JP2007113012A - Adhesive for connecting circuit part - Google Patents
Adhesive for connecting circuit part Download PDFInfo
- Publication number
- JP2007113012A JP2007113012A JP2006307143A JP2006307143A JP2007113012A JP 2007113012 A JP2007113012 A JP 2007113012A JP 2006307143 A JP2006307143 A JP 2006307143A JP 2006307143 A JP2006307143 A JP 2006307143A JP 2007113012 A JP2007113012 A JP 2007113012A
- Authority
- JP
- Japan
- Prior art keywords
- adhesive
- solution
- parts
- connection
- chip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000853 adhesive Substances 0.000 title claims abstract description 39
- 230000001070 adhesive effect Effects 0.000 title claims abstract description 39
- 239000002245 particle Substances 0.000 claims abstract description 34
- 229920000800 acrylic rubber Polymers 0.000 claims abstract description 17
- 229920000058 polyacrylate Polymers 0.000 claims abstract description 17
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims description 25
- 239000004840 adhesive resin Substances 0.000 claims description 23
- 229920006223 adhesive resin Polymers 0.000 claims description 23
- 239000003822 epoxy resin Substances 0.000 claims description 8
- 229920000647 polyepoxide Polymers 0.000 claims description 8
- 239000011256 inorganic filler Substances 0.000 claims description 7
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 7
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical group C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 claims description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract description 37
- 239000002313 adhesive film Substances 0.000 abstract description 23
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 abstract description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 13
- 239000005350 fused silica glass Substances 0.000 abstract description 12
- 239000004593 Epoxy Substances 0.000 abstract description 11
- 229910052759 nickel Inorganic materials 0.000 abstract description 11
- 239000013034 phenoxy resin Substances 0.000 abstract description 9
- 229920006287 phenoxy resin Polymers 0.000 abstract description 9
- 239000007888 film coating Substances 0.000 abstract description 6
- 238000009501 film coating Methods 0.000 abstract description 6
- 239000007788 liquid Substances 0.000 abstract description 6
- 150000001875 compounds Chemical class 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 239000010931 gold Substances 0.000 description 24
- 239000000243 solution Substances 0.000 description 20
- 239000000758 substrate Substances 0.000 description 13
- 239000010408 film Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 10
- 229910000679 solder Inorganic materials 0.000 description 10
- -1 hydrazide Chemical compound 0.000 description 9
- 229910052737 gold Inorganic materials 0.000 description 8
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 7
- 230000035939 shock Effects 0.000 description 7
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 6
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- 238000007654 immersion Methods 0.000 description 6
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 5
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- 239000003094 microcapsule Substances 0.000 description 5
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 229920001296 polysiloxane Polymers 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 3
- 239000011162 core material Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000002923 metal particle Substances 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920000768 polyamine Chemical class 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229910002026 crystalline silica Inorganic materials 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Wire Bonding (AREA)
- Adhesive Tapes (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Combinations Of Printed Boards (AREA)
Abstract
Description
本発明は、例えばフリップチップ実装方式により半導体チップを基板と接着剤で接着固定すると共に両者の電極同士を電気的に接続するために使用される回路部材接続用接着剤に関する。 The present invention relates to an adhesive for connecting a circuit member, which is used for bonding and fixing a semiconductor chip to a substrate with an adhesive by, for example, a flip chip mounting method and electrically connecting both electrodes.
半導体実装分野では、低コスト化・高精化に対応した新しい実装形態として、ICチップを直接プリント基板やフレキシブル配線板に搭載するフリップチップ実装が注目されている。フリップチップ実装方式としては、チップの端子にはんだバンプを設け、はんだ接続を行う方式や、導電性接着剤を介して電気的接続を行う方式が知られている。これらの方式では、接続するチップと基板の熱膨張係数差に基づくストレスが、各種環境下に曝した場合、接続界面で発生し接続信頼性が低下するという問題がある。このため、接続界面のストレスを緩和する目的で一般にエポキシ樹脂系のアンダフィル材をチップ/基板の間隙に注入する方式が検討されている。しかし、このアンダフィルの注入工程は、プロセスを煩雑化し、生産性、コストの面で不利になるという問題がある。このような問題を解決すべく最近では、異方導電性と封止機能を有する異方導電性接着剤を用いたフリップチップ実装が、プロセス簡易性という観点から注目されている。 In the semiconductor mounting field, flip chip mounting, in which an IC chip is directly mounted on a printed circuit board or a flexible wiring board, has attracted attention as a new mounting form corresponding to cost reduction and high precision. As the flip chip mounting method, there are known a method in which solder bumps are provided on the terminals of the chip to perform solder connection, and a method in which electrical connection is made through a conductive adhesive. In these methods, there is a problem that when the stress based on the difference in thermal expansion coefficient between the chip to be connected and the substrate is exposed to various environments, it is generated at the connection interface and connection reliability is lowered. For this reason, a method of injecting an epoxy resin-based underfill material into the gap between the chip and the substrate is generally studied for the purpose of alleviating the stress at the connection interface. However, the underfill injection process complicates the process and is disadvantageous in terms of productivity and cost. Recently, flip-chip mounting using an anisotropic conductive adhesive having anisotropic conductivity and a sealing function has attracted attention from the viewpoint of process simplicity in order to solve such problems.
しかしながら、チップを、異方導電接着剤を介して直接基板に搭載する場合、温度サイクル試験下ではチップと基板の熱膨張係数差に基づくストレスが接続部において生じ、熱衝撃試験、PCT試験、はんだバス浸漬試験などの信頼性試験を行うと接続抵抗の増大や接着剤の剥離が生じるという問題がある。また、チップの接続端子に突起電極が形成されている場合では、信頼性試験においてチップと基板の熱膨張係数差に基づくストレスが突起電極とチップ界面に集中し、突起電極がチップ電極界面から剥離し、導通不良が生じるという問題がある。本発明は、接続部での接続抵抗の増大や接着剤の剥離がなく、接続信頼性が大幅に向上する回路板を提供するものである。 However, when the chip is directly mounted on the substrate via the anisotropic conductive adhesive, stress based on the difference in thermal expansion coefficient between the chip and the substrate is generated in the connection part under the temperature cycle test, and the thermal shock test, PCT test, solder When a reliability test such as a bath immersion test is performed, there is a problem in that the connection resistance increases and the adhesive peels off. In addition, when a protruding electrode is formed on the connection terminal of the chip, stress based on the difference in thermal expansion coefficient between the chip and the substrate is concentrated in the reliability test, and the protruding electrode is peeled off from the chip electrode interface. However, there is a problem that poor conduction occurs. The present invention provides a circuit board that does not increase connection resistance at the connection portion and does not peel off the adhesive, and greatly improves connection reliability.
本発明の回路部材接続用接着剤は、相対向する回路電極間に介在され、相対向する回路電極を加圧し加圧方向の電極間を電気的に接続する回路部材接続用接着剤であって、接着剤樹脂組成物100重量部に対し、平均粒径が3ミクロン以下である無機質充填材を10〜200重量部含有することを特徴とするものである。 The adhesive for connecting a circuit member of the present invention is an adhesive for connecting a circuit member that is interposed between opposing circuit electrodes, pressurizes the opposing circuit electrodes, and electrically connects the electrodes in the pressurizing direction. In addition, 10 to 200 parts by weight of an inorganic filler having an average particle diameter of 3 microns or less is contained with respect to 100 parts by weight of the adhesive resin composition.
接着剤には無機充填材の平均粒径に比べて平均粒径の大きい導電粒子が0.1〜30体積%、好ましくは0.2〜20体積%含有されていても良い。接着剤樹脂組成物は硬化後の40℃での弾性率が30〜1500MPaであるものが好ましく、接着剤樹脂組成物は少なくともエポキシ樹脂、アクリルゴム、潜在性硬化剤を含有し、フィルム状である回路部材接続用接着剤が好ましい。アクリルゴムは、その分子中にグリシジルエーテル基を含有しているものが使用される。 The adhesive may contain 0.1 to 30% by volume, preferably 0.2 to 20% by volume of conductive particles having a larger average particle size than the average particle size of the inorganic filler. The adhesive resin composition preferably has an elastic modulus at 40 ° C. of 30 to 1500 MPa after curing, and the adhesive resin composition contains at least an epoxy resin, an acrylic rubber, and a latent curing agent, and is in the form of a film. A circuit member connecting adhesive is preferred. Acrylic rubber having a glycidyl ether group in its molecule is used.
本発明の接着剤によれば、従来の接着剤のように熱膨張係数が大きくないため、チップとACF界面でのストレスを緩和できる他、さらに接着樹脂組成物として40℃での弾性率が30〜1500MPaである場合には、さらに接着樹脂組成物によって熱衝撃、PCTやはんだバス浸漬試験などの信頼性試験において生じるストレスを吸収できるため、信頼性試験後においても接続部での接続抵抗の増大や接着剤の剥離がなく、接続信頼性が大幅に向上する。また、本発明の接着剤は、熱膨張係数が小さく、チップとACF界面でのストレスを緩和できることから、チップと基板を接着剤を介して接続する際にチップの電極パッドに突起電極を設けた場合、温度サイクル試験下での突起電極の電極パッドからの剥離を大幅に低減できる。したがって、本発明の接着剤は、LCDパネルとTAB、TABとフレキシブル回路基板、LCDパネルとICチップ、ICチップとプリント基板とを接続時の加圧方向にのみ電気的に接続するために好適に用いられる。 According to the adhesive of the present invention, since the coefficient of thermal expansion is not as large as that of the conventional adhesive, the stress at the interface between the chip and the ACF can be relieved, and the elastic modulus at 40 ° C. is 30 as an adhesive resin composition. In the case of ˜1500 MPa, the adhesive resin composition can absorb stress generated in reliability tests such as thermal shock, PCT and solder bath immersion tests, and thus increase the connection resistance at the connection even after the reliability test And there is no peeling of adhesive, and connection reliability is greatly improved. Further, since the adhesive of the present invention has a small thermal expansion coefficient and can relieve stress at the interface between the chip and the ACF, a protruding electrode is provided on the electrode pad of the chip when connecting the chip and the substrate via the adhesive. In this case, peeling of the protruding electrode from the electrode pad under the temperature cycle test can be greatly reduced. Therefore, the adhesive of the present invention is suitable for electrically connecting the LCD panel and TAB, TAB and flexible circuit board, LCD panel and IC chip, and IC chip and printed board only in the pressurizing direction at the time of connection. Used.
本発明において用いられる回路部材として半導体チップ、プリント基板、ポリイミドやポリエステルを基材としたフレキシル配線板があげられる。半導体チップや基板の電極パッド上には、めっきで形成されるバンプや金ワイヤの先端をトーチ等により溶融させ、金ボールを形成し、このボールを電極パッド上に圧着した後、ワイヤを切断して得られるワイヤバンプなどの突起電極を設け、接続端子として用いることができる。 Examples of the circuit member used in the present invention include a semiconductor chip, a printed circuit board, and a flexible wiring board based on polyimide or polyester. On the electrode pad of the semiconductor chip or substrate, the bump formed by plating or the tip of the gold wire is melted with a torch or the like to form a gold ball, and after the ball is pressed onto the electrode pad, the wire is cut. Protruding electrodes such as wire bumps obtained in this manner can be provided and used as connection terminals.
本発明において用いられる接着剤樹脂組成物としては、エポキシ樹脂とイミダゾール系、ヒドラジド系、三フッ化ホウ素−アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩、ジシアンジアミド等の潜在性硬化剤の混合物が用いられ、回路部材の熱膨張係数差に基づくストレスを緩和するためには、接着後の40℃での弾性率が30〜1500MPaの接着剤樹脂組成物が好ましい。例えば、接続時の良好な流動性や高接続信頼性を得られる接着剤樹脂組成物として、エポキシ樹脂とイミダゾール系、ヒドラジド系、三フッ化ホウ素−アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩、ジシアンジアミド等の潜在性硬化剤の混合物に、接着後の40℃での弾性率が30〜1500MPaになるようにアクリルゴムを配合した接着剤があげられる。接着フィルム硬化物の弾性率は、例えば、レオロジ(株)製レオスペクトラDVE−4(引っぱりモード、周波数10Hz、5℃/minで昇温)を使用して測定できる。 As the adhesive resin composition used in the present invention, a mixture of an epoxy resin and a latent curing agent such as imidazole, hydrazide, boron trifluoride-amine complex, sulfonium salt, amine imide, polyamine salt, dicyandiamide or the like is used. In order to relieve stress based on the difference in thermal expansion coefficient of the circuit member, an adhesive resin composition having an elastic modulus at 40 ° C. of 30 to 1500 MPa after bonding is preferable. For example, as an adhesive resin composition that can obtain good fluidity at connection and high connection reliability, epoxy resin and imidazole, hydrazide, boron trifluoride-amine complex, sulfonium salt, amine imide, polyamine salt, Examples of the adhesive include a mixture of latent curing agents such as dicyandiamide and an acrylic rubber blended so that the elastic modulus at 40 ° C. after bonding is 30 to 1500 MPa. The elastic modulus of the cured adhesive film can be measured by using, for example, Rheospectra DVE-4 manufactured by Rheology Co., Ltd. (pull mode, temperature rising at 10 Hz, 5 ° C./min).
本発明で用いるアクリルゴムとしては、アクリル酸、アクリル酸エステル、メタクリル酸エステルまたはアクリロニトリルのうち少なくともひとつをモノマー成分とした重合体または共重合体があげられ、中でもグリシジルエーテル基を含有するグリシジルアクリレートやグリシジルメタクリレートを含む共重合体系アクリルゴムが好適に用いられる。これらアクリルゴムの分子量は、接着剤の凝集力を高める点から20万以上が好ましい。アクリルゴムの接着剤中の配合量は、15wt%以下であると接着後の40℃での弾性率が1500MPaを越えてしまい、また40wt%以上になると低弾性率化は図れるが接続時の溶融粘度が高くなり接続電極界間、または接続電極と導電粒子界面の溶融接着剤の排除性が低下するため、接続電極間または接続電極と導電粒子間の電気的導通を確保できなくなる。このため、アクリル配合量としては15〜40wt%が好ましい。接着剤に配合されたこれらのアクリルゴムは、ゴム成分に起因する誘電正接のピーク温度が40〜60℃付近にあるため、接着剤の低弾性率化を図ることができる。また、接着剤にはフィルム形成性を容易にするためにフェノキシ樹脂などの熱可塑性樹脂を配合することもできる。特に、フェノキシ樹脂は、エポキシ樹脂と構造が類似しているため、エポキシ樹脂との相溶性、接着性に優れるなどの特徴を有するので好ましい。フィルム形成は、これら少なくともエポキシ樹脂、アクリルゴム、フェノキシ樹脂、潜在性硬化剤からなる接着剤樹脂組成物と導電粒子を有機溶剤に溶解あるいは分散により液状化して、剥離性基材上に塗布し、硬化剤の活性温度以下で溶剤を除去することにより行われる。この時用いる溶剤は、芳香族炭化水素系と含酸素系の混合溶剤が材料の溶解性を向上させるため好ましい。 Examples of the acrylic rubber used in the present invention include a polymer or copolymer having at least one of acrylic acid, acrylic acid ester, methacrylic acid ester or acrylonitrile as a monomer component. Among them, glycidyl acrylate containing a glycidyl ether group, A copolymer acrylic rubber containing glycidyl methacrylate is preferably used. The molecular weight of these acrylic rubbers is preferably 200,000 or more from the viewpoint of increasing the cohesive strength of the adhesive. If the blending amount of acrylic rubber in the adhesive is 15 wt% or less, the elastic modulus at 40 ° C. after bonding exceeds 1500 MPa, and if it exceeds 40 wt%, the elastic modulus can be reduced, but melting at the time of connection Since the viscosity increases and the exclusion of the molten adhesive between the connection electrode boundaries or at the interface between the connection electrode and the conductive particles is reduced, it becomes impossible to ensure electrical continuity between the connection electrodes or between the connection electrodes and the conductive particles. For this reason, as an acrylic compounding quantity, 15-40 wt% is preferable. Since these acrylic rubbers blended in the adhesive have a peak temperature of dielectric loss tangent due to the rubber component in the vicinity of 40 to 60 ° C., the elastic modulus of the adhesive can be reduced. In addition, a thermoplastic resin such as a phenoxy resin can be blended in the adhesive to facilitate film formation. In particular, the phenoxy resin is preferable because it has a similar structure to the epoxy resin and has characteristics such as excellent compatibility with the epoxy resin and excellent adhesion. Film formation is liquefied by dissolving or dispersing the adhesive resin composition composed of at least epoxy resin, acrylic rubber, phenoxy resin, and latent curing agent and conductive particles in an organic solvent, and applied to a peelable substrate. It is carried out by removing the solvent below the activation temperature of the curing agent. The solvent used at this time is preferably an aromatic hydrocarbon-based and oxygen-containing mixed solvent because the solubility of the material is improved.
本発明に用いられる無機質充填材としては、特に限定するものではなく、例えば、溶融シリカ、結晶質シリカ、ケイ酸カルシウム、アルミナ、炭酸カルシウム等の粉体があげられる。無機充填材の配合量は、接着剤樹脂組成物100重量部に対して10〜200重量部であり、熱膨張係数を低下させるには配合量が大きいほど効果的であるが、多量に配合すると接着性や接続部での接着剤の排除性低下に基づく導通不良が発生し、配合量が小さいと熱膨張係数を充分低下できないため、20〜90重量部が好ましい。また、その平均粒径は、接続部での導通不良を防止する目的で3ミクロン以下にするのが好ましい。また接続時の樹脂の流動性の低下及びチップのパッシベーション膜のダメージを防ぐ目的で球状フィラを用いることが望ましい。 The inorganic filler used in the present invention is not particularly limited, and examples thereof include powders such as fused silica, crystalline silica, calcium silicate, alumina, and calcium carbonate. The blending amount of the inorganic filler is 10 to 200 parts by weight with respect to 100 parts by weight of the adhesive resin composition, and the larger the blending amount, the more effective it is to reduce the thermal expansion coefficient. The conduction failure based on the adhesiveness and the elimination of the adhesive at the connecting portion occurs, and if the blending amount is small, the thermal expansion coefficient cannot be lowered sufficiently, so 20 to 90 parts by weight is preferable. The average particle size is preferably 3 microns or less for the purpose of preventing poor conduction at the connection. Further, it is desirable to use a spherical filler for the purpose of preventing a decrease in resin fluidity at the time of connection and damage to the passivation film of the chip.
本発明の接着剤には、チップのバンプや回路電極の高さばらつきを吸収するために、異方導電性を積極的に付与する目的で導電粒子を分散することもできる。本発明において導電粒子は、例えばAu、Ni、Ag、Cu、Wやはんだなどの金属粒子またはこれらの金属粒子表面に金やパラジウムなどの薄膜をめっきや蒸着によって形成した金属粒子であり、ポリスチレン等の高分子の球状の核材にNi、Cu、Au、はんだ等の導電層を設けた導電粒子を用いることができる。粒径は基板の電極の最小の間隔よりも小さいことが必要で、電極の高さばらつきがある場合、高さばらつきよりも大きいことが好ましく、かつ無機質充填材の平均粒径より大きいことが好ましく、1μm〜10μmが好ましい。また、接着剤に分散される導電粒子量は、0.1〜30体積%であり、好ましくは0.2〜15体積%である。本発明の回路部材接続用接着剤がフィルム状接着剤の場合膜厚は、特に限定するものではないが、第一及び第二の回路部材間のギャップに比べ、厚いほうが好ましく、一般にはギャップに対して5μm以上厚い膜厚が望ましい。 In the adhesive of the present invention, conductive particles can be dispersed for the purpose of positively imparting anisotropic conductivity in order to absorb the height variation of the bumps of the chip and the circuit electrodes. In the present invention, the conductive particles are, for example, metal particles such as Au, Ni, Ag, Cu, W and solder or metal particles formed by plating or vapor deposition of a thin film such as gold or palladium on the surface of these metal particles, such as polystyrene. Conductive particles in which a conductive layer of Ni, Cu, Au, solder, or the like is provided on a spherical core material of the above polymer can be used. The particle size needs to be smaller than the minimum distance between the electrodes on the substrate, and when there is a variation in the height of the electrodes, it is preferably larger than the variation in height, and preferably larger than the average particle size of the inorganic filler. 1 μm to 10 μm is preferable. The amount of conductive particles dispersed in the adhesive is 0.1 to 30% by volume, preferably 0.2 to 15% by volume. When the adhesive for connecting a circuit member of the present invention is a film adhesive, the film thickness is not particularly limited, but it is preferably thicker than the gap between the first and second circuit members, and generally in the gap. On the other hand, a film thickness of 5 μm or more is desirable.
実施例1
フェノキシ樹脂50gと、ブチルアクリレート(40部)、エチルアクリレート(30部)、アクリロニトリル(30部)及びグリシジルメタクリレート(3部)を共重合したアクリルゴム(分子量:85万)125gを酢酸エチル400gに溶解し、30%溶液を得た。ついで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量185)325gをこの溶液に加え、撹拌し、溶融シリカ(平均粒子径:0.5μm)を接着剤樹脂組成物100重量部に対して40重量部、さらにニッケル粒子(直径:3μm)を2vol%分散してフィルム塗工用溶液を得た。この溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み40μm)にロールコータで塗布し、100℃、10分乾燥し厚み45μmの接着フィルム1を作製した。なお、この接着フィルム1の溶融シリカ及びニッケル粒子を除いた接着剤樹脂組成物のみの動的粘弾性測定器で測定した40℃の弾性率は、800MPaであった。次に作製した接着フィルム1を用いて金バンプ(面積:80μm×80μm、スペース30μm、高さ:15μm、バンプ数288)付きチップ(10mm×10mm、厚み:0.5mm)とNi/AuめっきCu回路プリント基板の接続を以下に示すように行った。接着フィルム(12mm×12mm)をNi/AuめっきCu回路プリント基板(電極高さ:20μm、厚み:0.8mm)に80℃、10kgf/cm2で貼りつけた後、セパレータを剥離し、チップのバンプとNi/AuめっきCu回路プリント基板(厚み:0.8mm)の位置あわせを行った。ついで、180℃、30g/バンプ、20秒の条件でチップ上方から加熱、加圧を行い、本接続を行った。本接続後の接続抵抗は、1バンプあたり最高で6mΩ、平均で2mΩ、絶縁抵抗は108Ω以上であり、これらの値は−55〜125℃の熱衝撃試験1000サイクル処理、PCT試験(121℃、2気圧)200時間、260℃のはんだバス浸漬10秒後においても変化がなく、良好な接続信頼性を示した。
Example 1
50 g of phenoxy resin and 125 g of acrylic rubber (molecular weight: 850,000) copolymerized with butyl acrylate (40 parts), ethyl acrylate (30 parts), acrylonitrile (30 parts) and glycidyl methacrylate (3 parts) are dissolved in 400 g of ethyl acetate. To obtain a 30% solution. Next, 325 g of a liquid epoxy (epoxy equivalent 185) containing a microcapsule type latent curing agent is added to this solution and stirred, and fused silica (average particle size: 0.5 μm) is added to 100 parts by weight of the adhesive resin composition. On the other hand, 40 parts by weight and further 2 vol% of nickel particles (diameter: 3 μm) were dispersed to obtain a film coating solution. This solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater, and dried at 100 ° C. for 10 minutes to produce an adhesive film 1 having a thickness of 45 μm. In addition, the 40 degreeC elastic modulus measured with the dynamic viscoelasticity measuring device only of the adhesive resin composition except the fused silica and nickel particle of this adhesive film 1 was 800 MPa. Next, using the produced adhesive film 1, a chip (10 mm × 10 mm, thickness: 0.5 mm) with gold bumps (area: 80 μm × 80 μm, space 30 μm, height: 15 μm, number of bumps 288) and Ni / Au plated Cu The circuit printed circuit board was connected as shown below. An adhesive film (12 mm × 12 mm) was attached to a Ni / Au plated Cu circuit printed board (electrode height: 20 μm, thickness: 0.8 mm) at 80 ° C. and 10 kgf / cm 2 , and then the separator was peeled off. The bumps and Ni / Au plated Cu circuit printed circuit board (thickness: 0.8 mm) were aligned. Next, the main connection was performed by heating and pressing from above the chip under the conditions of 180 ° C., 30 g / bump, and 20 seconds. The connection resistance after this connection is a maximum of 6 mΩ per bump, an average of 2 mΩ, and an insulation resistance of 10 8 Ω or more. These values are from the thermal shock test at −55 to 125 ° C., 1000 cycle treatment, PCT test (121 No change even after 10 seconds of immersion in a solder bath at 260 ° C. for 200 hours at 2 ° C., and good connection reliability was exhibited.
実施例2
フェノキシ樹脂50gと、ブチルアクリレート(40部)、エチルアクリレート(30部)、アクリロニトリル(30部)及びグリシジルメタクリレート(3部)を共重合したアクリルゴム(分子量:85万)175gを酢酸エチル525gに溶解し、30%溶液を得た。ついで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量185)275gをこの溶液に加え、撹拌し、溶融シリカ(平均粒子径:0.5μm)を接着樹脂組成物100重量部に対して60重量部、さらにニッケル粒子(直径:3μm)を2vol%分散してフィルム塗工用溶液を得た。この溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み40μm)にロールコータで塗布し、100℃、10分乾燥し厚み45μmの接着フィルム2を作製した。この接着フィルム2の溶融シリカ及びニッケル粒子を除いた接着剤樹脂組成物のみの動的粘弾性測定器で測定した40℃の弾性率は、400MPaであった。次に作製した接着フィルム2を用いて金バンプ(面積:80μm×80μm、スペース30μm、高さ:15μm、バンプ数288)付きチップ(10mm×10mm)とNi/AuめっきCu回路プリント基板(電極高さ:20μm、厚み:0.8mm)の接続を以下に示すように行った。接着フィルム(12mm×12mm)をNi/AuめっきCu回路プリント基板に80℃、10kgf/cm2で貼りつけた後、セパレータを剥離し、チップのバンプとNi/AuめっきCu回路プリント基板の位置あわせを行った。ついで、170℃、30g/バンプ、20秒の条件でチップ上方から加熱、加圧を行い、本接続を行った。本接続後の接続抵抗は、1バンプあたり最高で18mΩ、平均で8mΩ、絶縁抵抗は108Ω以上であり、これらの値は−55〜125℃の熱衝撃試験1000サイクル処理、PCT試験(121℃、2気圧)200時間、260℃のはんだバス浸漬10秒後においても変化がなく、良好な接続信頼性を示した。
Example 2
50 g of phenoxy resin and 175 g of acrylic rubber (molecular weight: 850,000) copolymerized with butyl acrylate (40 parts), ethyl acrylate (30 parts), acrylonitrile (30 parts) and glycidyl methacrylate (3 parts) are dissolved in 525 g of ethyl acetate. To obtain a 30% solution. Next, 275 g of a liquid epoxy (epoxy equivalent 185) containing a microcapsule type latent curing agent is added to this solution and stirred, and fused silica (average particle size: 0.5 μm) is added to 100 parts by weight of the adhesive resin composition. 60 parts by weight, and further 2 vol% of nickel particles (diameter: 3 μm) were dispersed to obtain a film coating solution. This solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater, and dried at 100 ° C. for 10 minutes to produce an adhesive film 2 having a thickness of 45 μm. The elastic modulus at 40 ° C. measured by a dynamic viscoelasticity measuring instrument using only the adhesive resin composition excluding fused silica and nickel particles of the adhesive film 2 was 400 MPa. Next, using the produced adhesive film 2, a chip (10 mm × 10 mm) with gold bumps (area: 80 μm × 80 μm, space 30 μm, height: 15 μm, number of bumps 288) and Ni / Au plated Cu circuit printed circuit board (electrode height) Connection: 20 μm, thickness: 0.8 mm) was performed as shown below. Adhesive film (12mm x 12mm) was attached to Ni / Au plated Cu circuit printed circuit board at 80 ° C, 10kgf / cm 2 , separator was peeled off, and chip bump and Ni / Au plated Cu circuit printed circuit board were aligned Went. Next, the main connection was made by heating and pressing from above the chip under the conditions of 170 ° C., 30 g / bump, and 20 seconds. The connection resistance after this connection is 18 mΩ at the maximum per bump, the average is 8 mΩ, and the insulation resistance is 10 8 Ω or more. These values are the thermal shock test at −55 to 125 ° C., 1000 cycle treatment, PCT test (121 No change even after 10 seconds of immersion in a solder bath at 260 ° C. for 200 hours at 2 ° C., and good connection reliability was exhibited.
実施例3
フェノキシ樹脂50g、ブチルアクリレート(40部)、エチルアクリレート(30部)、アクリロニトリル(30部)及びグリシジルメタクリレート(3部)を共重合したアクリルゴム(分子量:85万)100gを酢酸エチル350gに溶解し、30%溶液を得た。ついで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量185)350gをこの溶液に加え、撹拌し、溶融シリカ(平均粒子径:0.5μm)を接着剤樹脂組成物100重量部に対して60重量部、さらにポリスチレン系核体(直径:5μm)の表面にAu層を形成した導電粒子を5vol%分散してフィルム塗工用溶液を得た。この溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み40μm)にロールコータで塗布し、100℃10分乾燥し厚み45μmの接着フィルム3を作製した。この接着フィルム3の溶融シリカ及びニッケル粒子を除いた接着剤樹脂組成物のみの動的粘弾性測定器で測定した40℃の弾性率は、1000MPaであった。次に作製した接着フィルム3を用いて金バンプ(面積:80μm×80μm、スペース30μm、高さ:15μm、バンプ数288)付きチップ(10mm×10mm、厚み:0.5mm)とNi/AuめっきCu回路プリント基板(電極高さ:20μm、厚み:0.8mm)の接続を以下に示すように行った。接着フィルム3(12mm×12mm)をNi/AuめっきCu回路プリント基板に80℃、10kgf/cm2で貼りつけた後、セパレータを剥離し、チップのバンプとNi/AuめっきCu回路プリント基板の位置あわせを行った。ついで、170℃、30g/バンプ、20秒の条件でチップ上方から加熱、加圧を行い、本接続を行った。接続抵抗は、1バンプあたり最高で5mΩ、平均で1.5mΩ、絶縁抵抗は108Ω以上であり、これらの値は−55〜125℃の熱衝撃試験1000サイクル処理、PCT試験(121℃、2気圧)200時間、260℃のはんだバス浸漬10秒後においても変化がなく、良好な接続信頼性を示した。
Example 3
50 g of phenoxy resin, 100 g of acrylic rubber (molecular weight: 850,000) copolymerized with butyl acrylate (40 parts), ethyl acrylate (30 parts), acrylonitrile (30 parts) and glycidyl methacrylate (3 parts) were dissolved in 350 g of ethyl acetate. A 30% solution was obtained. Next, 350 g of a liquid epoxy (epoxy equivalent 185) containing a microcapsule type latent curing agent is added to this solution and stirred, and fused silica (average particle size: 0.5 μm) is added to 100 parts by weight of the adhesive resin composition. On the other hand, 60 vol parts, and further 5 vol% of conductive particles having an Au layer formed on the surface of a polystyrene core (diameter: 5 μm) were dispersed to obtain a film coating solution. This solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater and dried at 100 ° C. for 10 minutes to produce an adhesive film 3 having a thickness of 45 μm. The elastic modulus at 40 ° C. measured by a dynamic viscoelasticity measuring device using only the adhesive resin composition excluding fused silica and nickel particles of the adhesive film 3 was 1000 MPa. Next, using the produced adhesive film 3, a chip (10 mm × 10 mm, thickness: 0.5 mm) with gold bumps (area: 80 μm × 80 μm, space 30 μm, height: 15 μm, number of bumps 288) and Ni / Au plated Cu A circuit printed board (electrode height: 20 μm, thickness: 0.8 mm) was connected as shown below. Adhesive film 3 (12 mm × 12 mm) was attached to a Ni / Au plated Cu circuit printed board at 80 ° C. and 10 kgf / cm 2 , then the separator was peeled off, and the chip bumps and the positions of the Ni / Au plated Cu circuit printed board Together. Next, the main connection was made by heating and pressing from above the chip under the conditions of 170 ° C., 30 g / bump, and 20 seconds. The connection resistance is 5 mΩ at the maximum per bump, 1.5 mΩ on average, and the insulation resistance is 10 8 Ω or more. These values are 1000 cycles of thermal shock test at −55 to 125 ° C., PCT test (121 ° C., 2 atmospheres) No change even after 200 seconds of immersion in a solder bath at 260 ° C. for 200 hours, showing good connection reliability.
実施例4
フェノキシ樹脂50gと、ブチルアクリレート(40部)、エチルアクリレート(30部)、アクリロニトリル(30部)及びグリシジルメタクリレート(3部)を共重合したアクリルゴム(分子量:85万)100gを酢酸エチル350gに溶解し、30%溶液を得た。ついで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量185)350gをこの溶液に加え、撹拌し、溶融シリカ(平均粒子径:0.5μm)を接着剤樹脂組成物100重量部に対して40重量部、さらにポリスチレン系核体(直径:5μm)の表面にAu層を形成した導電粒子を5vol%分散してフィルム塗工用溶液を得た。この溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み40μm)にロールコータで塗布し、100℃10分乾燥し厚み45μmの接着フィルム4を作製した。この接着フィルム4の溶融シリカ及びニッケル粒子を除いた接着樹脂組成物のみの動的粘弾性測定器で測定した40℃の弾性率は、1000MPaであった。また、接着フィルム4のTMA法で測定した110〜130℃の平均熱膨張係数は111ppmであった。次に作製した接着フィルム4を用いて金バンプ(面積:50μm×50μm、362バンプ、スペース:20μm、高さ:15μm)付きチップ(1.7mm×17mm、厚み:0.5mm)とITO回路付ガラス基板(厚み:1.1mm)の接続を以下に示すように行った。接着フィルム4(12mm×12mm)をITO回路付ガラス基板に80℃、10kgf/cm2で貼りつけた後、セパレータを剥離し、チップのバンプとITO回路付ガラス基板の位置あわせを行った。ついで、180℃、40g/バンプ、20秒の条件でチップ上方から加熱、加圧を行い、本接続を行った。接続抵抗は、1バンプあたり最高で150mΩ、平均で80mΩ、絶縁抵抗は108Ω以上であり、これらの値は−40〜100℃の熱衝撃試験1000サイクル処理、PCT試験(105℃、1.2気圧)100時間においても変化がなく、良好な接続信頼性を示した。
Example 4
50 g of phenoxy resin and 100 g of acrylic rubber (molecular weight: 850,000) copolymerized with butyl acrylate (40 parts), ethyl acrylate (30 parts), acrylonitrile (30 parts) and glycidyl methacrylate (3 parts) are dissolved in 350 g of ethyl acetate. To obtain a 30% solution. Next, 350 g of a liquid epoxy (epoxy equivalent 185) containing a microcapsule type latent curing agent is added to this solution and stirred, and fused silica (average particle size: 0.5 μm) is added to 100 parts by weight of the adhesive resin composition. On the other hand, conductive particles having an Au layer formed on the surface of 40 parts by weight and a polystyrene core (diameter: 5 μm) were dispersed by 5 vol% to obtain a film coating solution. This solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater and dried at 100 ° C. for 10 minutes to produce an adhesive film 4 having a thickness of 45 μm. The elastic modulus at 40 ° C. measured by a dynamic viscoelasticity measuring instrument using only the adhesive resin composition excluding fused silica and nickel particles of the adhesive film 4 was 1000 MPa. Moreover, the average thermal expansion coefficient of 110-130 degreeC measured by TMA method of the adhesive film 4 was 111 ppm. Next, using the produced adhesive film 4, a chip (1.7 mm × 17 mm, thickness: 0.5 mm) with an gold bump (area: 50 μm × 50 μm, 362 bump, space: 20 μm, height: 15 μm) and an ITO circuit A glass substrate (thickness: 1.1 mm) was connected as shown below. The adhesive film 4 (12 mm × 12 mm) was attached to a glass substrate with an ITO circuit at 80 ° C. and 10 kgf / cm 2 , the separator was peeled off, and the chip bumps and the glass substrate with an ITO circuit were aligned. Next, the main connection was made by heating and pressing from above the chip under the conditions of 180 ° C., 40 g / bump, and 20 seconds. The connection resistance is a maximum of 150 mΩ per bump, an average of 80 mΩ, and an insulation resistance of 10 8 Ω or more. These values are the thermal shock test 1000 cycle treatment at −40 to 100 ° C., the PCT test (105 ° C., 1.. Even at 100 atm (2 atm), there was no change and good connection reliability was shown.
実施例5
フェノキシ樹脂50gと、ブチルアクリレート(40部)、エチルアクリレート(30部)、アクリロニトリル(30部)及びグリシジルメタクリレート(3部)を共重合したアクリルゴム(分子量:85万)125gを酢酸エチル400gに溶解し、30%溶液を得た。ついで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量185)325gをこの溶液に加え、撹拌し、溶融シリカ(平均粒子径:0.5μm)を接着剤樹脂組成物100重量部に対して60重量部、さらにニッケル粒子(直径:3μm)を2vol%分散してフィルム塗工用溶液を得た。この溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み40μm)にロールコータで塗布し、100℃10分乾燥し厚み45μmの接着フィルム5を作製した。この接着フィルム5の溶融シリカ及びニッケル粒子を除いた接着剤樹脂組成物のみの動的粘弾性測定器で測定した40℃の弾性率は、800MPaであった。次に、作製した接着フィルム5を用いてバンプレスチップ(10mm×10mm、厚み:0.5mm、パッド電極:Al、パッド径:120μm)と回路上にNi/AuめっきCuバンプ(直径:100μm、スペース50μm、高さ:15μm、バンプ数200)を形成したNi/AuめっきCu回路プリント基板の接続を以下に示すように行った。接着フィルム5(12mm×12mm)をNi/AuめっきCu回路プリント基板(電極高さ:20μm、厚み:0.8mm)に80℃、10kgf/cm2で貼りつけた後、セパレータを剥離し、チップのAlパッドとNi/AuめっきCuバンプ付Ni/AuめっきCu回路プリント基板(厚み:0.8mm)の位置あわせを行った。ついで、180℃、30g/バンプ、20秒の条件でチップ上方から加熱、加圧を行い、本接続を行った。本接続後の接続抵抗は、1バンプあたり最高で8mΩ、平均で4mΩ、絶縁抵抗は108Ω以上であり、これらの値は−55〜125℃の熱衝撃試験1000サイクル処理、PCT試験(121℃、2気圧)200時間、260℃のはんだバス浸漬10秒後においても変化がなく、良好な接続信頼性を示した。
Example 5
50 g of phenoxy resin and 125 g of acrylic rubber (molecular weight: 850,000) copolymerized with butyl acrylate (40 parts), ethyl acrylate (30 parts), acrylonitrile (30 parts) and glycidyl methacrylate (3 parts) are dissolved in 400 g of ethyl acetate. To obtain a 30% solution. Next, 325 g of a liquid epoxy (epoxy equivalent 185) containing a microcapsule type latent curing agent is added to this solution and stirred, and fused silica (average particle size: 0.5 μm) is added to 100 parts by weight of the adhesive resin composition. On the other hand, 60 parts by weight and 2 vol% of nickel particles (diameter: 3 μm) were dispersed to obtain a film coating solution. This solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater and dried at 100 ° C. for 10 minutes to produce an adhesive film 5 having a thickness of 45 μm. The elastic modulus at 40 ° C. measured by a dynamic viscoelasticity measuring device using only the adhesive resin composition excluding fused silica and nickel particles of the adhesive film 5 was 800 MPa. Next, a bumpless chip (10 mm × 10 mm, thickness: 0.5 mm, pad electrode: Al, pad diameter: 120 μm) and Ni / Au plated Cu bumps (diameter: 100 μm, The connection of the Ni / Au plated Cu circuit printed circuit board on which a space of 50 μm, a height of 15 μm, and a number of bumps of 200) was formed was performed as shown below. The adhesive film 5 (12 mm × 12 mm) was attached to a Ni / Au plated Cu circuit printed circuit board (electrode height: 20 μm, thickness: 0.8 mm) at 80 ° C. and 10 kgf / cm 2 , and then the separator was peeled off to form a chip. The Ni pad and the Ni / Au plated Cu circuit printed board (thickness: 0.8 mm) with Ni / Au plated Cu bumps were aligned. Next, the main connection was performed by heating and pressing from above the chip under the conditions of 180 ° C., 30 g / bump, and 20 seconds. The connection resistance after this connection is a maximum of 8 mΩ per bump, an average of 4 mΩ, and an insulation resistance of 10 8 Ω or more, and these values are the thermal shock test at −55 to 125 ° C., 1000 cycle treatment, PCT test (121 No change even after 10 seconds of immersion in a solder bath at 260 ° C. for 200 hours at 2 ° C., and good connection reliability was exhibited.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006307143A JP2007113012A (en) | 2006-11-13 | 2006-11-13 | Adhesive for connecting circuit part |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006307143A JP2007113012A (en) | 2006-11-13 | 2006-11-13 | Adhesive for connecting circuit part |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03200597A Division JP4440352B2 (en) | 1997-02-17 | 1997-02-17 | Adhesive for connecting circuit members |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007204553A Division JP4928378B2 (en) | 2007-08-06 | 2007-08-06 | Adhesive for connecting circuit members |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007113012A true JP2007113012A (en) | 2007-05-10 |
Family
ID=38095482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006307143A Pending JP2007113012A (en) | 2006-11-13 | 2006-11-13 | Adhesive for connecting circuit part |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007113012A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007335889A (en) * | 2007-08-06 | 2007-12-27 | Hitachi Chem Co Ltd | Adhesive for circuit member connection |
JP2009147361A (en) * | 2009-02-16 | 2009-07-02 | Hitachi Chem Co Ltd | Adhesive for circuit member connection, circuit board, and manufacturing method thereof |
JP2010016383A (en) * | 2009-07-03 | 2010-01-21 | Hitachi Chem Co Ltd | Circuit member connecting adhesive, circuit board, and its manufacturing method |
JP2010287835A (en) * | 2009-06-15 | 2010-12-24 | Hitachi Chem Co Ltd | Method of manufacturing semiconductor circuit member |
US7879445B2 (en) | 1998-08-13 | 2011-02-01 | Hitachi Chemical Company, Ltd. | Adhesive for bonding circuit members, circuit board and process for its production |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62177082A (en) * | 1986-01-30 | 1987-08-03 | Toray Ind Inc | Anisotropic electrically conductive adhesive |
JPH02206670A (en) * | 1989-02-06 | 1990-08-16 | Hitachi Chem Co Ltd | Heat conductive adhesive composition for connecting circuit and heat conductive bonding film having anisotropic electric conductivity |
JPH03223380A (en) * | 1990-01-30 | 1991-10-02 | Oki Electric Ind Co Ltd | Anisotropic conductive adhesive |
WO1996042107A1 (en) * | 1995-06-13 | 1996-12-27 | Hitachi Chemical Company, Ltd. | Semiconductor device, wiring board for mounting semiconductor and method of production of semiconductor device |
-
2006
- 2006-11-13 JP JP2006307143A patent/JP2007113012A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62177082A (en) * | 1986-01-30 | 1987-08-03 | Toray Ind Inc | Anisotropic electrically conductive adhesive |
JPH02206670A (en) * | 1989-02-06 | 1990-08-16 | Hitachi Chem Co Ltd | Heat conductive adhesive composition for connecting circuit and heat conductive bonding film having anisotropic electric conductivity |
JPH03223380A (en) * | 1990-01-30 | 1991-10-02 | Oki Electric Ind Co Ltd | Anisotropic conductive adhesive |
WO1996042107A1 (en) * | 1995-06-13 | 1996-12-27 | Hitachi Chemical Company, Ltd. | Semiconductor device, wiring board for mounting semiconductor and method of production of semiconductor device |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8273458B2 (en) | 1997-02-14 | 2012-09-25 | Hitachi Chemical Company, Ltd. | Adhesive for bonding circuit members, circuit board and process for its production |
US7879445B2 (en) | 1998-08-13 | 2011-02-01 | Hitachi Chemical Company, Ltd. | Adhesive for bonding circuit members, circuit board and process for its production |
US8252419B2 (en) | 1998-08-13 | 2012-08-28 | Hitachi Chemical Company, Ltd. | Adhesive for bonding circuit members, circuit board and process for its production |
US8273457B2 (en) | 1998-08-13 | 2012-09-25 | Hitachi Chemical Company, Ltd. | Adhesive for bonding circuit members, circuit board and process for its production |
JP2007335889A (en) * | 2007-08-06 | 2007-12-27 | Hitachi Chem Co Ltd | Adhesive for circuit member connection |
JP2009147361A (en) * | 2009-02-16 | 2009-07-02 | Hitachi Chem Co Ltd | Adhesive for circuit member connection, circuit board, and manufacturing method thereof |
JP4631979B2 (en) * | 2009-02-16 | 2011-02-16 | 日立化成工業株式会社 | Circuit member connecting adhesive, circuit board and manufacturing method thereof |
JP2010287835A (en) * | 2009-06-15 | 2010-12-24 | Hitachi Chem Co Ltd | Method of manufacturing semiconductor circuit member |
JP2010016383A (en) * | 2009-07-03 | 2010-01-21 | Hitachi Chem Co Ltd | Circuit member connecting adhesive, circuit board, and its manufacturing method |
JP4631984B2 (en) * | 2009-07-03 | 2011-02-16 | 日立化成工業株式会社 | Circuit member connecting adhesive, circuit board, and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3342703B2 (en) | Film adhesive for circuit connection and circuit board | |
JP4178565B2 (en) | Adhesive for connecting circuit members | |
JP2007113012A (en) | Adhesive for connecting circuit part | |
JPH10226769A (en) | Film adhesive and method for connection | |
JP4151081B2 (en) | Adhesive for connecting circuit members | |
JP4433564B2 (en) | Adhesive for circuit connection | |
JP4928378B2 (en) | Adhesive for connecting circuit members | |
JP4045620B2 (en) | Film adhesive for circuit connection | |
JP4440352B2 (en) | Adhesive for connecting circuit members | |
JP4514840B2 (en) | Adhesive for connecting circuit members | |
JP4631984B2 (en) | Circuit member connecting adhesive, circuit board, and manufacturing method thereof | |
JP4631979B2 (en) | Circuit member connecting adhesive, circuit board and manufacturing method thereof | |
JP4492692B2 (en) | Adhesive film for connecting circuit members | |
JP2009203478A (en) | Adhesive for connecting circuit member | |
JP5378261B2 (en) | Adhesive for connecting circuit members | |
JP3835584B2 (en) | Electronic component equipment | |
JP4815648B2 (en) | Film adhesive for circuit connection | |
JP3925746B2 (en) | Circuit board | |
JP4055583B2 (en) | Adhesive composition for circuit connection, circuit terminal connection method using the same, and circuit terminal connection structure | |
JP4631998B1 (en) | Circuit member connecting adhesive, circuit board, and manufacturing method thereof | |
JP2007107008A (en) | Film-shaped adhesive and method for producing laminate | |
JP3801341B2 (en) | Electronic component equipment | |
JP4407746B2 (en) | Adhesive for connecting circuit members | |
JP4725568B2 (en) | Film adhesive for circuit connection | |
JP2008115400A (en) | Adhesive for connecting circuit member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100518 |
|
A521 | Written amendment |
Effective date: 20100720 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Effective date: 20110614 Free format text: JAPANESE INTERMEDIATE CODE: A02 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110914 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Effective date: 20111101 Free format text: JAPANESE INTERMEDIATE CODE: A911 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Effective date: 20120113 Free format text: JAPANESE INTERMEDIATE CODE: A912 |