[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007113002A - Polymer, manufacturing method of this polymer, and cement admixture by using this polymer - Google Patents

Polymer, manufacturing method of this polymer, and cement admixture by using this polymer Download PDF

Info

Publication number
JP2007113002A
JP2007113002A JP2006261275A JP2006261275A JP2007113002A JP 2007113002 A JP2007113002 A JP 2007113002A JP 2006261275 A JP2006261275 A JP 2006261275A JP 2006261275 A JP2006261275 A JP 2006261275A JP 2007113002 A JP2007113002 A JP 2007113002A
Authority
JP
Japan
Prior art keywords
polymer
group
structural unit
mass
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006261275A
Other languages
Japanese (ja)
Other versions
JP5485494B2 (en
Inventor
Noboru Sakamoto
登 坂本
Yuko Matsuda
優子 松田
Tomotaka Nishikawa
朋孝 西川
Hiroshi Nagamura
洋 長村
Tsutomu Yuasa
務 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2006261275A priority Critical patent/JP5485494B2/en
Publication of JP2007113002A publication Critical patent/JP2007113002A/en
Application granted granted Critical
Publication of JP5485494B2 publication Critical patent/JP5485494B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Macromonomer-Based Addition Polymer (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer which contains the constitutional unit derived from a polyoxyalkylene chain and has a specific parameter value and to provide a dispersing agent for inorganic powders, excellent in the dispersion performance. <P>SOLUTION: The polymer (P), containing the constitutional unit derived from a polyoxyalkylene chain and satisfies the range of the PD values defined by the below numerical formula (1). The above numerical formula (1): 1<PD<MD (1) [wherein, PD=Mw/Mn, and MD=G(n)×Mw+H(n)]. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、重合体、その重合体の製造方法およびその重合体を用いたセメント混和剤に関する。   The present invention relates to a polymer, a method for producing the polymer, and a cement admixture using the polymer.

ポリオキシアルキレン鎖由来の構成単位を有する重合体は、特許文献1や特許文献2に開示されているように、セメントのような無機粉体の分散剤として広く使用されている。しかしながら、従来の重合体は分子量分布が広く無機粉体を凝集させる高分子量部分や、分散性能にあまり寄与しない低分子量部分が多く含まれていた。   A polymer having a structural unit derived from a polyoxyalkylene chain is widely used as a dispersant for inorganic powder such as cement as disclosed in Patent Document 1 and Patent Document 2. However, conventional polymers have a wide molecular weight distribution and a large number of high molecular weight parts that aggregate inorganic powder and many low molecular weight parts that do not contribute much to the dispersion performance.

特に、セメント分散剤においては、通常、建築物外壁材・建築物構造体などでは、セメントに水を添加したセメントペーストやセメントペーストに細骨材である砂を混合したモルタル、モルタルに粗骨材である石を混合させたコンクリートなどにセメント混和剤を加えて加工することで、セメント硬化物の強度や耐久性を高めている。上記セメント混和剤には、セメント組成物の含水量(減水)を低下させても十分な分散性・流動性・施工性を確保できると共に、減水によって耐久性や強度を向上できることが要求される。したがって、少量の添加量で高い減水性能を有するセメント混和剤が求められている。   In particular, in cement dispersants, mortar in which water is added to cement or mortar in which sand, which is fine aggregate, is mixed with coarse paste in mortar. By adding a cement admixture to concrete mixed with stone, the strength and durability of the hardened cement is increased. The cement admixture is required to ensure sufficient dispersibility, fluidity, and workability even when the water content (reduced water) of the cement composition is reduced, and to improve durability and strength by reducing water. Therefore, a cement admixture having high water reduction performance with a small amount added is required.

上記セメント混和剤の中でもポリカルボン酸系のセメント混和剤は、ナフタレン系などの他のセメント混和剤と比べてセメント組成物に高い分散性を付与できることから、好適に用いられている。例えば、特許文献1には、特定の不飽和ポリアルキレングリコールエステル系単量体と(メタ)アクリル酸系単量体からなる共重合体を含むセメント混和剤が開示されている。また、特許文献2には、特定の不飽和ポリアルキレングリコールエーテル系単量体と不飽和モノカルボン酸である(メタ)アクリル酸系単量体や不飽和ジカルボン酸であるマレイン酸系単量体からなる共重合体を含むセメント混和剤が開示されている。しかし、上記セメント混和剤でも減水性の点で若干不十分であった。
特開平9−86990号公報 特開2001−220417号公報
Among the cement admixtures, polycarboxylic acid type cement admixtures are preferably used because they can impart higher dispersibility to the cement composition than other cement admixtures such as naphthalene. For example, Patent Document 1 discloses a cement admixture including a copolymer composed of a specific unsaturated polyalkylene glycol ester monomer and a (meth) acrylic acid monomer. Patent Document 2 discloses a specific unsaturated polyalkylene glycol ether monomer and a (meth) acrylic acid monomer that is an unsaturated monocarboxylic acid or a maleic acid monomer that is an unsaturated dicarboxylic acid. A cement admixture comprising a copolymer consisting of is disclosed. However, the cement admixture is slightly insufficient in terms of water reduction.
JP-A-9-86990 JP 2001-220417 A

上述した状況の下、本発明が解決すべき課題は、ポリアルキレングリコール鎖とカルボキシル基を有するポリマーでありながら、従来の共重合体とは異なる分子量分布の非常に狭い重合体、ならびにそれらを用いた分散性がより高いセメント混和剤を提供することにある。   Under the circumstances described above, the problem to be solved by the present invention is a polymer having a polyalkylene glycol chain and a carboxyl group, but having a very narrow molecular weight distribution different from that of conventional copolymers, and using them. It is to provide a cement admixture with higher dispersibility.

本発明者らは、特許文献1、2に記載のような従来の分子量分布が広いポリマーであっても、比較的高いセメント分散性能を示すものの、高分子量部分はセメント粒子を凝集させる効果を有するためセメント分散性能を阻害し、低分子量部分はセメント粒子分散性能が低いため分散性能に寄与しないと考えた。そこで分散性能に寄与しない高分子量部分と低分子量部分を低減した分子量分布が狭いポリマーであればさらにセメント分散性能が向上すると考えて分子量分布が狭いポリマーを作成し、その分散性能を検討した。その結果、得られた結果を基にしてパラメーターを作成し、該パラメーターの値が特定の範囲内にあるポリマーを含むセメント混和剤を用いて得られたセメント組成物では、分散性が非常に優れていることを見出した。その際、ポリオキシアルキレン鎖を有する不飽和単量体を含む単量体をリビング重合することにより容易にパラメーターを満たす重合体を製造できることを見出し、本発明に至った。   Although the present inventors show a relatively high cement dispersion performance even with conventional polymers having a wide molecular weight distribution as described in Patent Documents 1 and 2, the high molecular weight portion has an effect of aggregating cement particles. Therefore, the cement dispersion performance was hindered, and the low molecular weight portion was considered not to contribute to the dispersion performance because the cement particle dispersion performance was low. Therefore, a polymer having a narrow molecular weight distribution was created by considering that a polymer having a narrow molecular weight distribution, in which a high molecular weight portion and a low molecular weight portion that do not contribute to the dispersion performance were reduced, would further improve the cement dispersion performance, and the dispersion performance was examined. As a result, a parameter was created based on the obtained result, and the cement composition obtained by using a cement admixture containing a polymer having a parameter value within a specific range has extremely excellent dispersibility. I found out. In that case, it discovered that the polymer which satisfy | fills a parameter could be easily manufactured by carrying out living polymerization of the monomer containing the unsaturated monomer which has a polyoxyalkylene chain, and it came to this invention.

<i>本発明の重合体は、ポリオキシアルキレン鎖由来の構成単位を含む重合体(P)であって、下記数式(1)により定義されるPD値の範囲を満たすことを特徴とする重合体。
1<PD<MD (1)
[式中、PD=Mw/Mn、MD=G(n)×Mw+H(n)、G(n)×Mwは下記数式(2)
G(n)×Mw={−0.985×ln(n)+5.802}×10−5×Mw (2)
により定義され、(nは重合体(P)のオキシアルキレン基の平均付加モル数を表し、Mw、Mnはそれぞれ重合体(P)のゲルパーミエーションクロマトグラフィー(GPC)により測定された重量平均分子量、数平均分子量を表す。)
H(n)は下記数式(3)
H(n)=4.513×10−5×n−6.041×10−3×n+1.351(3)
により定義される(nは重合体(P)のオキシアルキレン基の平均付加モル数を表す。)。]
<I> The polymer of the present invention is a polymer (P) containing a structural unit derived from a polyoxyalkylene chain, and satisfies the PD value range defined by the following mathematical formula (1). Coalescence.
1 <PD <MD (1)
[In the formula, PD = Mw / Mn, MD = G (n) × Mw + H (n), G (n) × Mw is the following formula (2)
G (n) × Mw = {− 0.985 × ln (n) +5.802} × 10 −5 × Mw (2)
(N represents the average number of moles added of the oxyalkylene group of the polymer (P), and Mw and Mn are respectively weight average molecular weights measured by gel permeation chromatography (GPC) of the polymer (P). Represents the number average molecular weight.)
H (n) is the following formula (3)
H (n) = 4.513 × 10 −5 × n 2 −6.041 × 10 −3 × n + 1.351 (3)
(N represents the average added mole number of the oxyalkylene group of the polymer (P)). ]

<ii>また、上記重合体は、前記ポリオキシアルキレン鎖由来の構成単位を含む重合体(P)がポリオキシアルキレン鎖由来の構成単位とカルボキシル基由来の部位を有する構成単位を必須として含むことを特徴としている。   <Ii> Further, in the polymer, the polymer (P) including the structural unit derived from the polyoxyalkylene chain essentially includes a structural unit having a structural unit derived from the polyoxyalkylene chain and a site derived from a carboxyl group. It is characterized by.

<iii>また、前記重合体のポリオキシアルキレン鎖由来の構成単位が、下記化学式(1)   <Iii> The structural unit derived from the polyoxyalkylene chain of the polymer is represented by the following chemical formula (1):

Figure 2007113002
Figure 2007113002

[式中、RおよびRは同一または異なって、水素原子またはメチル基を表し、AOは同一または異なって、炭素数2以上のオキシアルキレン基の1種または2種以上(2種以上の場合はブロック状に付加していてもランダム状に付加していても良い)を表し、xは0〜2の整数を表し、yは0または1を表し、nはオキシアルキレン基の平均付加モル数を表し、1〜300の数であり、Rは水素原子または炭素数1〜20の炭化水素基を表す]
で表される構成単位(I)を含んでなる<i>または<ii>に記載の重合体であることを特徴としている。
[Wherein, R 1 and R 2 are the same or different and each represents a hydrogen atom or a methyl group, and AO is the same or different, and one or more of oxyalkylene groups having 2 or more carbon atoms (two or more Or may be added randomly), x represents an integer of 0 to 2, y represents 0 or 1, and n represents an average addition mole of an oxyalkylene group. The number is 1 to 300, and R 3 represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms]
It is the polymer as described in <i> or <ii> which comprises the structural unit (I) represented by these.

<iv>また、前記カルボキシル基由来の部位を有する構成単位が、下記化学式(2)   <Iv> Moreover, the structural unit having the carboxyl group-derived moiety is represented by the following chemical formula (2):

Figure 2007113002
Figure 2007113002

[式中、R、RおよびRは同一または異なって、水素原子またはメチル基、−(CH)zCOOM(−(CH)zCOOMは、−COOMまたはその他の−(CH)zCOOMと無水物を形成していても良い)を表し、Zは0〜2の整数を表し、MおよびMは同一または異なって、水素原子、アルカリ金属原子、アルカリ土類金属原子、アンモニウム基または有機アミン基を表す]
で表される構成単位(II)を含んでなる<ii>に記載の重合体であることを特徴としている。
[Wherein, R 4 , R 5 and R 6 are the same or different and are a hydrogen atom or a methyl group, — (CH 2 ) zCOOM 2 (— (CH 2 ) zCOOM 2 is —COOM 1 or other — (CH 2) zCOOM 2 and anhydride may form a) represents, Z is an integer of 0 to 2, M 1 and M 2 are the same or different, a hydrogen atom, an alkali metal atom, an alkaline earth metal Represents an atom, an ammonium group or an organic amine group]
It is a polymer as described in <ii> which comprises structural unit (II) represented by these.

<v>また、ポリオキシアルキレン鎖を有する不飽和単量体(I−M)を含む不飽和単量体(M)をリビング重合することを特徴とすることにより、前記ポリオキシアルキレン鎖由来の構成単位を含む重合体(P)を好適に製造できる。   <V> In addition, by conducting living polymerization of an unsaturated monomer (M) including an unsaturated monomer (IM) having a polyoxyalkylene chain, the polyoxyalkylene chain-derived A polymer (P) containing a structural unit can be preferably produced.

<vi>その際、不飽和単量体(M)にカルボキシル基由来の部位を有する不飽和単量体(II−M)を含むことも好ましい。   <Vi> At that time, it is also preferred that the unsaturated monomer (M) contains an unsaturated monomer (II-M) having a carboxyl group-derived moiety.

<vii>また、前記ポリオキシアルキレン鎖を有する不飽和単量体(I−M)は下記化学式(3)   <Vii> The unsaturated monomer (IM) having the polyoxyalkylene chain is represented by the following chemical formula (3):

Figure 2007113002
Figure 2007113002

[式中、RおよびRは同一または異なって、水素原子またはメチル基を表し、AOは同一または異なって、炭素数2以上のオキシアルキレン基の1種または2種以上(2種以上の場合はブロック状に付加していてもランダム状に付加していても良い)を表し、xは0〜2の整数を表し、yは0または1を表し、nはオキシアルキレン基の平均付加モル数を表し、1〜300の数であり、Rは水素原子または炭素数1〜20の炭化水素基を表す]
で示される不飽和単量体である<v>に記載の製造方法であることが好ましい。
[Wherein, R 1 and R 2 are the same or different and each represents a hydrogen atom or a methyl group, and AO is the same or different, and one or more of oxyalkylene groups having 2 or more carbon atoms (two or more Or may be added randomly), x represents an integer of 0 to 2, y represents 0 or 1, and n represents an average addition mole of an oxyalkylene group. The number is 1 to 300, and R 3 represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms]
It is preferable that it is a manufacturing method as described in <v> which is an unsaturated monomer shown by these.

<viii>また、前記カルボキシル基由来の部位を有する不飽和単量体(II−M)は、下記化学式(4)   <Viii> Moreover, the unsaturated monomer (II-M) having the carboxyl group-derived moiety is represented by the following chemical formula (4).

Figure 2007113002
Figure 2007113002

[式中、R、RおよびRは同一または異なって、水素原子またはメチル基、−(CH)zCOOM(−(CH)zCOOMは、−COOMまたはその他の−(CH)zCOOMと無水物を形成していても良い)を表し、Zは0〜2の整数を表し、MおよびMは同一または異なって、水素原子、アルカリ金属原子、アルカリ土類金属原子、アンモニウム基または有機アミン基、炭素数3〜18の炭化水素基を持つシリル基を表す]
で示される不飽和単量体である<vi>に記載の製造方法であることが好ましい。
[Wherein, R 4 , R 5 and R 6 are the same or different and are a hydrogen atom or a methyl group, — (CH 2 ) zCOOM 2 (— (CH 2 ) zCOOM 2 is —COOM 1 or other — (CH 2) zCOOM 2 and anhydride may form a) represents, Z is an integer of 0 to 2, M 1 and M 2 are the same or different, a hydrogen atom, an alkali metal atom, an alkaline earth metal Represents a silyl group having an atom, an ammonium group or an organic amine group, or a hydrocarbon group having 3 to 18 carbon atoms]
It is preferable that it is a manufacturing method as described in <vi> which is an unsaturated monomer shown by these.

本発明の重合体およびセメント混和剤用ポリカルボン酸系ポリマーは、無機粉体を凝集させる高分子量側ポリマーとセメント分散性にあまり寄与しない低分子量側のポリマーを低減し、分子量分布がある特定のパラメーターでの限られた範囲内に限定しているため、非常に分子量分布がシャープであり、該重合体を無機粉体の分散剤に用いることにより分散性能を向上することができる。特に、無機粉体としてセメントを用いた場合では優れた分散性能を発現することができる。   The polymer and the polycarboxylic acid polymer for cement admixture of the present invention reduce the high molecular weight side polymer that aggregates the inorganic powder and the low molecular weight side polymer that does not contribute much to cement dispersibility, and have a specific molecular weight distribution. Since the molecular weight distribution is limited to a limited range of parameters, the dispersion performance can be improved by using the polymer as a dispersant for inorganic powder. In particular, when cement is used as the inorganic powder, excellent dispersion performance can be exhibited.

本発明の重合体は、ポリオキシアルキレン鎖由来の構成単位を含む重合体(P)であって、下記数式(1)
1<PD<MD (1)
[式中、PD=Mw/Mn、MD=G(n)×Mw+H(n)、G(n)×Mwは下記数式(2)
G(n)×Mw={−0.985×ln(n)+5.802}×10−5×Mw (2)
により定義され、(nは重合体(P)のオキシアルキレン基の平均付加モル数を表し、Mw、Mnはそれぞれ重合体(P)のゲルパーミエーションクロマトグラフィー(GPC)により測定された重量平均分子量、数平均分子量を表す。)
H(n)は下記数式(3)
H(n)=4.513×10−5×n−6.041×10−3×n+1.351(3)
により定義される(nは重合体(P)のオキシアルキレン基の平均付加モル数を表す。)。]
により定義されるPD値の範囲を満たすことを特徴としている。上記MD値は下記の方法で求めることができる。
The polymer of the present invention is a polymer (P) containing a structural unit derived from a polyoxyalkylene chain, and the following formula (1)
1 <PD <MD (1)
[In the formula, PD = Mw / Mn, MD = G (n) × Mw + H (n), G (n) × Mw is the following formula (2)
G (n) × Mw = {− 0.985 × ln (n) +5.802} × 10 −5 × Mw (2)
(N represents the average number of moles added of the oxyalkylene group of the polymer (P), and Mw and Mn are respectively weight average molecular weights measured by gel permeation chromatography (GPC) of the polymer (P). Represents the number average molecular weight.)
H (n) is the following formula (3)
H (n) = 4.513 × 10 −5 × n 2 −6.041 × 10 −3 × n + 1.351 (3)
(N represents the average added mole number of the oxyalkylene group of the polymer (P)). ]
It is characterized by satisfying the range of PD values defined by. The MD value can be determined by the following method.

<<パラメーターの算出方法>>
(1)前記ポリオキシアルキレン鎖由来の構成単位を含む重合体(P)の重量平均分子量(Mw)をゲルパーミエーションクロマトグラフィー(GPC)にて測定する。
(2)前記ポリオキシアルキレン鎖由来の構成単位を含む重合体(P)のオキシアルキレン鎖の平均付加モル数(n)が不明の場合はNMR等で平均付加モル数(n)を測定する。
(3)(1)、(2)で求められた重量平均分子量(Mw)及びオキシアルキレン鎖の平均付加モル数(n)の値を数式(1)〜数式(3)に代入しMD値を求める。
<< Parameter calculation method >>
(1) The weight average molecular weight (Mw) of the polymer (P) containing the structural unit derived from the polyoxyalkylene chain is measured by gel permeation chromatography (GPC).
(2) When the average addition mole number (n) of the oxyalkylene chain of the polymer (P) containing the structural unit derived from the polyoxyalkylene chain is unknown, the average addition mole number (n) is measured by NMR or the like.
(3) The MD value is calculated by substituting the values of the weight average molecular weight (Mw) and the average number of added moles (n) of the oxyalkylene chain obtained in (1) and (2) into the formulas (1) to (3). Ask.

上記MD値は、ポリオキシアルキレン鎖由来の構成単位を含む重合体の分子量分布(分散度)を表すパラメーターである。以下に本願のMD値について説明する。   The MD value is a parameter representing the molecular weight distribution (dispersion degree) of a polymer containing a structural unit derived from a polyoxyalkylene chain. The MD value of the present application will be described below.

Mw/MnはMwと強い相関がある。ポリマーがアルキレングリコールのように長い側鎖を持つ時は、側鎖長(n)もMw/Mnに影響する。またコポリマーの場合は、ポリマーの組成も分子量分布に影響する。よって長い側鎖を持つコポリマーの分子量分布は下記数式(4)
Mw/Mn=F(Mw,n,組成) (4)
で示される分子量、側鎖の大きさ、組成の関数として表せる。
Mw / Mn has a strong correlation with Mw. When the polymer has a long side chain such as alkylene glycol, the side chain length (n) also affects Mw / Mn. In the case of copolymers, the composition of the polymer also affects the molecular weight distribution. Therefore, the molecular weight distribution of the copolymer with long side chains is
Mw / Mn = F (Mw, n, composition) (4)
As a function of molecular weight, side chain size, and composition.

GPCは原理的に相対値を測定するので、数式(4)はあるGPC条件で固有の式となり、一定条件で様々なポリマーを測定した結果から矛盾の無いように導出しなければならない。後述のGPC条件での数式(4)の導出は下記のような手順で行った。   Since GPC measures the relative value in principle, Equation (4) becomes a unique equation under a certain GPC condition, and must be derived from the results of measurement of various polymers under a certain condition so as to be consistent. The derivation of Equation (4) under GPC conditions described later was performed in the following procedure.

Mw、n、組成を様々に変えた多数のポリマーを測定した結果、測定するポリマーがGPCカラムに吸着しない場合、組成は測定結果への影響が小さいので無視することができ、分子量分布パラメーター値(MD値)は下記数式(5)
MD=G(n)×Mw+H(n) (5)
で表せることができる。
As a result of measuring a large number of polymers having different Mw, n, and composition, when the polymer to be measured does not adsorb on the GPC column, the composition has a small influence on the measurement result and can be ignored. MD value) is the following formula (5)
MD = G (n) × Mw + H (n) (5)
It can be expressed as

右辺第1項は主にMw/Mnに対するMwの影響、右辺第2項はMw/Mnに対するポリオキシアルキレン鎖長nの影響を表す。   The first term on the right side mainly represents the effect of Mw on Mw / Mn, and the second term on the right side represents the effect of polyoxyalkylene chain length n on Mw / Mn.

一定のオキシアルキレン鎖長nでMwの異なるポリマーについて、X軸にMw、Y軸にMw/Mnをとると、両者の関係は1次関数で表され、傾きからその側鎖長におけるG(n)の値、切片からそのnにおけるH(n)の値が算出された。別のオキシアルキレン鎖長nを有するポリマーについても、同様の手順でG(n)、H(n)の値を算出した。   For a polymer having a constant oxyalkylene chain length n and different Mw, when Mw is taken on the X axis and Mw / Mn is taken on the Y axis, the relationship between them is expressed by a linear function, and G (n ), And the value of H (n) at that n was calculated from the intercept. For the polymer having another oxyalkylene chain length n, the values of G (n) and H (n) were calculated in the same procedure.

次いでX軸にn、Y軸にG(n)をとると、両者の関係は下記数式(6)
G(n)={a1×ln(n)+a2}×10−5 (6)
で示される自然対数でよく近似された。但し、a1、a2は測定結果より求まる定数であり、a1=−0.985、a2=5.802であった。
更にX軸にn、Y軸にH(n)をとると、両者の関係は下記数式(7)
H(n)=b1×n+b2×n+b3 (7)
で示される2次式でよく近似された。但し、b1、b2、b3は測定結果より求まる定数であり、b1=4.513×10−5、b2=−6.041×10−3、b3=1.351であった。よって数式(6)は下記数式(8)
MD={−0.985×ln(n)+5.802}×10−5×Mw+4.513×10−5×n−6.041×10−3×n+1.351 (8)
で示される。
Next, when n is taken on the X axis and G (n) is taken on the Y axis, the relationship between the two is given by the following formula (6).
G (n) = {a1 × ln (n) + a2} × 10 −5 (6)
It was well approximated by the natural logarithm shown by. However, a1 and a2 are constants obtained from the measurement results, and are a1 = −0.985 and a2 = 5.802.
Further, when n is taken on the X axis and H (n) is taken on the Y axis, the relationship between the two is given by the following formula (7).
H (n) = b1 × n 2 + b2 × n + b3 (7)
It was well approximated by the quadratic equation shown by However, b1, b2, and b3 are constants obtained from the measurement results, and were b1 = 4.513 × 10 −5 , b2 = −6.041 × 10 −3 , and b3 = 1.351. Therefore, the formula (6) is expressed by the following formula (8).
MD = {− 0.985 × ln (n) +5.802} × 10 −5 × Mw + 4.513 × 10 −5 × n 2 −6.041 × 10 −3 × n + 1.351 (8)
Indicated by

本発明のポリオキシアルキレン鎖由来の構成単位を含む重合体(P)のパラメーターの範囲は、上記の数式から得られた分子量分布(分散度)パラメーター値(MD値)をもちいて、1<PD<MDの範囲である。   The parameter range of the polymer (P) containing the structural unit derived from the polyoxyalkylene chain of the present invention is 1 <PD using the molecular weight distribution (dispersity) parameter value (MD value) obtained from the above formula. <MD range.

例えば、(a)重量平均分子量30,000、オキシアルキレン鎖の平均付加モル数25の重合体であれば、G(n)×Mw=0.789、H(n)=1.226となり、分子量分布パラメーター値はMD=0.789+1.226=2.015となる。また、(b)重量平均分子量40,000、オキシアルキレン鎖の平均付加モル数50の重合体であれば、G(n)×Mw=0.779、H(n)=1.160となり、分子量分布パラメーター値はMD=0.779+1.160=1.939となる。したがって、(a)重量平均分子量30,000、オキシアルキレン鎖の平均付加モル数25の重合体であれば、PD<2.015を満たすPD値を有する重合体が本発明の重合体(P)であり、また、(b)重量平均分子量40,000、オキシアルキレン鎖の平均付加モル数50の重合体であれば、PD<1.939を満たすPD値を有する重合体が本発明の重合体(P)となる。   For example, if (a) a polymer having a weight average molecular weight of 30,000 and an average addition mole number of oxyalkylene chain of 25, G (n) × Mw = 0.789, H (n) = 1.226, and molecular weight The distribution parameter value is MD = 0.789 + 1.226 = 2.015. In addition, if (b) a polymer having a weight average molecular weight of 40,000 and an average addition mole number of oxyalkylene chain of 50, G (n) × Mw = 0.799, H (n) = 1.160, and molecular weight The distribution parameter value is MD = 0.799 + 1.160 = 1.939. Accordingly, (a) a polymer having a weight average molecular weight of 30,000 and an average added mole number of oxyalkylene chain of 25 is a polymer having a PD value satisfying PD <2.015. And (b) a polymer having a weight average molecular weight of 40,000 and an average addition mole number of oxyalkylene chain of 50, a polymer having a PD value satisfying PD <1.939 is a polymer of the present invention. (P).

また、上記の分子量分布パラメーター値(MD値)は重合体の分散度(Mw/Mn)を表すパラメーターであり、その値が大きければ分散度が大きく重合体の分子量分布が広いことを表し、その値が小さければ分散度が小さく重合体の分子量分布が狭いことを表している。本発明の重合体(P)は上記の分子量パラメーター値(MD値)未満のPD値の範囲を有するものであり、分子量分布は非常に狭いものであることを意味している。   The above molecular weight distribution parameter value (MD value) is a parameter representing the degree of dispersion (Mw / Mn) of the polymer. A larger value represents a larger degree of dispersion and a wider molecular weight distribution of the polymer. A small value indicates a low degree of dispersion and a narrow molecular weight distribution of the polymer. The polymer (P) of the present invention has a PD value range less than the above molecular weight parameter value (MD value), which means that the molecular weight distribution is very narrow.

上記パラメーターPDの値は1<PD<MDの関係であれば特に制限はないが、分子量分布(分散度)が狭いほど無機粉体の分散性能を向上させる観点からは、PD<MD−0.1、さらに好ましくはPD<MD−0.15、さらに好ましくはPD<MD−0.2、さらに好ましくはPD<MD−0.25、さらに好ましくはPD<MD−0.3、さらに好ましくはPD<MD−0.35である。また、重合体の製造の観点からは、1<PDが好ましく、さらに好ましくは1.05<PD、さらに好ましくは1.1<PD、さらに好ましくは1.15<PD、さらに好ましくは1.2<PD、さらに好ましくは1.25<PD、さらに好ましくは1.3<PDである。   The value of the parameter PD is not particularly limited as long as 1 <PD <MD, but from the viewpoint of improving the dispersion performance of the inorganic powder as the molecular weight distribution (dispersion degree) is narrower, PD <MD-0. 1, more preferably PD <MD-0.15, more preferably PD <MD-0.2, more preferably PD <MD-0.25, more preferably PD <MD-0.3, more preferably PD <MD-0.35. From the viewpoint of polymer production, 1 <PD is preferable, more preferably 1.05 <PD, still more preferably 1.1 <PD, still more preferably 1.15 <PD, and still more preferably 1.2. <PD, more preferably 1.25 <PD, and even more preferably 1.3 <PD.

<ポリオキシアルキレン鎖由来の構成単位を含む重合体>
本発明のポリオキシアルキレン鎖由来の構成単位を含む重合体(P)は、重合体中にポリオキシアルキレン鎖由来の構成単位を含んでいれば特に制限されないが、ポリオキシアルキレン鎖は重合体主鎖にグラフトされている構造が好ましい。ポリオキシアルキレン鎖の由来の構成単位は重合体中2〜98質量%含んでいることが好ましく、さらに50質量%以上、さらに好ましくは60質量%以上、さらに好ましくは65質量%以上、さらに好ましくは70質量%以上含むことが好ましい。ただし、質量%の計算において、重合体の構成単位が酸や塩基など塩を形成しうる官能基を有する場合は、塩を形成していない状態で質量を計算する(例えば、カルボン酸塩ならカルボン酸に換算、アミン塩ならアミンに換算する)ものとし、以下でも同様とする。
<Polymer containing structural unit derived from polyoxyalkylene chain>
The polymer (P) containing a structural unit derived from a polyoxyalkylene chain of the present invention is not particularly limited as long as it contains a structural unit derived from a polyoxyalkylene chain in the polymer. A structure grafted on a chain is preferred. The constituent unit derived from the polyoxyalkylene chain is preferably contained in the polymer in an amount of 2 to 98% by mass, more preferably 50% by mass or more, more preferably 60% by mass or more, further preferably 65% by mass or more, and further preferably. It is preferable to contain 70 mass% or more. However, in the calculation of mass%, when the structural unit of the polymer has a functional group capable of forming a salt such as an acid or a base, the mass is calculated in a state where no salt is formed (for example, a carboxylate is a carboxylic acid. In the case of an amine salt, it is converted to an amine), and the same shall apply hereinafter.

また、オキシアルキレン鎖は構成するオキシアルキレン基の種類および平均付加モル数は特に制限されないが、炭素数2〜18のオキシアルキレン基が好ましい、さらに好ましくは炭素数2〜8のオキシアルキレン基が好ましい。また、水を媒体とした無機粉体の分散性能の観点からは、オキシアルキレン基の親水性を高める必要があり、炭素数2のオキシエチレン基が主体を占めることが好ましい。このとき、炭素数3以上のオキシアルキレン基とオキシエチレン基の合計に対するオキシエチレン基の比率としては、50モル%以上、好ましくは60モル%以上、さらに好ましくは70モル%以上、さらに好ましくは90モル%以上、さらに好ましくは95モル%以上、さらに好ましくは100モル%である。   Further, the kind of oxyalkylene group constituting the oxyalkylene chain and the average number of added moles are not particularly limited, but an oxyalkylene group having 2 to 18 carbon atoms is preferable, and an oxyalkylene group having 2 to 8 carbon atoms is more preferable. . Further, from the viewpoint of the dispersion performance of the inorganic powder using water as a medium, it is necessary to increase the hydrophilicity of the oxyalkylene group, and it is preferable that the oxyethylene group having 2 carbon atoms occupies the main component. At this time, the ratio of the oxyethylene group to the total of the oxyalkylene group having 3 or more carbon atoms and the oxyethylene group is 50 mol% or more, preferably 60 mol% or more, more preferably 70 mol% or more, and still more preferably 90 More than mol%, More preferably, it is 95 mol% or more, More preferably, it is 100 mol%.

また、オキシアルキレン鎖の平均付加モル数は特に制限されないが、オキシアルキレン鎖は平均付加モル数は1〜300モルが好ましく、無機粉体の分散性能向上の観点からは2モル以上が好ましく、さらに好ましくは4モル以上、さらに好ましくは6モル以上、さらに好ましくは10モル以上、さらに好ましくは15モル以上、さらに好ましくは20モル以上である。オキシアルキレン鎖の製造の観点からは、オキシアルキレン鎖の上限は300モルが好ましく、さらに好ましくは250モル、さらに好ましくは200モル、さらに好ましくは150モルである。   Further, the average addition mole number of the oxyalkylene chain is not particularly limited, but the average addition mole number of the oxyalkylene chain is preferably 1 to 300 mol, and preferably 2 mol or more from the viewpoint of improving the dispersion performance of the inorganic powder. Preferably it is 4 mol or more, More preferably, it is 6 mol or more, More preferably, it is 10 mol or more, More preferably, it is 15 mol or more, More preferably, it is 20 mol or more. From the viewpoint of producing an oxyalkylene chain, the upper limit of the oxyalkylene chain is preferably 300 mol, more preferably 250 mol, still more preferably 200 mol, and still more preferably 150 mol.

上記重合体(P)はポリオキシアルキレン鎖由来の構成単位とさらにカルボキシル基由来の構成単位を有するものが好ましく、カルボキシル基を有する構成単位は重合体中2〜90質量%含んでいることが好ましく、無機粉体への吸着性能の観点から2質量%以上、好ましくは5質量%以上、さらに好ましくは7.5質量%以上、さらに好ましくは10質量%以上、さらに好ましくは12.5質量%以上、さらに好ましくは15質量%以上、さらに好ましくは20質量%以上、さらに好ましくは25質量%以上である。しかしながら、カルボキシル基を有する構成単位が多くなりすぎると、無機粉体を分散させる機能を有する構成単位の導入量が少なくなることからその上限は、90質量%、好ましくは80質量%、さらに好ましくは60質量%、さらに好ましくは50質量%、さらに好ましくは40質量%、さらに好ましくは35質量%、さらに好ましくは30質量%である。   The polymer (P) preferably has a structural unit derived from a polyoxyalkylene chain and a structural unit derived from a carboxyl group, and the structural unit having a carboxyl group preferably contains 2 to 90% by mass in the polymer. From the viewpoint of the adsorption performance to the inorganic powder, 2% by mass or more, preferably 5% by mass or more, more preferably 7.5% by mass or more, further preferably 10% by mass or more, more preferably 12.5% by mass or more. More preferably, it is 15% by mass or more, more preferably 20% by mass or more, and further preferably 25% by mass or more. However, if the number of structural units having a carboxyl group is too large, the amount of structural units having a function of dispersing inorganic powder decreases, so the upper limit is 90% by mass, preferably 80% by mass, more preferably 60 mass%, More preferably, it is 50 mass%, More preferably, it is 40 mass%, More preferably, it is 35 mass%, More preferably, it is 30 mass%.

上記のポリオキシアルキレン鎖由来の構成単位は、下記化学式(1)   The structural unit derived from the above polyoxyalkylene chain has the following chemical formula (1)

Figure 2007113002
Figure 2007113002

[式中、RおよびRは互いに独立して水素原子またはメチル基を表し、AOは互いに独立して炭素数2以上のオキシアルキレン基の1種または2種以上の混合物(2種以上の場合はブロック状に付加していてもランダム状に付加していても良い)を表し、xは0〜2の整数を表し、yは0または1を表し、nはオキシアルキレン基の平均付加モル数を表し、1〜300の数であり、Rは水素原子または炭素数1〜20の炭化水素基を表す]
で表される構成単位(I)を2〜98質量%含んでいることが好ましい。オキシアルキレン鎖は立体反発効果によりセメント粒子のような無機粉体を分散させる機能を有し、2〜98質量%含むことでセメント粒子を十分に分散させることができるため好ましい。上記化学式(1)では、RおよびRは同一または異なって、水素原子またはメチル基を表し、AOは同一または異なって、炭素数2以上のオキシアルキレン基の1種または2種以上の混合物(2種以上の場合はブロック状に付加していてもランダム状に付加していても良い)を表し、xは0〜2の整数を表し、yは0または1を表し、nはオキシアルキレン基の平均付加モル数を表し、1〜300の数であり、Rは水素原子または炭素数1〜20の炭化水素基を表す。
[Wherein, R 1 and R 2 independently represent a hydrogen atom or a methyl group, and AO independently of each other represents one or a mixture of two or more oxyalkylene groups having 2 or more carbon atoms (two or more Or may be added randomly), x represents an integer of 0 to 2, y represents 0 or 1, and n represents an average addition mole of an oxyalkylene group. The number is 1 to 300, and R 3 represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms]
It is preferable that 2-98 mass% of structural units (I) represented by these are included. The oxyalkylene chain is preferable because it has a function of dispersing an inorganic powder such as cement particles due to a steric repulsion effect, and the cement particles can be sufficiently dispersed by containing 2 to 98% by mass. In the chemical formula (1), R 1 and R 2 are the same or different and each represents a hydrogen atom or a methyl group, AO is the same or different, and one or a mixture of two or more oxyalkylene groups having 2 or more carbon atoms. (In the case of 2 or more types, it may be added in block form or in random form), x represents an integer of 0 to 2, y represents 0 or 1, and n represents oxyalkylene represents an average addition mole number of groups, the number of 1 to 300, R 3 represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.

上記構成単位(I)は、上記の無機粉体分散効果を得るためには、ポリマー中に2質量%以上(好ましくは50質量%以上、さらに好ましくは60質量%以上、さらに好ましくは65質量%以上、さらに好ましくは70質量%以上)含むことが好ましい。しかし、上記構成単位(I)の含有量が多くなると、セメントのような無機粉体粒子に吸着する機能を有する構成単位(II)の含有量が少なくなるため多量の混和剤を添加しなければ十分な流動性を有する組成物が得られない。そのため含有率の上限は98質量%(好ましくは95質量%、さらに好ましくは90質量%、さらに好ましくは85質量%、さらに好ましくは80質量%)とする。   In order to obtain the inorganic powder dispersion effect, the structural unit (I) is 2% by mass or more in the polymer (preferably 50% by mass or more, more preferably 60% by mass or more, and further preferably 65% by mass). Or more, more preferably 70% by mass or more). However, if the content of the structural unit (I) increases, the content of the structural unit (II) having a function of adsorbing to inorganic powder particles such as cement decreases, so a large amount of admixture must be added. A composition having sufficient fluidity cannot be obtained. Therefore, the upper limit of the content is 98% by mass (preferably 95% by mass, more preferably 90% by mass, still more preferably 85% by mass, and more preferably 80% by mass).

特に上記AOで表されるオキシアルキレン基は、炭素数2〜18のオキシアルキレン基が好ましく、水を媒体とした無機粉体の分散性能の向上の観点からはオキシアルキレン基の親水性を高める必要があり、炭素数2のオキシアルキレン基であるオキシエチレン基が主体を占めることが好ましい。このとき、構成単位(I)中での炭素数3以上のオキシアルキレン基とオキシエチレン基の合計に対するオキシエチレン基の比率としては、モル比で50モル%以上、好ましくは60モル%以上、さらに好ましくは70モル%以上、さらに好ましくは80モル%以上、さらに好ましくは90モル%以上、さらに好ましくは100モル%である。   In particular, the oxyalkylene group represented by AO is preferably an oxyalkylene group having 2 to 18 carbon atoms, and it is necessary to increase the hydrophilicity of the oxyalkylene group from the viewpoint of improving the dispersion performance of the inorganic powder using water as a medium. It is preferable that the main component is an oxyethylene group which is an oxyalkylene group having 2 carbon atoms. At this time, the ratio of the oxyethylene group to the total of the oxyalkylene group having 3 or more carbon atoms and the oxyethylene group in the structural unit (I) is 50 mol% or more, preferably 60 mol% or more, Preferably it is 70 mol% or more, More preferably, it is 80 mol% or more, More preferably, it is 90 mol% or more, More preferably, it is 100 mol%.

また、構成単位(I)中のオキシアルキレン鎖に炭素数3以上のオキシアルキレン基を導入し、ある程度の疎水性を付与することでセメント粒子に若干の構造(ネットワーク)をもたらすことにより、本発明の重合体を用いて製造されたコンクリートの状態を改善する(コンクリートの粘性やこわばりを低減できるなど)こともできる。しかし、炭素数3以上のオキシアルキレン基を導入しすぎると、得られたポリマーの疎水性が高くなりすぎることから、セメントを分散させる性能が低下することがある。構成単位(I)中の炭素数3以上のオキシアルキレン基の比率は、疎水性を付与する観点から、好ましくは1モル%以上、より好ましくは3モル%以上、さらに好ましくは5モル%以上であり、また、セメント分散性能の観点から、好ましくは50モル%以下、より好ましくは40モル%以下、さらに好ましくは30モル%以下である。   In addition, by introducing an oxyalkylene group having 3 or more carbon atoms into the oxyalkylene chain in the structural unit (I) and imparting a certain degree of hydrophobicity, the cement particles are provided with a slight structure (network). It is also possible to improve the condition of the concrete produced using the polymer (can reduce the viscosity and stiffness of the concrete). However, if an oxyalkylene group having 3 or more carbon atoms is introduced too much, the hydrophobicity of the obtained polymer becomes too high, so that the performance of dispersing cement may be lowered. From the viewpoint of imparting hydrophobicity, the proportion of the oxyalkylene group having 3 or more carbon atoms in the structural unit (I) is preferably 1 mol% or more, more preferably 3 mol% or more, and even more preferably 5 mol% or more. From the viewpoint of cement dispersion performance, it is preferably 50 mol% or less, more preferably 40 mol% or less, and still more preferably 30 mol% or less.

炭素数3以上のオキシアルキレン基としては導入のしやすさ、セメントとの親和性の観点から、炭素数3〜8のオキシアルキレン基、さらには炭素数3〜4のオキシプロピレン基やオキシブチレン基が好ましい。   From the viewpoint of ease of introduction and affinity with cement, the oxyalkylene group having 3 or more carbon atoms is preferably an oxyalkylene group having 3 to 8 carbon atoms, and further an oxypropylene group or oxybutylene group having 3 to 4 carbon atoms. Is preferred.

オキシアルキレン鎖の平均付加モル数は1〜300モルが好ましく、無機粉体の分散性能向上の観点からは2モル以上が好ましく、さらに好ましくは4モル以上、さらに好ましくは6モル以上、さらに好ましくは10モル以上、さらに好ましくは15モル以上、さらに好ましくは20モル以上である。オキシアルキレン鎖の製造の観点からは、オキシアルキレン鎖の上限は300モルが好ましく、さらに好ましくは250モル、さらに好ましくは200モル、さらに好ましくは150モルである。   The average number of added moles of the oxyalkylene chain is preferably 1 to 300 moles, preferably 2 moles or more, more preferably 4 moles or more, more preferably 6 moles or more, and still more preferably from the viewpoint of improving the dispersion performance of the inorganic powder. It is 10 mol or more, more preferably 15 mol or more, more preferably 20 mol or more. From the viewpoint of producing an oxyalkylene chain, the upper limit of the oxyalkylene chain is preferably 300 mol, more preferably 250 mol, still more preferably 200 mol, and still more preferably 150 mol.

オキシアルキレン鎖の末端基Rは水素原子または炭素数1〜20の炭化水素基[炭素数1〜20のアルキル基(脂肪族アルキル基または脂環式アルキル基)、炭素数1〜20のアルケニル基、炭素数1〜20のアルキニル基、炭素数6〜20のフェニル基、アルキルフェニル基、ナフチル基などのベンゼン環を有する芳香族基などが挙げられる]であるが、水を媒体とした無機粉体(セメント組成物等)を分散させる観点から疎水性が低いことが好ましく、水素原子または炭素数1〜10の炭化水素基(アルキル基、アルケニル基、アルキニル基、フェニル基等が挙げられる)、さらには水素原子または炭素数1〜6の炭化水素基(アルキル基、アルケニル基、アルキニル基、フェニル基等が挙げられる)、さらには水素原子または炭素数1〜3の炭化水素基(アルキル基、アルケニル基、アルキニル基等が挙げられる)が好ましい。 The terminal group R 3 of the oxyalkylene chain is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms [an alkyl group having 1 to 20 carbon atoms (aliphatic alkyl group or alicyclic alkyl group), alkenyl having 1 to 20 carbon atoms. Group, aromatic group having a benzene ring such as phenyl group, alkylphenyl group and naphthyl group having 1 to 20 carbon atoms, alkynyl group having 1 to 20 carbon atoms, and the like. From the viewpoint of dispersing the powder (cement composition, etc.), it is preferable that the hydrophobicity is low. Furthermore, a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms (an alkyl group, an alkenyl group, an alkynyl group, a phenyl group, etc.), further a hydrogen atom or a carbon number 1-3 hydrocarbon groups (an alkyl group, an alkenyl group, an alkynyl group, etc. are mentioned) are preferable.

上記のカルボキシル基由来の部位を有する構成単位は、下記化学式(2)   The structural unit having the carboxyl group-derived moiety is represented by the following chemical formula (2)

Figure 2007113002
Figure 2007113002

[式中、R、RおよびRは互いに独立して水素原子またはメチル基、−(CH)zCOOM(−(CH)zCOOMは、−COOMまたはその他の−(CH)zCOOMと無水物を形成していても良い)を表し、zは0〜2の整数を表し、MおよびMは互いに独立して水素原子、アルカリ金属原子、アルカリ土類金属原子、アンモニウム基または有機アミン基を表す]
で表される構成単位(II)を2〜90質量%含んでなることが好ましい。
[Wherein R 4 , R 5 and R 6 are each independently a hydrogen atom or a methyl group, — (CH 2 ) zCOOM 2 (— (CH 2 ) zCOOM 2 is —COOM 1 or other — (CH 2 Z) may form an anhydride with zCOOM 2 ), z represents an integer of 0 to 2, and M 1 and M 2 are each independently a hydrogen atom, an alkali metal atom, an alkaline earth metal atom, Represents an ammonium group or an organic amine group]
It is preferable that 2-90 mass% of structural units (II) represented by these are included.

上記化学式(2)ではR、RおよびRは同一または異なって、水素原子またはメチル基、−(CH)zCOOM(−(CH)zCOOMは、−COOMまたはその他の−(CH)zCOOMと無水物を形成していても良い)を表し、Zは0〜2の整数を表し、MおよびMは同一または異なって、水素原子、アルカリ金属原子、アルカリ土類原子、アンモニウム基または有機アミン基を表している。 In the chemical formula (2), R 4 , R 5 and R 6 are the same or different, and are a hydrogen atom or a methyl group, — (CH 2 ) zCOOM 2 (— (CH 2 ) zCOOM 2 is —COOM 1 or other — (CH 2 ) may form an anhydride with zCOOM 2 ), Z represents an integer of 0 to 2, M 1 and M 2 are the same or different, and are a hydrogen atom, an alkali metal atom, an alkaline earth It represents an analog atom, an ammonium group or an organic amine group.

上記構成単位(II)は、セメントのような無機粉体に吸着作用を及ぼす部分であり、無機粉体に対する吸着性を十分に付与する観点から、重合体中に2質量%以上(好ましくは5質量%以上、さらに好ましくは7.5質量%以上、さらに好ましくは10質量%以上、さらに好ましくは12.5質量%以上、さらに好ましくは15質量%以上、さらに好ましくは20質量%以上、さらに好ましくは25質量%以上)含まれていることが好ましい。しかし含有率が多すぎれば、無機粉体を分散させる機能を有する構成単位(I)の重合体中の含有量が少なくなるため混和剤を多量に添加しなければ十分な流動性を有する組成物を得ることができない。そのため、含有率の上限は90質量%(好ましくは80質量%、さらに好ましくは60質量%、さらに好ましくは50質量%、さらに好ましくは40質量%、さらに好ましくは35質量%、さらに好ましくは30質量%)とする。   The structural unit (II) is a part that exerts an adsorption action on the inorganic powder such as cement, and is 2% by mass or more (preferably 5%) in the polymer from the viewpoint of sufficiently imparting the adsorptivity to the inorganic powder. % By mass or more, more preferably 7.5% by mass or more, more preferably 10% by mass or more, more preferably 12.5% by mass or more, further preferably 15% by mass or more, more preferably 20% by mass or more, and further preferably Is preferably contained in an amount of 25% by mass or more. However, if the content is too high, the content of the structural unit (I) having the function of dispersing the inorganic powder in the polymer is small, so that a composition having sufficient fluidity can be used unless a large amount of admixture is added. Can't get. Therefore, the upper limit of the content is 90% by mass (preferably 80% by mass, more preferably 60% by mass, more preferably 50% by mass, further preferably 40% by mass, more preferably 35% by mass, and further preferably 30% by mass. %).

上記重合体(P)は、上記必須の構成単位(繰り返し単位)を有することを特徴とし、後述の単量体(III−M)に由来する構成単位(III)をさらに有するものであっても良い。これらの構成単位はそれぞれ1種であってもよく、2種以上であっても良い。   The polymer (P) is characterized by having the essential structural unit (repeating unit), and further having a structural unit (III) derived from a monomer (III-M) described later. good. Each of these structural units may be one type or two or more types.

上記重合体(P)を構成する各構成単位の比率としては、質量比で、構成単位(I)/構成単位(II)/構成単位(III)=2〜98質量%/2〜90質量%/0〜50質量%(好ましくは50〜95質量%/5〜80質量%/0〜40質量%、より好ましくは60〜90質量%/7.5〜60質量%/0〜30質量%)で用いることが好ましい。   The ratio of each structural unit constituting the polymer (P) is, by mass ratio, structural unit (I) / structural unit (II) / structural unit (III) = 2 to 98 mass% / 2 to 90 mass%. / 0-50 mass% (preferably 50-95 mass% / 5-80 mass% / 0-40 mass%, more preferably 60-90 mass% / 7.5-60 mass% / 0-30 mass%) It is preferable to use in.

<ポリオキシアルキレン基由来の構成単位を含む重合体(P)を得るための単量体>
前記構成単位(I)を与える単量体としては、下記化学式(3)
<Monomer for obtaining a polymer (P) containing a structural unit derived from a polyoxyalkylene group>
Examples of the monomer giving the structural unit (I) include the following chemical formula (3)

Figure 2007113002
Figure 2007113002

[式中、RおよびRは同一または異なって、水素原子またはメチル基を表し、AOは同一または異なって、炭素数2以上のオキシアルキレン基の1種または2種以上の混合物(2種以上の場合はブロック状に付加していてもランダム状に付加していても良い)を表し、xは0〜2の整数を表し、yは0または1を表し、nはオキシアルキレン基の平均付加モル数を表し、1〜300の数であり、Rは水素原子または炭素数1〜20の炭化水素基を表す]
で示される単量体を含む不飽和単量体成分(以下「I−M」とも称する)で表される。
[Wherein, R 1 and R 2 are the same or different and each represents a hydrogen atom or a methyl group, AO is the same or different, and one or a mixture of two or more oxyalkylene groups having 2 or more carbon atoms (two types In the above case, it may be added in a block form or a random form), x represents an integer of 0 to 2, y represents 0 or 1, and n represents an average of oxyalkylene groups. Represents the number of added moles, is a number from 1 to 300, and R 3 represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms]
It is represented by an unsaturated monomer component (hereinafter also referred to as “IM”) including a monomer represented by

不飽和単量体成分(I−M)としては、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、1−ペンタノール、1−ヘキサノール、オクタノール、2−エチル−1−ヘキサノール、ノニルアルコール、ラウリルアルコール、セチルアルコール、ステアリルアルコールなどの炭素数1〜20の飽和脂肪族アルコール類、アリルアルコール、メタリルアルコール、クロチルアルコール、オレイルアルコールなどの炭素数3〜20の不飽和脂肪族アルコール類、シクロヘキサノールなどの炭素数3〜20の脂環式アルコール類、フェノール、フェニルメタノール(ベンジルアルコール)、メチルフェノール(クレゾール)、p−エチルフェノール、ジメチルフェノール(キシレノール)、ノニルフェノール、ドデシルフェノール、フェニルフェノール、ナフトールなどの炭素数6〜20の芳香族アルコール類のいずれかに炭素数2〜18のアルキレンオキシドを付加することによって得られるアルコキシポリアルキレングリコール類、炭素数2〜18のアルキレンオキシドを重合したポリアルキレングリコール類と(メタ)アクリル酸、クロトン酸とのエステル化物を挙げることができ、これらの1種または2種以上を用いることができる。これらの中でも、(メタ)アクリル酸のアルコキシポリアルキレングリコール類のエステルが好ましい。さらにビニルアルコール、(メタ)アリルアルコール、3−メチル−3−ブテン−1−オール、3−メチル−2−ブテン−1−オール、2−メチル−3−ブテン−2−オール、2−メチル−2−ブテン−1−オール、2−メチル−3−ブテン−1−オールなどの不飽和アルコールにアルキレンオキシドを1〜300モル付加した化合物を挙げることができ、これら1種または2種以上を用いることができる。これらの単量体の中でも特に(メタ)アリルアルコール、3−メチル−3−ブテン−1−オールを用いた化合物が好ましい。なお上記の不飽和エステル類および不飽和エーテル類は、アルキレンオキシドとしては、例えばエチレンオキシド、プロピレンオキシド、ブチレンオキシド、スチレンオキシドなどの炭素数2〜18のアルキレンオキシドの中から選ばれる任意の1種、あるいは2種以上のアルキレンオキシドを付加させてもよい。2種以上を付加させる場合、ランダム付加、ブロック付加、交互付加などのいずれであってもよい。   As unsaturated monomer component (IM), methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1-pentanol, 1-hexanol, octanol, 2-ethyl-1 -C1-C20 saturated aliphatic alcohols such as hexanol, nonyl alcohol, lauryl alcohol, cetyl alcohol, stearyl alcohol, allyl alcohol, methallyl alcohol, crotyl alcohol, oleyl alcohol, etc. C3-C20 alicyclic alcohols such as saturated aliphatic alcohols, cyclohexanol, phenol, phenylmethanol (benzyl alcohol), methylphenol (cresol), p-ethylphenol, dimethylphenol (xylenol), nonylph Alkoxy polyalkylene glycols obtained by adding an alkylene oxide having 2 to 18 carbon atoms to any of aromatic alcohols having 6 to 20 carbon atoms such as diol, dodecylphenol, phenylphenol and naphthol, Examples include esterified products of polyalkylene glycols obtained by polymerizing 18 alkylene oxides with (meth) acrylic acid and crotonic acid, and one or more of these can be used. Among these, (meth) acrylic acid alkoxypolyalkylene glycol esters are preferred. Further, vinyl alcohol, (meth) allyl alcohol, 3-methyl-3-buten-1-ol, 3-methyl-2-buten-1-ol, 2-methyl-3-buten-2-ol, 2-methyl- The compound which added 1-300 mol of alkylene oxides to unsaturated alcohols, such as 2-buten-1-ol and 2-methyl-3-buten-1-ol, can be mentioned, These 1 type or 2 types or more are used. be able to. Among these monomers, compounds using (meth) allyl alcohol and 3-methyl-3-buten-1-ol are particularly preferable. In addition, said unsaturated ester and unsaturated ether are arbitrary 1 type chosen from C2-C18 alkylene oxides, such as ethylene oxide, propylene oxide, butylene oxide, styrene oxide, as alkylene oxide, Alternatively, two or more alkylene oxides may be added. When two or more types are added, any of random addition, block addition, and alternate addition may be used.

前記構成単位(II)を与える単量体としては、下記化学式(4)   Examples of the monomer giving the structural unit (II) include the following chemical formula (4)

Figure 2007113002
Figure 2007113002

[式中、R、RおよびRは同一または異なって、水素原子またはメチル基、−(CH)zCOOM(−(CH)zCOOMは、−COOMまたはその他の−(CH)zCOOMと無水物を形成していても良い)を表し、Zは0〜2の整数を表し、MおよびMは同一または異なって、水素原子、アルカリ金属原子、アルカリ土類原子、アンモニウム基または有機アミン基、炭素数3〜18の炭化水素基を持つシリル基を表す]
で示される単量体を含む不飽和単量体成分(以下「II−M」とも称する)で表される。
[Wherein, R 4 , R 5 and R 6 are the same or different and are a hydrogen atom or a methyl group, — (CH 2 ) zCOOM 2 (— (CH 2 ) zCOOM 2 is —COOM 1 or other — (CH 2) ZCOOM may form a 2 and anhydride) represents, Z is an integer of 0 to 2, M 1 and M 2 are the same or different, a hydrogen atom, an alkali metal atom, an alkaline earth atoms Represents a silyl group having an ammonium group, an organic amine group, or a hydrocarbon group having 3 to 18 carbon atoms]
It is represented by an unsaturated monomer component (hereinafter also referred to as “II-M”) including a monomer represented by

II−Mで示される不飽和単量体の例としては、(メタ)アクリル酸、クロトン酸などのモノカルボン酸系単量体、マレイン酸、イタコン酸、フマル酸などのジカルボン酸系単量体、またこれらの無水物もしくはその塩(例えば、一価金属、二価金属、三価金属、アンモニウムまたは有機アミノ酸の塩)である。中でもアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸(中でもアクリル酸、メタクリル酸が好ましい)およびこれらの塩が重合性の観点から好ましい。また、これらの単量体は2種以上併用してもよい。   Examples of unsaturated monomers represented by II-M include monocarboxylic acid monomers such as (meth) acrylic acid and crotonic acid, and dicarboxylic acid monomers such as maleic acid, itaconic acid and fumaric acid And anhydrides thereof or salts thereof (for example, salts of monovalent metals, divalent metals, trivalent metals, ammonium, or organic amino acids). Of these, acrylic acid, methacrylic acid, maleic acid, maleic anhydride (in particular, acrylic acid and methacrylic acid are preferred) and salts thereof are preferred from the viewpoint of polymerizability. Two or more of these monomers may be used in combination.

上記I−MやII−Mとは異なる成分であり、かつI−MやII−Mと共重合可能な不飽和単量体(III−M)をさらに用いることも好ましい。不飽和単量体III−Mとして、マレイン酸、フマル酸、イタコン酸、シトラコン酸などの不飽和ジカルボン酸類と炭素数1〜20のアルキルアルコール、炭素数2〜18のグリコールもしくはこれらのグリコールの付加モル数2〜300のポリアルキレングリコールおよび炭素数1〜20のアルキルアルコールに炭素数2〜18のアルキレンオキシドもしくはアルキレンオキシドの付加モル数2〜300のアルコキシポリアルキレンオキシドとのモノエステル類、ジエステル類、またこれら酸と炭素数1〜20のアルキルアミンおよび炭素数2〜18のグリコールの片末端アミノ化物、もしくはこれらのグリコールの付加モル数2〜300のポリアルキレングリコールの片末端アミノ化物とのモノアミド、ジアミド類;(メタ)アクリル酸、クロトン酸などの不飽和モノカルボン酸類と炭素数1〜20のアルキルアルコール、炭素数2〜18のグリコールもしくはこれらのグリコールの付加モル数2〜300のポリアルキレングリコールおよび炭素数1〜20のアルキルアルコールに炭素数2〜18のアルキレンオキシドもしくはアルキレンオキシドの付加モル数2〜300のアルコキシポリアルキレングリコールとのエステル類、またこれらの酸と炭素数1〜20のアルキルアミンおよび炭素数2〜18のグリコールの片末端アミノ化物、もしくはこれらのグリコールの付加モル数2〜300のポリアルキレングリコールの片末端アミノ化物とのアミド類;スルホエチル(メタ)アクリレート、2−メチルプロパンスルホン酸(メタ)アクリルアミド、スチレンスルホン酸などの不飽和スルホン酸類、ならびにこれらの一価金属塩、二価金属塩、アンモニウム塩および有機アミン塩;(メタ)アクリルアミド、(メタ)アクリルアルキルアミドなどの不飽和アミド類;ジメチルアミノエチル(メタ)アクリレートなどの不飽和アミノ化合物類;酢酸ビニル、プロピオン酸ビニルなどのビニルエステル類;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテルなどの炭素数3〜20のアルキルビニルエーテルなどのビニルエーテル類;スチレンなどの芳香族ビニル類などを挙げることができ、これら1種または2種以上を用いることができる。   It is also preferable to further use an unsaturated monomer (III-M) which is a component different from the above-mentioned IM and II-M and is copolymerizable with IM and II-M. As unsaturated monomer III-M, addition of unsaturated dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid, citraconic acid and the like, alkyl alcohols having 1 to 20 carbon atoms, glycols having 2 to 18 carbon atoms or these glycols Monoesters and diesters of a polyalkylene glycol having 2 to 300 moles and an addition of an alkylene oxide having 2 to 18 carbon atoms or an alkylene oxide to an alkyl alcohol having 1 to 20 carbon atoms and an alkoxy polyalkylene oxide having 2 to 300 moles And monoamides of these acids with one-terminal aminated products of alkylamines having 1 to 20 carbon atoms and glycols having 2 to 18 carbon atoms or polyalkylene glycols having 2 to 300 moles of addition of these glycols , Diamides; (meth) acrylic acid Unsaturated monocarboxylic acids such as crotonic acid and alkyl alcohols having 1 to 20 carbon atoms, glycols having 2 to 18 carbon atoms, polyalkylene glycols having 2 to 300 moles of addition of these glycols, and alkyl alcohols having 1 to 20 carbon atoms Or an ester of an alkylene oxide having 2 to 18 carbon atoms or an alkoxypolyalkylene glycol having an addition mole number of alkylene oxide of 2 to 300, or these acids and alkylamines having 1 to 20 carbon atoms and glycols having 2 to 18 carbon atoms Amides with one-terminal amination products of these, or with one-terminal amination products of polyalkylene glycols having an addition mole number of 2 to 300 of these glycols; sulfoethyl (meth) acrylate, 2-methylpropanesulfonic acid (meth) acrylamide, styrene sulfone Acid etc. Unsaturated sulfonic acids, and monovalent metal salts, divalent metal salts, ammonium salts and organic amine salts thereof; unsaturated amides such as (meth) acrylamide and (meth) acrylalkylamide; dimethylaminoethyl (meth) acrylate Unsaturated amino compounds such as; vinyl esters such as vinyl acetate and vinyl propionate; vinyl ethers such as alkyl vinyl ethers having 3 to 20 carbon atoms such as methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether, and butyl vinyl ether; aromatics such as styrene Group vinyls etc. can be mentioned, These 1 type (s) or 2 or more types can be used.

不飽和単量体(I−M)、不飽和単量体(II−M)および不飽和単量体(III−M)を共重合してポリマーを得るには、これら不飽和単量体の使用割合は、合計量を100質量%として、不飽和単量体(I−M)/不飽和単量体(II−M)/不飽和単量体(III−M)=2〜98質量%/2〜90質量%/0〜50質量%(好ましくは50〜95質量%/5〜80質量%/0〜40質量%、より好ましくは60〜90質量%/7.5〜60質量%/0〜30質量%)で用いることが好ましい。   In order to obtain a polymer by copolymerizing unsaturated monomer (IM), unsaturated monomer (II-M) and unsaturated monomer (III-M), The proportion of use is 100% by mass as the total amount, unsaturated monomer (IM) / unsaturated monomer (II-M) / unsaturated monomer (III-M) = 2 to 98% by mass. / 2-90 mass% / 0-50 mass% (preferably 50-95 mass% / 5-80 mass% / 0-40 mass%, more preferably 60-90 mass% / 7.5-60 mass% / 0 to 30% by mass) is preferable.

重合体(P)の重量平均分子量Mwは、目的に合わせて適宜調整することができる。例えば、重合体(P)を無機粉体の分散剤として使用するには、分散したい無機粉体の種類や粒径などによって適切に重合体(P)のMwを調整すればよい。重合体(P)をセメント分散剤として用いる場合には、セメント粒子へ重合体(P)を吸着させて、セメント粒子を十分に分散させる観点から、重合体(P)のMwは1,000以上が好ましく、5,000以上がより好ましく、10,000以上がさらに好ましく、15,000以上がさらに好ましく、20,000以上がさらに好ましく、25,000以上がさらに好ましい。また、セメント粒子の凝集を防ぐ観点から、重合体(P)のMwは500,000以下が好ましく、200,000以下がより好ましく、100,000以下がさらに好ましく、80,000以下がさらに好ましく、60,000以下がさらに好ましく、40,000以下がさらに好ましい。ただし、上記Mwの値は、本明細書に記載のGPC条件で測定した場合のものである。   The weight average molecular weight Mw of a polymer (P) can be suitably adjusted according to the objective. For example, in order to use the polymer (P) as a dispersant for the inorganic powder, the Mw of the polymer (P) may be appropriately adjusted depending on the type and particle size of the inorganic powder to be dispersed. When the polymer (P) is used as a cement dispersant, the Mw of the polymer (P) is 1,000 or more from the viewpoint of adsorbing the polymer (P) to the cement particles and sufficiently dispersing the cement particles. Is preferably 5,000 or more, more preferably 10,000 or more, further preferably 15,000 or more, further preferably 20,000 or more, and further preferably 25,000 or more. Further, from the viewpoint of preventing aggregation of cement particles, the Mw of the polymer (P) is preferably 500,000 or less, more preferably 200,000 or less, further preferably 100,000 or less, and further preferably 80,000 or less, 60,000 or less is more preferable, and 40,000 or less is more preferable. However, the value of Mw is the value measured under the GPC conditions described in this specification.

<ポリオキシアルキレン鎖由来の構成単位を含む重合体(P)の製造>
本発明のポリオキシアルキレン鎖由来の構成単位を含む重合体(P)は、前記の本発明のパラメーター値(PD値)を有するものであり、特に分子量分布が狭いことを特徴とする重合体である。本発明のパラメーター値(PD値)を有する重合体の製造方法として次のような形態を挙げることができる。
<Manufacture of a polymer (P) containing a structural unit derived from a polyoxyalkylene chain>
The polymer (P) containing the structural unit derived from the polyoxyalkylene chain of the present invention has the parameter value (PD value) of the present invention, and is a polymer characterized by a particularly narrow molecular weight distribution. is there. Examples of the method for producing a polymer having the parameter value (PD value) of the present invention include the following forms.

(1)公知の重合方法で得られたポリオキシアルキレン鎖由来の構成単位を有する重合体をゲルマーミエーションクロマトグラフィー(GPC)や濾過膜等を用いて分画する方法、溶解度の差による分別、あるいは透析する方法。   (1) A method of fractionating a polymer having a structural unit derived from a polyoxyalkylene chain obtained by a known polymerization method using a gelmerization chromatography (GPC) or a filtration membrane, fractionation based on a difference in solubility, Or dialysis method.

(2)ポリオキシアルキレン鎖を有する不飽和単量体を含む単量体をリビング重合する方法。リビング重合の中でもリビングラジカル重合が好ましい。以下にリビングラジカル重合法の一形態をしめす。   (2) A method of living polymerizing a monomer containing an unsaturated monomer having a polyoxyalkylene chain. Among living polymerizations, living radical polymerization is preferable. One form of the living radical polymerization method is shown below.

リビングラジカル法には多くの手法が知られている。例えばTEMPO(2,2,6,6−Tetramethyl−1−piperidinyloxy)などの窒素酸化物を用いる方法、遷移金属触媒を用いた重合方法(ATRP(Atom Transfer Radical Polymerization)法と称されることもある)、RAFT(Reversible Addition−Fragmentation chain Transfer)法などがある。   Many techniques are known for the living radical method. For example, a method using nitrogen oxides such as TEMPO (2,2,6,6-tetramethyl-1-hydroxy), a polymerization method using a transition metal catalyst (ATRP (Atom Transfer Radical Polymerization) method) ), And RAFT (Reversible Addition-Fragmentation chain Transfer) method.

リビングラジカル重合の一形態として遷移元素触媒を用いた重合方法であるが、新規触媒系を用いることにより、特に(メタ)アクリル系モノマーやポリアルキレングリコール側鎖を持つモノマーのように高極性のモノマーを、バルクもしくは高極性溶媒中で重合する方法がある。新規触媒系は下記化学式(5)
(M)a(L)b(X)c (5)
[式中、Mは第4周期に属する遷移元素、Lは下記化学式(6)
(AI)d(AO)e(AS)f (6)
で表され、AIはアルキレンイミン、AOはアルキレンオキシド、ASはアルキレンスルフィド、Xはハロゲンを表し、a、b、c、d、e、fはそれぞれ独立に0以上の数を表す]
で表される有機金属化合物と下記化学式(7)
Although it is a polymerization method using a transition element catalyst as a form of living radical polymerization, a highly polar monomer such as a (meth) acrylic monomer or a monomer having a polyalkylene glycol side chain can be obtained by using a novel catalyst system. Are polymerized in a bulk or highly polar solvent. The new catalyst system has the following chemical formula (5)
(M) a (L) b (X) c (5)
[Wherein M is a transition element belonging to the fourth period, L is the following chemical formula (6)
(AI) d (AO) e (AS) f (6)
Wherein AI represents an alkyleneimine, AO represents an alkylene oxide, AS represents an alkylene sulfide, X represents a halogen, and a, b, c, d, e and f each independently represents a number of 0 or more.
And an organic metal compound represented by the following chemical formula (7)

Figure 2007113002
Figure 2007113002

[式中、R、R、R、R10はそれぞれ独立に水素、炭化水素基、あるいはハロゲンを表すが、炭化水素基には1個以上のハロゲンやヘテロ元素が含まれていてもよい]
で表される有機ハロゲン化合物の混合物である。
[Wherein R 7 , R 8 , R 9 , R 10 each independently represents hydrogen, a hydrocarbon group, or a halogen, although the hydrocarbon group may contain one or more halogens or hetero elements. Good]
It is a mixture of the organic halogen compound represented by these.

上記触媒系は化学式(5)で示される化合物の1種または2種以上の化合物および、化学式(7)で示される化合物の1種または2種以上の化合物により構成される。   The catalyst system is composed of one or more compounds represented by the chemical formula (5) and one or more compounds represented by the chemical formula (7).

化学式(5)中のLとしては一般的にビピリジン系化合物、トリフェニルホスフィン系化合物といった複素環や芳香環を持つ化合物が使用されているが、モノマーや溶媒との溶解性に限界があり、特に高極性溶媒や高極性モノマーを用いた場合に重合が進行しないなどの欠点があった。一方、化学式(6)の化合物を用いた化学式(5)の化合物は、炭素原子に比較して電気陰性度の大きい窒素原子、酸素原子、硫黄原子を多数含むことにより、高極性溶媒中においても安定性、溶解性が向上し、また(メタ)アクリル系モノマーやポリアルキレングリコール側鎖を持つモノマーのような高極性モノマーに対する親和性が大きくなった。その結果、高極性溶媒中であっても高極性モノマーのリビングラジカル重合が可能となり、分子量分布の小さなポリマーを高収率で得ることが出来た。またリビングラジカル重合であるので、従来のラジカル重合とは異なり、ランダムポリマーだけでなくブロックポリマーを合成することも可能となった。   As L in the chemical formula (5), a compound having a heterocyclic ring or an aromatic ring such as a bipyridine compound or a triphenylphosphine compound is generally used, but the solubility in a monomer or a solvent is limited. When a highly polar solvent or highly polar monomer is used, there is a drawback that polymerization does not proceed. On the other hand, the compound of the chemical formula (5) using the compound of the chemical formula (6) contains a large number of nitrogen atoms, oxygen atoms, and sulfur atoms, which have a higher electronegativity compared to the carbon atom, so that even in a highly polar solvent. The stability and solubility were improved, and the affinity for highly polar monomers such as (meth) acrylic monomers and monomers having polyalkylene glycol side chains was increased. As a result, living radical polymerization of highly polar monomers became possible even in a highly polar solvent, and a polymer with a small molecular weight distribution could be obtained in high yield. Moreover, since it is living radical polymerization, unlike conventional radical polymerization, it has become possible to synthesize not only random polymers but also block polymers.

化学式(5)の化合物は1種類で用いても化学式(5)を満たす複数種の化合物の混合物で用いても良い。化学式(5)の化合物は、重合速度を向上させるために異なる2種類以上のMを含有することが好ましく、正電荷数の異なる2種類のMを含有することがより好ましい。この場合、正電荷数をg、h(g<h)とすると、Mg+に対するMh+のモル比(Mh+/Mg+)は、特に限定されるものではないが、分子量分布の観点から、好ましくは0.1モル%以上、より好ましくは1モル%以上、さらに好ましくは5モル%以上、さらに好ましくは10モル%以上、さらに好ましくは20モル%以上であり、また、重合速度の観点から、好ましくは1,000モル%以下、より好ましくは200モル%以下、さらに好ましくは100モル%以下、さらに好ましくは80モル%以下、さらに好ましくは50モル%以下である。 The compound represented by the chemical formula (5) may be used alone or as a mixture of a plurality of compounds satisfying the chemical formula (5). The compound of the chemical formula (5) preferably contains two or more different types of M in order to improve the polymerization rate, and more preferably contains two types of M having different positive charge numbers. In this case, the number of positive charges g, When h (g <h), M h + molar ratio of relative M g + (M h + / M g +) is not particularly limited, from the viewpoint of molecular weight distribution, Preferably it is 0.1 mol% or more, more preferably 1 mol% or more, still more preferably 5 mol% or more, further preferably 10 mol% or more, more preferably 20 mol% or more, and from the viewpoint of the polymerization rate. The amount is preferably 1,000 mol% or less, more preferably 200 mol% or less, still more preferably 100 mol% or less, still more preferably 80 mol% or less, and still more preferably 50 mol% or less.

また、モノマーに対するMの合計量のモル比は、必要とする重合体の分子量に依存するが、重合速度の観点から、好ましくは0.01モル%以上、より好ましくは0.1モル%以上、さらに好ましくは0.5モル%以上、さらに1モル%以上であり、また、分子量分布の観点から、好ましくは1,000モル%以下、より好ましくは100モル%以下、さらに好ましくは10モル%以下、さらに好ましくは5モル%以下である。   The molar ratio of the total amount of M to the monomer depends on the molecular weight of the polymer required, but from the viewpoint of the polymerization rate, it is preferably 0.01 mol% or more, more preferably 0.1 mol% or more, More preferably, it is 0.5 mol% or more, further 1 mol% or more, and from the viewpoint of molecular weight distribution, it is preferably 1,000 mol% or less, more preferably 100 mol% or less, and even more preferably 10 mol% or less. More preferably, it is 5 mol% or less.

Mは1種であっても2種以上の異なる電荷および/または異なる元素の組合せであってもよいが、第4周期の遷移元素が好ましく、マンガン、鉄、コバルト、ニッケル、銅がより好ましく用いられる。   M may be one type or a combination of two or more different charges and / or different elements, but a transition element in the fourth period is preferable, and manganese, iron, cobalt, nickel, and copper are more preferably used. It is done.

化学式(7)の化合物は1個以上のハロゲン原子を含有していなければならない。また化学式(7)の化合物は1種類で用いても化学式(7)を満たす複数種の化合物の混合物で用いても良い。化学式(7)のような有機ハロゲン化合物としては、例えば、テトラクロロメタン、トリクロロメタン、ジクロロメタン、モノクロロエタン、トリクロロフェニルメタン、ジクロロジフェニルメタン等のハロゲン化炭化水素化合物、2,2,2−トリクロロアセトン、2,2−ジクロロアセトフェノン等のα−ハロゲノカルボニル化合物、2,2,2−トリクロロ酢酸メチル、2,2−ジクロロ酢酸メチル、2−クロロプロパン酸メチル、2−ブロモ−2−メチルプロパン酸エチル、2−ヨード−2−メチルプロパン酸エチル、2−ブロモ−プロパン酸エチル、2−ヨード−プロパン酸エチル、2−クロロ−2,4,4−トリメチルグルタル酸ジメチル、1,2−ビス(2’−ブロモ−2’−メチルプロピオニルオキシ)エタン、1,2−ビス(2’−ブロモプロピオニルオキシ)エタン、2−(2’−ブロモ−2’−メチルプロピオニルオキシ)エチルアルコール等のα−ハロゲノカルボン酸エステルを挙げることができる。これらは1種または2種以上で使用できるが、これらの中でも、α−ハロゲノカルボニル化合物やα−ハロゲノカルボン酸エステルが好ましく、具体的には、2,2−ジクロロアセトフェノン、2−クロロ−2,4,4−トリメチルグルタル酸ジメチル、2−ブロモ−2−メチルプロパン酸エチル、2−ヨード−2−メチルプロパン酸エチルがより好ましく用いられる。   The compound of formula (7) must contain one or more halogen atoms. Further, the compound of the chemical formula (7) may be used alone or as a mixture of a plurality of types of compounds satisfying the chemical formula (7). Examples of organic halogen compounds such as chemical formula (7) include halogenated hydrocarbon compounds such as tetrachloromethane, trichloromethane, dichloromethane, monochloroethane, trichlorophenylmethane, dichlorodiphenylmethane, 2,2,2-trichloroacetone, Α-halogenocarbonyl compounds such as 2,2-dichloroacetophenone, methyl 2,2,2-trichloroacetate, methyl 2,2-dichloroacetate, methyl 2-chloropropanoate, ethyl 2-bromo-2-methylpropanoate, 2 -Ethyl iodo-2-methylpropanoate, ethyl 2-bromo-propanoate, ethyl 2-iodo-propanoate, dimethyl 2-chloro-2,4,4-trimethylglutarate, 1,2-bis (2'- Bromo-2′-methylpropionyloxy) ethane, 1,2-bi (2'-bromopropionyl) ethane, may be mentioned 2- (2'-bromo-2'-methyl-propionyloxy) alpha-halogeno-carboxylic acid esters such as ethyl alcohol. These can be used singly or in combination of two or more. Among these, α-halogenocarbonyl compounds and α-halogenocarboxylic acid esters are preferable. Specifically, 2,2-dichloroacetophenone, 2-chloro-2, More preferred are dimethyl 4,4-trimethylglutarate, ethyl 2-bromo-2-methylpropanoate, and ethyl 2-iodo-2-methylpropanoate.

単量体に対する化学式(7)で示される有機ハロゲン化合物のモル比は、必要とする重合体の分子量に依存するが、重合速度の観点から、好ましくは0.01モル%以上、より好ましくは0.1モル%以上、さらに好ましくは0.5モル%以上、さらに好ましくは1モル%以上であり、また、分子量分布の観点から、好ましくは1,000モル%以下、より好ましくは100モル%以下、さらに好ましくは10モル%以下、さらに好ましくは5モル%以下である。化学式(5)の化合物および化学式(7)の化合物の含有割合については、必ずしも限定されるものではないが、化学式(5)化合物に含有される遷移元素分の化学式(7)の有機ハロゲン化合物に対する配合モル比率は、特に限定されるものではないが、化学式(5)における遷移元素が少なすぎると重合速度が遅くなる傾向にあるので、好ましくは1モル%以上、より好ましくは5モル%以上、さらに好ましくは10モル%以上である。逆に、多すぎると副反応が生じやすくなり得られる重合体の分子量分布が広くなる傾向があるので、好ましくは1,000モル%以下、より好ましくは200モル%以下、さらに好ましくは100モル%以下である。   The molar ratio of the organic halogen compound represented by the chemical formula (7) to the monomer depends on the required molecular weight of the polymer, but is preferably 0.01 mol% or more, more preferably 0, from the viewpoint of the polymerization rate. .1 mol% or more, more preferably 0.5 mol% or more, more preferably 1 mol% or more, and from the viewpoint of molecular weight distribution, preferably 1,000 mol% or less, more preferably 100 mol% or less. More preferably, it is 10 mol% or less, more preferably 5 mol% or less. The content ratio of the compound of the chemical formula (5) and the compound of the chemical formula (7) is not necessarily limited, but the content of the transition element contained in the compound of the chemical formula (5) is the organic halogen compound of the chemical formula (7). The blending molar ratio is not particularly limited, but since the polymerization rate tends to be slow when there are too few transition elements in the chemical formula (5), it is preferably at least 1 mol%, more preferably at least 5 mol%, More preferably, it is 10 mol% or more. On the other hand, if the amount is too large, side reactions are likely to occur, and the molecular weight distribution of the resulting polymer tends to be wide. Therefore, it is preferably 1,000 mol% or less, more preferably 200 mol% or less, and even more preferably 100 mol%. It is as follows.

化学式(6)で示される化合物、すなわちアルキレンイミン、アルキレンオキシド、アルキレンスルフィドを(共)重合してなる(共)重合体は、単独で用いても2種以上を併用してもよい。また、AI、AO、ASの各々も、単独で用いても2種以上を併用してもよい。   The compound represented by the chemical formula (6), that is, a (co) polymer obtained by (co) polymerizing alkyleneimine, alkylene oxide, and alkylene sulfide may be used alone or in combination of two or more. Each of AI, AO, and AS may be used alone or in combination of two or more.

化学式(6)で示される化合物において、d、e、fはそれぞれAI、AO、ASの繰り返し単位数を表す。dは、遷移金属元素の安定化の観点から、好ましくは1以上、より好ましくは2以上、さらに好ましくは4以上、さらに好ましくは6以上、さらに好ましくは10以上、さらに好ましくは15以上であり、また、製造の観点から、好ましくは200以下、より好ましくは100以下、さらに好ましくは50以下、さらにこのましくは20以下である。eは、上記化学式(1)で示される化合物の溶解性の観点から、好ましくは1以上、より好ましくは2以上、さらに好ましくは3以上、さらに好ましくは7以上、さらに好ましくは10以上であり、また、製造の観点から、好ましくは500以下、より好ましくは300以下、さらに好ましくは200以下、さらに好ましくは100以下、さらに好ましくは50以下である。fは、遷移金属元素の安定化の観点から、好ましくは1以上、より好ましくは2以上、さらに好ましくは4以上、さらに好ましくは6以上、さらに好ましくは10以上、さらに好ましくは15以上であり、また、製造の観点から、好ましくは200以下、より好ましくは100以下、さらに好ましくは50以下、さらに好ましくは20以下である。   In the compound represented by the chemical formula (6), d, e, and f represent the number of repeating units of AI, AO, and AS, respectively. From the viewpoint of stabilization of the transition metal element, d is preferably 1 or more, more preferably 2 or more, further preferably 4 or more, more preferably 6 or more, further preferably 10 or more, more preferably 15 or more, From the viewpoint of production, it is preferably 200 or less, more preferably 100 or less, still more preferably 50 or less, and even more preferably 20 or less. From the viewpoint of the solubility of the compound represented by the chemical formula (1), e is preferably 1 or more, more preferably 2 or more, further preferably 3 or more, further preferably 7 or more, more preferably 10 or more, Moreover, from a viewpoint of manufacture, Preferably it is 500 or less, More preferably, it is 300 or less, More preferably, it is 200 or less, More preferably, it is 100 or less, More preferably, it is 50 or less. From the viewpoint of stabilizing the transition metal element, f is preferably 1 or more, more preferably 2 or more, further preferably 4 or more, more preferably 6 or more, still more preferably 10 or more, and still more preferably 15 or more. Moreover, from a viewpoint of manufacture, Preferably it is 200 or less, More preferably, it is 100 or less, More preferably, it is 50 or less, More preferably, it is 20 or less.

化学式(6)で示される化合物は、化学式(5)で示される化合物の安定性と溶解性とを両立するために、AI、AO、ASのうち2種類以上を含有することが好ましく、AIとAOとを両方含有することが好ましく、AIとAOとのみからなることがさらに好ましい。AI、AO、ASの結合順は、ランダム構造でもブロック構造でもよいが、副反応を低減するには、ブロック構造が好ましい。ポリAIの活性水素にAOを付加したものが、上記化学式(1)で示される化合物の安定性、溶解性、反応性に優れ、より好ましい。   The compound represented by the chemical formula (6) preferably contains two or more of AI, AO, and AS in order to achieve both stability and solubility of the compound represented by the chemical formula (5). It is preferable to contain both AO, and it is further more preferable to consist only of AI and AO. The bonding order of AI, AO, and AS may be a random structure or a block structure, but a block structure is preferable in order to reduce side reactions. A compound obtained by adding AO to active hydrogen of poly AI is more preferable because it is excellent in stability, solubility, and reactivity of the compound represented by the chemical formula (1).

AIとしては、反応性、遷移金属元素の安定化の観点から、エチレンイミンが好ましい。AOとしては、反応性、溶解性の観点から、炭素数18以下のアルキレンオキシドが好ましく、炭素数8以下のアルキレンオキシドがより好ましく、炭素数4以下のアルキレンオキシドがさらに好ましく、炭素数3以下のアルキレンオキシドがさらに好ましく、炭素数2のアルキレンオキシドがさらに好ましい。ASとしては、反応性、遷移金属元素の安定化の観点から、エチレンスルフィドが好ましい。   AI is preferably ethyleneimine from the viewpoints of reactivity and stabilization of transition metal elements. AO is preferably an alkylene oxide having 18 or less carbon atoms, more preferably an alkylene oxide having 8 or less carbon atoms, further preferably an alkylene oxide having 4 or less carbon atoms, and further 3 or less carbon atoms from the viewpoint of reactivity and solubility. More preferred are alkylene oxides, and more preferred are alkylene oxides having 2 carbon atoms. AS is preferably ethylene sulfide from the viewpoints of reactivity and stabilization of transition metal elements.

本発明の重合体は、上述の方法によって得られるポリオキシアルキレン鎖由来の構成単位を必須成分とする重合体であるが、特に、本発明の重合体をセメント混和剤用重合体として用いる場合、以下の形態が好ましい。   The polymer of the present invention is a polymer having a structural unit derived from a polyoxyalkylene chain obtained by the above-mentioned method as an essential component, and in particular, when the polymer of the present invention is used as a cement admixture polymer, The following forms are preferred.

セメント混和剤用重合体として用いる場合、取り扱い上、水溶液の形態が好ましく、また、他の添加剤を本発明のセメント混和剤に含有していても良いし、あるいは、本混和剤をセメントと混合する際に、添加することもできる。他の添加剤としては、公知のセメント添加剤を用いることができ、例えば、
(ア)水溶性高分子物質:ポリアクリル酸(ナトリウム)、ポリメタクリル酸(ナトリウム)、ポリマレイン酸(ナトリウム)、アクリル酸・マレイン酸共重合物のナトリウム塩等の不飽和カルボン酸重合物;ポリエチレングリコール、ポリプロピレングリコール等のポリオキシエチレンあるいはポリオキシプロピレンのポリマー又はそれらのコポリマー;メチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、カルボキシエチルセルロース、ヒドロキシプロピルセルロース等の非イオン性セルロースエーテル類;酵母グルカンやキサンタンガム、β−1,3グルカン類(直鎖状、分岐鎖状の何れでも良く、一例を挙げれば、カードラン、パラミロン、バキマン、スクレログルカン、ラミナラン等)等の微生物醗酵によって製造される多糖類;ポリアクリルアミド;ポリビニルアルコール;デンプン;デンプンリン酸エステル;アルギン酸ナトリウム;ゼラチン;分子内にアミノ基を有するアクリル酸のコポリマー及びその四級化合物等。
When used as a polymer for cement admixture, it is preferably in the form of an aqueous solution for handling, and other additives may be contained in the cement admixture of the present invention, or the admixture is mixed with cement. In addition, it can also be added. As other additives, known cement additives can be used, for example,
(A) Water-soluble polymer substances: polyacrylic acid (sodium), polymethacrylic acid (sodium), polymaleic acid (sodium), unsaturated carboxylic acid polymer such as sodium salt of acrylic acid / maleic acid copolymer; polyethylene Polyoxyethylene or polyoxypropylene polymers such as glycol and polypropylene glycol or copolymers thereof; Nonionic cellulose ethers such as methylcellulose, ethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, carboxymethylcellulose, carboxyethylcellulose, hydroxypropylcellulose; yeast glucan Or xanthan gum, β-1,3 glucan (which may be linear or branched, for example, curdlan, paramylon, bakiman, Polysaccharides produced by microbial fermentation such as cleroglucan, laminaran, etc .; polyacrylamide; polyvinyl alcohol; starch; starch phosphate ester; sodium alginate; gelatin; copolymer of acrylic acid having an amino group in its molecule and its quaternary Compounds and the like.

(イ)高分子エマルジョン:(メタ)アクリル酸アルキル等の各種ビニル単量体の共重合物等。   (A) Polymer emulsion: Copolymers of various vinyl monomers such as alkyl (meth) acrylate.

(ウ)遅延剤:グルコン酸、グルコヘプトン酸、アラボン酸、リンゴ酸又はクエン酸、及び、これらの、ナトリウム、カリウム、カルシウム、マグネシウム、アンモニウム、トリエタノールアミン等の無機塩又は有機塩等のオキシカルボン酸並びにその塩;グルコース、フラクトース、ガラクトース、サッカロース、キシロース、アピオース、リボース、異性化糖等の単糖類や、二糖、三糖等のオリゴ糖、又はデキストリン等のオリゴ糖、又はデキストラン等の多糖類、これらを含む糖蜜類等の糖類;ソルビトール等の糖アルコール;珪弗化マグネシウム;リン酸並びにその塩又はホウ酸エステル類;アミノカルボン酸とその塩;アルカリ可溶タンパク質;フミン酸;タンニン酸;フェノール;グリセリン等の多価アルコール;アミノトリ(メチレンホスホン酸)、1−ヒドロキシエチリデン−1,1−ジホスホン酸、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)及びこれらのアルカリ金属塩、アルカリ土類金属塩等のホスホン酸及びその誘導体等。   (C) retarder: gluconic acid, glucoheptonic acid, alabonic acid, malic acid or citric acid, and oxycarboxylics such as inorganic salts or organic salts such as sodium, potassium, calcium, magnesium, ammonium, triethanolamine, etc. Acids and salts thereof; monosaccharides such as glucose, fructose, galactose, saccharose, xylose, apiose, ribose and isomerized sugar; oligosaccharides such as disaccharides and trisaccharides; oligosaccharides such as dextrin; Sugars, sugars such as molasses containing them; sugar alcohols such as sorbitol; magnesium silicate; phosphoric acid and its salts or boric acid esters; aminocarboxylic acids and their salts; alkali-soluble proteins; humic acids; Phenol; polyhydric alcohol such as glycerine; aminotri ( Tylene phosphonic acid), 1-hydroxyethylidene-1,1-diphosphonic acid, ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) and their alkali metal salts, alkaline earth metal salts and other phosphonic acids and their derivatives etc.

(エ)早強剤・促進剤:塩化カルシウム、亜硝酸カルシウム、硝酸カルシウム、臭化カルシウム、ヨウ化カルシウム等の可溶性カルシウム塩;塩化鉄、塩化マグネシウム等の塩化物;硫酸塩;水酸化カリウム;水酸化ナトリウム;炭酸塩;チオ硫酸塩;ギ酸及びギ酸カルシウム等のギ酸塩;アルカノールアミン;アルミナセメント;カルシウムアルミネートシリケート等。   (D) Early strengthening agents / accelerators: soluble calcium salts such as calcium chloride, calcium nitrite, calcium nitrate, calcium bromide and calcium iodide; chlorides such as iron chloride and magnesium chloride; sulfates; potassium hydroxide; Sodium hydroxide; carbonate; thiosulfate; formate such as formic acid and calcium formate; alkanolamine; alumina cement; calcium aluminate silicate.

(オ)鉱油系消泡剤:燈油、流動パラフィン等。
(カ)油脂系消泡剤:動植物油、ごま油、ひまし油、これらのアルキレンオキシド付加物等。
(キ)脂肪酸系消泡剤:オレイン酸、ステアリン酸、これらのアルキレンオキシド付加物等。
(ク)脂肪酸エステル系消泡剤:グリセリンモノリシノレート、アルケニルコハク酸誘導体、ソルビトールモノラウレート、ソルビトールトリオレエート、天然ワックス等。
(E) Mineral oil-based antifoaming agent: straw oil, liquid paraffin, etc.
(F) Oil-based antifoaming agents: animal and vegetable oils, sesame oil, castor oil, these alkylene oxide adducts, etc.
(G) Fatty acid-based antifoaming agents: oleic acid, stearic acid, and alkylene oxide adducts thereof.
(H) Fatty acid ester antifoaming agent: glycerin monoricinoleate, alkenyl succinic acid derivative, sorbitol monolaurate, sorbitol trioleate, natural wax and the like.

(ケ)オキシアルキレン系消泡剤:(ポリ)オキシエチレン(ポリ)オキシプロピレン付加物等のポリオキシアルキレン類;ジエチレングリコールヘプチルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシプロピレンブチルエーテル、ポリオキシエチレンポリオキシプロピレン2−エチルヘキシルエーテル、炭素数12〜14の高級アルコールへのオキシエチレンオキシプロピレン付加物等の(ポリ)オキシアルキルエーテル類;ポリオキシプロピレンフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル等の(ポリ)オキシアルキレン(アルキル)アリールエーテル類;2,4,7,9−テトラメチル−5−デシン−4,7−ジオール、2,5−ジメチル−3−ヘキシン−2,5−ジオール、3−メチル−1−ブチン−3−オール等のアセチレンアルコールにアルキレンオキシドを付加重合させたアセチレンエーテル類;ジエチレングリコールオレイン酸エステル、ジエチレングリコールラウリル酸エステル、エチレングリコールジステアリン酸エステル等の(ポリ)オキシアルキレン脂肪酸エステル類;ポリオキシエチレンソルビタンモノラウリン酸エステル、ポリオキシエチレンソルビタントリオレイン酸エステル等の(ポリ)オキシアルキレンソルビタン脂肪酸エステル類;ポリオキシプロピレンメチルエーテル硫酸ナトリウム、ポリオキシエチレンドデシルフェノールエーテル硫酸ナトリウム等の(ポリ)オキシアルキレンアルキル(アリール)エーテル硫酸エステル塩類;(ポリ)オキシエチレンステアリルリン酸エステル等の(ポリ)オキシアルキレンアルキルリン酸エステル類;ポリオキシエチレンラウリルアミン等の(ポリ)オキシアルキレンアルキルアミン類;ポリオキシアルキレンアミド等。   (U) Oxyalkylene-based antifoaming agent: (Poly) oxyethylene (poly) oxypropylene adduct polyoxyalkylenes; diethylene glycol heptyl ether, polyoxyethylene oleyl ether, polyoxypropylene butyl ether, polyoxyethylene polyoxypropylene (Poly) oxyalkyl ethers such as 2-ethylhexyl ether and oxyethyleneoxypropylene adducts to higher alcohols having 12 to 14 carbon atoms; (poly) oxyalkylenes such as polyoxypropylene phenyl ether and polyoxyethylene nonylphenyl ether (Alkyl) aryl ethers; 2,4,7,9-tetramethyl-5-decyne-4,7-diol, 2,5-dimethyl-3-hexyne-2,5-diol, 3-methyl-1- Spotted Acetylene ethers obtained by addition polymerization of alkylene oxide to acetylene alcohol such as -3-ol; (poly) oxyalkylene fatty acid esters such as diethylene glycol oleate, diethylene glycol laurate, ethylene glycol distearate; polyoxyethylene sorbitan (Poly) oxyalkylene sorbitan fatty acid esters such as monolaurate and polyoxyethylene sorbitan trioleate; (poly) oxyalkylene alkyl (aryl) such as sodium polyoxypropylene methyl ether sulfate and sodium polyoxyethylene dodecylphenol ether sulfate ) Ether sulfate esters; (Poly) oxy such as (poly) oxyethylene stearyl phosphate Ruki alkylene alkyl phosphate esters; polyoxyethylene such as polyoxyethylene lauryl amine (poly) oxyalkylene alkyl amines; polyoxyalkylene amide.

(コ)アルコール系消泡剤:オクチルアルコール、ヘキサデシルアルコール、アセチレンアルコール、グリコール類等。
(サ)アミド系消泡剤:アクリレートポリアミン等。
(シ)リン酸エステル系消泡剤:リン酸トリブチル、ナトリウムオクチルホスフェート等。
(ス)金属石鹸系消泡剤:アルミニウムステアレート、カルシウムオレエート等。
(Co) Alcohol-based antifoaming agent: octyl alcohol, hexadecyl alcohol, acetylene alcohol, glycols and the like.
(Sa) Amide-based antifoaming agent: acrylate polyamine and the like.
(Ii) Phosphate ester antifoaming agent: tributyl phosphate, sodium octyl phosphate, etc.
(S) Metal soap-type antifoaming agents: aluminum stearate, calcium oleate, etc.

(セ)シリコーン系消泡剤:ジメチルシリコーン油、シリコーンペースト、シリコーンエマルジョン、有機変性ポリシロキサン(ジメチルポリシロキサン等のポリオルガノシロキサン)、フルオロシリコーン油等。   (C) Silicone-based antifoaming agent: dimethyl silicone oil, silicone paste, silicone emulsion, organically modified polysiloxane (polyorganosiloxane such as dimethylpolysiloxane), fluorosilicone oil and the like.

(ソ)AE剤:樹脂石鹸、飽和あるいは不飽和脂肪酸、ヒドロキシステアリン酸ナトリウム、ラウリルサルフェート、ABS(アルキルベンゼンスルホン酸)、LAS(直鎖アルキルベンゼンスルホン酸)、アルカンスルホネート、ポリオキシエチレンアルキル(フェニル)エーテル、ポリオキシエチレンアルキル(フェニル)エーテル硫酸エステル又はその塩、ポリオキシエチレンアルキル(フェニル)エーテルリン酸エステル又はその塩、蛋白質材料、アルケニルスルホコハク酸、α−オレフィンスルホネート等。   (So) AE agent: resin soap, saturated or unsaturated fatty acid, sodium hydroxystearate, lauryl sulfate, ABS (alkyl benzene sulfonic acid), LAS (linear alkyl benzene sulfonic acid), alkane sulfonate, polyoxyethylene alkyl (phenyl) ether , Polyoxyethylene alkyl (phenyl) ether sulfate or a salt thereof, polyoxyethylene alkyl (phenyl) ether phosphate or a salt thereof, protein material, alkenyl sulfosuccinic acid, α-olefin sulfonate, and the like.

(ナ)その他界面活性剤:オクタデシルアルコールやステアリルアルコール等の分子内に6〜30個の炭素原子を有する脂肪族1価アルコール、アビエチルアルコール等の分子内に6〜30個の炭素原子を有する脂環式1価アルコール、ドデシルメルカプタン等の分子内に6〜30個の炭素原子を有する1価メルカプタン、ノニルフェノール等の分子内に6〜30個の炭素原子を有するアルキルフェノール、ドデシルアミン等の分子内に6〜30個の炭素原子を有するアミン、ラウリン酸やステアリン酸等の分子内に6〜30個の炭素原子を有するカルボン酸に、エチレンオキシド、プロピレンオキシド等のアルキレンオキシドを10モル以上付加させたポリアルキレンオキシド誘導体類;アルキル基又はアルコキシル基を置換基として有しても良い、スルホン基を有する2個のフェニル基がエーテル結合した、アルキルジフェニルエーテルスルホン酸塩類;各種アニオン性界面活性剤;アルキルアミンアセテート、アルキルトリメチルアンモニウムクロライド等の各種カチオン性界面活性剤;各種ノニオン性界面活性剤;各種両性界面活性剤等。   (Na) Other surfactants: aliphatic monohydric alcohols having 6 to 30 carbon atoms in the molecule such as octadecyl alcohol and stearyl alcohol, and those having 6 to 30 carbon atoms in the molecule such as abiethyl alcohol Intramolecular such as alicyclic monohydric alcohol, dodecyl mercaptan, etc. Intramolecular such as monovalent mercaptan having 6-30 carbon atoms in the molecule, such as nonylphenol, alkylphenol having 6-30 carbon atoms in the molecule, dodecylamine, etc. 10 mol or more of an alkylene oxide such as ethylene oxide or propylene oxide was added to a carboxylic acid having 6 to 30 carbon atoms in the molecule such as an amine having 6 to 30 carbon atoms, lauric acid or stearic acid. Polyalkylene oxide derivatives; having an alkyl group or an alkoxyl group as a substituent Alkyldiphenyl ether sulfonates in which two phenyl groups having a sulfone group are ether-bonded; various anionic surfactants; various cationic surfactants such as alkylamine acetate and alkyltrimethylammonium chloride; various nonionics Surfactant; various amphoteric surfactants.

(ニ)防水剤:脂肪酸(塩)、脂肪酸エステル、油脂、シリコン、パラフィン、アスファルト、ワックス等。
(ヌ)防錆剤:亜硝酸塩、リン酸塩、酸化亜鉛等。
(ネ)ひび割れ低減剤:ポリオキシアルキルエーテル類;2−メチル−2,4−ペンタンジオール等のアルカンジオール類等。
(ノ)膨張材:エトリンガイト系、石炭系等。
(D) Waterproofing agents: fatty acids (salts), fatty acid esters, fats and oils, silicon, paraffin, asphalt, wax, etc.
(Nu) Rust inhibitor: Nitrite, phosphate, zinc oxide and the like.
(E) Crack reducing agent: polyoxyalkyl ethers; alkanediols such as 2-methyl-2,4-pentanediol.
(No) Expansion material: Ettlingite, coal, etc.

その他の公知のセメント添加剤(材)としては、セメント湿潤剤、増粘剤、分離低減剤、凝集剤、乾燥収縮低減剤、強度増進剤、セルフレベリング剤、防錆剤、着色剤、防カビ剤、高炉スラグ、フライアッシュ、シンダーアッシュ、クリンカーアッシュ、ハスクアッシュ、シリカヒューム、シリカ粉末、石膏等を挙げることができる。これら公知のセメント添加剤(材)は単独で用いてもよく、2種以上を併用してもよい。   Other known cement additives (materials) include cement wetting agents, thickeners, separation reducing agents, flocculants, drying shrinkage reducing agents, strength enhancers, self-leveling agents, rust preventives, colorants, and antifungal agents. Agents, blast furnace slag, fly ash, cinder ash, clinker ash, husk ash, silica fume, silica powder, gypsum and the like. These known cement additives (materials) may be used alone or in combination of two or more.

さらには、本発明のセメント混和剤には、公知のセメント分散剤を併用することができ、例えば、以下のものが使用できる。   Furthermore, a known cement dispersant can be used in combination with the cement admixture of the present invention. For example, the following can be used.

リグニンスルホン酸塩;ポリオール誘導体;ナフタレンスルホン酸ホルマリン縮合物;メラミンスルホン酸ホルマリン縮合物;ポリスチレンスルホン酸塩;特開平1−113419号公報に記載の如くアミノアリールスルホン酸−フェノール−ホルムアルデヒド縮合物等のアミノスルホン酸系;特開平7−267705号公報に記載の如く(a)成分として、ポリアルキレングリコールモノ(メタ)アクリル酸エステル系化合物と(メタ)アクリル酸系化合物との共重合体及び/又はその塩と、(b)成分として、ポリアルキレングリコールモノ(メタ)アリルエーテル系化合物と無水マレイン酸との共重合体及び/若しくはその加水分解物、並びに/又は、その塩と、(c)成分として、ポリアルキレングリコールモノ(メタ)アリルエーテル系化合物と、ポリアルキレングリコール系化合物のマレイン酸エステルとの共重合体及び/又はその塩とを含むセメント分散剤;特許第2508113号明細書に記載の如くA成分として、(メタ)アクリル酸のポリアルキレングリコールエステルと(メタ)アクリル酸(塩)との共重合体、B成分として、特定のポリエチレングリコールポリプロピレングリコール系化合物、C成分として、特定の界面活性剤からなるコンクリート混和剤;特開昭62−216950号公報に記載の如く(メタ)アクリル酸のポリエチレン(プロピレン)グリコールエステル若しくはポリエチレン(プロピレン)グリコールモノ(メタ)アリルエーテル、(メタ)アリルスルホン酸(塩)、並びに、(メタ)アクリル酸(塩)からなる共重合体。特開平1−226757号公報に記載の如く(メタ)アクリル酸のポリエチレン(プロピレン)グリコールエステル、(メタ)アリルスルホン酸(塩)、及び、(メタ)アクリル酸(塩)からなる共重合体;特公平5−36377号公報に記載の如く(メタ)アクリル酸のポリエチレン(プロピレン)グリコールエステル、(メタ)アリルスルホン酸(塩)若しくはp−(メタ)アリルオキシベンゼンスルホン酸(塩)、並びに、(メタ)アクリル酸(塩)からなる共重合体;特開平4−149056号公報に記載の如くポリエチレングリコールモノ(メタ)アリルエーテルとマレイン酸(塩)との共重合体;特開平5−170501号公報に記載の如く(メタ)アクリル酸のポリエチレングリコールエステル、(メタ)アリルスルホン酸(塩)、(メタ)アクリル酸(塩)、アルカンジオールモノ(メタ)アクリレート、ポリアルキレングリコールモノ(メタ)アクリレート、及び、分子中にアミド基を有するα,β−不飽和単量体からなる共重合体;特開平6−191918号公報に記載の如くポリエチレングリコールモノ(メタ)アリルエーテル、ポリエチレングリコールモノ(メタ)アクリレート、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸(塩)、並びに、(メタ)アリルスルホン酸(塩)若しくはp−(メタ)アリルオキシベンゼンスルホン酸(塩)からなる共重合体;特開平5−43288号公報に記載の如くアルコキシポリアルキレングリコールモノアリルエーテルと無水マレイン酸との共重合体、若しくは、その加水分解物、又は、その塩;特公昭58−38380号公報に記載の如くポリエチレングリコールモノアリルエーテル、マレイン酸、及び、これらの単量体と共重合可能な単量体からなる共重合体、若しくは、その塩、又は、そのエステル。   Lignin sulfonate; polyol derivative; naphthalene sulfonic acid formalin condensate; melamine sulfonic acid formalin condensate; polystyrene sulfonate; aminoaryl sulfonic acid-phenol-formaldehyde condensate as described in JP-A-1-113419, etc. Aminosulfonic acid type; as described in JP-A-7-267705, as a component (a), a copolymer of a polyalkylene glycol mono (meth) acrylic acid ester compound and a (meth) acrylic acid compound and / or A salt thereof, and as a component (b), a copolymer of a polyalkylene glycol mono (meth) allyl ether compound and maleic anhydride and / or a hydrolyzate thereof, and / or a salt thereof, and a component (c) As polyalkylene glycol mono (meth) allylamine A cement dispersant containing a copolymer of a polyalkylene glycol and a maleic ester of a polyalkylene glycol compound and / or a salt thereof; (meth) acrylic acid as component A as described in Japanese Patent No. 2508113 A copolymer of a polyalkylene glycol ester of (meth) acrylic acid (salt), a specific polyethylene glycol polypropylene glycol compound as the B component, and a concrete admixture comprising a specific surfactant as the C component; (Meth) acrylic acid polyethylene (propylene) glycol ester or polyethylene (propylene) glycol mono (meth) allyl ether, (meth) allyl sulfonic acid (salt), and (meth) as described in JP-A-62-216950 A copolymer comprising acrylic acid (salt). A copolymer comprising polyethylene (propylene) glycol ester of (meth) acrylic acid, (meth) allylsulfonic acid (salt), and (meth) acrylic acid (salt) as described in JP-A-1-226757; As described in JP-B-5-36377, (meth) acrylic acid polyethylene (propylene) glycol ester, (meth) allylsulfonic acid (salt) or p- (meth) allyloxybenzenesulfonic acid (salt), and Copolymer comprising (meth) acrylic acid (salt); copolymer of polyethylene glycol mono (meth) allyl ether and maleic acid (salt) as described in JP-A-4-149056; JP-A-5-170501 (Meth) acrylic acid polyethylene glycol ester, (meth) allylsulfonic acid ( ), (Meth) acrylic acid (salt), alkanediol mono (meth) acrylate, polyalkylene glycol mono (meth) acrylate, and α, β-unsaturated monomer having an amide group in the molecule Polymerization; as described in JP-A-6-191918, polyethylene glycol mono (meth) allyl ether, polyethylene glycol mono (meth) acrylate, (meth) acrylic acid alkyl ester, (meth) acrylic acid (salt), and ( Copolymer comprising meth) allylsulfonic acid (salt) or p- (meth) allyloxybenzenesulfonic acid (salt); alkoxypolyalkylene glycol monoallyl ether and maleic anhydride as described in JP-A-5-43288 Copolymer or its hydrolyzate or its salt; Polyethylene glycol monoallyl ether as described in 58-38380 JP, maleic acid, and copolymers composed of these monomers copolymerizable with monomer, or a salt thereof, or an ester thereof.

特公昭59−18338号公報に記載の如くポリアルキレングリコールモノ(メタ)アクリル酸エステル系単量体、(メタ)アクリル酸系単量体、及び、これらの単量体と共重合可能な単量体からなる共重合体;特開昭62−119147号公報に記載の如くスルホン酸基を有する(メタ)アクリル酸エステル及び必要によりこれと共重合可能な単量体からなる共重合体、又は、その塩;特開平6−271347号公報に記載の如くアルコキシポリアルキレングリコールモノアリルエーテルと無水マレイン酸との共重合体と、末端にアルケニル基を有するポリオキシアルキレン誘導体とのエステル化反応物;特開平6−298555号公報に記載の如くアルコキシポリアルキレングリコールモノアリルエーテルと無水マレイン酸との共重合体と、末端に水酸基を有するポリオキシアルキレン誘導体とのエステル化反応物;特開昭62−68806号公報に記載の如く3−メチル−3ブテン−1−オール等の特定の不飽和アルコールにエチレンオキシド等を付加したアルケニルエーテル系単量体、不飽和カルボン酸系単量体、及び、これらの単量体と共重合可能な単量体からなる共重合体、又は、その塩等のポリカルボン酸(塩)。これらセメント分散剤は単独で用いてもよく、2種以上を併用してもよい。   As described in JP-B-59-18338, polyalkylene glycol mono (meth) acrylic acid ester monomer, (meth) acrylic acid monomer, and a monomer copolymerizable with these monomers A copolymer comprising a polymer; a copolymer comprising a (meth) acrylic acid ester having a sulfonic acid group and a monomer copolymerizable therewith as described in JP-A-62-1119147, or Salt thereof; as described in JP-A-6-271347, an esterification reaction product of a copolymer of an alkoxy polyalkylene glycol monoallyl ether and maleic anhydride and a polyoxyalkylene derivative having an alkenyl group at the terminal; Copolymer of alkoxypolyalkylene glycol monoallyl ether and maleic anhydride as described in Kaihei 6-298555 , Esterification reaction product with a polyoxyalkylene derivative having a hydroxyl group at the terminal; as described in JP-A-62-68806, ethylene oxide or the like is added to a specific unsaturated alcohol such as 3-methyl-3-buten-1-ol. Added alkenyl ether monomers, unsaturated carboxylic acid monomers, copolymers consisting of monomers copolymerizable with these monomers, or polycarboxylic acids (salts) such as salts thereof ). These cement dispersants may be used alone or in combination of two or more.

その他の公知のセメント添加剤(材)としては、セメント湿潤剤、増粘剤、分離低減剤、凝集剤、乾燥収縮低減剤、強度増進剤、セルフレベリング剤、防錆剤、着色剤、防カビ剤等を挙げることができる。これら公知のセメント添加剤(材)は単独で用いてもよく、2種以上を併用してもよい。   Other known cement additives (materials) include cement wetting agents, thickeners, separation reducing agents, flocculants, drying shrinkage reducing agents, strength enhancers, self-leveling agents, rust preventives, colorants, and antifungal agents. An agent etc. can be mentioned. These known cement additives (materials) may be used alone or in combination of two or more.

上記セメント組成物において、セメント及び水以外の成分についての特に好適な実施形態としては、次の(1)〜(7)が挙げられる。   In the cement composition, the following (1) to (7) may be mentioned as particularly preferred embodiments for components other than cement and water.

(1)<1>本発明のセメント混和剤と<2>オキシアルキレン系消泡剤との2成分を必須とする組み合わせ。オキシアルキレン系消泡剤としては、ポリオキシアルキレン類、ポリオキシアルキレンアルキルエーテル類、ポリオキシアルキレンアセチレンエーテル類、ポリオキシアルキレンアルキルアミン類等が使用可能であるが、ポリオキシアルキレンアルキルアミン類が特に好適である。尚、<2>のオキシアルキレン系消泡剤の配合質量比としては、<1>のセメント混和剤に対して0.01〜20質量%の範囲が好ましい。   (1) A combination comprising essentially two components, <1> the cement admixture of the present invention and <2> an oxyalkylene-based antifoaming agent. As the oxyalkylene-based antifoaming agent, polyoxyalkylenes, polyoxyalkylene alkyl ethers, polyoxyalkylene acetylene ethers, polyoxyalkylene alkylamines and the like can be used, but polyoxyalkylene alkylamines are particularly preferable. Is preferred. The blending mass ratio of the oxyalkylene antifoaming agent <2> is preferably in the range of 0.01 to 20% by mass with respect to the cement admixture <1>.

(2)<1>本発明のセメント混和剤、<2>オキシアルキレン系消泡剤及び<3>AE剤の3成分を必須とする組み合わせ。オキシアルキレン系消泡剤としては、ポリオキシアルキレン類、ポリオキシアルキレンアルキルエーテル類、ポリオキシアルキレンアセチレンエーテル類、ポリオキシアルキレンアルキルアミン類等が使用可能であるが、ポリオキシアルキレンアルキルアミン類が特に好適である。一方、AE剤としては、樹脂酸石鹸、アルキル硫酸エステル類、アルキルリン酸エステル類が特に好適である。尚、<1>のセメント混和剤と<2>の消泡剤の配合質量比としては、<1>のセメント混和剤に対して0.01〜20質量%が好ましい。一方、<3>のAE剤の配合質量比としては、セメントに対して0.001〜2質量%が好ましい。   (2) A combination comprising essentially the three components of <1> the cement admixture of the present invention, <2> an oxyalkylene antifoaming agent, and <3> an AE agent. As the oxyalkylene-based antifoaming agent, polyoxyalkylenes, polyoxyalkylene alkyl ethers, polyoxyalkylene acetylene ethers, polyoxyalkylene alkylamines and the like can be used, but polyoxyalkylene alkylamines are particularly preferable. Is preferred. On the other hand, resin acid soaps, alkyl sulfates, and alkyl phosphates are particularly suitable as the AE agent. The blending mass ratio of the cement admixture <1> and the antifoaming agent <2> is preferably 0.01 to 20% by mass with respect to the cement admixture <1>. On the other hand, the blending mass ratio of the AE agent <3> is preferably 0.001 to 2 mass% with respect to the cement.

(3)<1>本発明のセメント混和剤、<2>炭素原子数2〜18のアルキレンオキシドを平均付加モル数で2〜300付加したポリオキシアルキレン鎖を有するポリアルキレングリコールモノ(メタ)アクリル酸エステル系単量体と、(メタ)アクリル酸系単量体及びこれらの単量体と共重合可能な単量体からなる共重合体(特公昭59−18338号公報、特開平7−223852号公報、特開平9−241056号公報等に記載)、及び、<3>オキシアルキレン系消泡剤の3成分を必須とする組み合わせ。尚、<1>のセメント混和剤と<2>の共重合体との配合質量比としては、5/95〜95/5の範囲が好ましく、10/90〜90/10の範囲がより好ましい。<3>のオキシアルキレン系消泡剤の配合質量比としては、<1>のセメント混和剤と<2>の共重合体との合計量に対して0.01〜20質量%の範囲が好ましい。   (3) <1> the cement admixture of the present invention, <2> a polyalkylene glycol mono (meth) acryl having a polyoxyalkylene chain in which an alkylene oxide having 2 to 18 carbon atoms is added in an average addition mole number of 2 to 300 A copolymer comprising an acid ester monomer, a (meth) acrylic acid monomer and a monomer copolymerizable with these monomers (Japanese Patent Publication No. 59-18338, Japanese Patent Laid-Open No. 7-223852) And 3 components of <3> oxyalkylene-based antifoaming agent are essential. The blending mass ratio of the cement admixture <1> and the copolymer <2> is preferably in the range of 5/95 to 95/5, and more preferably in the range of 10/90 to 90/10. The blending mass ratio of the <3> oxyalkylene-based antifoaming agent is preferably in the range of 0.01 to 20% by mass with respect to the total amount of the cement admixture of <1> and the copolymer of <2>. .

(4)<1>本発明のセメント混和剤と<2>遅延剤との2成分を必須とする組み合わせ。遅延剤としては、グルコン酸(塩)、クエン酸(塩)等のオキシカルボン酸類、グルコース等の糖類、ソルビトール等の糖アルコール類、アミノトリ(メチレンホスホン酸)等のホスホン酸類等が使用可能である。尚、<1>のセメント混和剤と<2>の遅延剤との配合比としては、共重合体(A)及び/又は共重合体(B)と<2>の遅延剤との質量比で、50/50〜99.9/0.1の範囲が好ましく、70/30〜99/1の範囲がより好ましい。   (4) A combination comprising two components, <1> the cement admixture of the present invention and <2> retarder. As the retarder, oxycarboxylic acids such as gluconic acid (salt) and citric acid (salt), sugars such as glucose, sugar alcohols such as sorbitol, phosphonic acids such as aminotri (methylenephosphonic acid), and the like can be used. . The blending ratio of <1> cement admixture and <2> retarder is the mass ratio of copolymer (A) and / or copolymer (B) to <2> retarder. The range of 50/50 to 99.9 / 0.1 is preferable, and the range of 70/30 to 99/1 is more preferable.

(5)<1>本発明のセメント混和剤と<2>促進剤との2成分を必須とする組み合わせ。促進剤としては、塩化カルシウム、亜硝酸カルシウム、硝酸カルシウム等の可溶性カルシウム塩類、塩化鉄、塩化マグネシウム等の塩化物類、チオ硫酸塩、ギ酸及びギ酸カルシウム等のギ酸塩類等が使用可能である。尚、<1>のセメント混和剤と<2>の促進剤との配合質量比としては、10/90〜99.9/0.1が好ましく、20/80〜99/1がより好ましい。   (5) A combination comprising two components, <1> the cement admixture of the present invention and <2> an accelerator. As the accelerator, soluble calcium salts such as calcium chloride, calcium nitrite and calcium nitrate, chlorides such as iron chloride and magnesium chloride, formates such as thiosulfate, formic acid and calcium formate, and the like can be used. The blending mass ratio of the <1> cement admixture and the <2> accelerator is preferably 10/90 to 99.9 / 0.1, and more preferably 20/80 to 99/1.

(6)<1>本発明のセメント混和剤と<2>材料分離低減剤との2成分を必須とする組み合わせ。材料分離低減剤としては、非イオン性セルロースエーテル類等の各種増粘剤、部分構造として炭素原子数4〜30の炭化水素鎖からなる疎水性置換基と炭素原子数2〜18のアルキレンオキシドを平均付加モル数で2〜300付加したポリオキシアルキレン鎖とを有する化合物等が使用可能である。尚、<1>のセメント混和剤と<2>の材料分離低減剤との配合質量比としては、10/90〜99.99/0.01が好ましく、50/50〜99.9/0.1がより好ましい。この組み合わせのセメント組成物は、高流動コンクリート、自己充填性コンクリート、セルフレベリング材として好適である。   (6) A combination comprising two components, <1> the cement admixture of the present invention and <2> a material separation reducing agent. Examples of the material separation reducing agent include various thickeners such as nonionic cellulose ethers, a hydrophobic substituent composed of a hydrocarbon chain having 4 to 30 carbon atoms as a partial structure, and an alkylene oxide having 2 to 18 carbon atoms. A compound having a polyoxyalkylene chain added in an average addition mole number of 2 to 300 can be used. The blending mass ratio of the cement admixture <1> and the material separation reducing agent <2> is preferably 10/90 to 99.99 / 0.01, and 50/50 to 99.9 / 0. 1 is more preferable. The cement composition of this combination is suitable as high fluidity concrete, self-filling concrete and self-leveling material.

(7)<1>本発明のセメント混和剤と<2>分子中にスルホン酸基を有するスルホン酸系分散剤との2成分を必須とする組み合わせ。スルホン酸系分散剤としては、リグニンスルホン酸塩、ナフタレンスルホン酸ホルマリン縮合物、メラミンスルホン酸ホルマリン縮合物、ポリスチレンスルホン酸塩、アミノアリールスルホン酸−フェノール−ホルムアルデヒド縮合物等のアミノスルホン酸系の分散剤等が使用可能である。尚、<1>のセメント混和剤と<2>の分子中にスルホン酸基を有するスルホン酸系分散剤との配合比としては、<1>のセメント混和剤と<2>の分子中にスルホン酸基を有するスルホン酸系分散剤との質量比で、5/95〜95/5が好ましく、10/90〜90/10がより好ましい。   (7) A combination comprising two components of <1> the cement admixture of the present invention and <2> a sulfonic acid-based dispersant having a sulfonic acid group in the molecule. Examples of the sulfonic acid dispersant include lignin sulfonate, naphthalene sulfonic acid formalin condensate, melamine sulfonic acid formalin condensate, polystyrene sulfonate, aminoaryl sulfonic acid-phenol-formaldehyde condensate and the like. An agent or the like can be used. The mixing ratio of the cement admixture of <1> and the sulfonic acid-based dispersant having a sulfonic acid group in the molecule of <2> is the sulfone in the molecule of <1> and the molecule of <2>. The mass ratio with the sulfonic acid-based dispersant having an acid group is preferably 5/95 to 95/5, more preferably 10/90 to 90/10.

本発明のセメント混和剤は、公知のセメント混和剤と同様に、セメントペースト、モルタル、コンクリート等のセメント組成物に加えて用いることができる。また、超高強度コンクリートにも用いることができる。上記セメント組成物としては、セメント、水、細骨材、粗骨材等を含む通常用いられるものが好適である。また、フライアッシュ、高炉スラグ、シリカヒューム、石灰石等の微粉体を添加したものであってもよい。なお、超高強度コンクリートとは、セメント組成物の分野で一般的にそのように称されているもの、すなわち従来のコンクリートに比べて水/セメント比を小さくしてもその硬化物が従来と同等又はより高い強度となるようなコンクリートを意味し、例えば、水/セメント比が25質量%以下、更に20質量%以下、特に18質量%以下、特に14質量%以下、特に12質量%程度であっても通常の使用に支障をきたすことのない作業性を有するコンクリートとなり、その硬化物が60N/mm以上、更に80N/mm以上、より更に100N/mm以上、特に120N/mm以上、特に160N/mm以上、特に200N/mm以上の圧縮強度を示すことになるものである。 The cement admixture of the present invention can be used in addition to a cement composition such as cement paste, mortar, concrete, etc., similarly to known cement admixtures. It can also be used for ultra high strength concrete. As the cement composition, those usually used including cement, water, fine aggregate, coarse aggregate and the like are suitable. Moreover, what added fine powders, such as a fly ash, blast furnace slag, a silica fume, and a limestone, may be used. Ultra-high-strength concrete is generally called as such in the field of cement composition, that is, the cured product is equivalent to the conventional one even if the water / cement ratio is smaller than that of conventional concrete. Or concrete having a higher strength, for example, the water / cement ratio is 25% by mass or less, further 20% by mass or less, particularly 18% by mass or less, particularly 14% by mass or less, especially about 12% by mass. However, it becomes a concrete having workability that does not hinder normal use, and the cured product thereof is 60 N / mm 2 or more, further 80 N / mm 2 or more, further 100 N / mm 2 or more, particularly 120 N / mm 2 or more. , in particular 160 N / mm 2 or more, and particularly will exhibit 200 N / mm 2 or more compression strength.

上記セメントとしては、普通、早強、超早強、中庸熱、白色等のポルトランドセメント;アルミナセメント、フライアッシュセメント、高炉セメント、シリカセメント等の混合ポルトランドセメントが好適である。上記セメントのコンクリート1m当たりの配合量及び単位水量としては、例えば、高耐久性・高強度のコンクリートを製造するためには、単位水量100〜185kg/m、水/セメント比=10〜70%とすることが好ましい。より好ましくは、単位水量120〜175kg/m、水/セメント比=20〜65%である。 As the cement, portland cement such as normal, early strength, super early strength, moderate heat, white, etc .; mixed portland cement such as alumina cement, fly ash cement, blast furnace cement, silica cement and the like are suitable. As the blending amount and unit water amount per 1 m 3 of concrete of the cement, for example, in order to produce highly durable and high strength concrete, the unit water amount is 100 to 185 kg / m 3 , and the water / cement ratio is 10 to 70. % Is preferable. More preferably, the unit water amount is 120 to 175 kg / m 3 and the water / cement ratio is 20 to 65%.

本発明のセメント混和剤のセメント組成物中の添加量割合としては、本発明の必須成分であるポリカルボン酸系重合体(A)およびポリカルボン酸系重合体(B)の合計質量が、セメント質量の全量100質量%に対して、0.01質量%以上となるようにすることが好ましく、10質量%以下となるようにすることが好ましい。0.01質量%未満であると、性能的に不充分となるおそれがあり、10質量%を超えると、経済性が劣ることとなる。より好ましくは、0.05質量%以上であり、8質量%以下であり、さらに好ましくは、0.1質量%以上であり、5質量%以下である。なお、上記質量%は、固形分換算の値である。   The added amount ratio of the cement admixture of the present invention in the cement composition is such that the total mass of the polycarboxylic acid polymer (A) and the polycarboxylic acid polymer (B) which are essential components of the present invention is the cement. It is preferable to be 0.01% by mass or more with respect to 100% by mass of the total mass, and it is preferable to be 10% by mass or less. If it is less than 0.01% by mass, the performance may be insufficient, and if it exceeds 10% by mass, the economical efficiency will be inferior. More preferably, they are 0.05 mass% or more and 8 mass% or less, More preferably, they are 0.1 mass% or more and 5 mass% or less. In addition, the said mass% is a value of solid content conversion.

<共重合体の分子量および分子量分布測定条件>
装置: Waters Alliance(2695)
解析ソフト:Waters社製 Empowerプロフェッショナル+GPCオプション
カラム: TSKgel ガードカラム(内径6.0×40mm)+G4000SWXL+G3000SWXL+G2000SWXL(各内径7.8×300mm)
検出器: 示差屈折率計(RI)検出器(Waters 2414)、多波長可視紫外(PDA)検出器(Waters 2996)
溶離液: アセトニトリル6001g、水10999gの溶液に酢酸ナトリウム3水和物115.6gを溶解し、さらに酢酸でpH6.0に調整したもの
流量: 1.0mL/分
カラム・測定温度: 40℃
測定時間: 45分
試料液注入量: 100μL(試料濃度0.2−0.5wt%の溶離液溶液)
GPC標準サンプル: GLサイエンス製ポリエチレングリコール Mp=272500、219300、107000、50000、24000、11840、6450、4250、1470の9点を使用
検量線: 上記ポリエチレングリコールのMp値を用いて3次式で作成
解析法: 得られたRIクロマトグラムにおいて、ポリマー溶出直前・溶出直後のベースラインにおいて平らに安定している部分を直線で結び、ポリマーを検出・解析した。ただしモノマーピークがポリマーピークに重なって測定された場合、モノマーとポリマーの重なり部分の最凹部において垂直分割してポリマー部とモノマー部を分離し、ポリマー部のみの分子量・分子量分布を測定した。ダイマー以上のオリゴマーが検出された場合はポリマー部に含めた。
<Molecular weight and molecular weight distribution measurement conditions of copolymer>
Equipment: Waters Alliance (2695)
Analysis software: Empower professional + GPC option column manufactured by Waters: TSKgel guard column (inner diameter 6.0 × 40 mm) + G4000SWXL + G3000SWXL + G2000SWXL (each inner diameter 7.8 × 300 mm)
Detector: differential refractometer (RI) detector (Waters 2414), multi-wavelength visible ultraviolet (PDA) detector (Waters 2996)
Eluent: 115.6 g of sodium acetate trihydrate dissolved in 6001 g of acetonitrile and 10999 g of water, and further adjusted to pH 6.0 with acetic acid Flow rate: 1.0 mL / min Column / Measurement temperature: 40 ° C.
Measurement time: 45 minutes Sample solution injection amount: 100 μL (eluent solution with sample concentration of 0.2-0.5 wt%)
GPC standard sample: Polyethylene glycol manufactured by GL Science Mp = 272500, 219300, 107000, 50000, 24000, 11840, 6450, 4250, 1470 Calibration curve: Created by cubic equation using Mp value of polyethylene glycol Analysis method: In the obtained RI chromatogram, the portions that were flat and stable in the baseline immediately before and after elution of the polymer were connected by straight lines, and the polymer was detected and analyzed. However, when the monomer peak was measured to overlap the polymer peak, the polymer part and the monomer part were separated by vertical division at the most concave part of the overlapping part of the monomer and the polymer, and the molecular weight / molecular weight distribution of only the polymer part was measured. When oligomers higher than dimer were detected, they were included in the polymer part.

<共重合体のGPC分画分取条件>
分取装置: 東ソー(株)製 HLC−8070
カラム: 東ソー(株)製 TSKgel α−M+α−2500 (内径1インチ、カラム長30cm)
検出器: 紫外検出器、254nm
溶離液: 50mM蟻酸アンモニウムイオン交換水溶液/アセトニトリル=85/15wt%の混合物に30%水酸化ナトリウムを加えてpH8.0に調整したもの
流量: 5mL/分
カラム・測定温度: 40℃
試料液注入量: 3mL(試料濃度2wt%の溶離液溶液、18.4mg/mL)
GPC標準サンプル: 東ソー(株)製ポリエチレングリコール Mp=272500、219300、107000、50000、24000、11840、6450、4250、1470の9点を使用
検量線: 上記ポリエチレングリコールのMp値を用いて3次式で作成。
<GPC fractionation conditions for copolymer>
Sorting device: HLC-8070 manufactured by Tosoh Corporation
Column: TSKgel α-M + α-2500 (Inside diameter 1 inch, column length 30 cm) manufactured by Tosoh Corporation
Detector: UV detector, 254 nm
Eluent: 50 mM ammonium formate ion exchange aqueous solution / acetonitrile = 85/15 wt% adjusted to pH 8.0 by adding 30% sodium hydroxide Flow rate: 5 mL / min Column / Measurement temperature: 40 ° C.
Sample solution injection amount: 3 mL (eluent solution having a sample concentration of 2 wt%, 18.4 mg / mL)
GPC standard sample: Polyethylene glycol manufactured by Tosoh Corporation Mp = 272500, 219300, 107000, 50000, 24000, 11840, 6450, 4250, 1470 Calibration curve: cubic equation using Mp value of polyethylene glycol Created with.

<製造例1:比較重合体1−1の合成>
温度計、高さ2.5cm幅11cmの羽根を備えた撹拌機、滴下装置、窒素導入管及び還流冷却装置を備えた内径16cmの3Lガラス製反応装置に水420gを仕込み、200rpmで攪拌下に反応装置内を100mL/分で窒素置換しながら、80℃まで加温した。続いて同条件のまま、反応装置内にメトキシポリエチレングリコールモノメタクリレート(エチレンオキシドの平均付加モル数25)450.319g、メタクリル酸89.681g、3−メルカプトプロピオン酸(MPA)4.511g、水135gを混合した水溶液を4時間、過硫酸アンモニウム6.21gに水を加えて合計105gに調整した水溶液を5時間かけて、それぞれ反応装置内に均一速度で滴下した。すべての滴下終了後更に1時間80℃を維持して重合反応を完結させ、冷却して比較重合体1−1を得た。得られたポリマーはMw=24225、Mw/Mn=1.928であった。
<Production Example 1: Synthesis of Comparative Polymer 1-1>
A thermometer, a stirrer equipped with a blade having a height of 2.5 cm and a width of 11 cm, a dropping device, a nitrogen introducing tube, and a 3 L glass reactor equipped with a reflux cooling device were charged with 420 g of water and stirred at 200 rpm. The inside of the reactor was heated to 80 ° C. while purging with nitrogen at 100 mL / min. Subsequently, under the same conditions, methoxypolyethylene glycol monomethacrylate (average number of added moles of ethylene oxide 25) 450.319 g, methacrylic acid 89.681 g, 3-mercaptopropionic acid (MPA) 4.511 g, and water 135 g were put in the reactor. The mixed aqueous solution was added dropwise to 6.21 g of ammonium persulfate for 4 hours, and the aqueous solution adjusted to a total of 105 g was dropped into the reactor at a uniform rate over 5 hours. After completion of all the dropwise additions, the polymerization reaction was completed by maintaining the temperature at 80 ° C. for 1 hour, followed by cooling to obtain a comparative polymer 1-1. The obtained polymer was Mw = 24225 and Mw / Mn = 1.928.

<製造例2〜4:比較重合体1−2〜1−4の合成>
製造例1と同様の手順で、連鎖移動剤(MPA)の量のみを変えてMwの異なる比較重合体を得た。得られた重合体の物性を、それぞれ表1に示した。
<Production Examples 2 to 4: Synthesis of Comparative Polymers 1-2 to 1-4>
In the same procedure as in Production Example 1, only the amount of chain transfer agent (MPA) was changed to obtain comparative polymers having different Mw. Table 1 shows the physical properties of the obtained polymers.

Figure 2007113002
Figure 2007113002

<製造例5:比較重合体2−1の合成>
温度計、高さ2.5cm幅11cmの羽根を備えた撹拌機、滴下装置、窒素導入管及び還流冷却装置を備えた内径16cmの3Lガラス製反応装置に、3−メチル−3−ブテン−1−オールのエチレンオキシド付加物(エチレンオキシドの平均付加モル数50)484.502g、アクリル酸0.875g、水250.043gを仕込み、200rpmで攪拌下に反応装置内を100mL/分で窒素置換しながら、58℃まで加温した。続いて同条件のまま、反応装置内に30%過酸化水素水2.541gに水を加えて合計38.112gに調整した水溶液を添加し、58℃まで加温した。続いて同条件のまま、アクリル酸64.623gと水61.845gの混合水溶液を3時間、L−アスコルビン酸0.967gと3−メルカプトプロピオン酸(MPA)2.141gに水を加えて合計100gに調整した水溶液を3.5時間かけて、それぞれ反応装置内に均一速度で滴下した。ただし、加温開始から滴下開始までの時間は2時間以内とした。すべての滴下終了後更に1時間58℃を維持して重合反応を完結させ、冷却して比較重合体2−1を得た。得られたポリマーはMw=36606、Mw/Mn=1.978であった。
<Production Example 5: Synthesis of Comparative Polymer 2-1>
Thermometer, stirrer with 2.5 cm high and 11 cm wide blade, dripping device, nitrogen inlet tube and 3 L glass reactor equipped with reflux cooling device were charged with 3-methyl-3-butene-1 -Allo ethylene oxide adduct (average number of moles of ethylene oxide added 50) 484.502g, acrylic acid 0.875g, water 250.043g, charged with nitrogen at 100mL / min with stirring at 200rpm, Warmed to 58 ° C. Subsequently, under the same conditions, an aqueous solution adjusted to a total of 38.112 g by adding water to 2.541 g of 30% aqueous hydrogen peroxide was added to the reactor and heated to 58 ° C. Subsequently, with the same conditions, a mixed aqueous solution of 64.623 g of acrylic acid and 61.845 g of water was added for 3 hours to 0.967 g of L-ascorbic acid and 2.141 g of 3-mercaptopropionic acid (MPA) to total 100 g. The aqueous solution prepared in the above was dropped into the reactor at a uniform rate over 3.5 hours. However, the time from the start of heating to the start of dropping was within 2 hours. After completion of the dropwise addition, the polymerization reaction was completed by maintaining the temperature at 58 ° C. for another hour, and then cooled to obtain a comparative polymer 2-1. The obtained polymer was Mw = 36606 and Mw / Mn = 1.978.

<製造例6〜8:比較重合体2−2〜2−4の合成>
製造例5と同様の手順で、連鎖移動剤(MPA)の量のみを変えてMwの異なる比較重合体を得た。得られた重合体の物性を、それぞれ表2に示した。
<Production Examples 6 to 8: Synthesis of Comparative Polymers 2-2 to 2-4>
In the same procedure as in Production Example 5, only the amount of chain transfer agent (MPA) was changed to obtain comparative polymers having different Mw. The physical properties of the obtained polymer are shown in Table 2, respectively.

Figure 2007113002
Figure 2007113002

<製造例9:比較重合体3−1の合成>
温度計、高さ2.5cm幅11cmの羽根を備えた撹拌機、滴下装置、窒素導入管及び還流冷却装置を備えた内径16cmの3Lガラス製反応装置に、3−メチル−3−ブテン−1−オールのエチレンオキシド付加物(エチレンオキシドの平均付加モル数50)517.826g、アクリル酸0.935g、水267.241gを仕込み、200rpmで攪拌下に反応装置内を100mL/分で窒素置換しながら、58℃まで加温した。続いて同条件のまま、反応装置内に30%過酸化水素水1.525gに水を加えて合計22.879gに調整した水溶液を添加し、58℃まで加温した。続いて同条件のまま、アクリル酸31.238gと水59.880gの混合水溶液を3時間、L−アスコルビン酸0.592gと3−メルカプトプロピオン酸(MPA)1.107gに水を加えて合計100gに調整した水溶液を3.5時間かけて、それぞれ反応装置内に均一速度で滴下した。ただし、加温開始から滴下開始までの時間は2時間以内とした。すべての滴下終了後更に1時間58℃を維持して重合反応を完結させ、冷却して比較重合体3−1を得た。得られた重合体はMw=34965、Mw/Mn=1.864であった。
<Production Example 9: Synthesis of Comparative Polymer 3-1>
Thermometer, stirrer with 2.5 cm high and 11 cm wide blade, dripping device, nitrogen inlet tube and 3 L glass reactor equipped with reflux cooling device were charged with 3-methyl-3-butene-1 -517.826 g of ethylene oxide adduct (average number of moles of ethylene oxide added 50), 0.935 g of acrylic acid, and 267.241 g of water were charged, and the inside of the reactor was purged with nitrogen at 100 mL / min while stirring at 200 rpm. Warmed to 58 ° C. Subsequently, under the same conditions, an aqueous solution adjusted to a total of 22.879 g by adding water to 1.525 g of 30% hydrogen peroxide solution was added to the reactor and heated to 58 ° C. Subsequently, with the same conditions, a mixed aqueous solution of 31.238 g of acrylic acid and 59.880 g of water was added for 3 hours to 0.592 g of L-ascorbic acid and 1.107 g of 3-mercaptopropionic acid (MPA) to total 100 g. The aqueous solution prepared in the above was dropped into the reactor at a uniform rate over 3.5 hours. However, the time from the start of heating to the start of dropping was within 2 hours. After completion of the dropwise addition, the polymerization reaction was completed by maintaining the temperature at 58 ° C. for an additional hour, followed by cooling to obtain a comparative polymer 3-1. The obtained polymer was Mw = 34965 and Mw / Mn = 1.864.

<製造例10〜11:比較重合体3−2〜3−3の合成>
製造例9と同様の手順で、連鎖移動剤(MPA)の量のみを変えてMwの異なる比較重合体を得た。得られた重合体の物性を、それぞれ表3に示した。
<Production Examples 10-11: Synthesis of Comparative Polymers 3-2-3-3>
In the same procedure as in Production Example 9, only the amount of chain transfer agent (MPA) was changed to obtain comparative polymers having different Mw. Table 3 shows the physical properties of the obtained polymers.

Figure 2007113002
Figure 2007113002

<製造例12〜18:本発明の重合体1−1〜1−7>
製造例1で合成した比較重合体1−1を用いて、所要量の重合体が得られるまで前述の条件でGPC分画分取を行った。得られた7分画を、20mmHgの減圧下50℃でエバポレートして約10wt%に濃縮した。濃縮液を脱塩処理後、20mmHgの減圧下50℃でエバポレートして約10wt%に濃縮し、前述の方法で分子量および分子量分布を測定した。分取条件と得られた重合体の物性値を表4に記載した。
<Production Examples 12 to 18: Polymers 1-1 to 1-7 of the present invention>
Using the comparative polymer 1-1 synthesized in Production Example 1, GPC fractionation was performed under the above-described conditions until a required amount of polymer was obtained. The obtained 7 fractions were evaporated at 50 ° C. under a reduced pressure of 20 mmHg and concentrated to about 10 wt%. The concentrate was desalted and then evaporated at 50 ° C. under a reduced pressure of 20 mmHg to concentrate to about 10 wt%, and the molecular weight and molecular weight distribution were measured by the methods described above. Preparative conditions and physical properties of the obtained polymer are shown in Table 4.

Figure 2007113002
Figure 2007113002

<製造例19〜25:本発明の重合体2−1〜2−7>
本発明の重合体1−1〜1−7を得る方法と同様の手順で、製造例5で合成した比較重合体2−1をGPC分画分取して、本発明の重合体2−1〜2−7を得た。分取条件と得られた重合体の物性値を表5に記載した。
<Production Examples 19 to 25: Polymers 2-1 to 2-7 of the present invention>
The comparative polymer 2-1 synthesized in Production Example 5 was fractionated by GPC in the same procedure as the method for obtaining the polymers 1-1 to 1-7 of the present invention, and the polymer 2-1 of the present invention was collected. ~ 2-7 was obtained. Preparative conditions and physical properties of the obtained polymer are shown in Table 5.

Figure 2007113002
Figure 2007113002

<製造例26〜32:本発明の重合体3−1〜3−7>
本発明の重合体1−1〜1−7を得る方法と同様の手順で、製造例9で合成した比較重合体3−1をGPC分画分取して、本発明の重合体3−1〜3−7を得た。分取条件と得られた重合体の物性値を表6に記載した。
<Production Examples 26 to 32: Polymers 3-1 to 3-7 of the Present Invention>
In the same procedure as the method for obtaining the polymers 1-1 to 1-7 of the present invention, the comparative polymer 3-1 synthesized in Production Example 9 was fractionated by GPC to obtain the polymer 3-1 of the present invention. ~ 3-7 was obtained. Preparative conditions and physical properties of the obtained polymer are shown in Table 6.

Figure 2007113002
Figure 2007113002

<製造例33:触媒Aの合成>
ポリエチレンイミン(分子量300)のそれぞれの活性水素にエチレンオキシドを8当量ずつ付加した化合物(以下PEIEOと略、Mw2814)を公知の方法で合成した。PEIEO(50.84g、1当量)をイオン交換水50.8gに溶解し、撹拌しながら25℃100mmHgで減圧脱気した後、系内を窒素置換して常圧に戻した。窒素雰囲気下でCuBr(4.146g、1.6当量)を加え、1時間撹拌して触媒水溶液Aを得た。
<Production Example 33: Synthesis of catalyst A>
A compound obtained by adding 8 equivalents of ethylene oxide to each active hydrogen of polyethyleneimine (molecular weight 300) (hereinafter referred to as PEIEO, abbreviated as Mw2814) was synthesized by a known method. PEIEO (50.84 g, 1 equivalent) was dissolved in 50.8 g of ion-exchanged water, degassed under reduced pressure at 25 ° C. and 100 mmHg with stirring, and the inside of the system was replaced with nitrogen to return to normal pressure. Under a nitrogen atmosphere, CuBr (4.146 g, 1.6 eq) was added and stirred for 1 hour to obtain aqueous catalyst solution A.

<製造例34:触媒Bの合成>
PEIEO(45.34g、1当量)をイオン交換水45.3gに溶解し、撹拌しながら25℃100mmHgで減圧脱気した後、系内を窒素置換して常圧に戻した。窒素雰囲気下でCuBr2(4.678g、1.3当量)を加え、1時間撹拌して触媒水溶液Bを得た。
<Production Example 34: Synthesis of catalyst B>
PEIEO (45.34 g, 1 equivalent) was dissolved in 45.3 g of ion-exchanged water, degassed under reduced pressure at 25 ° C. and 100 mmHg with stirring, and the inside of the system was replaced with nitrogen to return to normal pressure. Under a nitrogen atmosphere, CuBr2 (4.678 g, 1.3 eq) was added and stirred for 1 hour to obtain aqueous catalyst solution B.

<製造例35:本発明の重合体4の合成>
製造例33で調製した触媒水溶液A(1.171g)、製造例34で調製した触媒水溶液B(0.364g)、2−ブロモイソ酪酸エチル(0.234g)、イオン交換水(18.829g)の混合溶液を撹拌しながら25℃100mmHgで減圧脱気した後、系内を窒素置換して常圧に戻し、触媒水溶液Cを得た。メタクリル酸(2.492g)、メトキシポリエチレングリコールモノメタクリレート(平均EO付加モル数75)(12.508g)、イオン交換水(5g)の混合水溶液を撹拌しながら25℃100mmHgで減圧脱気した後、系内を窒素置換して常圧に戻し、モノマー水溶液を得た。モノマー水溶液を窒素雰囲気下で50℃に加温した後、50℃に加温した触媒水溶液Cを加えて重合反応を開始し、撹拌下24時間50℃に保持して重合反応を完結させ本発明の重合体4を得た。得られた重合体はMw=35700、Mw/Mn=1.40であった。
<Production Example 35: Synthesis of Polymer 4 of the Present Invention>
Catalyst aqueous solution A (1.171 g) prepared in Production Example 33, catalyst aqueous solution B (0.364 g) prepared in Production Example 34, ethyl 2-bromoisobutyrate (0.234 g), and ion-exchanged water (18.829 g) The mixed solution was degassed under reduced pressure at 25 ° C. and 100 mmHg while stirring, and then the atmosphere in the system was replaced with nitrogen to return to normal pressure, whereby catalyst aqueous solution C was obtained. After degassing the mixed aqueous solution of methacrylic acid (2.492 g), methoxypolyethylene glycol monomethacrylate (average EO addition moles 75) (12.508 g), and ion-exchanged water (5 g) at 25 ° C. and 100 mmHg under reduced pressure, The system was replaced with nitrogen to return to normal pressure to obtain an aqueous monomer solution. After the monomer aqueous solution is heated to 50 ° C. in a nitrogen atmosphere, the catalyst aqueous solution C heated to 50 ° C. is added to start the polymerization reaction, and the polymerization reaction is completed by holding the mixture at 50 ° C. for 24 hours with stirring. The polymer 4 was obtained. The obtained polymer was Mw = 35700 and Mw / Mn = 1.40.

<製造例36:本発明の重合体5の合成>
製造例33で調製した触媒水溶液A(0.878g)、製造例34で調製した触媒水溶液B(0.728g)、2−ブロモイソ酪酸エチル(0.117g)、イオン交換水(19.122g)の混合溶液を撹拌しながら25℃100mmHgで減圧脱気した後、系内を窒素置換して常圧に戻し、触媒水溶液Cを得た。メタクリル酸(2.492g)、メトキシポリエチレングリコールモノメタクリレート(平均EO付加モル数75)(12.508g)、イオン交換水(5g)の混合水溶液を撹拌しながら25℃100mmHgで減圧脱気した後、系内を窒素置換して常圧に戻し、モノマー水溶液を得た。モノマー水溶液を窒素雰囲気下で50℃に加温した後、50℃に加温した触媒水溶液Cを加えて重合反応を開始し、撹拌下24時間50℃に保持して重合反応を完結させ本発明の重合体5を得た。得られた重合体はMw=30500、Mw/Mn=1.36であった。
<Production Example 36: Synthesis of Polymer 5 of the Present Invention>
Catalyst aqueous solution A (0.878 g) prepared in Production Example 33, catalyst aqueous solution B (0.728 g) prepared in Production Example 34, ethyl 2-bromoisobutyrate (0.117 g), ion-exchanged water (19.122 g) The mixed solution was degassed under reduced pressure at 25 ° C. and 100 mmHg while stirring, and then the atmosphere in the system was replaced with nitrogen to return to normal pressure, whereby catalyst aqueous solution C was obtained. After degassing the mixed aqueous solution of methacrylic acid (2.492 g), methoxypolyethylene glycol monomethacrylate (average EO addition moles 75) (12.508 g), and ion-exchanged water (5 g) at 25 ° C. and 100 mmHg under reduced pressure, The system was replaced with nitrogen to return to normal pressure to obtain an aqueous monomer solution. After the monomer aqueous solution is heated to 50 ° C. in a nitrogen atmosphere, the catalyst aqueous solution C heated to 50 ° C. is added to start the polymerization reaction, and the polymerization reaction is completed by holding the mixture at 50 ° C. for 24 hours with stirring. The polymer 5 was obtained. The obtained polymer was Mw = 30500 and Mw / Mn = 1.36.

<製造例37:比較重合体4の合成>
温度計、高さ2.5cm幅11cmの羽根を備えた撹拌機、滴下装置、窒素導入管及び還流冷却装置を備えた内径16cmの3Lガラス製反応装置に水400gを仕込み、200rpmで攪拌下に反応装置内を100mL/分で窒素置換しながら、80℃まで加温した。続いて反応装置内を80℃に保ったまま、メトキシポリエチレングリコールモノメタクリレート(エチレンオキシドの平均付加モル数75)166.785g、メタクリル酸33.215g、3−メルカプトプロピオン酸1.592gにイオン交換水を加えて500gに調整した混合水溶液を4時間、過硫酸アンモニウム2.292gにイオン交換水を加えて合計100gに調整した水溶液を5時間かけて、それぞれ反応装置内に均一速度で滴下した。すべての滴下終了後更に1時間80℃を維持して重合反応を完結させ比較重合体4を得た。得られた重合体はMw=36400、Mw/Mn=1.74であった。
<Production Example 37: Synthesis of Comparative Polymer 4>
400 g of water was charged into a 3 L glass reactor having an inner diameter of 16 cm and equipped with a thermometer, a stirrer equipped with a blade having a height of 2.5 cm and a width of 11 cm, a dropping device, a nitrogen introduction tube and a reflux cooling device, and stirred at 200 rpm. The inside of the reactor was heated to 80 ° C. while purging with nitrogen at 100 mL / min. Subsequently, while maintaining the inside of the reactor at 80 ° C., ion-exchanged water was added to 166.785 g of methoxypolyethylene glycol monomethacrylate (average number of moles of ethylene oxide added 75), 33.215 g of methacrylic acid, and 1.592 g of 3-mercaptopropionic acid. In addition, the mixed aqueous solution adjusted to 500 g was added dropwise to the reaction apparatus at a uniform rate for 4 hours, and the aqueous solution prepared by adding ion-exchanged water to 2.292 g of ammonium persulfate to make a total of 100 g was added over 5 hours. After completion of the dropwise addition, the temperature was maintained at 80 ° C. for 1 hour to complete the polymerization reaction, whereby a comparative polymer 4 was obtained. The obtained polymer was Mw = 36400 and Mw / Mn = 1.74.

<モルタル試験>
(モルタル配合)
モルタル配合はC/S/W=600/600/210(g)とした。ただし、
C: 普通ポルトランドセメント(太平洋セメント社製)
S: 豊浦標準砂
W: 試料のイオン交換水溶液
(モルタル実験環境)
実験環境は、温度20℃±1℃、相対湿度60%±10%とした。
<Mortar test>
(Contains mortar)
The mortar formulation was C / S / W = 600/600/210 (g). However,
C: Ordinary Portland cement (manufactured by Taiheiyo Cement)
S: Toyoura standard sand W: Sample ion exchange aqueous solution (mortar experimental environment)
The experimental environment was a temperature of 20 ° C. ± 1 ° C. and a relative humidity of 60% ± 10%.

(モルタル混練手順)
所定量のポリマー水溶液を量り採り、消泡剤MA−404(ポゾリス物産製)を有姿でポリマー分に対して10wt%加え、更にイオン交換水を加えて210gとし、十分に均一溶解させた。
HOBART社製N−50ミキサーにステンレス製ビーター(撹拌羽根)を取り付け、混練容器に所定量のセメント(C)、砂(S)を仕込んだ。1速で15秒混練したのち、混練しながら15秒かけて等速度で試料水溶液(W)を投入した。続いて2速で30秒混練後、混練停止して15秒間容器壁に付いたモルタルを掻き落し、45秒静置した。2速で90秒混練して混練終了とし、モルタルを混練容器からポリエチレン製1L容器に移した。
(Mortar kneading procedure)
A predetermined amount of the polymer aqueous solution was weighed, and 10 wt% of the antifoaming agent MA-404 (Pozoris product) was added to the polymer in solid form, and ion-exchanged water was further added to make 210 g, which was sufficiently uniformly dissolved.
A stainless beater (stirring blade) was attached to an N-50 mixer manufactured by HOBART, and a predetermined amount of cement (C) and sand (S) were charged into a kneading container. After kneading at a first speed for 15 seconds, the sample aqueous solution (W) was charged at a constant speed over 15 seconds while kneading. Subsequently, after kneading at a second speed for 30 seconds, the kneading was stopped and the mortar attached to the container wall was scraped off for 15 seconds and left to stand for 45 seconds. The kneading was completed for 90 seconds at the second speed, and the mortar was transferred from the kneading container to a 1 L container made of polyethylene.

(モルタルフロー測定手順)
練りあがったモルタルを直ちにスパチュラで20回撹拌した後、SUS304製の平滑な板状に置いた内径55mm高さ50mmのSUS304製フローコーンの中に均一に詰め、表面を均した。フローコーンを垂直に引き上げ、モルタルの流動が止まってから、広がったモルタルの直径を縦横2点計測し、平均値をフロー値とした。ただし混練開始からフロー値測定までは5分30秒以内に収まるようにした。
(Mortar flow measurement procedure)
The kneaded mortar was immediately stirred 20 times with a spatula and then uniformly packed in a flow cone made of SUS304 having an inner diameter of 55 mm and a height of 50 mm placed on a smooth plate made of SUS304, and the surface was leveled. The flow cone was pulled up vertically, and after the flow of the mortar stopped, the diameter of the spread mortar was measured at two points in length and width, and the average value was taken as the flow value. However, the time from the start of kneading to the measurement of the flow value was kept within 5 minutes and 30 seconds.

(モルタル空気量測定手順)
モルタルを500mLパイレックス(登録商標)製メスシリンダーに約200mL詰め、径8mmの丸棒で突いて粗い気泡を抜いた。さらにモルタルを約200mL加えて同様に気泡を抜いた後、体積と質量を測定し、質量と各材料の密度から空気量を計算した。
(Mortar air volume measurement procedure)
About 200 mL of mortar was packed in a 500 mL Pyrex (registered trademark) graduated cylinder, and rough bubbles were removed by poking with a round bar having a diameter of 8 mm. Furthermore, after adding about 200 mL of mortar and removing bubbles in the same manner, the volume and mass were measured, and the amount of air was calculated from the mass and the density of each material.

<モルタル試験結果>
本発明の重合体と比較重合体のモルタル試験結果を表7〜10に示した。
<Results of mortar test>
Tables 7 to 10 show the mortar test results of the polymer of the present invention and the comparative polymer.

Figure 2007113002
Figure 2007113002

表7にポリアルキレングリコールがエステル結合で主鎖に結合した重合体のモルタル試験結果を示した。比較重合体1−1〜1−4と同程度の重量平均分子量(Mw)を有する本発明の重合体1−3〜1−5の添加量0.1質量%でのモルタルフロー値を比較すると、比較重合体が148mm〜165mmであるのに対して、本発明の重合体では207mm〜220mmであり、本発明の重合体の方がセメント分散性能に優れていることがわかる。これは、比較重合体の分散度(Mw/Mn)が1.61〜1.93であるのに対して、本発明の重合体の分散度が1.36〜1.38と非常に狭くなっていることに起因するものであると推察される。   Table 7 shows the mortar test results of polymers in which polyalkylene glycol is bonded to the main chain by an ester bond. When comparing the mortar flow values at 0.1 mass% of the added amount of the polymers 1-3 to 1-5 of the present invention having the same weight average molecular weight (Mw) as the comparative polymers 1-1 to 1-4. The comparative polymer is 148 mm to 165 mm, whereas the polymer of the present invention is 207 mm to 220 mm, indicating that the polymer of the present invention is superior in cement dispersion performance. This is because the dispersity (Mw / Mn) of the comparative polymer is 1.61 to 1.93, whereas the dispersity of the polymer of the present invention is 1.36 to 1.38, which is very narrow. It is inferred that this is due to

Figure 2007113002
Figure 2007113002

表8にポリアルキレングリコール鎖がエーテル結合で主鎖に結合した重合体のモルタル試験結果を示した。比較重合体2−1〜2−4と同程度の重量平均分子量(Mw)を有する本発明の重合体2−3〜2−5の添加量0.1質量%でのモルタルフロー値を比較すると、比較重合体が158mm〜170mmであるのに対して、本発明の重合体では185mm〜214mmであり、本発明の重合体の方がセメント分散性能に優れていることがわかる。これは、比較重合体の分散度(Mw/Mn)が1.61〜1.93であるのに対して、本発明の重合体の分散度が1.31〜1.35と非常に狭くなっていることに起因するものであると推察される。この結果は、表7に示した、ポリアルキレングリコール鎖がエステル結合で主鎖に結合した重合体の結果と同じであった。   Table 8 shows the mortar test results of the polymer in which the polyalkylene glycol chain is bonded to the main chain by an ether bond. When comparing the mortar flow value at the addition amount of 0.1% by mass of the polymer 2-3 to 2-5 of the present invention having the same weight average molecular weight (Mw) as the comparative polymers 2-1 to 2-4. The comparative polymer is 158 mm to 170 mm, whereas the polymer of the present invention is 185 mm to 214 mm, indicating that the polymer of the present invention is superior in cement dispersion performance. This is because the dispersity (Mw / Mn) of the comparative polymer is 1.61 to 1.93, whereas the dispersity of the polymer of the present invention is 1.31 to 1.35, which is very narrow. It is inferred that this is due to This result was the same as the result of the polymer shown in Table 7 in which the polyalkylene glycol chain was bonded to the main chain by an ester bond.

Figure 2007113002
Figure 2007113002

表9に上記と同様のポリアルキレングリコール鎖がエーテル結合で主鎖に結合した重合体のモルタル試験結果を示した。上記の結果と同様に分散度が1.64〜1.78の比較重合体のモルタルフロー値は154mm〜177mmであるのに対して、分散度が1.35〜1.41の本発明の重合体のモルタルフロー値は186mm〜219mmと分子量分布が狭い本発明の重合体の方がセメント分散性能に優れる。   Table 9 shows the results of a mortar test of a polymer in which the same polyalkylene glycol chain as described above is bonded to the main chain with an ether bond. Similar to the above results, the mortar flow value of the comparative polymer having a dispersity of 1.64 to 1.78 is 154 mm to 177 mm, whereas the weight of the present invention having a dispersity of 1.35 to 1.41 is shown. The polymer of the present invention having a narrow molecular weight distribution with a mortar flow value of 186 mm to 219 mm is superior in cement dispersion performance.

Figure 2007113002
Figure 2007113002

表10にリビングラジカル重合で得られた本発明の重合体4と従来のラジカル重合で得られた比較重合体4のモルタル試験結果を示した。同一添加量でモルタルフロー値を比較すると従来のラジカル重合で得られた比較重合体4のモルタルフロー値が170mmであるのに対して、リビングラジカル重合で得られた本発明の重合体4では222mmであり、リビングラジカル重合で得られた本発明の重合体の方がセメント分散性能に優れていることがわかる。また、分散度を比較すると本発明の重合体が1.40、比較重合体が1.74であり、本発明の重合体の方が分子量分布が狭くなっており、これが分散性能に起因していると推察している。   Table 10 shows the mortar test results of the polymer 4 of the present invention obtained by living radical polymerization and the comparative polymer 4 obtained by conventional radical polymerization. When the mortar flow value is compared with the same addition amount, the comparative polymer 4 obtained by conventional radical polymerization has a mortar flow value of 170 mm, whereas the polymer 4 of the present invention obtained by living radical polymerization has 222 mm. It can be seen that the polymer of the present invention obtained by living radical polymerization is superior in cement dispersion performance. Further, when the degree of dispersion is compared, the polymer of the present invention is 1.40 and the comparative polymer is 1.74, and the molecular weight distribution of the polymer of the present invention is narrower, which is attributed to the dispersion performance. I guess.

<製造例38:本発明の重合体6の合成>
製造例33で調製した触媒水溶液A(1.098g)、製造例34で調製した触媒水溶液B(0.910g)、2−ブロモイソ酪酸エチル(0.146g)、イオン交換水(17.062g)の混合溶液を攪拌しながら25℃、100mmHgで減圧脱気した後系内を窒素置換して常圧に戻し、触媒水溶液Cを得た。メタクリル酸(2.30g)、メトキシポリエチレングリコールモノメタクリレート(平均EO付加モル数25)(20.20g)、イオン交換水(7.70g)の混合水溶液を攪拌しながら25℃、100mmHgで減圧脱気した後、系内を窒素置換して常圧に戻し、モノマー水溶液を得た。モノマー水溶液を窒素雰囲気下24時間50℃に加温した後、50℃に加温した触媒水溶液Cを加えて重合反応を開始し、攪拌下24時間50℃に保持して重合反応を完結させ本発明の重合体6を得た。得られた重合体はMw=26700、Mw/Mn=1.64であった。
<Production Example 38: Synthesis of Polymer 6 of the Present Invention>
A catalyst aqueous solution A (1.098 g) prepared in Production Example 33, a catalyst aqueous solution B (0.910 g) prepared in Production Example 34, ethyl 2-bromoisobutyrate (0.146 g), and ion-exchanged water (17.062 g). The mixed solution was degassed under reduced pressure at 25 ° C. and 100 mmHg with stirring, and then the inside of the system was replaced with nitrogen to return to normal pressure, whereby catalyst aqueous solution C was obtained. While stirring a mixed aqueous solution of methacrylic acid (2.30 g), methoxypolyethylene glycol monomethacrylate (average EO addition mole number 25) (20.20 g), and ion-exchanged water (7.70 g), degassing under reduced pressure at 25 ° C. and 100 mmHg After that, the inside of the system was purged with nitrogen to return to normal pressure to obtain an aqueous monomer solution. After the monomer aqueous solution was heated to 50 ° C. under a nitrogen atmosphere for 24 hours, the catalyst aqueous solution C heated to 50 ° C. was added to start the polymerization reaction, and the polymerization reaction was completed by holding at 50 ° C. for 24 hours with stirring. Inventive polymer 6 was obtained. The obtained polymer was Mw = 26700 and Mw / Mn = 1.64.

<製造例39:本発明の重合体7の合成>
製造例33で調製した触媒水溶液A(0.878g)、製造例34で調製した触媒水溶液B(0.273g)、2−ブロモイソ酪酸エチル(0.176g)、イオン交換水(9.90g)の混合溶液を攪拌しながら25℃、100mmHgで減圧脱気した後系内を窒素置換して常圧に戻し、触媒水溶液Cを得た。メタクリル酸(2.24g)、メトキシポリエチレングリコールモノメタクリレート(平均EO付加モル数25)(11.26g)、イオン交換水(4.69g)の混合水溶液を攪拌しながら25℃、100mmHgで減圧脱気した後、系内を窒素置換して常圧に戻し、モノマー水溶液を得た。モノマー水溶液を窒素雰囲気下で50℃に加温した後、50℃に加温した触媒水溶液Cを加えて重合反応を開始し、攪拌下24時間50℃に保持して重合反応を完結させ本発明の重合体7を得た。得られた重合体はMw=19000、Mw/Mn=1.55であった。
<Production Example 39: Synthesis of Polymer 7 of the Present Invention>
Catalyst aqueous solution A (0.878 g) prepared in Production Example 33, catalyst aqueous solution B (0.273 g) prepared in Production Example 34, ethyl 2-bromoisobutyrate (0.176 g), ion-exchanged water (9.90 g) The mixed solution was degassed under reduced pressure at 25 ° C. and 100 mmHg with stirring, and then the inside of the system was replaced with nitrogen to return to normal pressure, whereby catalyst aqueous solution C was obtained. A mixed aqueous solution of methacrylic acid (2.24 g), methoxypolyethylene glycol monomethacrylate (average EO added mole number 25) (11.26 g), and ion-exchanged water (4.69 g) was degassed under reduced pressure at 25 ° C. and 100 mmHg with stirring. After that, the inside of the system was purged with nitrogen to return to normal pressure to obtain an aqueous monomer solution. After the monomer aqueous solution is heated to 50 ° C. in a nitrogen atmosphere, the catalyst aqueous solution C heated to 50 ° C. is added to start the polymerization reaction, and the polymerization reaction is completed by holding at 50 ° C. for 24 hours with stirring. The polymer 7 was obtained. The obtained polymer was Mw = 19000 and Mw / Mn = 1.55.

<製造例40:比較重合体5の合成>
温度計、攪拌機、滴下装置、窒素導入管および還流冷却装置を備えたガラス製反応装置に水1698gを仕込み、200rpmで攪拌下に反応装置内を100mL/分で窒素置換しながら、80℃まで加温した。続いて反応装置内を80℃に保ったまま、メトキシポリエチレングリコールモノメタクリレート(エチレンオキシドの平均付加モル数25)1796g、メタクリル酸204g、3−メルカプトプロピオン酸16.7gにイオン交換水500gを加えた混合水溶液を4時間、10%過硫酸アンモニウム水溶液230gを5時間かけて、それぞれ反応装置内に均一速度で滴下した。すべての滴下終了後更に1時間80℃を維持して重合反応を完結させ比較重合体5を得た。得られた重合体はMw=22500、Mw/Mn=1.76であった。
<Production Example 40: Synthesis of Comparative Polymer 5>
A glass reactor equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube and a reflux cooling device was charged with 1698 g of water, and the temperature inside the reactor was changed to 100 mL / min while stirring at 200 rpm. Warm up. Subsequently, while maintaining the inside of the reaction apparatus at 80 ° C., mixing was performed by adding 500 g of ion-exchanged water to 1796 g of methoxypolyethylene glycol monomethacrylate (average number of added moles of ethylene oxide 25), 204 g of methacrylic acid, and 16.7 g of 3-mercaptopropionic acid. The aqueous solution was dropped into the reaction apparatus at a uniform rate over 230 hours with 10% ammonium persulfate aqueous solution over 4 hours. After completion of all the additions, the polymerization reaction was completed by maintaining the temperature at 80 ° C. for 1 hour to obtain a comparative polymer 5. The obtained polymer was Mw = 22500 and Mw / Mn = 1.76.

<製造例41:比較重合体6の合成>
温度計、攪拌機、滴下装置、窒素導入管及び還流冷却装置を備えたガラス製反応装置に水1700gを仕込み、200rpmで攪拌下に反応装置内を100mL/分で窒素置換しながら、80℃まで加温した。続いて反応装置内を80℃に保ったまま、メトキシポリエチレングリコールモノメタクリレート(エチレンオキシドの平均付加モル数25)1580g、メタクリル酸420g、3−メルカプトプロピオン酸14.5gにイオン交換水500gを加えた混合水溶液を4時間、10%過硫酸アンモニウム水溶液230gを5時間かけて、それぞれ反応装置内に均一速度で滴下した。すべての滴下終了後更に1時間80℃を維持して重合反応を完結させ比較重合体6を得た。得られた重合体はMw=25200、Mw/Mn=1.89であった。
<Production Example 41: Synthesis of Comparative Polymer 6>
1700 g of water was charged into a glass reactor equipped with a thermometer, stirrer, dripping device, nitrogen inlet tube and reflux cooling device, and the temperature was increased to 80 ° C. while stirring the reactor at 200 rpm with nitrogen at 100 mL / min. Warm up. Subsequently, with the inside of the reactor kept at 80 ° C., 1580 g of methoxypolyethylene glycol monomethacrylate (average number of moles of ethylene oxide added 25), 420 g of methacrylic acid, 14.5 g of 3-mercaptopropionic acid and 500 g of ion-exchanged water were added. The aqueous solution was dropped into the reaction apparatus at a uniform rate over 230 hours with 10% ammonium persulfate aqueous solution over 4 hours. After completion of all the additions, the polymerization reaction was completed by maintaining the temperature at 80 ° C. for 1 hour to obtain a comparative polymer 6. The obtained polymer was Mw = 25200 and Mw / Mn = 1.89.

<モルタル試験>
(モルタル配合)
モルタル配合はC/S/W=550/1350/220(g)とした。ただし、
C:普通ポルトランドセメント(太平洋セメント社製)
S:ISO標準砂(日本セメント協会製)
W:試料のイオン交換水溶液
(モルタル実験環境)
実験環境は、温度20℃±1℃、相対湿度60%±10%とした。
(モルタル混練、フロー値測定)
所定量のポリマー水溶液を量り採り、消泡剤MA−404(ポゾリス物産製)を有姿でポリマー分に対して10wt%加え、更にイオン交換水を加えて220gとし、十分に均一溶解させた。
<Mortar test>
(Contains mortar)
The mortar formulation was C / S / W = 550/1350/220 (g). However,
C: Ordinary Portland cement (manufactured by Taiheiyo Cement)
S: ISO standard sand (made by Japan Cement Association)
W: Sample ion exchange aqueous solution (mortar experimental environment)
The experimental environment was a temperature of 20 ° C. ± 1 ° C. and a relative humidity of 60% ± 10%.
(Mortar kneading, flow value measurement)
A predetermined amount of the polymer aqueous solution was weighed, and 10 wt% of the antifoaming agent MA-404 (manufactured by Pozoris) was added to the polymer, and further ion-exchanged water was added to make 220 g, which was sufficiently uniformly dissolved.

モルタルの混練には、HOBART社製N−50ミキサーにステンレス製ビーター(攪拌羽根)を取り付けたものを用い、混練とモルタルフロー値の測定手順はJIS R5201(1997)に準拠した。ただし、混練開始からフロー値測定までは6分30秒以内に収まるようにした。   For mortar kneading, an N-50 mixer manufactured by HOBART was attached with a stainless beater (stirring blade), and the procedure for kneading and measuring the mortar flow value was in accordance with JIS R5201 (1997). However, the time from the start of kneading to the measurement of the flow value was set within 6 minutes and 30 seconds.

(モルタル空気量の測定)
モルタルを500mLガラス製メスシリンダーに約200mL詰め、径8mmの丸棒で突いた後容器に振動を加え、粗い気泡を抜いた。さらにモルタルを約200mL加えて同様に気泡を抜いた後、体積と質量を測定し、質量と各材料の密度から空気量を計算した。
(Measurement of mortar air volume)
About 200 mL of mortar was packed in a 500 mL glass graduated cylinder, struck with a round bar having a diameter of 8 mm, and the container was vibrated to remove coarse bubbles. Furthermore, after adding about 200 mL of mortar and extracting bubbles in the same manner, the volume and mass were measured, and the amount of air was calculated from the mass and the density of each material.

<モルタル試験結果>
本発明の重合体と比較重合体のモルタル試験結果を表11〜12に示した。
<Results of mortar test>
The mortar test results of the polymer of the present invention and the comparative polymer are shown in Tables 11-12.

Figure 2007113002
Figure 2007113002

リビングラジカル重合で得られた本発明の重合体6と従来のラジカル重合で得られた比較重合体5のモルタルフロー値を比較すると、本発明の重合体6が添加量0.14質量%でフロー値が245mmであるのに対して、比較重合体5では223mmである。さらに、比較重合体5と同等のフロー値を得るための必要添加量は0.12質量%であり、比較重合体5の14%減の添加量で良い。以上のように、本発明のリビングラジカル重合で得られた重合体の方がセメント分散性能に優れていることがわかる。また、本発明の重合体6と比較重合体5の分散度(Mw/Mn)を比較してみると、本発明の重合体6が1.64であるのに対して、比較重合体5が1.75であり、本発明の重合体6の方が分子量分布が狭いことがわかる。本発明の重合体6は分子量分布が狭く、セメントを凝集させる高分子量部分およびセメント分散性能に寄与しない低分子量部分が少なくなっており、セメント分散性能に寄与する分子量部分が比較重合体5よりも多くなっていることからセメント分散性能が向上したと考えられる。   When the mortar flow values of the polymer 6 of the present invention obtained by living radical polymerization and the comparative polymer 5 obtained by conventional radical polymerization are compared, the polymer 6 of the present invention flows at an addition amount of 0.14% by mass. The value is 245 mm, while that of Comparative Polymer 5 is 223 mm. Furthermore, the necessary addition amount for obtaining a flow value equivalent to that of the comparative polymer 5 is 0.12% by mass, and an addition amount of 14% less than that of the comparative polymer 5 may be used. As described above, it can be seen that the polymer obtained by the living radical polymerization of the present invention is superior in cement dispersion performance. Further, comparing the dispersity (Mw / Mn) of the polymer 6 of the present invention and the comparative polymer 5, the polymer 6 of the present invention is 1.64, whereas the comparative polymer 5 is 1.75, indicating that the polymer 6 of the present invention has a narrower molecular weight distribution. The polymer 6 of the present invention has a narrow molecular weight distribution, a high molecular weight portion that aggregates cement, and a low molecular weight portion that does not contribute to cement dispersion performance is reduced. It is thought that the cement dispersion performance was improved because of the increase.

Figure 2007113002
Figure 2007113002

リビングラジカル重合で得られた本発明の重合体7と従来のラジカル重合で得られた比較重合体6のモルタルフロー値を比較すると、本発明の重合体7が添加量0.1質量%でフロー値が252mmであるのに対して、比較重合体6では210mmである。さらに、比較重合体6と同等のフロー値を得るための必要添加量は0.08質量%であり、比較重合体6の20%減の添加量で良い。以上のように、本発明のリビングラジカル重合で得られた重合体の方がセメント分散性能に優れていることがわかる。また、本発明の重合体7と比較重合体6の分散度(Mw/Mn)を比較してみると、本発明の重合体7が1.55であるのに対して、比較重合体6が1.89であり、本発明の重合体7の方が分子量分布が狭いことがわかる。本発明の重合体7は分子量分布が狭く、セメントを凝集させる高分子量部分およびセメント分散性能に寄与しない低分子量部分が少なくなっており、セメント分散性能に寄与する分子量部分が比較重合体6よりも多くなっていることからセメント分散性能が向上したと考えられる。   When the mortar flow values of the polymer 7 of the present invention obtained by living radical polymerization and the comparative polymer 6 obtained by conventional radical polymerization are compared, the polymer 7 of the present invention flows at an addition amount of 0.1% by mass. The value is 252 mm, while that of Comparative Polymer 6 is 210 mm. Furthermore, the necessary addition amount for obtaining a flow value equivalent to that of the comparative polymer 6 is 0.08% by mass, and the addition amount of the comparative polymer 6 may be reduced by 20%. As described above, it can be seen that the polymer obtained by the living radical polymerization of the present invention is superior in cement dispersion performance. Further, comparing the dispersity (Mw / Mn) of the polymer 7 of the present invention and the comparative polymer 6, the polymer 7 of the present invention is 1.55, whereas the comparative polymer 6 is 1.89, indicating that the polymer 7 of the present invention has a narrower molecular weight distribution. The polymer 7 of the present invention has a narrow molecular weight distribution, a high molecular weight part that aggregates cement and a low molecular weight part that does not contribute to cement dispersion performance are reduced, and a molecular weight part that contributes to cement dispersion performance is smaller than that of the comparative polymer 6. It is thought that the cement dispersion performance was improved because of the increase.

Claims (14)

ポリオキシアルキレン鎖由来の構成単位を含む重合体(P)であって、下記数式(1):
1<PD<MD (1)
[式中、PD=Mw/Mn、MD=G(n)×Mw+H(n)、G(n)×Mwは下記数式(2):
G(n)×Mw={−0.985×ln(n)+5.802}×10−5×Mw (2)
により定義され(nは重合体(P)のオキシアルキレン基の平均付加モル数を表し、Mw、Mnはそれぞれ重合体(P)のゲル浸透クロマトグラフィー(GPC)により測定された重量平均分子量、数平均分子量を表す)、
H(n)は下記数式(3):
H(n)=4.513×10−5×n−6.041×10−3×n+1.351(3)
により定義される(nは重合体(P)のオキシアルキレン基の平均付加モル数を表す)]
により定義されるPD値の範囲を満たす重合体。
A polymer (P) containing a structural unit derived from a polyoxyalkylene chain, the following formula (1):
1 <PD <MD (1)
[In the formula, PD = Mw / Mn, MD = G (n) × Mw + H (n), G (n) × Mw is the following formula (2):
G (n) × Mw = {− 0.985 × ln (n) +5.802} × 10 −5 × Mw (2)
(N represents the average number of moles added of the oxyalkylene group of the polymer (P), and Mw and Mn are the weight average molecular weight and number measured by gel permeation chromatography (GPC) of the polymer (P), respectively. Represents the average molecular weight),
H (n) is the following formula (3):
H (n) = 4.513 × 10 −5 × n 2 −6.041 × 10 −3 × n + 1.351 (3)
(N represents the average number of moles added of the oxyalkylene group of the polymer (P))]
A polymer satisfying the PD value range defined by
下記化学式(5):
(M)a(L)b(X)c (5)
[式中、Mは第4周期に属する遷移元素、Lは下記化学式(6):
(AI)d(AO)e(AS)f (6)
で表され、AIはアルキレンイミン、AOはアルキレンオキシド、ASはアルキレンスルフィド、Xはハロゲンを表し、a、b、c、d、eおよびfは互いに独立して0以上の数を表す]
で示される有機金属化合物と、有機ハロゲン化合物との混合物。
The following chemical formula (5):
(M) a (L) b (X) c (5)
[Wherein M is a transition element belonging to the fourth period, and L is the following chemical formula (6):
(AI) d (AO) e (AS) f (6)
Wherein AI represents an alkyleneimine, AO represents an alkylene oxide, AS represents an alkylene sulfide, X represents a halogen, and a, b, c, d, e and f each independently represent a number of 0 or more.
A mixture of an organometallic compound represented by the above and an organic halogen compound.
ポリアルキレングリコール鎖由来の構成単位を含む重合体(P)であって、請求項2に記載の混合物を用いて、不飽和ポリアルキレングリコール系単量体(I−M)を含む不飽和単量体(M)を重合して得られる重合体。   A polymer (P) containing a structural unit derived from a polyalkylene glycol chain, and comprising the unsaturated polyalkylene glycol monomer (IM) using the mixture according to claim 2 A polymer obtained by polymerizing the body (M). 請求項1に記載の上記数式(1)により定義されるPD値の範囲を満たす請求項3に記載の重合体。   The polymer according to claim 3, which satisfies the PD value range defined by the mathematical formula (1) according to claim 1. 前記ポリオキシアルキレン鎖由来の構成単位を含む重合体(P)がポリオキシアルキレン鎖由来の構成単位とカルボキシル基由来の部位を有する構成単位を含む請求項1、3または4項に記載の重合体。   The polymer according to claim 1, 3 or 4, wherein the polymer (P) containing a structural unit derived from a polyoxyalkylene chain includes a structural unit derived from a polyoxyalkylene chain and a structural unit derived from a carboxyl group. . 前記ポリオキシアルキレン鎖由来の構成単位が下記化学式(1):
Figure 2007113002
[式中、RおよびRは互いに独立して水素原子またはメチル基を表し、AOは互いに独立して炭素数2以上のオキシアルキレン基の1種または2種以上の混合物(2種以上の場合はブロック状に付加していてもランダム状に付加していても良い)を表し、xは0〜2の整数を表し、yは0または1を表し、nはオキシアルキレン基の平均付加モル数を表し、1〜300の数であり、Rは水素原子または炭素数1〜20の炭化水素基を表す]
で示される構成単位(I)を含む請求項1または請求項3〜5のいずれか1項に記載の重合体。
The structural unit derived from the polyoxyalkylene chain has the following chemical formula (1):
Figure 2007113002
[Wherein, R 1 and R 2 independently represent a hydrogen atom or a methyl group, and AO independently of each other represents one or a mixture of two or more oxyalkylene groups having 2 or more carbon atoms (two or more Or may be added randomly), x represents an integer of 0 to 2, y represents 0 or 1, and n represents an average addition mole of an oxyalkylene group. The number is 1 to 300, and R 3 represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms]
The polymer of any one of Claim 1 or Claims 3-5 containing the structural unit (I) shown by these.
前記カルボキシル基由来の部位を有する構成単位が下記化学式(2):
Figure 2007113002
[式中、R、RおよびRは互いに独立して水素原子またはメチル基、−(CH)zCOOM(−(CH)zCOOMは、−COOMまたはその他の−(CH)zCOOMと無水物を形成していても良い)を表し、zは0〜2の整数を表し、MおよびMは互いに独立して水素原子、アルカリ金属原子、アルカリ土類金属原子、アンモニウム基または有機アミン基を表す]
で示される構成単位(II)を含む請求項5に記載の重合体。
The structural unit having the carboxyl group-derived moiety is represented by the following chemical formula (2):
Figure 2007113002
[Wherein R 4 , R 5 and R 6 are each independently a hydrogen atom or a methyl group, — (CH 2 ) zCOOM 2 (— (CH 2 ) zCOOM 2 is —COOM 1 or other — (CH 2 Z) may form an anhydride with zCOOM 2 ), z represents an integer of 0 to 2, and M 1 and M 2 are each independently a hydrogen atom, an alkali metal atom, an alkaline earth metal atom, Represents an ammonium group or an organic amine group]
The polymer of Claim 5 containing structural unit (II) shown by these.
前記ポリオキシアルキレン鎖由来の構成単位を含む重合体(P)の製造方法であって、ポリオキシアルキレン鎖を有する不飽和単量体(I−M)を含む不飽和単量体(M)をリビング重合する製造方法。   A method for producing a polymer (P) containing a structural unit derived from the polyoxyalkylene chain, comprising an unsaturated monomer (M) containing an unsaturated monomer (IM) having a polyoxyalkylene chain. A production method for living polymerization. 請求項2に記載の混合物を用いて、不飽和ポリアルキレングリコール系単量体(I−M)を含む不飽和単量体(M)をリビング重合する請求項8に記載の製造方法。   The manufacturing method of Claim 8 which carries out living polymerization of the unsaturated monomer (M) containing an unsaturated polyalkylene glycol-type monomer (IM) using the mixture of Claim 2. 前記単量体(M)がカルボキシル基由来の部位を有する不飽和単量体(II−M)を含む請求項8または9に記載の製造方法。   The manufacturing method of Claim 8 or 9 in which the said monomer (M) contains the unsaturated monomer (II-M) which has a site | part derived from a carboxyl group. 前記ポリオキシアルキレン鎖を有する不飽和単量体(I−M)が下記化学式(3):
Figure 2007113002
[式中、RおよびRは互いに独立して水素原子またはメチル基を表し、AOは互いに独立して炭素数2以上のオキシアルキレン基の1種または2種以上の混合物(2種以上の場合はブロック状に付加していてもランダム状に付加していても良い)を表し、xは0〜2の整数を表し、yは0または1を表し、nはオキシアルキレン基の平均付加モル数を表し、1〜300の数であり、Rは水素原子または炭素数1〜20の炭化水素基を表す]
で示される不飽和単量体である請求項8または9に記載の製造方法。
The unsaturated monomer (IM) having the polyoxyalkylene chain is represented by the following chemical formula (3):
Figure 2007113002
[Wherein, R 1 and R 2 independently represent a hydrogen atom or a methyl group, and AO independently of each other represents one or a mixture of two or more oxyalkylene groups having 2 or more carbon atoms (two or more Or may be added randomly), x represents an integer of 0 to 2, y represents 0 or 1, and n represents an average addition mole of an oxyalkylene group. The number is 1 to 300, and R 3 represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms]
The manufacturing method of Claim 8 or 9 which is an unsaturated monomer shown by these.
前記カルボキシル基由来の部位を有する不飽和単量体(II−M)が下記化学式(4):
Figure 2007113002
[式中、R、RおよびRは互いに独立して水素原子またはメチル基、−(CH)zCOOM(−(CH)zCOOMは、−COOMまたはその他の−(CH)zCOOMと無水物を形成していても良い)を表し、zは0〜2の整数を表し、MおよびMは互いに独立して水素原子、アルカリ金属原子、アルカリ土類金属原子、アンモニウム基または有機アミン基、炭素数1〜20の炭化水素基、炭素数3〜18の炭化水素基を有するシリル基を表す]
で示される不飽和単量体である請求項10に記載の製造方法。
The unsaturated monomer (II-M) having the carboxyl group-derived moiety is represented by the following chemical formula (4):
Figure 2007113002
[Wherein R 4 , R 5 and R 6 are each independently a hydrogen atom or a methyl group, — (CH 2 ) zCOOM 2 (— (CH 2 ) zCOOM 2 is —COOM 1 or other — (CH 2 Z) may form an anhydride with zCOOM 2 ), z represents an integer of 0 to 2, and M 1 and M 2 are each independently a hydrogen atom, an alkali metal atom, an alkaline earth metal atom, Represents a silyl group having an ammonium group or an organic amine group, a hydrocarbon group having 1 to 20 carbon atoms, or a hydrocarbon group having 3 to 18 carbon atoms]
The production method according to claim 10, wherein the monomer is an unsaturated monomer.
請求項1〜7のいずれか1項に記載の重合体を必須成分として含むセメント混和剤。   A cement admixture comprising the polymer according to any one of claims 1 to 7 as an essential component. 請求項8〜12のいずれか1項に記載の製造方法で製造された重合体(P)を必須成分として含むセメント混和剤。   The cement admixture which contains the polymer (P) manufactured with the manufacturing method of any one of Claims 8-12 as an essential component.
JP2006261275A 2005-09-26 2006-09-26 Polymer, method for producing the polymer, and cement admixture using the polymer Expired - Fee Related JP5485494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006261275A JP5485494B2 (en) 2005-09-26 2006-09-26 Polymer, method for producing the polymer, and cement admixture using the polymer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005278100 2005-09-26
JP2005278100 2005-09-26
JP2006261275A JP5485494B2 (en) 2005-09-26 2006-09-26 Polymer, method for producing the polymer, and cement admixture using the polymer

Publications (2)

Publication Number Publication Date
JP2007113002A true JP2007113002A (en) 2007-05-10
JP5485494B2 JP5485494B2 (en) 2014-05-07

Family

ID=38095477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006261275A Expired - Fee Related JP5485494B2 (en) 2005-09-26 2006-09-26 Polymer, method for producing the polymer, and cement admixture using the polymer

Country Status (1)

Country Link
JP (1) JP5485494B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017505277A (en) * 2014-01-21 2017-02-16 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Calcium sulfate composition containing additives
JP2017057135A (en) * 2015-09-17 2017-03-23 日本製紙株式会社 Dispersant for hydraulic composition and hydraulic composition comprising the same
JP2018024573A (en) * 2016-08-03 2018-02-15 株式会社日本触媒 Additive for inorganic particle containing polycarboxylic acid-based copolymer and defoaming agent, additive for cement, and cement composition
JP2018076224A (en) * 2016-10-31 2018-05-17 株式会社日本触媒 Additive for inorganic particles and cement composition
JP2018150208A (en) * 2017-03-14 2018-09-27 太平洋マテリアル株式会社 Cement composition
JP2018529821A (en) * 2015-09-24 2018-10-11 シーカ テクノロジー アクチェンゲゼルシャフト Copolymer having gradient structure
JP2018529616A (en) * 2015-09-24 2018-10-11 シーカ テクノロジー アクチェンゲゼルシャフト Dispersants for calcium sulfate based compositions
JP2018529820A (en) * 2015-09-24 2018-10-11 シーカ テクノロジー アクチェンゲゼルシャフト Production of dispersants by living radical polymerization
JP2018529617A (en) * 2015-09-24 2018-10-11 シーカ テクノロジー アクチェンゲゼルシャフト Additives containing fluidizing agents and copolymers

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918338B2 (en) * 1981-10-30 1984-04-26 株式会社日本触媒 cement dispersant
JPH03163134A (en) * 1989-08-22 1991-07-15 Asahi Glass Co Ltd Polyoxyalkylene compound containing terminal mercapto group and preparation thereof
JPH0812870A (en) * 1994-06-28 1996-01-16 Kanegafuchi Chem Ind Co Ltd Curable and electrically conductive composition
JPH09183815A (en) * 1995-12-28 1997-07-15 Kuraray Co Ltd Alkaline water-soluble resin
JPH11106247A (en) * 1997-09-30 1999-04-20 Sanyo Chem Ind Ltd Dispersant for cement
JP2001002734A (en) * 1999-06-24 2001-01-09 Nippon Shokubai Co Ltd Production of polymer
JP2002362952A (en) * 2001-06-12 2002-12-18 Taiheiyo Cement Corp Production process of cement dispersant
JP2003505560A (en) * 1999-07-21 2003-02-12 アルコ ケミカル テクノロジィ, エル.ピー. Method for producing comb polymer
JP2003064132A (en) * 2001-08-28 2003-03-05 Nof Corp Polymer, method for producing the same and emulsifying/ dispersing agent
JP2004525061A (en) * 2001-04-11 2004-08-19 アルコ ケミカル テクノロジィ, エル.ピー. Use of comb-shaped branched copolymer in gypsum composition containing comb-shaped branched copolymer
JP2005046781A (en) * 2003-07-31 2005-02-24 Kao Corp Dispersing agent for inorganic pigment
JP2005281022A (en) * 2004-03-29 2005-10-13 Nippon Paper Chemicals Co Ltd Cement dispersant
JP2006052381A (en) * 2004-07-15 2006-02-23 Kao Corp Phosphate-based polymer
WO2007034965A1 (en) * 2005-09-26 2007-03-29 Nippon Shokubai Co., Ltd. Polymer, process for production the polymer, and cement admixture using the polymer

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5918338B2 (en) * 1981-10-30 1984-04-26 株式会社日本触媒 cement dispersant
JPH03163134A (en) * 1989-08-22 1991-07-15 Asahi Glass Co Ltd Polyoxyalkylene compound containing terminal mercapto group and preparation thereof
JPH0812870A (en) * 1994-06-28 1996-01-16 Kanegafuchi Chem Ind Co Ltd Curable and electrically conductive composition
JPH09183815A (en) * 1995-12-28 1997-07-15 Kuraray Co Ltd Alkaline water-soluble resin
JPH11106247A (en) * 1997-09-30 1999-04-20 Sanyo Chem Ind Ltd Dispersant for cement
JP2001002734A (en) * 1999-06-24 2001-01-09 Nippon Shokubai Co Ltd Production of polymer
JP2003505560A (en) * 1999-07-21 2003-02-12 アルコ ケミカル テクノロジィ, エル.ピー. Method for producing comb polymer
JP2004525061A (en) * 2001-04-11 2004-08-19 アルコ ケミカル テクノロジィ, エル.ピー. Use of comb-shaped branched copolymer in gypsum composition containing comb-shaped branched copolymer
JP2002362952A (en) * 2001-06-12 2002-12-18 Taiheiyo Cement Corp Production process of cement dispersant
JP2003064132A (en) * 2001-08-28 2003-03-05 Nof Corp Polymer, method for producing the same and emulsifying/ dispersing agent
JP2005046781A (en) * 2003-07-31 2005-02-24 Kao Corp Dispersing agent for inorganic pigment
JP2005281022A (en) * 2004-03-29 2005-10-13 Nippon Paper Chemicals Co Ltd Cement dispersant
JP2006052381A (en) * 2004-07-15 2006-02-23 Kao Corp Phosphate-based polymer
WO2007034965A1 (en) * 2005-09-26 2007-03-29 Nippon Shokubai Co., Ltd. Polymer, process for production the polymer, and cement admixture using the polymer

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017505277A (en) * 2014-01-21 2017-02-16 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Calcium sulfate composition containing additives
JP2017057135A (en) * 2015-09-17 2017-03-23 日本製紙株式会社 Dispersant for hydraulic composition and hydraulic composition comprising the same
US11066330B2 (en) 2015-09-24 2021-07-20 Sika Technology Ag Copolymers having a gradient structure
JP2018529821A (en) * 2015-09-24 2018-10-11 シーカ テクノロジー アクチェンゲゼルシャフト Copolymer having gradient structure
JP2018529616A (en) * 2015-09-24 2018-10-11 シーカ テクノロジー アクチェンゲゼルシャフト Dispersants for calcium sulfate based compositions
JP2018529820A (en) * 2015-09-24 2018-10-11 シーカ テクノロジー アクチェンゲゼルシャフト Production of dispersants by living radical polymerization
JP2018529617A (en) * 2015-09-24 2018-10-11 シーカ テクノロジー アクチェンゲゼルシャフト Additives containing fluidizing agents and copolymers
JP2021119215A (en) * 2015-09-24 2021-08-12 シーカ テクノロジー アクチェンゲゼルシャフト Production of dispersants by living radical polymerization
JP7198085B2 (en) 2015-09-24 2022-12-28 シーカ テクノロジー アクチェンゲゼルシャフト Copolymer with gradient structure
JP7198084B2 (en) 2015-09-24 2022-12-28 シーカ テクノロジー アクチェンゲゼルシャフト Production of dispersants by living radical polymerization
JP2018024573A (en) * 2016-08-03 2018-02-15 株式会社日本触媒 Additive for inorganic particle containing polycarboxylic acid-based copolymer and defoaming agent, additive for cement, and cement composition
JP2018076224A (en) * 2016-10-31 2018-05-17 株式会社日本触媒 Additive for inorganic particles and cement composition
JP2018150208A (en) * 2017-03-14 2018-09-27 太平洋マテリアル株式会社 Cement composition
JP7158825B2 (en) 2017-03-14 2022-10-24 太平洋マテリアル株式会社 cement composition

Also Published As

Publication number Publication date
JP5485494B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
JP5485494B2 (en) Polymer, method for producing the polymer, and cement admixture using the polymer
KR100615378B1 (en) Polycarboxylic acid type copolymer and method for producing the same, and use of the same
JP5349402B2 (en) Cement admixture
JP4447006B2 (en) Cement admixture and cement admixture mixture
KR100860370B1 (en) Polymer, process for preparing the same and cement admixture for using the same
JP2006522734A (en) Cement admixture and cement composition
JP2007131520A (en) Cement admixture
JP2005330129A (en) Cement admixture
JP2012171818A (en) Cement admixture and cement composition
JP4518773B2 (en) Cement admixture
JP4785267B2 (en) Cement admixture and cement composition using the same
JP5956143B2 (en) Phosphorus atom-containing (poly) alkylene glycol compounds
JP4079589B2 (en) Process for producing polycarboxylic acid copolymer
JP4883901B2 (en) Cement admixture
JP4274838B2 (en) Cement admixture and method for producing the same
JP4497830B2 (en) Cement admixture and method for producing the same
JP2007270072A (en) Polycarboxylic acid-based polymer, method for producing the same and cement admixture
JP4666344B2 (en) Cement admixture
JP5824344B2 (en) Phosphorus atom-containing (poly) alkylene glycol polymer
JP2008291078A (en) Manufacturing method for polymer
JP2003327459A (en) Cement admixture
JP2008115371A (en) Unsaturated monomer, copolymer and dispersant and cement admixture using the same
JP4667550B2 (en) Cement additive
JP4553559B2 (en) Method for producing polycarboxylic acid concrete admixture
JP5030333B2 (en) Cement admixture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130122

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140220

R150 Certificate of patent or registration of utility model

Ref document number: 5485494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees