one of claims 1 to 3, wherein a predetermined amount of oxidizing gas is supplied in the case of a flow path.
JP2005305327A 2005-10-20 2005-10-20 Fuel cell Pending JP2007115510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005305327A JP2007115510A (en) 2005-10-20 2005-10-20 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005305327A JP2007115510A (en) 2005-10-20 2005-10-20 Fuel cell

Publications (1)

Publication Number Publication Date
JP2007115510A true JP2007115510A (en) 2007-05-10

Family

ID=38097511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005305327A Pending JP2007115510A (en) 2005-10-20 2005-10-20 Fuel cell

Country Status (1)

Country Link
JP (1) JP2007115510A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100813275B1 (en) 2007-01-23 2008-03-13 삼성전자주식회사 Fuel cell system and managing method thereof
KR100990489B1 (en) 2009-02-23 2010-10-29 포항공과대학교 산학협력단 Separator for fuel cell, manufacturing method of the separator, and fuel cell stack with the separator
KR101048141B1 (en) 2009-09-23 2011-07-08 현대자동차주식회사 Control Method of Fuel Cell System for Improved Cold Startability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100813275B1 (en) 2007-01-23 2008-03-13 삼성전자주식회사 Fuel cell system and managing method thereof
KR100990489B1 (en) 2009-02-23 2010-10-29 포항공과대학교 산학협력단 Separator for fuel cell, manufacturing method of the separator, and fuel cell stack with the separator
KR101048141B1 (en) 2009-09-23 2011-07-08 현대자동차주식회사 Control Method of Fuel Cell System for Improved Cold Startability

Similar Documents

Publication Publication Date Title
JPH11204122A (en) Solid polyelectrolyte fuel cell
JP5146012B2 (en) Membrane electrode assembly for fuel cells
US7537851B2 (en) Fuel cell system including separator having cooling water flow channels
US10573915B2 (en) Membrane electrode assembly and fuel cell including the same
JP2007250338A (en) Heat-insulating dummy cell, and fuel cell stack
JP2007242415A (en) Fuel cell
JP2008078148A (en) Fuel cell
JP2008293735A (en) Fuel cell and fuel cell system
JP2007115510A (en) Fuel cell
JP2004342516A (en) Polyelectrolyte type fuel cell
JP2004185811A (en) Seal structure for fuel cell
JP4447133B2 (en) Fuel cell
JP4238532B2 (en) Fuel cell
JP4851761B2 (en) Fuel cell
JP2008152979A (en) Fuel battery cell and laminate
JPWO2008132783A1 (en) Fuel cell system and operation method thereof
JP2006134698A (en) Fuel cell and manufacturing method of fuel cell
JP5657429B2 (en) Fuel cell
JP5168639B2 (en) Fuel cell
JP2007087617A5 (en)
JP2007035455A (en) Separator for fuel cell
JP2007026857A (en) Fuel cell
JP2008146848A (en) Fuel cell
JP2003288910A (en) Fuel cell
JP2008123812A (en) Fuel battery