JP2007111707A - Spot welding method of titanium plate - Google Patents
Spot welding method of titanium plate Download PDFInfo
- Publication number
- JP2007111707A JP2007111707A JP2005303349A JP2005303349A JP2007111707A JP 2007111707 A JP2007111707 A JP 2007111707A JP 2005303349 A JP2005303349 A JP 2005303349A JP 2005303349 A JP2005303349 A JP 2005303349A JP 2007111707 A JP2007111707 A JP 2007111707A
- Authority
- JP
- Japan
- Prior art keywords
- plate
- spot
- titanium
- welding
- titanium plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Resistance Welding (AREA)
Abstract
Description
本発明は、チタン板のスポット溶接方法に関し、特に、スポット溶接時にスポット電極とチタン板間の溶着現象の発生を抑制し、優れたスポット溶接ナゲットが得られるチタン板のスポット溶接方法に関するものである。 The present invention relates to a spot welding method for a titanium plate, and more particularly to a spot welding method for a titanium plate that suppresses the occurrence of a welding phenomenon between a spot electrode and a titanium plate at the time of spot welding and obtains an excellent spot welding nugget. .
チタン板のスポット溶接方法は、一般に用いられている技術で、対向した一対のスポット電極の間に被溶接物であるチタン板を挿入し、電極加圧力を負荷した状態で溶接電流を供給し、ジュール発熱で温度上昇させて被溶接物であるチタン板を溶融させる溶接方法である。このチタン板のスポット溶接の適用例としては、例えば、外装カバー及び内装ケースからなる小型電子機器製品用の筐体を製造する場合に、外装カバーと内装ケースとをそれぞれチタン材から成形した後、それら双方を重ね合わせてスポット溶接によって一体化するものがある(例えば、特許文献1参照)。 The titanium plate spot welding method is a commonly used technique, in which a titanium plate, which is an object to be welded, is inserted between a pair of opposed spot electrodes, and a welding current is supplied in a state where an electrode pressing force is applied, This is a welding method in which a titanium plate as a workpiece is melted by raising the temperature by Joule heat generation. As an application example of spot welding of this titanium plate, for example, when manufacturing a casing for a small electronic device product consisting of an exterior cover and an interior case, after forming the exterior cover and the interior case from a titanium material, Some of them are overlapped and integrated by spot welding (for example, see Patent Document 1).
ただし、チタン板のスポット溶接においては、鋼板のスポット溶接と比較して以下のような差異がある。 However, spot welding of titanium plates has the following differences compared to spot welding of steel plates.
鋼板をスポット溶接するとき、同一加圧力で、同一溶接電極を用い、同一通電時間で、溶接電流を増加させていくと、(1)ナゲットと呼ばれる碁石状の溶融部が形成され、(2)板−板間から過度に大きくなった溶融金属が板−板間から飛散するいわゆるチリが発生し、(3)電極と板が溶着する、という順番で溶接結果が推移する。このときチリ発生電流が溶接電流適正範囲の上限となる。それに対してチタン板をスポット溶接するとき、溶接電流を増大させていくと(1)ナゲットと呼ばれる碁石状の溶融部が形成され、(2)電極と板が溶着し、(3)板−板間からチリが発生する、という順番で溶接結果が推移する。このとき溶着電流が溶接電流適正範囲の上限となる。 When spot welding a steel sheet, using the same welding electrode, using the same welding electrode, and increasing the welding current in the same energization time, (1) a meteorite-like molten part called a nugget is formed, (2) So-called dust is generated in which molten metal that has become excessively large from the plate to the plate is scattered from the plate to the plate, and (3) the welding result changes in the order of welding of the electrode and the plate. At this time, the dust generation current becomes the upper limit of the welding current proper range. On the other hand, when spot welding a titanium plate, if the welding current is increased, (1) a meteorite-like melted part called a nugget is formed, (2) the electrode and the plate are welded, and (3) plate-plate The welding results change in the order that dust occurs from the beginning. At this time, the welding current becomes the upper limit of the appropriate welding current range.
チリ発生と溶着の順番が逆転するこの溶接結果について考察すると、チタン板の場合、鋼板の場合と比較して電極−板間の接触抵抗が高く、電極−板間の温度が容易に上昇し、電極と板が焼付いて溶着に至るものと定性的には理解できる。 Considering this welding result in which the order of dust generation and welding is reversed, in the case of a titanium plate, the contact resistance between the electrode and the plate is higher than in the case of the steel plate, and the temperature between the electrode and the plate easily rises. It can be qualitatively understood that the electrode and the plate are seized and lead to welding.
鋼板のスポット溶接の場合には、板―板間にナゲットが形成され、過度に大きくなった溶融金属が板−板間から飛散するいわゆるチリ発生が、適正電流の上限を支配する。それに対してチタン板のスポット溶接の場合には、板―板間に適正な大きさのナゲットが得られる前に電極―板間が溶着することから、適正電流の上限は溶着が支配する。つまり、チタン板のスポット溶接の場合には、充分な大きさのナゲットが形成されるより小さい溶接電流すなわち溶着電流が溶接結果を支配することになる。ここで溶着電流を超えて、充分なサイズのナゲットができる溶接電流を供給すると、電極−板間で溶着が発生して電極先端が損耗し、電極寿命を短くして作業性を劣化させ、しかも、スポット溶接部表面の品質をも劣化させるという問題がある。このため、十分なサイズのナゲットが形成できる溶接電流を供給可能なスポット溶接方法が求められているのが現状である。 In the case of spot welding of steel plates, so-called dust generation in which nuggets are formed between the plates and excessively large molten metal scatters between the plates dominates the upper limit of the appropriate current. On the other hand, in the case of spot welding of a titanium plate, since the electrode-plate is welded before a nugget of an appropriate size is obtained between the plates, the upper limit of the appropriate current is controlled by the welding. That is, in the case of spot welding of a titanium plate, a smaller welding current, that is, a welding current at which a sufficiently large nugget is formed dominates the welding result. If a welding current exceeding the welding current is supplied to generate a nugget of sufficient size, welding occurs between the electrode and the plate, the electrode tip wears out, the electrode life is shortened, and workability is deteriorated. There is a problem that the quality of the surface of the spot welded portion is also deteriorated. For this reason, the present condition is that the spot welding method which can supply the welding current which can form a nugget of sufficient size is calculated | required.
本発明は被溶接物であるチタン板を窒化処理することで、スポット電極とチタン板間の溶着現象を抑制することを骨子とする。そのチタン板の窒化処理に係る技術としては、表面に厚さが0.1μm以上1.0μm以下の窒化層を形成した窒化チタン板が提示されている。さらに、表面に厚さが0.5μm以上5.0μm以下の窒化層を形成した窒化チタン板についてが提示されている(例えば、特許文献2、3参照)。これらのチタン板は加工の際に、チタン板の表面に疵が付きにくくすることを目的とするものである。また、厚さが10μmから15μmの窒化層を形成して耐摩耗性に優れた窒化チタン板にすることが提示されている(例えば、特許文献4参照)。しかしながら、これらの技術はいずれもチタン板のスポット溶接方法の問題点を解決するものでもなく、それを示唆するものでもない。
The gist of the present invention is to suppress a welding phenomenon between a spot electrode and a titanium plate by nitriding a titanium plate as a workpiece. As a technique related to the nitriding treatment of the titanium plate, a titanium nitride plate in which a nitride layer having a thickness of 0.1 μm or more and 1.0 μm or less is formed on the surface is proposed. Furthermore, a titanium nitride plate having a nitride layer with a thickness of 0.5 μm or more and 5.0 μm or less formed on the surface has been proposed (for example, see
本発明は、上記現状に鑑み、スポット電極−チタン板間の溶着現象を抑制し、十分なサイズのナゲットを形成できるチタン板のスポット溶接方法を提供することを目的とする。 In view of the above situation, an object of the present invention is to provide a spot welding method for a titanium plate that can suppress a welding phenomenon between a spot electrode and a titanium plate and can form a sufficiently-sized nugget.
本発者は、スポット溶接に供するチタン板の表面を窒化処理することで、表面潤滑性を高め、スポット電極とチタン板間接触抵抗を低減することができ、スポット溶接時のスポット電極とチタン板間発熱を低減させ、その結果、スポット電極とチタン板間の溶着現象を抑制して溶接電流を増大させて、十分なサイズのナゲットを形成できることを見出して本発明を完成した。 The originator can improve the surface lubricity and reduce the contact resistance between the spot electrode and the titanium plate by nitriding the surface of the titanium plate used for spot welding. As a result, it was found that a sufficiently large nugget can be formed by suppressing welding phenomenon between the spot electrode and the titanium plate and increasing the welding current.
本発明の要旨とするところは以下の通りである。 The gist of the present invention is as follows.
(1) チタン板のスポット溶接方法において、表面に厚さが5μmを超えて10μm未満である窒化層を有するチタン板を用いてスポット溶接することを特徴とするスポット溶着現象の発生を抑制したチタン板のスポット溶接方法。 (1) Titanium plate that suppresses the occurrence of a spot welding phenomenon characterized in that spot welding is performed using a titanium plate having a nitride layer having a thickness of more than 5 μm and less than 10 μm on the surface in a spot welding method of a titanium plate. Spot welding method for plates.
(2) スポット電極−チタン板間接触抵抗が0.01mΩを超えて0.2mΩ未満である窒化層を有するチタン板を用いることを特徴とする上記(1)記載のスポット溶着現象の発生を抑制したチタン板のスポット溶接方法。 (2) Use of a titanium plate having a nitride layer having a contact resistance between the spot electrode and the titanium plate of more than 0.01 mΩ and less than 0.2 mΩ, and suppressing the occurrence of the spot welding phenomenon as described in (1) above Spot-welding method for titanium plate.
(3) 前記チタン板は、チタン板表面を窒化処理することで表面に窒化層形成したチタン板であることを特徴とする上記(1)または(2)記載のスポット溶着現象の発生を抑制したチタン板のスポット溶接方法。 (3) The titanium plate is a titanium plate in which a nitride layer is formed on a surface of the titanium plate by nitriding the surface, and the occurrence of the spot welding phenomenon described in (1) or (2) is suppressed. Spot welding method for titanium plate.
(4) 前記チタン板の窒化層とスポット電極とを加圧接触させることを特徴とする上記(1)から(3)のいずれかに記載のスポット溶着現象の発生を抑制したチタン板のスポット溶接方法。 (4) Spot welding of a titanium plate that suppresses occurrence of the spot welding phenomenon according to any one of (1) to (3), wherein the nitride layer of the titanium plate and a spot electrode are brought into pressure contact. Method.
(5) 前記チタン板が、窒化処理したチタン板またはチタン合金板であることを特徴とする上記(1)から(4)のいずれかに記載のスポット溶着現象の発生を抑制したチタン板のスポット溶接方法。 (5) The spot of the titanium plate that suppresses the occurrence of the spot welding phenomenon according to any one of (1) to (4) above, wherein the titanium plate is a nitrided titanium plate or a titanium alloy plate Welding method.
本発明のチタン板のスポット溶接方法によれば、スポット電極とチタン板の溶着現象を抑制し、充分なサイズのナゲットを形成でき、かつ、スポット電極寿命を伸ばすだけでなく、溶接部外観等溶接部品質を高めることが出来る。 According to the spot welding method of the titanium plate of the present invention, the welding phenomenon between the spot electrode and the titanium plate can be suppressed, a sufficiently-sized nugget can be formed, and not only the life of the spot electrode can be extended but also the welded portion appearance can be welded. Departmental quality can be improved.
以下図面を参酌して本発明に関わるチタン板のスポット溶接方法について詳細に説明する。 Hereinafter, a titanium plate spot welding method according to the present invention will be described in detail with reference to the drawings.
図1は本発明にかかわる窒化処理チタン板を用いるスポット溶接方法を実施している状態の一例を示す説明図である。図2は通常のチタン材のスポット溶接方法を実施している状態の一つ例を示す説明図である。図3は窒化処理チタン板と通常型チタン板のスポット適正溶接条件を示す説明図である。 FIG. 1 is an explanatory view showing an example of a state in which a spot welding method using a nitrided titanium plate according to the present invention is performed. FIG. 2 is an explanatory view showing an example of a state in which an ordinary spot welding method for titanium material is performed. FIG. 3 is an explanatory view showing spot proper welding conditions for a nitriding titanium plate and a normal titanium plate.
図2に示すように、チタン板のスポット溶接は、対向した一対のスポット電極1、1’の間に被溶接物であるチタン板2、2’を挿入し、電極加圧力を負荷した状態で溶接電流を供給し、ジュール発熱で温度上昇させて被溶接物であるチタン板を溶融させて、ナゲット3を形成するものである。
As shown in FIG. 2, in the spot welding of a titanium plate, a
ところが、チタン板をスポット溶接しようとすると、板―板間に適正な大きさのナゲットが得られる前にスポット電極―板間が溶着し、充分な大きさのナゲットが形成されるに必要な溶接電流を供給することができなくなる。溶着電流を超えて、充分なサイズのナゲットができる溶接電流を供給しようとすると、電極−板間で溶着が発生して電極先端が損耗し、電極寿命を短くして作業性を劣化させ、しかも、スポット溶接部表面の品質をも劣化させるという問題がある。 However, when trying to spot weld a titanium plate, the weld between the spot electrode and the plate is welded before the nugget of an appropriate size is obtained between the plate and the plate, and the welding required to form a sufficiently large nugget. The current cannot be supplied. If we try to supply a welding current that exceeds the welding current to create a nugget of sufficient size, welding occurs between the electrode and the plate, the electrode tip wears out, the electrode life is shortened, and workability is deteriorated. There is a problem that the quality of the surface of the spot welded portion is also deteriorated.
そこで、本発明者は、十分なサイズのナゲットが形成できる溶接電流を供給可能なチタン板のスポット溶接方法について鋭意研究をした。その結果、スポット溶接に供するチタン板の表面を窒化処理し窒化層を形成することで表面潤滑性を高め、スポット電極とチタン板間接触抵抗を低減することができ、スポット電極とチタン板間の発熱を抑制して、スポット電極溶着現象を抑制できるので、溶接電流を増大させて充分なサイズのナゲットを形成できることを見出して本発明を完成した。 Therefore, the inventor has intensively studied a spot welding method for a titanium plate capable of supplying a welding current capable of forming a nugget having a sufficient size. As a result, the surface of the titanium plate used for spot welding is nitrided to form a nitride layer, thereby improving surface lubricity and reducing the contact resistance between the spot electrode and the titanium plate. Since the spot electrode welding phenomenon can be suppressed by suppressing heat generation, the present invention has been completed by finding that a sufficient size of nugget can be formed by increasing the welding current.
本発明のチタン板のスポット溶接方法では、図1に示すように、被溶接物として表面に窒化チタン層4を有するチタン板5、5’(以下窒化チタン板と称する場合がある)をスポット電極1、1’間に挿入してスポット溶接を行なうものである。本発明で用いる窒化チタン板は、チタン板の表面層に窒素を拡散浸透させて窒化層を形成するガス窒化法や液体窒化法等の窒化法によって得ることができる。
In the spot welding method for titanium plates of the present invention, as shown in FIG. 1,
窒化チタン板を用いることで、板−板間の接触抵抗及びスポット電極−板間の接触抵抗がチタン板の板−板間の接触抵抗及びスポット電極−板間の接触抵抗よりも大幅に低下することの確認試験を行なった。 By using a titanium nitride plate, the contact resistance between the plate and the plate and the contact resistance between the spot electrode and the plate are significantly lower than the contact resistance between the plate of the titanium plate and the contact resistance between the spot electrode and the plate. A confirmation test was conducted.
すなわち、図2に示すように、通常のチタン板をスポット電極間に挿入したとき、板−板間の接触抵抗は0.074mΩであり、電極−板間の接触抵抗は0.718mΩであった。 That is, as shown in FIG. 2, when a normal titanium plate was inserted between the spot electrodes, the plate-plate contact resistance was 0.074 mΩ, and the electrode-plate contact resistance was 0.718 mΩ. .
それに対し図1に示すように、被溶接物として表面に9.8μm厚の窒化チタン層4を有する窒化チタン板5、5’をスポット電極1、1’間に挿入したとき、板−板間の接触抵抗は0.047mΩであり、スポット電極−板間の接触抵抗は0.149mΩであった。
On the other hand, as shown in FIG. 1, when
チタン板においての板−板間の接触抵抗は0.074mΩであり、電極−板間の接触抵抗は0.718mΩであったことから比較すると、窒化チタン板における接触抵抗は、板−板間接触抵抗が約1/2、電極−板間接触抵抗が約1/4になっている。これはチタン板の表面を窒化処理して窒化層を形成することで、表面潤滑性が高められ、板―板間ならびに電極−板間のなじみがよくなっていることを示すものである。 Compared to the fact that the plate-to-plate contact resistance of the titanium plate was 0.074 mΩ and the electrode-plate contact resistance was 0.718 mΩ, the contact resistance of the titanium nitride plate was the plate-to-plate contact. The resistance is about 1/2 and the electrode-plate contact resistance is about 1/4. This indicates that the surface lubricity is enhanced by nitriding the surface of the titanium plate to form a nitrided layer, and the familiarity between the plate and the plate and between the electrode and the plate is improved.
このようにチタン板に窒化層を形成すると、スポット電極とチタン板との接触抵抗が低くなってスポット溶接における通電路面積が増え、溶着を防ぎつつより大きなナゲットを形成することが可能となる。 When the nitride layer is formed on the titanium plate in this manner, the contact resistance between the spot electrode and the titanium plate is lowered, the current path area in spot welding is increased, and a larger nugget can be formed while preventing welding.
図3は、板厚1mmのチタン板および窒化チタン板における溶接電流とナゲット径の関係を示す図である。 FIG. 3 is a diagram showing the relationship between the welding current and the nugget diameter in a titanium plate and a titanium nitride plate having a thickness of 1 mm.
図3に示すように、溶接電流が大きくなるとナゲット径は比例して増加する傾向にあるが、溶接電流を大きくしようとしてもスポット電極−チタン板間で溶着(矢印で示してある)が発生して、その溶着が発生したときの溶着電流を超えて溶接電流は供給することができなくなる。チタン板の溶着電流は6.8kAであった。それに対して窒化チタン板の溶着電流は9.2kAであった。 As shown in FIG. 3, the nugget diameter tends to increase proportionally as the welding current increases, but welding (indicated by the arrow) occurs between the spot electrode and the titanium plate even if the welding current is increased. Therefore, the welding current cannot be supplied beyond the welding current when the welding occurs. The welding current of the titanium plate was 6.8 kA. In contrast, the welding current of the titanium nitride plate was 9.2 kA.
このときチタン板におけるナゲット径は3.4mmであり、窒化チタン板におけるナゲット径は5.0mmであり、両者において明らかなナゲット径の差異があり、これは継ぎ手強度が窒化チタン板の方がチタン板より明らかに高いことを示している。 At this time, the nugget diameter in the titanium plate is 3.4 mm, the nugget diameter in the titanium nitride plate is 5.0 mm, and there is a clear difference in the nugget diameter between the two. It is clearly higher than the board.
なお、図3に示す溶接試験で用いた供試材である窒化チタン板は、チタン板を大気雰囲気中で、焼鈍温度650℃、焼鈍時間60分の光輝焼鈍をし、窒化チタン層(窒化層)を表面に形成したものを用いた。 Note that the titanium nitride plate, which is a test material used in the welding test shown in FIG. 3, was brightly annealed at an annealing temperature of 650 ° C. and an annealing time of 60 minutes in an air atmosphere to form a titanium nitride layer (nitride layer). ) Was used on the surface.
本発明において、表面に厚さが5μmを超えて10μm未満である窒化層を有する窒化チタン板と窒化層の厚さを限定した理由を述べると、チタン板表面の窒化チタン層厚さが5μm以下では溶着発生を充分に抑止することが出来ず、一方、窒化チタン層厚さが10μm以上となると窒化処理時間がかかりすぎて工業的ではない。このような所定の厚さの窒化チタン層を得るためには、例えば、ガス窒化法の場合では、大気雰囲気中において焼鈍温度650℃で焼鈍時間5分間から120分間の光輝焼鈍を行うことで窒化チタン層が得られる。 In the present invention, the titanium nitride plate having a nitride layer having a thickness of more than 5 μm and less than 10 μm on the surface and the reason for limiting the thickness of the nitride layer will be described. The thickness of the titanium nitride layer on the surface of the titanium plate is 5 μm or less. However, the occurrence of welding cannot be sufficiently suppressed. On the other hand, if the thickness of the titanium nitride layer is 10 μm or more, it takes too much time for nitriding, which is not industrial. In order to obtain a titanium nitride layer having such a predetermined thickness, for example, in the case of a gas nitriding method, nitriding is performed by performing bright annealing in an air atmosphere at an annealing temperature of 650 ° C. for an annealing time of 5 minutes to 120 minutes. A titanium layer is obtained.
表面に窒化処理を実施して得られた窒化チタン板のスポット溶接性を簡便に評価する方法として接触抵抗測定がある。これは電極加圧力250kgf、CF型先端径5.0mm電極でサンプル2枚を加圧した状態で1Aの電流を通電し、このときのスポット電極―チタン板間電圧を測定することで算出できる。表面の窒化層厚さが5μmを超えると接触抵抗は0.2mΩ未満となり、表面の窒化層が10μm未満で接触抵抗が0.01mΩを超える。したがって、本発明ではスポット電極−チタン板間接触抵抗が0.01mΩを超えて0.2mΩ未満である窒化チタン板を用いることとした。 As a method for simply evaluating the spot weldability of a titanium nitride plate obtained by nitriding the surface, there is a contact resistance measurement. This can be calculated by applying a current of 1 A with two electrodes pressed with an electrode pressing force of 250 kgf and a CF tip diameter of 5.0 mm, and measuring the voltage between the spot electrode and the titanium plate at this time. When the surface nitride layer thickness exceeds 5 μm, the contact resistance is less than 0.2 mΩ, and the surface nitride layer is less than 10 μm and the contact resistance exceeds 0.01 mΩ. Therefore, in the present invention, a titanium nitride plate having a contact resistance between the spot electrode and the titanium plate of more than 0.01 mΩ and less than 0.2 mΩ is used.
さらに、窒化層の厚さの測定方法としては、窒化処理した窒化チタン板のサンプルを合成樹脂中に埋め込み、断面研磨ののち、EPMAによる線分析で計測することで、窒化層の厚さを測定した。 Furthermore, as a method of measuring the thickness of the nitrided layer, the thickness of the nitrided layer is measured by embedding a sample of a nitrided titanium nitride plate in a synthetic resin, polishing the cross section, and then measuring by EPMA line analysis. did.
なお、本発明で用いる窒化チタン板としては、平板について説明したが、板を成形加工したものであっても良い。また、窒化処理するチタン板は、チタン板に限らず合金成分を含む公知のチタン合金板であっても良い。 In addition, although the flat plate was demonstrated as a titanium nitride plate used by this invention, what shape | molded the plate may be used. The titanium plate to be nitrided is not limited to a titanium plate, and may be a known titanium alloy plate containing an alloy component.
以下実施例に基づいて本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail based on examples.
チタン板をスポット溶接する際に、窒化皮膜を有する窒化チタン板を用いたことによるスポット電極溶着現象の発生抑制効果を調査した結果を表1に示す。なお、スポット溶接条件は、溶接電流7kA、電極加圧力250kgf、CF型先端径5.0mm電極、通電時間12サイクルとした。 Table 1 shows the results of investigating the effect of suppressing the occurrence of the spot electrode welding phenomenon by using a titanium nitride plate having a nitride film when spot welding the titanium plate. The spot welding conditions were a welding current of 7 kA, an electrode pressing force of 250 kgf, a CF type tip diameter of 5.0 mm electrode, and an energization time of 12 cycles.
なお、スポット電極−板間接触抵抗は、対向するCF型電極間にサンプル2枚を配置し、電極加圧力200kgfを印加した状態で、定電流1Aを流したときの、チタン板間電圧を測定し、オームの法則より算出した。 Note that the contact resistance between the spot electrode and the plate was measured by measuring the voltage between the titanium plates when a constant current of 1 A was passed in a state where two samples were placed between the CF electrodes facing each other and an electrode pressing force of 200 kgf was applied. And calculated from Ohm's law.
また、溶接試験で用いた供試材である窒化チタン板は、チタン板を大気雰囲気中で、表1に示す各焼鈍温度および焼鈍時間で光輝焼鈍したものを用いた。 Moreover, the titanium nitride plate which is a test material used in the welding test was a titanium plate that was brightly annealed at each annealing temperature and annealing time shown in Table 1 in an air atmosphere.
表1に示すように、溶接電流7kAでは、比較例1、2はスポット電極溶着現象が発生したが、本発明例1から9においてはスポット電極溶着現象が抑止され、十分なサイズのナゲットが形成でき、溶接強度も良好であった。これらの本実施例より明らかなように、窒化チタン膜厚の下限を5.0μmを超えて、上限を10.0μm未満とすることが好ましいことが分かった。また、スポット電極−板間接触抵抗の上限を0.2mΩ未満とし、下限は測定精度から0.01mΩ超の範囲とすることが好ましいことも分かった。 As shown in Table 1, the spot electrode welding phenomenon occurred in Comparative Examples 1 and 2 at a welding current of 7 kA, but in the inventive examples 1 to 9, the spot electrode welding phenomenon was suppressed and a sufficiently sized nugget was formed. The welding strength was also good. As is clear from these examples, it was found that the lower limit of the titanium nitride film thickness is preferably more than 5.0 μm and the upper limit is preferably less than 10.0 μm. It was also found that the upper limit of the contact resistance between the spot electrode and the plate is preferably less than 0.2 mΩ, and the lower limit is preferably in the range of more than 0.01 mΩ from the measurement accuracy.
比較例1、2は無処理のチタン板である。比較例1は表面粗さがRaで0.5μmであり、比較例2は表面粗さがRaで0.35μmと異なるため、同じ無処理材ではあるが、接触抵抗が異なった値となっている。 Comparative Examples 1 and 2 are untreated titanium plates. Comparative Example 1 has a surface roughness Ra of 0.5 μm, and Comparative Example 2 has a surface roughness Ra of 0.35 μm, which is the same untreated material, but has a different contact resistance. Yes.
スポット溶接時にスポット電極溶着が発生すると、スポット電極とチタン板が固着し引き剥がされるために、スポット電極の損耗が著しく、スポット電極寿命が極めて短くなり作業性を劣化させる。さらにはチタンスポット溶接部表面が肌荒れするため溶接外観品質も劣化させる。本発明例ではいずれもこのようなスポット電極溶着現象は発生しなかった。 When spot electrode welding occurs during spot welding, the spot electrode and the titanium plate are fixed and peeled off, so that the wear of the spot electrode is remarkable, the life of the spot electrode is extremely shortened, and workability is deteriorated. Furthermore, since the surface of the titanium spot welded portion becomes rough, the weld appearance quality is also deteriorated. In any of the inventive examples, such a spot electrode welding phenomenon did not occur.
1、1’ 電極
2、2’ チタン板
3 ナゲット
4 窒化被膜
5、5’ 窒化チタン板
1, 1 '
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005303349A JP2007111707A (en) | 2005-10-18 | 2005-10-18 | Spot welding method of titanium plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005303349A JP2007111707A (en) | 2005-10-18 | 2005-10-18 | Spot welding method of titanium plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007111707A true JP2007111707A (en) | 2007-05-10 |
Family
ID=38094360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005303349A Withdrawn JP2007111707A (en) | 2005-10-18 | 2005-10-18 | Spot welding method of titanium plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007111707A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022010641A1 (en) * | 2020-07-06 | 2022-01-13 | Medtronic, Inc. | Method for welding a titanium component with a titanium nitride coating |
-
2005
- 2005-10-18 JP JP2005303349A patent/JP2007111707A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022010641A1 (en) * | 2020-07-06 | 2022-01-13 | Medtronic, Inc. | Method for welding a titanium component with a titanium nitride coating |
US11833605B2 (en) | 2020-07-06 | 2023-12-05 | Medtronic, Inc. | Method for welding a titanium component with a titanium nitride coating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101892828B1 (en) | Resistive spot welding method | |
CA2771043C (en) | Methods and systems for resistance spot welding using direct current micro pulses | |
JP6593572B1 (en) | Resistance spot welded joint manufacturing method | |
Avula et al. | Tensile properties of friction stir welded joints of AA 2024-T6 alloy at different welding speeds | |
WO2005000516A1 (en) | Press-fit joint structure | |
JP2007268604A (en) | Resistance spot welding method | |
JP6104008B2 (en) | Stainless steel sheet molded product joined by resistance heat | |
JP2012024844A (en) | Electrode protection band of spot welding gun | |
JP2016101593A (en) | Arc welding method for galvanized steel sheet and arc-welded joint | |
RU2625369C1 (en) | Steel sheet for hot forming and method of manufacturing hot-stamped steel elements | |
US20060131281A1 (en) | Protective device for welding electrodes | |
JP2007111707A (en) | Spot welding method of titanium plate | |
JP6105993B2 (en) | Molded product made of stainless steel foil joined by resistance heat | |
CN115379916A (en) | Method for manufacturing resistance welding member | |
JP6939821B2 (en) | Manufacturing method of resistance spot welded member | |
JP6584729B1 (en) | Method of manufacturing resistance spot welded joint | |
KR101771147B1 (en) | Welding power control method, apparatus and computer-readable medium recording the method | |
JP2004114146A (en) | Press-fitting joining structure and method | |
JP7299192B2 (en) | Manufacturing method of resistance welded member | |
Hlavatý et al. | Electric resistance welding of austenitic and galvanized steel sheets | |
CN111069739A (en) | Manual argon arc welding test method for low-cost titanium alloy material | |
Leone et al. | Improvement on the resistance spot weldability of aluminum body sheet | |
Kolaříková et al. | Mechanical properties of Al-Si galvanic coating and its influence on resistance weldability of 22MnB5 steel | |
JP2004291088A (en) | Method for inspecting surface quality of steel member | |
JP2005271040A (en) | Stainless steel-made welded tube for oil feed pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20090106 |