JP2007103464A - Electrolyte - Google Patents
Electrolyte Download PDFInfo
- Publication number
- JP2007103464A JP2007103464A JP2005288297A JP2005288297A JP2007103464A JP 2007103464 A JP2007103464 A JP 2007103464A JP 2005288297 A JP2005288297 A JP 2005288297A JP 2005288297 A JP2005288297 A JP 2005288297A JP 2007103464 A JP2007103464 A JP 2007103464A
- Authority
- JP
- Japan
- Prior art keywords
- electrolytic solution
- capacitor
- present
- solution
- organic solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003792 electrolyte Substances 0.000 title description 5
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 52
- 239000003990 capacitor Substances 0.000 claims abstract description 38
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 20
- 239000007864 aqueous solution Substances 0.000 claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 claims abstract description 11
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 25
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 24
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 13
- 239000003960 organic solvent Substances 0.000 claims description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 229910001510 metal chloride Inorganic materials 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 238000000034 method Methods 0.000 claims 3
- 238000007599 discharging Methods 0.000 abstract 1
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 8
- 239000011572 manganese Substances 0.000 description 7
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 4
- CMJLMPKFQPJDKP-UHFFFAOYSA-N 3-methylthiolane 1,1-dioxide Chemical compound CC1CCS(=O)(=O)C1 CMJLMPKFQPJDKP-UHFFFAOYSA-N 0.000 description 4
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 229940017219 methyl propionate Drugs 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 2
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- CXHHBNMLPJOKQD-UHFFFAOYSA-M methyl carbonate Chemical compound COC([O-])=O CXHHBNMLPJOKQD-UHFFFAOYSA-M 0.000 description 2
- GEWWCWZGHNIUBW-UHFFFAOYSA-N 1-(4-nitrophenyl)propan-2-one Chemical compound CC(=O)CC1=CC=C([N+]([O-])=O)C=C1 GEWWCWZGHNIUBW-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910001437 manganese ion Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
【課題】本発明は、高エネルギー密度キャパシタの実現のため、充放電を繰り返しても静電容量が劣化(低下)しない電解液、当該電解液の製造方法、及び当該電解液を用いたキャパシタを提供することを目的とする。
【解決手段】本発明の電解液は、非水系溶液中に金属イオンを分散させたことを特徴とする。
【選択図】図1To realize a high energy density capacitor, the present invention provides an electrolytic solution whose capacitance does not deteriorate (decrease) even after repeated charging and discharging, a method for producing the electrolytic solution, and a capacitor using the electrolytic solution. The purpose is to provide.
The electrolytic solution of the present invention is characterized in that metal ions are dispersed in a non-aqueous solution.
[Selection] Figure 1
Description
本発明は、電解液、当該電解液の製造方法、及び当該電解液を用いたキャパシタに関し、特に、非水系溶液と金属イオンとを含む電解液、当該電解液の製造方法、及び当該電解液を用いたキャパシタに関する。 The present invention relates to an electrolytic solution, a method for producing the electrolytic solution, and a capacitor using the electrolytic solution, and in particular, an electrolytic solution containing a non-aqueous solution and metal ions, a method for producing the electrolytic solution, and the electrolytic solution. It relates to the capacitor used.
近年、電気二重層キャパシタ及び電気化学キャパシタが、電子機器におけるバックアップ電源、電話機やAV機器などの通信機器におけるメモリーバックアップ、或いは、太陽電池と組み合わせた電源等の幅広い用途に用いられ、注目されている。 In recent years, electric double layer capacitors and electrochemical capacitors have been attracting attention as they are used in a wide range of applications such as backup power sources in electronic devices, memory backups in communication devices such as telephones and AV devices, and power sources combined with solar cells. .
電気二重層キャパシタは、分極性電極材料と電解液との界面に形成される電気二重層を貯蔵デバイスとして構成するもので、分極性電極材料と電解液 との界面に形成される電気二重層を静電容量として蓄電する電源である。例えば、活性炭などの分極性電極からなる正負極とセパレータと集電体と電解液とを有する電気二重層キャパシタが知られている(特開2002−231590号公報)。また、電気化学キャパシタは、当該電気二重層キャパシタをも含めて総称される場合もあるが、例えば、金属バナジウムなどの金属酸化物及びポリアセチレンなどの導電性高分子を電極材料として用い、同様に構成した電気化学キャパシタが知られている(特開2002−280262号公報)。 An electric double layer capacitor is configured as an electric double layer formed at the interface between a polarizable electrode material and an electrolytic solution as a storage device. The electric double layer formed at the interface between a polarizable electrode material and an electrolytic solution It is a power source that stores electricity as a capacitance. For example, an electric double layer capacitor having positive and negative electrodes made of a polarizable electrode such as activated carbon, a separator, a current collector, and an electrolyte is known (Japanese Patent Laid-Open No. 2002-231590). In addition, the electrochemical capacitor may be collectively referred to as including the electric double layer capacitor. For example, a metal oxide such as metal vanadium and a conductive polymer such as polyacetylene are used as an electrode material, and similarly configured. An electrochemical capacitor is known (Japanese Patent Laid-Open No. 2002-280262).
しかしながら、従来の電気二重層キャパシタ及び電気化学キャパシタは、高耐電圧でかつ高容量の双方を満足することが困難であるという問題を有していた。特に、非水系電解液を利用するキャパシタの静電容量の向上には、電極(活性炭)の比表面積の増大や電解質の移動・吸着に適した細孔構造の制御が主たる改善手段であったが、比表面積を増大しても単位容積の静電容量の向上は難しく、細孔の構造制御も著しい効果があるまでに至っていない。 However, conventional electric double layer capacitors and electrochemical capacitors have a problem that it is difficult to satisfy both high withstand voltage and high capacity. In particular, increasing the specific surface area of the electrode (activated carbon) and controlling the pore structure suitable for electrolyte migration / adsorption were the main means of improvement for improving the capacitance of capacitors using non-aqueous electrolytes. Even if the specific surface area is increased, it is difficult to improve the capacitance of the unit volume, and the pore structure control has not yet been effective.
したがって、高い静電容量を有するとともに、高耐電圧を実現する電解液が望まれている。 Therefore, an electrolytic solution that has a high capacitance and realizes a high withstand voltage is desired.
そこで、本発明は、高エネルギー密度キャパシタの実現のため、充放電を繰り返しても静電容量が劣化(低下)しない電解液、当該電解液の製造方法、及び当該電解液を用いたキャパシタを提供することを目的とする。 Therefore, the present invention provides an electrolytic solution whose capacitance does not deteriorate (decrease) even after repeated charge and discharge, a method for producing the electrolytic solution, and a capacitor using the electrolytic solution for realizing a high energy density capacitor. The purpose is to do.
上記目的を達成するために、発明者らは、非水溶媒へのイオンの溶解について鋭意研究した結果、本発明の電解液、当該電解液の製造方法及び当該電解液を用いたキャパシタを発明するに至った。 In order to achieve the above object, the inventors have intensively studied the dissolution of ions in a non-aqueous solvent, and as a result, invented the electrolytic solution of the present invention, a method for producing the electrolytic solution, and a capacitor using the electrolytic solution. It came to.
すなわち、本発明の電解液は、非水系溶液中に金属イオンを分散させたことを特徴とする電解液であって、キャパシタにも使用できるものである。 That is, the electrolytic solution of the present invention is an electrolytic solution characterized in that metal ions are dispersed in a non-aqueous solution, and can also be used for a capacitor.
また、本発明の電解液の好適な実施態様によれば、前記金属イオンが、2価金属イオンであることを特徴とする。 Moreover, according to a preferred embodiment of the electrolytic solution of the present invention, the metal ion is a divalent metal ion.
また、本発明の電解液の好適な実施態様によれば、前記2価金属イオンが、Cu2+、Mn2+、Ni2+からなる群から選択される少なくとも1種であることを特徴とする。 According to a preferred embodiment of the electrolytic solution of the present invention, the divalent metal ion is at least one selected from the group consisting of Cu 2+ , Mn 2+ , and Ni 2+. To do.
また、本発明の電解液の好適な実施態様によれば、非水系溶液が、炭酸プロピレン(PC)、アセトニトリルからなる群から選択される少なくとも1種であることを特徴とする。 According to a preferred embodiment of the electrolytic solution of the present invention, the non-aqueous solution is at least one selected from the group consisting of propylene carbonate (PC) and acetonitrile.
また、本発明の電解液の好適な実施態様によれば、さらに、有機溶媒を含有することを特徴とする。 Moreover, according to a preferred embodiment of the electrolytic solution of the present invention, an organic solvent is further contained.
また、本発明の電解液の好適な実施態様によれば、前記有機溶媒が、メタノールであることを特徴とする。 According to a preferred embodiment of the electrolytic solution of the present invention, the organic solvent is methanol.
本発明の電解液の製造方法は、有機溶媒に金属塩化物を溶解し、その後、非水系溶液を添加することを特徴とする。 The method for producing an electrolytic solution of the present invention is characterized by dissolving a metal chloride in an organic solvent and then adding a non-aqueous solution.
ここで有機溶媒としては、好適にはメタノールを使用することができる。 Here, methanol can be preferably used as the organic solvent.
また、本発明の電解液の製造方法の好ましい実施態様において、非水系溶液が、炭酸プロピレン、アセトニトリルからなる群から選択される少なくとも1種であることを特徴とする。 In a preferred embodiment of the method for producing an electrolytic solution of the present invention, the non-aqueous solution is at least one selected from the group consisting of propylene carbonate and acetonitrile.
本発明のキャパシタは、上記本発明の電解液を用いたことを特徴とする。 The capacitor of the present invention is characterized by using the electrolytic solution of the present invention.
また、本発明のキャパシタの好ましい実施態様において、さらに、メソ孔及び/又はミクロ孔を有する炭素電極を用いたことを特徴とする。 In a preferred embodiment of the capacitor of the present invention, a carbon electrode having mesopores and / or micropores is further used.
本発明によれば、金属イオンの非水溶媒(濃厚溶液)への溶解を達成できるので、ひいては、非水系キャパシタの高静電容量化を達成できるという有利な効果を奏する。
本発明によれば、高電圧・高静電容量のキャパシタを実現することができ、ひいては、高エネルギー密度の電気エネルギーの貯蔵および供給装置(デバイス)を提供することができるという有利な効果を奏する。本発明によれば、非水系電解液(有機電解液系)のキャパシタの短所である低い静電容量を、電解液に工夫を施し電気化学反応を伴う電気化学キャパシタとしての効果を付与し静電容量を向上させることを可能にするものである。
According to the present invention, since dissolution of metal ions in a non-aqueous solvent (concentrated solution) can be achieved, there is an advantageous effect that a high capacitance of the non-aqueous capacitor can be achieved.
According to the present invention, it is possible to realize a capacitor having a high voltage and a high capacitance, and consequently, it is possible to provide an electrical energy storage and supply device (device) having a high energy density. . According to the present invention, a low electrostatic capacity, which is a disadvantage of a nonaqueous electrolytic solution (organic electrolytic solution) capacitor, is applied to the electrolytic solution to give an effect as an electrochemical capacitor with an electrochemical reaction. It is possible to improve the capacity.
本発明の電解液は、非水系溶液中に金属イオンを分散させたことを特徴とする。本発明の電解液を適用可能なキャパシタとしては、特に限定されないが、例えば、電気二重層キャパシタ、電気化学キャパシタ等を挙げることができる。 The electrolytic solution of the present invention is characterized in that metal ions are dispersed in a non-aqueous solution. Although it does not specifically limit as a capacitor which can apply the electrolyte solution of this invention, For example, an electrical double layer capacitor, an electrochemical capacitor, etc. can be mentioned.
非水溶液としては、金属イオンを分散させることが可能であれば、特に限定されるものではない。このような非水溶液として、例えば、炭酸プロピレン(PC)、炭酸エチレン(EC)、炭酸ジメチル(DMC)、炭酸エチルメチル(MEC)、炭酸ジエチル(DEC)、γ−ブチロラクトン(GBL)、酢酸エチル(EA)、プロピオン酸メチル(MPR)、プロピオン酸エチル(EPR)、1,2−ジメトキシエタン(DME)、1,2−ジエトキシエタン(DEE)、2−メチルテトラヒドロフラン(2−MeTHF)、テトラヒドロフラン(THF)、スルホラン(SL)、3−メチルスルホラン(3−MeSL)、アセトニトリル(AN)等を使用することができ、これらは二種以上を混合して用いてもよい。 The non-aqueous solution is not particularly limited as long as metal ions can be dispersed. Examples of such non-aqueous solutions include propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (MEC), diethyl carbonate (DEC), γ-butyrolactone (GBL), ethyl acetate ( EA), methyl propionate (MPR), ethyl propionate (EPR), 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), 2-methyltetrahydrofuran (2-MeTHF), tetrahydrofuran ( THF), sulfolane (SL), 3-methylsulfolane (3-MeSL), acetonitrile (AN) and the like can be used, and these may be used in a mixture of two or more.
また、本発明において、金属イオンを分散させることとしたのは、主として、静電容量を向上させる目的からである。 In the present invention, the metal ions are dispersed mainly for the purpose of improving the capacitance.
金属イオンとしても特に限定されるものではないが、好ましくは、2価金属イオンを挙げることができる。好適には、2価金属イオンが、Cu2+、Mn2+、Ni2+からなる群から選択される少なくとも1種である。 The metal ion is not particularly limited, but a divalent metal ion is preferable. Preferably, the divalent metal ion is at least one selected from the group consisting of Cu 2+ , Mn 2+ and Ni 2+ .
また、好適な実施態様によれば、電解液には、さらに有機溶媒を含有することができる。このような有機溶媒の使用は、金属塩化物などを比較的容易に非水系溶液中に溶解させることができるという利点を有する。 According to a preferred embodiment, the electrolytic solution can further contain an organic solvent. Use of such an organic solvent has an advantage that metal chlorides and the like can be dissolved in a non-aqueous solution relatively easily.
有機溶媒としては、金属を溶解することが可能であれば、特に限定されるものではないが、好適には、メタノールを挙げることができる。 Although it will not specifically limit as an organic solvent if a metal can be melt | dissolved, Methanol can be mentioned suitably.
次に、本発明の電解液の製造方法について説明する。本発明の電解液の製造方法は、有機溶媒、好ましくはメタノールに金属塩化物を溶解し、その後、非水系溶液を添加する。 Next, the manufacturing method of the electrolyte solution of this invention is demonstrated. In the method for producing an electrolytic solution of the present invention, a metal chloride is dissolved in an organic solvent, preferably methanol, and then a non-aqueous solution is added.
金属塩化物としては、好ましくはCuCl2、MnCl2、NiCl2を挙げることができる。
また、非系溶液としては、特に限定されるものではないが、例えば、炭酸プロピレン、炭酸エチレン(EC)、炭酸ジメチル(DMC)、炭酸エチルメチル(MEC)、炭酸ジエチル(DEC)、γ−ブチロラクトン(GBL)、酢酸エチル(EA)、プロピオン酸メチル(MPR)、プロピオン酸エチル(EPR)、1,2−ジメトキシエタン(DME)、1,2−ジエトキシエタン(DEE)、2−メチルテトラヒドロフラン(2−MeTHF)、テトラヒドロフラン(THF)、スルホラン(SL)、3−メチルスルホラン(3−MeSL)、アセトニトリル(AN)等を使用することができ、これらは二種以上を混合して用いてもよい。
The metal chlorides may preferably include CuCl 2, MnCl 2, NiCl 2 .
Further, the non-system solution is not particularly limited. For example, propylene carbonate, ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (MEC), diethyl carbonate (DEC), γ-butyrolactone. (GBL), ethyl acetate (EA), methyl propionate (MPR), ethyl propionate (EPR), 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), 2-methyltetrahydrofuran ( 2-MeTHF), tetrahydrofuran (THF), sulfolane (SL), 3-methylsulfolane (3-MeSL), acetonitrile (AN) and the like can be used, and these may be used in combination of two or more. .
次に、本発明のキャパシタは、上記本発明の電解液を用いることを特徴とする。上述の本発明の電解液についての説明を、そのまま本発明のキャパシタに適用することができる。 Next, the capacitor of the present invention is characterized by using the electrolytic solution of the present invention. The above description of the electrolytic solution of the present invention can be applied to the capacitor of the present invention as it is.
キャパシタの好適な実施態様において、メソ孔及び/又はミクロ孔を有する炭素電極を用いてもよい。メソ孔及び/又はミクロ孔を有する炭素電極を用いることにより、電極の比表面積を増大させるととともに、孔チャネルの存在により電気二重層の形成可能箇所を増大させ、ひいては、静電容量が増大させることが可能であるという利点を有する。 In a preferred embodiment of the capacitor, a carbon electrode having mesopores and / or micropores may be used. By using a carbon electrode having mesopores and / or micropores, the specific surface area of the electrode is increased, and the presence of pore channels increases the number of places where an electric double layer can be formed, which in turn increases the capacitance. Has the advantage that it is possible.
また、本発明のキャパシタの好ましい実施態様において、特に限定されるものではないが、非水系溶液へより効率的に金属を溶解させるという観点から、前記電解液中の、非水系溶液と金属イオンとの重量比が、9:1であることが好ましい。 Further, in a preferred embodiment of the capacitor of the present invention, although not particularly limited, from the viewpoint of more efficiently dissolving the metal in the non-aqueous solution, the non-aqueous solution and the metal ion in the electrolytic solution The weight ratio is preferably 9: 1.
以下、本発明を実施例により更に具体的に説明するが、本発明は、下記実施例に限定して解釈される意図ではない。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not intended to be interpreted as being limited to the following examples.
実施例1
メタノールに金属塩化物(CuCl2、MnCl2、NiCl2)を溶かし、これをプロピレンカーボネート溶液に溶解させて電解液を調製した。金属塩の脱水メタノールへの溶解は塩化物が最も大きかった。例えば銅イオンで約17wt%、マンガンで約5wt%まで溶解可能であった。これらの各金属イオンを溶解させたメタノールとプロピレンカーボネート溶液を1:9(重量比)で混合することにより沈殿を生じない電解液を調製することができた。この電解液を用いてキャパシタの静電容量を測定すると、特にマンガンイオンでは静電容量が55F/gまで増大した。(金属イオンが存在しない場合(電気二重層キャパシタ)の静電容量は、30F/g程度。)ニッケル、銅、マンガンなどに適用可能なことを確認している。PC+Mn+電解液(MはCu、Mnを使用した例)を用いた電気化学キャパシタの静電容量に及ぼす充電電位の影響を、図1に示す。
図1から明らかなように、金属を含まない場合に比較して、Cu、Mnのいずれの場合も静電容量が増大していることが分かる。
Example 1
A metal chloride (CuCl 2 , MnCl 2 , NiCl 2 ) was dissolved in methanol and dissolved in a propylene carbonate solution to prepare an electrolytic solution. The dissolution of metal salt in dehydrated methanol was greatest for chloride. For example, it was soluble up to about 17 wt% with copper ions and about 5 wt% with manganese. An electrolyte solution that does not cause precipitation could be prepared by mixing methanol and propylene carbonate solution in which each of these metal ions were dissolved at a weight ratio of 1: 9. When the capacitance of the capacitor was measured using this electrolytic solution, the capacitance increased to 55 F / g, especially for manganese ions. (Capacitance in the absence of metal ions (electric double layer capacitor) is about 30 F / g.) It has been confirmed that it can be applied to nickel, copper, manganese, etc. Fig. 1 shows the effect of the charging potential on the capacitance of an electrochemical capacitor using a PC + Mn + electrolyte (M is an example using Cu and Mn).
As is clear from FIG. 1, it can be seen that the capacitance is increased in both cases of Cu and Mn as compared with the case where no metal is contained.
本発明の利用可能な分野は、2次電池が使われている多くの分野に該当し、例えばハイブリッド自動車(ガソリン車、ディーゼル車)、燃料自動車、電車、自転車などの移動体、太陽光発電・風力発電などの自然エネルギーの蓄電および電圧平滑化、コンピューター、携帯電話のバックアップ電源など、分散型発電および蓄電エネルギー分野において広範に使用することが可能であり、エネルギーならびに環境問題の解決に地球規模での適用が期待できる。
また、蓄電機能を生かした主要用途として、メモリ・クロックのバックアップ、さらに、太陽電池と組み合わせた表示装置としても使用できる。電池とキャパシタの併用により、携帯電話、ノートPC、デジタルカメラなどの携帯機器における電池寿命の延長も達成し得る。
Fields in which the present invention can be used correspond to many fields where secondary batteries are used, such as hybrid vehicles (gasoline vehicles, diesel vehicles), fuel vehicles, trains, bicycles and other mobile objects, solar power generation / It can be used widely in the fields of distributed power generation and energy storage, such as storage and voltage smoothing of natural energy such as wind power generation, backup power supply for computers and mobile phones, and globally to solve energy and environmental problems. Can be expected to be applied.
In addition, as a main application utilizing the power storage function, it can be used as a memory / clock backup and also as a display device combined with a solar cell. The combined use of batteries and capacitors can also extend battery life in mobile devices such as mobile phones, notebook PCs, and digital cameras.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005288297A JP2007103464A (en) | 2005-09-30 | 2005-09-30 | Electrolyte |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005288297A JP2007103464A (en) | 2005-09-30 | 2005-09-30 | Electrolyte |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007103464A true JP2007103464A (en) | 2007-04-19 |
Family
ID=38030144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005288297A Pending JP2007103464A (en) | 2005-09-30 | 2005-09-30 | Electrolyte |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007103464A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010002573A (en) * | 2008-06-19 | 2010-01-07 | Murakami Corp | Method for changing reflectivity reversibly, element therefor, method of manufacturing element, and transmittance variable element and reflectivity variable mirror |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63213918A (en) * | 1987-03-03 | 1988-09-06 | ニチコン株式会社 | Electrolyte for driving electrolytic capacitor |
JPH01289235A (en) * | 1988-05-17 | 1989-11-21 | Hitachi Condenser Co Ltd | Electric double layer capacitor |
JPH05136002A (en) * | 1991-11-13 | 1993-06-01 | Osaka Gas Co Ltd | Electric double layer capacitor |
JPH0963898A (en) * | 1995-08-30 | 1997-03-07 | Okamura Seiyu Kk | Long chain dibasic acid and electrolyte for driving electrolytic capacitor |
JP2000049053A (en) * | 1998-07-28 | 2000-02-18 | Tokin Corp | Electric double-layer capacitor |
JP2004307900A (en) * | 2003-04-03 | 2004-11-04 | Kuraray Co Ltd | Method for producing organic-inorganic composite material containing ultrafine metal particles |
WO2005013299A1 (en) * | 2003-07-07 | 2005-02-10 | Eamex Corporation | Capacitor and method for manufacturing same |
-
2005
- 2005-09-30 JP JP2005288297A patent/JP2007103464A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63213918A (en) * | 1987-03-03 | 1988-09-06 | ニチコン株式会社 | Electrolyte for driving electrolytic capacitor |
JPH01289235A (en) * | 1988-05-17 | 1989-11-21 | Hitachi Condenser Co Ltd | Electric double layer capacitor |
JPH05136002A (en) * | 1991-11-13 | 1993-06-01 | Osaka Gas Co Ltd | Electric double layer capacitor |
JPH0963898A (en) * | 1995-08-30 | 1997-03-07 | Okamura Seiyu Kk | Long chain dibasic acid and electrolyte for driving electrolytic capacitor |
JP2000049053A (en) * | 1998-07-28 | 2000-02-18 | Tokin Corp | Electric double-layer capacitor |
JP2004307900A (en) * | 2003-04-03 | 2004-11-04 | Kuraray Co Ltd | Method for producing organic-inorganic composite material containing ultrafine metal particles |
WO2005013299A1 (en) * | 2003-07-07 | 2005-02-10 | Eamex Corporation | Capacitor and method for manufacturing same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010002573A (en) * | 2008-06-19 | 2010-01-07 | Murakami Corp | Method for changing reflectivity reversibly, element therefor, method of manufacturing element, and transmittance variable element and reflectivity variable mirror |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4833504B2 (en) | Electrochemical capacitor and hybrid power supply comprising the same | |
JP5158193B2 (en) | Lithium air battery | |
JP5228531B2 (en) | Electricity storage device | |
CN106025270B (en) | Electrochemical energy storage device | |
KR101179629B1 (en) | Method for Manufacturing Lithium-Ion Capacitor According to Pre-Dopping of Lithium-Ion and Lithium-Ion Copactior thereof | |
JP2006092974A (en) | Nonaqueous electrolyte battery | |
JP2008103596A (en) | Lithium ion capacitor | |
EP2850678B1 (en) | An apparatus and associated methods | |
CN103035912A (en) | Non-aqueous electrolyte secondary battery | |
KR20150003886A (en) | Cyclic quaternary ammonium salt, nonaqueous solvent, nonaqueous electrolyte, and power storage device | |
KR20100065112A (en) | Positive electrode active material for lithium ion storage device, and lithium ion storage device making use of the same | |
JP2014175246A (en) | Secondary battery, method for manufacturing secondary battery, positive electrode for secondary battery, method for manufacturing positive electrode for secondary battery, battery pack, electronic apparatus and electric vehicle | |
JP2007281107A (en) | Electricity storage device | |
KR20230079222A (en) | Lithium supercapacitor having set of negative and positive electrodes stacked or wound with separators | |
US20140315084A1 (en) | Method and apparatus for energy storage | |
US20070003838A1 (en) | Energy device | |
CN102956357B (en) | Li-ion supercapacitor | |
JP4569126B2 (en) | Non-aqueous electrolyte secondary battery charging method and non-aqueous electrolyte secondary battery | |
US20060127771A1 (en) | Energy storage device | |
Loupe et al. | Electrochemical energy storage: current and emerging technologies | |
JP2012028366A (en) | Power storage device | |
JP4599639B2 (en) | Non-aqueous electrolyte secondary battery | |
KR102713213B1 (en) | Aqueous electrolyte and pseudocapacitor comprising the same | |
JP2007103464A (en) | Electrolyte | |
JP6915798B2 (en) | Non-aqueous power storage element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080805 |
|
A131 | Notification of reasons for refusal |
Effective date: 20100525 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20100707 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110405 |