[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007113012A - Adhesive for connecting circuit part - Google Patents

Adhesive for connecting circuit part Download PDF

Info

Publication number
JP2007113012A
JP2007113012A JP2006307143A JP2006307143A JP2007113012A JP 2007113012 A JP2007113012 A JP 2007113012A JP 2006307143 A JP2006307143 A JP 2006307143A JP 2006307143 A JP2006307143 A JP 2006307143A JP 2007113012 A JP2007113012 A JP 2007113012A
Authority
JP
Japan
Prior art keywords
adhesive
solution
parts
connection
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006307143A
Other languages
Japanese (ja)
Inventor
Itsuo Watanabe
伊津夫 渡辺
Kenzo Takemura
賢三 竹村
Akira Nagai
朗 永井
Kazuhiro Isaka
和博 井坂
Osamu Watanabe
治 渡辺
Kazuyoshi Kojima
和良 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2006307143A priority Critical patent/JP2007113012A/en
Publication of JP2007113012A publication Critical patent/JP2007113012A/en
Pending legal-status Critical Current

Links

Landscapes

  • Wire Bonding (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adhesive enabling the manufacture of a circuit board having remarkably improved connection reliability while preventing the increase of the connection resistance and the peeling of adhesive at the connected part. <P>SOLUTION: A phenoxy resin and an acrylic rubber are dissolved in ethyl acetate. A liquid epoxy compound containing a microencapsulated latent curing agent is added to the solution and stirred. Fused silica and nickel particles are dispersed in the solution to obtain a solution for film coating use, and an adhesive film is produced from the solution. The adhesive film is pasted on an Ni/Au-plated Cu circuit printed board, the bump of a chip is positioned opposite to the Ni/Au-plated Cu circuit printed board and the assembly is heated and pressed to complete the connection work. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えばフリップチップ実装方式により半導体チップを基板と接着剤で接着固定すると共に両者の電極同士を電気的に接続するために使用される回路部材接続用接着剤に関する。   The present invention relates to an adhesive for connecting a circuit member, which is used for bonding and fixing a semiconductor chip to a substrate with an adhesive by, for example, a flip chip mounting method and electrically connecting both electrodes.

半導体実装分野では、低コスト化・高精化に対応した新しい実装形態として、ICチップを直接プリント基板やフレキシブル配線板に搭載するフリップチップ実装が注目されている。フリップチップ実装方式としては、チップの端子にはんだバンプを設け、はんだ接続を行う方式や、導電性接着剤を介して電気的接続を行う方式が知られている。これらの方式では、接続するチップと基板の熱膨張係数差に基づくストレスが、各種環境下に曝した場合、接続界面で発生し接続信頼性が低下するという問題がある。このため、接続界面のストレスを緩和する目的で一般にエポキシ樹脂系のアンダフィル材をチップ/基板の間隙に注入する方式が検討されている。しかし、このアンダフィルの注入工程は、プロセスを煩雑化し、生産性、コストの面で不利になるという問題がある。このような問題を解決すべく最近では、異方導電性と封止機能を有する異方導電性接着剤を用いたフリップチップ実装が、プロセス簡易性という観点から注目されている。   In the semiconductor mounting field, flip chip mounting, in which an IC chip is directly mounted on a printed circuit board or a flexible wiring board, has attracted attention as a new mounting form corresponding to cost reduction and high precision. As the flip chip mounting method, there are known a method in which solder bumps are provided on the terminals of the chip to perform solder connection, and a method in which electrical connection is made through a conductive adhesive. In these methods, there is a problem that when the stress based on the difference in thermal expansion coefficient between the chip to be connected and the substrate is exposed to various environments, it is generated at the connection interface and connection reliability is lowered. For this reason, a method of injecting an epoxy resin-based underfill material into the gap between the chip and the substrate is generally studied for the purpose of alleviating the stress at the connection interface. However, the underfill injection process complicates the process and is disadvantageous in terms of productivity and cost. Recently, flip-chip mounting using an anisotropic conductive adhesive having anisotropic conductivity and a sealing function has attracted attention from the viewpoint of process simplicity in order to solve such problems.

しかしながら、チップを、異方導電接着剤を介して直接基板に搭載する場合、温度サイクル試験下ではチップと基板の熱膨張係数差に基づくストレスが接続部において生じ、熱衝撃試験、PCT試験、はんだバス浸漬試験などの信頼性試験を行うと接続抵抗の増大や接着剤の剥離が生じるという問題がある。また、チップの接続端子に突起電極が形成されている場合では、信頼性試験においてチップと基板の熱膨張係数差に基づくストレスが突起電極とチップ界面に集中し、突起電極がチップ電極界面から剥離し、導通不良が生じるという問題がある。本発明は、接続部での接続抵抗の増大や接着剤の剥離がなく、接続信頼性が大幅に向上する回路板を提供するものである。   However, when the chip is directly mounted on the substrate via the anisotropic conductive adhesive, stress based on the difference in thermal expansion coefficient between the chip and the substrate is generated in the connection part under the temperature cycle test, and the thermal shock test, PCT test, solder When a reliability test such as a bath immersion test is performed, there is a problem in that the connection resistance increases and the adhesive peels off. In addition, when a protruding electrode is formed on the connection terminal of the chip, stress based on the difference in thermal expansion coefficient between the chip and the substrate is concentrated in the reliability test, and the protruding electrode is peeled off from the chip electrode interface. However, there is a problem that poor conduction occurs. The present invention provides a circuit board that does not increase connection resistance at the connection portion and does not peel off the adhesive, and greatly improves connection reliability.

本発明の回路部材接続用接着剤は、相対向する回路電極間に介在され、相対向する回路電極を加圧し加圧方向の電極間を電気的に接続する回路部材接続用接着剤であって、接着剤樹脂組成物100重量部に対し、平均粒径が3ミクロン以下である無機質充填材を10〜200重量部含有することを特徴とするものである。   The adhesive for connecting a circuit member of the present invention is an adhesive for connecting a circuit member that is interposed between opposing circuit electrodes, pressurizes the opposing circuit electrodes, and electrically connects the electrodes in the pressurizing direction. In addition, 10 to 200 parts by weight of an inorganic filler having an average particle diameter of 3 microns or less is contained with respect to 100 parts by weight of the adhesive resin composition.

接着剤には無機充填材の平均粒径に比べて平均粒径の大きい導電粒子が0.1〜30体積%、好ましくは0.2〜20体積%含有されていても良い。接着剤樹脂組成物は硬化後の40℃での弾性率が30〜1500MPaであるものが好ましく、接着剤樹脂組成物は少なくともエポキシ樹脂、アクリルゴム、潜在性硬化剤を含有し、フィルム状である回路部材接続用接着剤が好ましい。アクリルゴムは、その分子中にグリシジルエーテル基を含有しているものが使用される。   The adhesive may contain 0.1 to 30% by volume, preferably 0.2 to 20% by volume of conductive particles having a larger average particle size than the average particle size of the inorganic filler. The adhesive resin composition preferably has an elastic modulus at 40 ° C. of 30 to 1500 MPa after curing, and the adhesive resin composition contains at least an epoxy resin, an acrylic rubber, and a latent curing agent, and is in the form of a film. A circuit member connecting adhesive is preferred. Acrylic rubber having a glycidyl ether group in its molecule is used.

本発明の接着剤によれば、従来の接着剤のように熱膨張係数が大きくないため、チップとACF界面でのストレスを緩和できる他、さらに接着樹脂組成物として40℃での弾性率が30〜1500MPaである場合には、さらに接着樹脂組成物によって熱衝撃、PCTやはんだバス浸漬試験などの信頼性試験において生じるストレスを吸収できるため、信頼性試験後においても接続部での接続抵抗の増大や接着剤の剥離がなく、接続信頼性が大幅に向上する。また、本発明の接着剤は、熱膨張係数が小さく、チップとACF界面でのストレスを緩和できることから、チップと基板を接着剤を介して接続する際にチップの電極パッドに突起電極を設けた場合、温度サイクル試験下での突起電極の電極パッドからの剥離を大幅に低減できる。したがって、本発明の接着剤は、LCDパネルとTAB、TABとフレキシブル回路基板、LCDパネルとICチップ、ICチップとプリント基板とを接続時の加圧方向にのみ電気的に接続するために好適に用いられる。   According to the adhesive of the present invention, since the coefficient of thermal expansion is not as large as that of the conventional adhesive, the stress at the interface between the chip and the ACF can be relieved, and the elastic modulus at 40 ° C. is 30 as an adhesive resin composition. In the case of ˜1500 MPa, the adhesive resin composition can absorb stress generated in reliability tests such as thermal shock, PCT and solder bath immersion tests, and thus increase the connection resistance at the connection even after the reliability test And there is no peeling of adhesive, and connection reliability is greatly improved. Further, since the adhesive of the present invention has a small thermal expansion coefficient and can relieve stress at the interface between the chip and the ACF, a protruding electrode is provided on the electrode pad of the chip when connecting the chip and the substrate via the adhesive. In this case, peeling of the protruding electrode from the electrode pad under the temperature cycle test can be greatly reduced. Therefore, the adhesive of the present invention is suitable for electrically connecting the LCD panel and TAB, TAB and flexible circuit board, LCD panel and IC chip, and IC chip and printed board only in the pressurizing direction at the time of connection. Used.

本発明において用いられる回路部材として半導体チップ、プリント基板、ポリイミドやポリエステルを基材としたフレキシル配線板があげられる。半導体チップや基板の電極パッド上には、めっきで形成されるバンプや金ワイヤの先端をトーチ等により溶融させ、金ボールを形成し、このボールを電極パッド上に圧着した後、ワイヤを切断して得られるワイヤバンプなどの突起電極を設け、接続端子として用いることができる。   Examples of the circuit member used in the present invention include a semiconductor chip, a printed circuit board, and a flexible wiring board based on polyimide or polyester. On the electrode pad of the semiconductor chip or substrate, the bump formed by plating or the tip of the gold wire is melted with a torch or the like to form a gold ball, and after the ball is pressed onto the electrode pad, the wire is cut. Protruding electrodes such as wire bumps obtained in this manner can be provided and used as connection terminals.

本発明において用いられる接着剤樹脂組成物としては、エポキシ樹脂とイミダゾール系、ヒドラジド系、三フッ化ホウ素−アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩、ジシアンジアミド等の潜在性硬化剤の混合物が用いられ、回路部材の熱膨張係数差に基づくストレスを緩和するためには、接着後の40℃での弾性率が30〜1500MPaの接着剤樹脂組成物が好ましい。例えば、接続時の良好な流動性や高接続信頼性を得られる接着剤樹脂組成物として、エポキシ樹脂とイミダゾール系、ヒドラジド系、三フッ化ホウ素−アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩、ジシアンジアミド等の潜在性硬化剤の混合物に、接着後の40℃での弾性率が30〜1500MPaになるようにアクリルゴムを配合した接着剤があげられる。接着フィルム硬化物の弾性率は、例えば、レオロジ(株)製レオスペクトラDVE−4(引っぱりモード、周波数10Hz、5℃/minで昇温)を使用して測定できる。   As the adhesive resin composition used in the present invention, a mixture of an epoxy resin and a latent curing agent such as imidazole, hydrazide, boron trifluoride-amine complex, sulfonium salt, amine imide, polyamine salt, dicyandiamide or the like is used. In order to relieve stress based on the difference in thermal expansion coefficient of the circuit member, an adhesive resin composition having an elastic modulus at 40 ° C. of 30 to 1500 MPa after bonding is preferable. For example, as an adhesive resin composition that can obtain good fluidity at connection and high connection reliability, epoxy resin and imidazole, hydrazide, boron trifluoride-amine complex, sulfonium salt, amine imide, polyamine salt, Examples of the adhesive include a mixture of latent curing agents such as dicyandiamide and an acrylic rubber blended so that the elastic modulus at 40 ° C. after bonding is 30 to 1500 MPa. The elastic modulus of the cured adhesive film can be measured by using, for example, Rheospectra DVE-4 manufactured by Rheology Co., Ltd. (pull mode, temperature rising at 10 Hz, 5 ° C./min).

本発明で用いるアクリルゴムとしては、アクリル酸、アクリル酸エステル、メタクリル酸エステルまたはアクリロニトリルのうち少なくともひとつをモノマー成分とした重合体または共重合体があげられ、中でもグリシジルエーテル基を含有するグリシジルアクリレートやグリシジルメタクリレートを含む共重合体系アクリルゴムが好適に用いられる。これらアクリルゴムの分子量は、接着剤の凝集力を高める点から20万以上が好ましい。アクリルゴムの接着剤中の配合量は、15wt%以下であると接着後の40℃での弾性率が1500MPaを越えてしまい、また40wt%以上になると低弾性率化は図れるが接続時の溶融粘度が高くなり接続電極界間、または接続電極と導電粒子界面の溶融接着剤の排除性が低下するため、接続電極間または接続電極と導電粒子間の電気的導通を確保できなくなる。このため、アクリル配合量としては15〜40wt%が好ましい。接着剤に配合されたこれらのアクリルゴムは、ゴム成分に起因する誘電正接のピーク温度が40〜60℃付近にあるため、接着剤の低弾性率化を図ることができる。また、接着剤にはフィルム形成性を容易にするためにフェノキシ樹脂などの熱可塑性樹脂を配合することもできる。特に、フェノキシ樹脂は、エポキシ樹脂と構造が類似しているため、エポキシ樹脂との相溶性、接着性に優れるなどの特徴を有するので好ましい。フィルム形成は、これら少なくともエポキシ樹脂、アクリルゴム、フェノキシ樹脂、潜在性硬化剤からなる接着剤樹脂組成物と導電粒子を有機溶剤に溶解あるいは分散により液状化して、剥離性基材上に塗布し、硬化剤の活性温度以下で溶剤を除去することにより行われる。この時用いる溶剤は、芳香族炭化水素系と含酸素系の混合溶剤が材料の溶解性を向上させるため好ましい。   Examples of the acrylic rubber used in the present invention include a polymer or copolymer having at least one of acrylic acid, acrylic acid ester, methacrylic acid ester or acrylonitrile as a monomer component. Among them, glycidyl acrylate containing a glycidyl ether group, A copolymer acrylic rubber containing glycidyl methacrylate is preferably used. The molecular weight of these acrylic rubbers is preferably 200,000 or more from the viewpoint of increasing the cohesive strength of the adhesive. If the blending amount of acrylic rubber in the adhesive is 15 wt% or less, the elastic modulus at 40 ° C. after bonding exceeds 1500 MPa, and if it exceeds 40 wt%, the elastic modulus can be reduced, but melting at the time of connection Since the viscosity increases and the exclusion of the molten adhesive between the connection electrode boundaries or at the interface between the connection electrode and the conductive particles is reduced, it becomes impossible to ensure electrical continuity between the connection electrodes or between the connection electrodes and the conductive particles. For this reason, as an acrylic compounding quantity, 15-40 wt% is preferable. Since these acrylic rubbers blended in the adhesive have a peak temperature of dielectric loss tangent due to the rubber component in the vicinity of 40 to 60 ° C., the elastic modulus of the adhesive can be reduced. In addition, a thermoplastic resin such as a phenoxy resin can be blended in the adhesive to facilitate film formation. In particular, the phenoxy resin is preferable because it has a similar structure to the epoxy resin and has characteristics such as excellent compatibility with the epoxy resin and excellent adhesion. Film formation is liquefied by dissolving or dispersing the adhesive resin composition composed of at least epoxy resin, acrylic rubber, phenoxy resin, and latent curing agent and conductive particles in an organic solvent, and applied to a peelable substrate. It is carried out by removing the solvent below the activation temperature of the curing agent. The solvent used at this time is preferably an aromatic hydrocarbon-based and oxygen-containing mixed solvent because the solubility of the material is improved.

本発明に用いられる無機質充填材としては、特に限定するものではなく、例えば、溶融シリカ、結晶質シリカ、ケイ酸カルシウム、アルミナ、炭酸カルシウム等の粉体があげられる。無機充填材の配合量は、接着剤樹脂組成物100重量部に対して10〜200重量部であり、熱膨張係数を低下させるには配合量が大きいほど効果的であるが、多量に配合すると接着性や接続部での接着剤の排除性低下に基づく導通不良が発生し、配合量が小さいと熱膨張係数を充分低下できないため、20〜90重量部が好ましい。また、その平均粒径は、接続部での導通不良を防止する目的で3ミクロン以下にするのが好ましい。また接続時の樹脂の流動性の低下及びチップのパッシベーション膜のダメージを防ぐ目的で球状フィラを用いることが望ましい。   The inorganic filler used in the present invention is not particularly limited, and examples thereof include powders such as fused silica, crystalline silica, calcium silicate, alumina, and calcium carbonate. The blending amount of the inorganic filler is 10 to 200 parts by weight with respect to 100 parts by weight of the adhesive resin composition, and the larger the blending amount, the more effective it is to reduce the thermal expansion coefficient. The conduction failure based on the adhesiveness and the elimination of the adhesive at the connecting portion occurs, and if the blending amount is small, the thermal expansion coefficient cannot be lowered sufficiently, so 20 to 90 parts by weight is preferable. The average particle size is preferably 3 microns or less for the purpose of preventing poor conduction at the connection. Further, it is desirable to use a spherical filler for the purpose of preventing a decrease in resin fluidity at the time of connection and damage to the passivation film of the chip.

本発明の接着剤には、チップのバンプや回路電極の高さばらつきを吸収するために、異方導電性を積極的に付与する目的で導電粒子を分散することもできる。本発明において導電粒子は、例えばAu、Ni、Ag、Cu、Wやはんだなどの金属粒子またはこれらの金属粒子表面に金やパラジウムなどの薄膜をめっきや蒸着によって形成した金属粒子であり、ポリスチレン等の高分子の球状の核材にNi、Cu、Au、はんだ等の導電層を設けた導電粒子を用いることができる。粒径は基板の電極の最小の間隔よりも小さいことが必要で、電極の高さばらつきがある場合、高さばらつきよりも大きいことが好ましく、かつ無機質充填材の平均粒径より大きいことが好ましく、1μm〜10μmが好ましい。また、接着剤に分散される導電粒子量は、0.1〜30体積%であり、好ましくは0.2〜15体積%である。本発明の回路部材接続用接着剤がフィルム状接着剤の場合膜厚は、特に限定するものではないが、第一及び第二の回路部材間のギャップに比べ、厚いほうが好ましく、一般にはギャップに対して5μm以上厚い膜厚が望ましい。   In the adhesive of the present invention, conductive particles can be dispersed for the purpose of positively imparting anisotropic conductivity in order to absorb the height variation of the bumps of the chip and the circuit electrodes. In the present invention, the conductive particles are, for example, metal particles such as Au, Ni, Ag, Cu, W and solder or metal particles formed by plating or vapor deposition of a thin film such as gold or palladium on the surface of these metal particles, such as polystyrene. Conductive particles in which a conductive layer of Ni, Cu, Au, solder, or the like is provided on a spherical core material of the above polymer can be used. The particle size needs to be smaller than the minimum distance between the electrodes on the substrate, and when there is a variation in the height of the electrodes, it is preferably larger than the variation in height, and preferably larger than the average particle size of the inorganic filler. 1 μm to 10 μm is preferable. The amount of conductive particles dispersed in the adhesive is 0.1 to 30% by volume, preferably 0.2 to 15% by volume. When the adhesive for connecting a circuit member of the present invention is a film adhesive, the film thickness is not particularly limited, but it is preferably thicker than the gap between the first and second circuit members, and generally in the gap. On the other hand, a film thickness of 5 μm or more is desirable.

実施例1
フェノキシ樹脂50gと、ブチルアクリレート(40部)、エチルアクリレート(30部)、アクリロニトリル(30部)及びグリシジルメタクリレート(3部)を共重合したアクリルゴム(分子量:85万)125gを酢酸エチル400gに溶解し、30%溶液を得た。ついで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量185)325gをこの溶液に加え、撹拌し、溶融シリカ(平均粒子径:0.5μm)を接着剤樹脂組成物100重量部に対して40重量部、さらにニッケル粒子(直径:3μm)を2vol%分散してフィルム塗工用溶液を得た。この溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み40μm)にロールコータで塗布し、100℃、10分乾燥し厚み45μmの接着フィルム1を作製した。なお、この接着フィルム1の溶融シリカ及びニッケル粒子を除いた接着剤樹脂組成物のみの動的粘弾性測定器で測定した40℃の弾性率は、800MPaであった。次に作製した接着フィルム1を用いて金バンプ(面積:80μm×80μm、スペース30μm、高さ:15μm、バンプ数288)付きチップ(10mm×10mm、厚み:0.5mm)とNi/AuめっきCu回路プリント基板の接続を以下に示すように行った。接着フィルム(12mm×12mm)をNi/AuめっきCu回路プリント基板(電極高さ:20μm、厚み:0.8mm)に80℃、10kgf/cmで貼りつけた後、セパレータを剥離し、チップのバンプとNi/AuめっきCu回路プリント基板(厚み:0.8mm)の位置あわせを行った。ついで、180℃、30g/バンプ、20秒の条件でチップ上方から加熱、加圧を行い、本接続を行った。本接続後の接続抵抗は、1バンプあたり最高で6mΩ、平均で2mΩ、絶縁抵抗は10Ω以上であり、これらの値は−55〜125℃の熱衝撃試験1000サイクル処理、PCT試験(121℃、2気圧)200時間、260℃のはんだバス浸漬10秒後においても変化がなく、良好な接続信頼性を示した。
Example 1
50 g of phenoxy resin and 125 g of acrylic rubber (molecular weight: 850,000) copolymerized with butyl acrylate (40 parts), ethyl acrylate (30 parts), acrylonitrile (30 parts) and glycidyl methacrylate (3 parts) are dissolved in 400 g of ethyl acetate. To obtain a 30% solution. Next, 325 g of a liquid epoxy (epoxy equivalent 185) containing a microcapsule type latent curing agent is added to this solution and stirred, and fused silica (average particle size: 0.5 μm) is added to 100 parts by weight of the adhesive resin composition. On the other hand, 40 parts by weight and further 2 vol% of nickel particles (diameter: 3 μm) were dispersed to obtain a film coating solution. This solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater, and dried at 100 ° C. for 10 minutes to produce an adhesive film 1 having a thickness of 45 μm. In addition, the 40 degreeC elastic modulus measured with the dynamic viscoelasticity measuring device only of the adhesive resin composition except the fused silica and nickel particle of this adhesive film 1 was 800 MPa. Next, using the produced adhesive film 1, a chip (10 mm × 10 mm, thickness: 0.5 mm) with gold bumps (area: 80 μm × 80 μm, space 30 μm, height: 15 μm, number of bumps 288) and Ni / Au plated Cu The circuit printed circuit board was connected as shown below. An adhesive film (12 mm × 12 mm) was attached to a Ni / Au plated Cu circuit printed board (electrode height: 20 μm, thickness: 0.8 mm) at 80 ° C. and 10 kgf / cm 2 , and then the separator was peeled off. The bumps and Ni / Au plated Cu circuit printed circuit board (thickness: 0.8 mm) were aligned. Next, the main connection was performed by heating and pressing from above the chip under the conditions of 180 ° C., 30 g / bump, and 20 seconds. The connection resistance after this connection is a maximum of 6 mΩ per bump, an average of 2 mΩ, and an insulation resistance of 10 8 Ω or more. These values are from the thermal shock test at −55 to 125 ° C., 1000 cycle treatment, PCT test (121 No change even after 10 seconds of immersion in a solder bath at 260 ° C. for 200 hours at 2 ° C., and good connection reliability was exhibited.

実施例2
フェノキシ樹脂50gと、ブチルアクリレート(40部)、エチルアクリレート(30部)、アクリロニトリル(30部)及びグリシジルメタクリレート(3部)を共重合したアクリルゴム(分子量:85万)175gを酢酸エチル525gに溶解し、30%溶液を得た。ついで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量185)275gをこの溶液に加え、撹拌し、溶融シリカ(平均粒子径:0.5μm)を接着樹脂組成物100重量部に対して60重量部、さらにニッケル粒子(直径:3μm)を2vol%分散してフィルム塗工用溶液を得た。この溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み40μm)にロールコータで塗布し、100℃、10分乾燥し厚み45μmの接着フィルム2を作製した。この接着フィルム2の溶融シリカ及びニッケル粒子を除いた接着剤樹脂組成物のみの動的粘弾性測定器で測定した40℃の弾性率は、400MPaであった。次に作製した接着フィルム2を用いて金バンプ(面積:80μm×80μm、スペース30μm、高さ:15μm、バンプ数288)付きチップ(10mm×10mm)とNi/AuめっきCu回路プリント基板(電極高さ:20μm、厚み:0.8mm)の接続を以下に示すように行った。接着フィルム(12mm×12mm)をNi/AuめっきCu回路プリント基板に80℃、10kgf/cmで貼りつけた後、セパレータを剥離し、チップのバンプとNi/AuめっきCu回路プリント基板の位置あわせを行った。ついで、170℃、30g/バンプ、20秒の条件でチップ上方から加熱、加圧を行い、本接続を行った。本接続後の接続抵抗は、1バンプあたり最高で18mΩ、平均で8mΩ、絶縁抵抗は10Ω以上であり、これらの値は−55〜125℃の熱衝撃試験1000サイクル処理、PCT試験(121℃、2気圧)200時間、260℃のはんだバス浸漬10秒後においても変化がなく、良好な接続信頼性を示した。
Example 2
50 g of phenoxy resin and 175 g of acrylic rubber (molecular weight: 850,000) copolymerized with butyl acrylate (40 parts), ethyl acrylate (30 parts), acrylonitrile (30 parts) and glycidyl methacrylate (3 parts) are dissolved in 525 g of ethyl acetate. To obtain a 30% solution. Next, 275 g of a liquid epoxy (epoxy equivalent 185) containing a microcapsule type latent curing agent is added to this solution and stirred, and fused silica (average particle size: 0.5 μm) is added to 100 parts by weight of the adhesive resin composition. 60 parts by weight, and further 2 vol% of nickel particles (diameter: 3 μm) were dispersed to obtain a film coating solution. This solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater, and dried at 100 ° C. for 10 minutes to produce an adhesive film 2 having a thickness of 45 μm. The elastic modulus at 40 ° C. measured by a dynamic viscoelasticity measuring instrument using only the adhesive resin composition excluding fused silica and nickel particles of the adhesive film 2 was 400 MPa. Next, using the produced adhesive film 2, a chip (10 mm × 10 mm) with gold bumps (area: 80 μm × 80 μm, space 30 μm, height: 15 μm, number of bumps 288) and Ni / Au plated Cu circuit printed circuit board (electrode height) Connection: 20 μm, thickness: 0.8 mm) was performed as shown below. Adhesive film (12mm x 12mm) was attached to Ni / Au plated Cu circuit printed circuit board at 80 ° C, 10kgf / cm 2 , separator was peeled off, and chip bump and Ni / Au plated Cu circuit printed circuit board were aligned Went. Next, the main connection was made by heating and pressing from above the chip under the conditions of 170 ° C., 30 g / bump, and 20 seconds. The connection resistance after this connection is 18 mΩ at the maximum per bump, the average is 8 mΩ, and the insulation resistance is 10 8 Ω or more. These values are the thermal shock test at −55 to 125 ° C., 1000 cycle treatment, PCT test (121 No change even after 10 seconds of immersion in a solder bath at 260 ° C. for 200 hours at 2 ° C., and good connection reliability was exhibited.

実施例3
フェノキシ樹脂50g、ブチルアクリレート(40部)、エチルアクリレート(30部)、アクリロニトリル(30部)及びグリシジルメタクリレート(3部)を共重合したアクリルゴム(分子量:85万)100gを酢酸エチル350gに溶解し、30%溶液を得た。ついで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量185)350gをこの溶液に加え、撹拌し、溶融シリカ(平均粒子径:0.5μm)を接着剤樹脂組成物100重量部に対して60重量部、さらにポリスチレン系核体(直径:5μm)の表面にAu層を形成した導電粒子を5vol%分散してフィルム塗工用溶液を得た。この溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み40μm)にロールコータで塗布し、100℃10分乾燥し厚み45μmの接着フィルム3を作製した。この接着フィルム3の溶融シリカ及びニッケル粒子を除いた接着剤樹脂組成物のみの動的粘弾性測定器で測定した40℃の弾性率は、1000MPaであった。次に作製した接着フィルム3を用いて金バンプ(面積:80μm×80μm、スペース30μm、高さ:15μm、バンプ数288)付きチップ(10mm×10mm、厚み:0.5mm)とNi/AuめっきCu回路プリント基板(電極高さ:20μm、厚み:0.8mm)の接続を以下に示すように行った。接着フィルム3(12mm×12mm)をNi/AuめっきCu回路プリント基板に80℃、10kgf/cmで貼りつけた後、セパレータを剥離し、チップのバンプとNi/AuめっきCu回路プリント基板の位置あわせを行った。ついで、170℃、30g/バンプ、20秒の条件でチップ上方から加熱、加圧を行い、本接続を行った。接続抵抗は、1バンプあたり最高で5mΩ、平均で1.5mΩ、絶縁抵抗は10Ω以上であり、これらの値は−55〜125℃の熱衝撃試験1000サイクル処理、PCT試験(121℃、2気圧)200時間、260℃のはんだバス浸漬10秒後においても変化がなく、良好な接続信頼性を示した。
Example 3
50 g of phenoxy resin, 100 g of acrylic rubber (molecular weight: 850,000) copolymerized with butyl acrylate (40 parts), ethyl acrylate (30 parts), acrylonitrile (30 parts) and glycidyl methacrylate (3 parts) were dissolved in 350 g of ethyl acetate. A 30% solution was obtained. Next, 350 g of a liquid epoxy (epoxy equivalent 185) containing a microcapsule type latent curing agent is added to this solution and stirred, and fused silica (average particle size: 0.5 μm) is added to 100 parts by weight of the adhesive resin composition. On the other hand, 60 vol parts, and further 5 vol% of conductive particles having an Au layer formed on the surface of a polystyrene core (diameter: 5 μm) were dispersed to obtain a film coating solution. This solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater and dried at 100 ° C. for 10 minutes to produce an adhesive film 3 having a thickness of 45 μm. The elastic modulus at 40 ° C. measured by a dynamic viscoelasticity measuring device using only the adhesive resin composition excluding fused silica and nickel particles of the adhesive film 3 was 1000 MPa. Next, using the produced adhesive film 3, a chip (10 mm × 10 mm, thickness: 0.5 mm) with gold bumps (area: 80 μm × 80 μm, space 30 μm, height: 15 μm, number of bumps 288) and Ni / Au plated Cu A circuit printed board (electrode height: 20 μm, thickness: 0.8 mm) was connected as shown below. Adhesive film 3 (12 mm × 12 mm) was attached to a Ni / Au plated Cu circuit printed board at 80 ° C. and 10 kgf / cm 2 , then the separator was peeled off, and the chip bumps and the positions of the Ni / Au plated Cu circuit printed board Together. Next, the main connection was made by heating and pressing from above the chip under the conditions of 170 ° C., 30 g / bump, and 20 seconds. The connection resistance is 5 mΩ at the maximum per bump, 1.5 mΩ on average, and the insulation resistance is 10 8 Ω or more. These values are 1000 cycles of thermal shock test at −55 to 125 ° C., PCT test (121 ° C., 2 atmospheres) No change even after 200 seconds of immersion in a solder bath at 260 ° C. for 200 hours, showing good connection reliability.

実施例4
フェノキシ樹脂50gと、ブチルアクリレート(40部)、エチルアクリレート(30部)、アクリロニトリル(30部)及びグリシジルメタクリレート(3部)を共重合したアクリルゴム(分子量:85万)100gを酢酸エチル350gに溶解し、30%溶液を得た。ついで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量185)350gをこの溶液に加え、撹拌し、溶融シリカ(平均粒子径:0.5μm)を接着剤樹脂組成物100重量部に対して40重量部、さらにポリスチレン系核体(直径:5μm)の表面にAu層を形成した導電粒子を5vol%分散してフィルム塗工用溶液を得た。この溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み40μm)にロールコータで塗布し、100℃10分乾燥し厚み45μmの接着フィルム4を作製した。この接着フィルム4の溶融シリカ及びニッケル粒子を除いた接着樹脂組成物のみの動的粘弾性測定器で測定した40℃の弾性率は、1000MPaであった。また、接着フィルム4のTMA法で測定した110〜130℃の平均熱膨張係数は111ppmであった。次に作製した接着フィルム4を用いて金バンプ(面積:50μm×50μm、362バンプ、スペース:20μm、高さ:15μm)付きチップ(1.7mm×17mm、厚み:0.5mm)とITO回路付ガラス基板(厚み:1.1mm)の接続を以下に示すように行った。接着フィルム4(12mm×12mm)をITO回路付ガラス基板に80℃、10kgf/cmで貼りつけた後、セパレータを剥離し、チップのバンプとITO回路付ガラス基板の位置あわせを行った。ついで、180℃、40g/バンプ、20秒の条件でチップ上方から加熱、加圧を行い、本接続を行った。接続抵抗は、1バンプあたり最高で150mΩ、平均で80mΩ、絶縁抵抗は10Ω以上であり、これらの値は−40〜100℃の熱衝撃試験1000サイクル処理、PCT試験(105℃、1.2気圧)100時間においても変化がなく、良好な接続信頼性を示した。
Example 4
50 g of phenoxy resin and 100 g of acrylic rubber (molecular weight: 850,000) copolymerized with butyl acrylate (40 parts), ethyl acrylate (30 parts), acrylonitrile (30 parts) and glycidyl methacrylate (3 parts) are dissolved in 350 g of ethyl acetate. To obtain a 30% solution. Next, 350 g of a liquid epoxy (epoxy equivalent 185) containing a microcapsule type latent curing agent is added to this solution and stirred, and fused silica (average particle size: 0.5 μm) is added to 100 parts by weight of the adhesive resin composition. On the other hand, conductive particles having an Au layer formed on the surface of 40 parts by weight and a polystyrene core (diameter: 5 μm) were dispersed by 5 vol% to obtain a film coating solution. This solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater and dried at 100 ° C. for 10 minutes to produce an adhesive film 4 having a thickness of 45 μm. The elastic modulus at 40 ° C. measured by a dynamic viscoelasticity measuring instrument using only the adhesive resin composition excluding fused silica and nickel particles of the adhesive film 4 was 1000 MPa. Moreover, the average thermal expansion coefficient of 110-130 degreeC measured by TMA method of the adhesive film 4 was 111 ppm. Next, using the produced adhesive film 4, a chip (1.7 mm × 17 mm, thickness: 0.5 mm) with an gold bump (area: 50 μm × 50 μm, 362 bump, space: 20 μm, height: 15 μm) and an ITO circuit A glass substrate (thickness: 1.1 mm) was connected as shown below. The adhesive film 4 (12 mm × 12 mm) was attached to a glass substrate with an ITO circuit at 80 ° C. and 10 kgf / cm 2 , the separator was peeled off, and the chip bumps and the glass substrate with an ITO circuit were aligned. Next, the main connection was made by heating and pressing from above the chip under the conditions of 180 ° C., 40 g / bump, and 20 seconds. The connection resistance is a maximum of 150 mΩ per bump, an average of 80 mΩ, and an insulation resistance of 10 8 Ω or more. These values are the thermal shock test 1000 cycle treatment at −40 to 100 ° C., the PCT test (105 ° C., 1.. Even at 100 atm (2 atm), there was no change and good connection reliability was shown.

実施例5
フェノキシ樹脂50gと、ブチルアクリレート(40部)、エチルアクリレート(30部)、アクリロニトリル(30部)及びグリシジルメタクリレート(3部)を共重合したアクリルゴム(分子量:85万)125gを酢酸エチル400gに溶解し、30%溶液を得た。ついで、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(エポキシ当量185)325gをこの溶液に加え、撹拌し、溶融シリカ(平均粒子径:0.5μm)を接着剤樹脂組成物100重量部に対して60重量部、さらにニッケル粒子(直径:3μm)を2vol%分散してフィルム塗工用溶液を得た。この溶液をセパレータ(シリコーン処理したポリエチレンテレフタレートフィルム、厚み40μm)にロールコータで塗布し、100℃10分乾燥し厚み45μmの接着フィルム5を作製した。この接着フィルム5の溶融シリカ及びニッケル粒子を除いた接着剤樹脂組成物のみの動的粘弾性測定器で測定した40℃の弾性率は、800MPaであった。次に、作製した接着フィルム5を用いてバンプレスチップ(10mm×10mm、厚み:0.5mm、パッド電極:Al、パッド径:120μm)と回路上にNi/AuめっきCuバンプ(直径:100μm、スペース50μm、高さ:15μm、バンプ数200)を形成したNi/AuめっきCu回路プリント基板の接続を以下に示すように行った。接着フィルム5(12mm×12mm)をNi/AuめっきCu回路プリント基板(電極高さ:20μm、厚み:0.8mm)に80℃、10kgf/cmで貼りつけた後、セパレータを剥離し、チップのAlパッドとNi/AuめっきCuバンプ付Ni/AuめっきCu回路プリント基板(厚み:0.8mm)の位置あわせを行った。ついで、180℃、30g/バンプ、20秒の条件でチップ上方から加熱、加圧を行い、本接続を行った。本接続後の接続抵抗は、1バンプあたり最高で8mΩ、平均で4mΩ、絶縁抵抗は10Ω以上であり、これらの値は−55〜125℃の熱衝撃試験1000サイクル処理、PCT試験(121℃、2気圧)200時間、260℃のはんだバス浸漬10秒後においても変化がなく、良好な接続信頼性を示した。
Example 5
50 g of phenoxy resin and 125 g of acrylic rubber (molecular weight: 850,000) copolymerized with butyl acrylate (40 parts), ethyl acrylate (30 parts), acrylonitrile (30 parts) and glycidyl methacrylate (3 parts) are dissolved in 400 g of ethyl acetate. To obtain a 30% solution. Next, 325 g of a liquid epoxy (epoxy equivalent 185) containing a microcapsule type latent curing agent is added to this solution and stirred, and fused silica (average particle size: 0.5 μm) is added to 100 parts by weight of the adhesive resin composition. On the other hand, 60 parts by weight and 2 vol% of nickel particles (diameter: 3 μm) were dispersed to obtain a film coating solution. This solution was applied to a separator (silicone-treated polyethylene terephthalate film, thickness 40 μm) with a roll coater and dried at 100 ° C. for 10 minutes to produce an adhesive film 5 having a thickness of 45 μm. The elastic modulus at 40 ° C. measured by a dynamic viscoelasticity measuring device using only the adhesive resin composition excluding fused silica and nickel particles of the adhesive film 5 was 800 MPa. Next, a bumpless chip (10 mm × 10 mm, thickness: 0.5 mm, pad electrode: Al, pad diameter: 120 μm) and Ni / Au plated Cu bumps (diameter: 100 μm, The connection of the Ni / Au plated Cu circuit printed circuit board on which a space of 50 μm, a height of 15 μm, and a number of bumps of 200) was formed was performed as shown below. The adhesive film 5 (12 mm × 12 mm) was attached to a Ni / Au plated Cu circuit printed circuit board (electrode height: 20 μm, thickness: 0.8 mm) at 80 ° C. and 10 kgf / cm 2 , and then the separator was peeled off to form a chip. The Ni pad and the Ni / Au plated Cu circuit printed board (thickness: 0.8 mm) with Ni / Au plated Cu bumps were aligned. Next, the main connection was performed by heating and pressing from above the chip under the conditions of 180 ° C., 30 g / bump, and 20 seconds. The connection resistance after this connection is a maximum of 8 mΩ per bump, an average of 4 mΩ, and an insulation resistance of 10 8 Ω or more, and these values are the thermal shock test at −55 to 125 ° C., 1000 cycle treatment, PCT test (121 No change even after 10 seconds of immersion in a solder bath at 260 ° C. for 200 hours at 2 ° C., and good connection reliability was exhibited.

Claims (6)

相対向する回路電極間に介在され、相対向する回路電極を加圧し加圧方向の電極間を電気的に接続する回路部材接続用接着剤であって、接着樹脂組成物100重量部に対し、平均粒径が3ミクロン以下である無機質充填材を10〜200重量部含有することを特徴とする回路部材接続用接着剤。   A circuit member connecting adhesive that is interposed between opposing circuit electrodes and pressurizes the opposing circuit electrodes to electrically connect the electrodes in the pressurizing direction, with respect to 100 parts by weight of the adhesive resin composition, An adhesive for connecting circuit members, comprising 10 to 200 parts by weight of an inorganic filler having an average particle size of 3 microns or less. 無機質充填材の平均粒径に比べて平均粒径の大きい導電粒子が、0.1〜30体積%含有されていることを特徴とする請求項1記載の回路部材接続用接着剤。   The adhesive for connecting circuit members according to claim 1, wherein the conductive particles having an average particle diameter larger than the average particle diameter of the inorganic filler are contained in an amount of 0.1 to 30% by volume. 接着剤樹脂組成物の硬化後の40℃での弾性率が、30〜1500MPaであることを特徴とする請求項1又は2記載の回路部材接続用接着剤。   The adhesive for circuit member connection according to claim 1 or 2, wherein an elastic modulus at 40 ° C after curing of the adhesive resin composition is 30 to 1500 MPa. 接着剤樹脂組成物は、少なくともエポキシ樹脂、アクリルゴム、潜在性硬化剤を含有することを特徴とする請求項1〜3のいずれか一項に記載の回路部材接続用接着剤。   4. The adhesive for connecting circuit members according to claim 1, wherein the adhesive resin composition contains at least an epoxy resin, an acrylic rubber, and a latent curing agent. 5. アクリルゴムが、その分子中にグリシジルエーテル基を含有していることを特徴とする請求項4記載の回路部材接続用接着剤。   5. The adhesive for connecting circuit members according to claim 4, wherein the acrylic rubber contains a glycidyl ether group in its molecule. 形状がフィルム状であることを特徴とする請求項1〜5のいずれか一項に記載の回路部材接続用接着剤。   The adhesive for a circuit member connection according to any one of claims 1 to 5, wherein the shape is a film shape.
JP2006307143A 2006-11-13 2006-11-13 Adhesive for connecting circuit part Pending JP2007113012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006307143A JP2007113012A (en) 2006-11-13 2006-11-13 Adhesive for connecting circuit part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006307143A JP2007113012A (en) 2006-11-13 2006-11-13 Adhesive for connecting circuit part

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP03200597A Division JP4440352B2 (en) 1997-02-17 1997-02-17 Adhesive for connecting circuit members

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007204553A Division JP4928378B2 (en) 2007-08-06 2007-08-06 Adhesive for connecting circuit members

Publications (1)

Publication Number Publication Date
JP2007113012A true JP2007113012A (en) 2007-05-10

Family

ID=38095482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006307143A Pending JP2007113012A (en) 2006-11-13 2006-11-13 Adhesive for connecting circuit part

Country Status (1)

Country Link
JP (1) JP2007113012A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335889A (en) * 2007-08-06 2007-12-27 Hitachi Chem Co Ltd Adhesive for circuit member connection
JP2009147361A (en) * 2009-02-16 2009-07-02 Hitachi Chem Co Ltd Adhesive for circuit member connection, circuit board, and manufacturing method thereof
JP2010016383A (en) * 2009-07-03 2010-01-21 Hitachi Chem Co Ltd Circuit member connecting adhesive, circuit board, and its manufacturing method
JP2010287835A (en) * 2009-06-15 2010-12-24 Hitachi Chem Co Ltd Method of manufacturing semiconductor circuit member
US7879445B2 (en) 1998-08-13 2011-02-01 Hitachi Chemical Company, Ltd. Adhesive for bonding circuit members, circuit board and process for its production

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177082A (en) * 1986-01-30 1987-08-03 Toray Ind Inc Anisotropic electrically conductive adhesive
JPH02206670A (en) * 1989-02-06 1990-08-16 Hitachi Chem Co Ltd Heat conductive adhesive composition for connecting circuit and heat conductive bonding film having anisotropic electric conductivity
JPH03223380A (en) * 1990-01-30 1991-10-02 Oki Electric Ind Co Ltd Anisotropic conductive adhesive
WO1996042107A1 (en) * 1995-06-13 1996-12-27 Hitachi Chemical Company, Ltd. Semiconductor device, wiring board for mounting semiconductor and method of production of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177082A (en) * 1986-01-30 1987-08-03 Toray Ind Inc Anisotropic electrically conductive adhesive
JPH02206670A (en) * 1989-02-06 1990-08-16 Hitachi Chem Co Ltd Heat conductive adhesive composition for connecting circuit and heat conductive bonding film having anisotropic electric conductivity
JPH03223380A (en) * 1990-01-30 1991-10-02 Oki Electric Ind Co Ltd Anisotropic conductive adhesive
WO1996042107A1 (en) * 1995-06-13 1996-12-27 Hitachi Chemical Company, Ltd. Semiconductor device, wiring board for mounting semiconductor and method of production of semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8273458B2 (en) 1997-02-14 2012-09-25 Hitachi Chemical Company, Ltd. Adhesive for bonding circuit members, circuit board and process for its production
US7879445B2 (en) 1998-08-13 2011-02-01 Hitachi Chemical Company, Ltd. Adhesive for bonding circuit members, circuit board and process for its production
US8252419B2 (en) 1998-08-13 2012-08-28 Hitachi Chemical Company, Ltd. Adhesive for bonding circuit members, circuit board and process for its production
US8273457B2 (en) 1998-08-13 2012-09-25 Hitachi Chemical Company, Ltd. Adhesive for bonding circuit members, circuit board and process for its production
JP2007335889A (en) * 2007-08-06 2007-12-27 Hitachi Chem Co Ltd Adhesive for circuit member connection
JP2009147361A (en) * 2009-02-16 2009-07-02 Hitachi Chem Co Ltd Adhesive for circuit member connection, circuit board, and manufacturing method thereof
JP4631979B2 (en) * 2009-02-16 2011-02-16 日立化成工業株式会社 Circuit member connecting adhesive, circuit board and manufacturing method thereof
JP2010287835A (en) * 2009-06-15 2010-12-24 Hitachi Chem Co Ltd Method of manufacturing semiconductor circuit member
JP2010016383A (en) * 2009-07-03 2010-01-21 Hitachi Chem Co Ltd Circuit member connecting adhesive, circuit board, and its manufacturing method
JP4631984B2 (en) * 2009-07-03 2011-02-16 日立化成工業株式会社 Circuit member connecting adhesive, circuit board, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3342703B2 (en) Film adhesive for circuit connection and circuit board
JP4178565B2 (en) Adhesive for connecting circuit members
JP2007113012A (en) Adhesive for connecting circuit part
JPH10226769A (en) Film adhesive and method for connection
JP4151081B2 (en) Adhesive for connecting circuit members
JP4433564B2 (en) Adhesive for circuit connection
JP4928378B2 (en) Adhesive for connecting circuit members
JP4045620B2 (en) Film adhesive for circuit connection
JP4440352B2 (en) Adhesive for connecting circuit members
JP4514840B2 (en) Adhesive for connecting circuit members
JP4631984B2 (en) Circuit member connecting adhesive, circuit board, and manufacturing method thereof
JP4631979B2 (en) Circuit member connecting adhesive, circuit board and manufacturing method thereof
JP4492692B2 (en) Adhesive film for connecting circuit members
JP2009203478A (en) Adhesive for connecting circuit member
JP5378261B2 (en) Adhesive for connecting circuit members
JP3835584B2 (en) Electronic component equipment
JP4815648B2 (en) Film adhesive for circuit connection
JP3925746B2 (en) Circuit board
JP4055583B2 (en) Adhesive composition for circuit connection, circuit terminal connection method using the same, and circuit terminal connection structure
JP4631998B1 (en) Circuit member connecting adhesive, circuit board, and manufacturing method thereof
JP2007107008A (en) Film-shaped adhesive and method for producing laminate
JP3801341B2 (en) Electronic component equipment
JP4407746B2 (en) Adhesive for connecting circuit members
JP4725568B2 (en) Film adhesive for circuit connection
JP2008115400A (en) Adhesive for connecting circuit member

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Effective date: 20100720

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20110614

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110914

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20111101

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20120113

Free format text: JAPANESE INTERMEDIATE CODE: A912