[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007196293A - Hammering device - Google Patents

Hammering device Download PDF

Info

Publication number
JP2007196293A
JP2007196293A JP2004044757A JP2004044757A JP2007196293A JP 2007196293 A JP2007196293 A JP 2007196293A JP 2004044757 A JP2004044757 A JP 2004044757A JP 2004044757 A JP2004044757 A JP 2004044757A JP 2007196293 A JP2007196293 A JP 2007196293A
Authority
JP
Japan
Prior art keywords
pressure
piston
receiving surface
state
switching valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004044757A
Other languages
Japanese (ja)
Inventor
Norio Hirose
矩男 弘瀬
Shigeki Asakura
茂樹 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEISAKU KK
Original Assignee
TEISAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TEISAKU KK filed Critical TEISAKU KK
Priority to JP2004044757A priority Critical patent/JP2007196293A/en
Priority to PCT/JP2004/015246 priority patent/WO2005080052A1/en
Publication of JP2007196293A publication Critical patent/JP2007196293A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D9/00Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
    • B25D9/14Control devices for the reciprocating piston
    • B25D9/26Control devices for adjusting the stroke of the piston or the force or frequency of impact thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Percussive Tools And Related Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hammering device, automatically increasing the striking force when rock or the like to be crushed is hard. <P>SOLUTION: In this hammering device, a piston 2 having a pressure receiving surface 2u for hammering on which fluid pressure such as oil pressure acts in hammering and a pressure receiving surface 2w for reversal on which the fluid pressure acts in reversal is installed in a cylinder 1 so as to be moved forward and backward in the axial direction. An additional second pressure receiving surface 2v for hammering enabling pressurizing action on the fluid pressure is formed on the piston 2, and a switching means 101 is installed in the device to switch between a state in which the fluid pressure acting on the additional pressure receiving surface 2v can be supplied thereto and a state in which the fluid pressure cannot be supplied thereto. When the rebound of the piston 2 by a reaction caused when the piston 2 hits a chisel 3 at the movement end of the piston 2 is larger than a specified value, the switching means 101 switches the state to one in which the fluid pressure can be supplied to the additional pressure receiving surface 2v for hammering. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、油圧式等の打撃装置に関するものであり、特に、破砕しようとする岩盤等の硬さに応じて打撃力を加減できる打撃装置に関するものである。   The present invention relates to a hydraulic striking device, and more particularly to a striking device capable of adjusting a striking force according to the hardness of a rock or the like to be crushed.

従来、岩盤等を破砕するために用いる打撃装置として、打撃後にてピストンの跳ね返り行程の間、チャンバから循環路へ高圧流体を供給するために流出する瞬間流量が検出された場合に、制御装置に加圧流体を供給して、そのスライド弁をピストンのストロークを長くする方向に移動させる打撃装置がある(例えば、特許文献1)。
特開平8−216051号公報
Conventionally, as a striking device used for crushing rocks, etc., when an instantaneous flow rate flowing out to supply high-pressure fluid from the chamber to the circulation path is detected during the rebound stroke of the piston after striking, the control device There is a striking device that supplies pressurized fluid and moves the slide valve in a direction that lengthens the stroke of the piston (for example, Patent Document 1).
JP-A-8-216051

しかし、上記従来例のピストンのストロークを長くする場合においては、ピストンが往復するシリンダ側壁にシリンダの軸方向に沿って複数の通路を開口させる必要があり、この通路の開口部の間隔を小さくすることが困難であるため、ピストンのストロークの長さを細かく調整することが困難であった。このため、破砕する岩盤等が硬いときの打撃力の増加量を細かく調整することが困難であった。
本発明はこのような点に鑑みてなされたものであり、その課題は、破砕する岩盤等の硬さが硬いときの打撃力の増加量を上記従来例よりも細かく調整することができる打撃装置を提供することである。
However, when the stroke of the piston of the conventional example is increased, it is necessary to open a plurality of passages along the axial direction of the cylinder on the cylinder side wall where the piston reciprocates, and the interval between the openings of the passages is reduced. Therefore, it is difficult to finely adjust the length of the piston stroke. For this reason, it has been difficult to finely adjust the amount of increase in striking force when the rock to be crushed is hard.
This invention is made | formed in view of such a point, The subject is a striking device which can adjust the increase amount of striking force when the hardness of the rock mass etc. to which it crushes is harder than the said prior art example. Is to provide.

上記課題を解決するため、請求項1記載の発明は、打撃時に油圧等の流体圧が作用する打撃用受圧面と反転時に前記流体圧が作用する反転用受圧面とを有するピストンがシリンダ内に軸方向への進退動可能に装入された打撃装置であって、前記ピストンに前記流体圧の加圧作用が可能な打撃用の付加受圧面が形成されるとともに、前記付加受圧面に作用する流体圧の供給可能な状態と不可能な状態を切り換える切換手段が設けられ、前記ピストンの進動端(打点)にて前記ピストンがチゼルを打撃したときの反動による前記ピストンの跳ね返りが所定値より大きいときに、前記切換手段が前記打撃用の付加受圧面に前記流体圧の供給可能な状態に切り換えるようにすることを特徴とする打撃装置である。
これにより、前記ピストンに形成された前記流体圧の加圧作用が可能な打撃用の付加受圧面に作用する流体圧の供給が可能な状態と不可能な状態を切り換える切換手段が、前記ピストンの進動端にて前記ピストンがチゼルを打撃したときの反動による前記ピストンの跳ね返りが所定値より大きいときに、前記打撃用の付加受圧面に前記流体圧の供給可能な状態に切り換えるようにするので、前記跳ね返りが所定値より大きいときに、前記流体圧からピストンが受ける打撃力を自動的に大きくすることができる。その際、付加受圧面の面積を調整することにより、打撃力の増加量を上記従来例よりも細かく調整することができる。
In order to solve the above-mentioned problem, the invention according to claim 1 is characterized in that a piston having an impact pressure receiving surface on which a fluid pressure such as oil pressure acts upon striking and a reversing pressure receiving surface on which the fluid pressure acts upon reversal is disposed in the cylinder. A striking device that is inserted so as to be capable of advancing and retreating in an axial direction, wherein a striking additional pressure receiving surface capable of pressurizing the fluid pressure is formed on the piston and acts on the additional pressure receiving surface. Switching means for switching between a state where fluid pressure can be supplied and a state where fluid pressure cannot be supplied is provided, and the rebound of the piston caused by the reaction when the piston strikes the chisel at the piston's moving end (striking point) exceeds a predetermined value. In the striking device, the switching means switches to a state in which the fluid pressure can be supplied to the striking additional pressure receiving surface when it is large.
As a result, the switching means for switching between the state in which the fluid pressure acting on the striking additional pressure receiving surface formed on the piston capable of pressurizing the fluid pressure can be supplied and the state in which the fluid pressure cannot be supplied is provided on the piston. When the piston rebounds when the piston hits the chisel at the advance end, the piston is switched to a state where the fluid pressure can be supplied to the additional pressure receiving surface for impact when the piston rebounds is larger than a predetermined value. When the rebound is larger than a predetermined value, the striking force received by the piston from the fluid pressure can be automatically increased. At this time, by adjusting the area of the additional pressure receiving surface, the amount of increase in impact force can be adjusted more finely than in the conventional example.

さらに、請求項2記載の発明は、請求項1に記載した発明において、前記切換手段が前記跳ね返りにより上昇する流体圧により制御されることである。
これにより、前記切換手段が前記跳ね返りにより上昇する流体圧により制御されるので、前記切換手段が前記跳ね返りを検知することが容易になる。
Furthermore, the invention described in claim 2 is that, in the invention described in claim 1, the switching means is controlled by the fluid pressure rising by the rebound.
Thereby, since the switching means is controlled by the fluid pressure that rises due to the rebound, it becomes easy for the switching means to detect the rebound.

さらに、請求項3記載の発明は、請求項2に記載した発明において、前記切換手段が第1の流体路切換部(例えば切換弁)およびこの第1の流体路切換部により制御される第2の流体路切換部を備え、前記第1の流体路切換部が前記跳ね返りにより上昇する流体圧により制御され、前記第2の流体路切換部が前記打撃用の付加受圧面に流体圧を供給する状態と供給しない状態を切り換えることである。
これにより、前記切換手段の第1流体路切換部が前記跳ね返りにより上昇する流体圧に制御されて流体路を切り換え、この流体路の切り換えによって第2の流体路切換部が前記打撃用の付加受圧面に流体圧を供給するので、前記跳ね返りによる油圧の変化が小さいときでも、ピストンが打撃用の力を自動的に大きくすることが容易になる。
Further, the invention described in claim 3 is the invention described in claim 2, in which the switching means is controlled by a first fluid path switching unit (for example, a switching valve) and a second fluid path switching unit. The first fluid path switching unit is controlled by the fluid pressure rising by the rebound, and the second fluid path switching unit supplies the fluid pressure to the additional pressure receiving surface for impact. It is to switch between the state and the non-supply state.
As a result, the first fluid path switching unit of the switching means is controlled by the fluid pressure rising by the rebound, and the fluid path is switched, and the second fluid path switching unit is subjected to the additional pressure receiving for impact by switching the fluid path. Since the fluid pressure is supplied to the surface, it is easy for the piston to automatically increase the striking force even when the change in hydraulic pressure due to the rebound is small.

請求項1記載の発明によれば、打撃装置が破砕する岩盤等が硬いときに、自動的に前記岩盤等を破砕する打撃力を大きくすることができ、その際、打撃力の増加量を上記従来例よりも細かく調整することができる。
さらに、請求項2記載の発明によれば、請求項1記載の発明の効果とともに、打撃装置が前記岩盤等を破砕するときに前記岩盤が硬いことを検知することが容易になる。
さらに、請求項3記載の発明によれば、請求項2記載の発明の効果とともに、打撃装置が破砕する岩盤等が硬いときの前記ピストンの跳ね返りによる油圧の変化が小さいときでも、自動的に前記岩盤等を破砕する打撃力を大きくすることが容易になる。
According to the first aspect of the present invention, when the rock or the like to be crushed by the striking device is hard, the striking force for automatically crushing the rock or the like can be increased. It can be adjusted more finely than the conventional example.
Further, according to the invention described in claim 2, in addition to the effect of the invention described in claim 1, it becomes easy to detect that the rock is hard when the impact device crushes the rock.
Further, according to the invention described in claim 3, in addition to the effect of the invention described in claim 2, even when the change in hydraulic pressure due to the rebound of the piston when the rock mass to be crushed by the striking device is hard is small, the It becomes easy to increase the striking force for crushing the bedrock.

(第1の実施の形態)
以下、本発明における第1の実施の形態を図面に基づいて説明する。
図1は、第1の実施の形態に係る打撃装置の概略を示し、図2から図4までは、この打撃装置の動作状態を順次示している。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows an outline of the striking device according to the first embodiment, and FIGS. 2 to 4 sequentially show the operating states of the striking device.

図1に示すように、第1の実施の形態に係る打撃装置は、流体圧として油圧を使用している。油圧により動作するシリンダ1およびこのシリンダ1の内壁に摺動して軸方向に進退可能なピストン2を備えている。ピストン2には、図示右から順に最小径部2a、最小径部2aより径が大きい小径部2b、第1大径部2c、溝状の連通部2d、第2大径部2eおよび中径部2f(径が小径部2bより大きく大径部2c、2eより小さい)を備えている。そして、第1大径部2cの図示右端面がリング状の打撃用受圧面2uであり、小径部2bの図示右端面がリング状の打撃用の付加受圧面2vである。さらに、第2大径部2eの図示左端面がリング状の反転用受圧面2wである。ピストン2の中径部2fの図示左側にチゼル3が配設されている。
シリンダ1の内壁には、図示左側から順に高圧室4、パイロット室5、低圧室6、第1加圧室7および第2加圧室8がそれぞれリング状の溝状に形成されている。さらに、シリンダ1の図示右端部にはガス封入室9が形成されている。高圧室4、パイロット室5、低圧室6、第1加圧室7、第2加圧室8およびガス封入室9はそれぞれシリンダ1の内壁で仕切られている。
As shown in FIG. 1, the striking device according to the first embodiment uses hydraulic pressure as the fluid pressure. A cylinder 1 that operates by hydraulic pressure and a piston 2 that slides on the inner wall of the cylinder 1 and can advance and retreat in the axial direction are provided. The piston 2 includes, in order from the right in the drawing, a minimum diameter portion 2a, a small diameter portion 2b having a diameter larger than the minimum diameter portion 2a, a first large diameter portion 2c, a groove-shaped communication portion 2d, a second large diameter portion 2e, and a medium diameter portion. 2f (the diameter is larger than the small diameter portion 2b and smaller than the large diameter portions 2c and 2e). The illustrated right end surface of the first large-diameter portion 2c is a ring-shaped impact pressure receiving surface 2u, and the illustrated right end surface of the small-diameter portion 2b is a ring-shaped impact additional pressure receiving surface 2v. Further, the illustrated left end surface of the second large diameter portion 2e is a ring-shaped reversal pressure receiving surface 2w. A chisel 3 is disposed on the left side of the intermediate diameter portion 2f of the piston 2 in the figure.
A high pressure chamber 4, a pilot chamber 5, a low pressure chamber 6, a first pressurizing chamber 7 and a second pressurizing chamber 8 are formed in the inner wall of the cylinder 1 in the shape of a ring from the left side in the drawing. Further, a gas sealing chamber 9 is formed at the right end of the cylinder 1 in the figure. The high pressure chamber 4, the pilot chamber 5, the low pressure chamber 6, the first pressurizing chamber 7, the second pressurizing chamber 8, and the gas sealing chamber 9 are each partitioned by the inner wall of the cylinder 1.

油圧源となる油圧ポンプ14は、高圧室4に接続されるとともに、第1切換弁11を介して第1加圧室7に接続可能に配置されている。また、油タンク15は低圧室6に接続されるとともに、絞り弁18および第1切換弁11を介して第1加圧室7に接続可能に配置されている。ここで、第1切換弁11は、油圧ポンプ14または油タンク15のいずれか一方を第1加圧室7に接続するように油圧路を切り換えるように配設されている。この切換は、第1切換弁11のパイロットポートに加えられるパイロット室5の油圧によって行われ、図1に示すように、パイロット室5が連通部2dを介して低圧室6に連通し、パイロット室5の油圧が低圧(油タンク15の油圧)のとき、第1切換弁11は油タンク15を絞り弁18を介して第1加圧室7に接続する状態にある。なお、絞り弁18は第1加圧室7の油圧の低下を遅らせる働きをする。そして、図2に示すように、パイロット室5が中径部2fとシリンダ1の内壁との間を介して高圧室4に接続され、パイロット室5の油圧が高圧(油圧ポンプ14の油圧)のとき、第1切換弁11は油圧ポンプ14を第1加圧室7に接続する状態に切り換わる。   The hydraulic pump 14 serving as a hydraulic pressure source is connected to the high pressure chamber 4 and arranged to be connectable to the first pressurizing chamber 7 via the first switching valve 11. The oil tank 15 is connected to the low pressure chamber 6 and is arranged to be connectable to the first pressurizing chamber 7 via the throttle valve 18 and the first switching valve 11. Here, the first switching valve 11 is arranged to switch the hydraulic path so as to connect either the hydraulic pump 14 or the oil tank 15 to the first pressurizing chamber 7. This switching is performed by the hydraulic pressure of the pilot chamber 5 applied to the pilot port of the first switching valve 11, and as shown in FIG. 1, the pilot chamber 5 communicates with the low pressure chamber 6 via the communication portion 2d. When the hydraulic pressure of 5 is low (the hydraulic pressure of the oil tank 15), the first switching valve 11 is in a state of connecting the oil tank 15 to the first pressurizing chamber 7 via the throttle valve 18. The throttle valve 18 functions to delay the decrease in the hydraulic pressure in the first pressurizing chamber 7. As shown in FIG. 2, the pilot chamber 5 is connected to the high pressure chamber 4 through the space between the medium diameter portion 2 f and the inner wall of the cylinder 1, and the pilot chamber 5 has a high hydraulic pressure (hydraulic pressure of the hydraulic pump 14). At this time, the first switching valve 11 switches to a state in which the hydraulic pump 14 is connected to the first pressurizing chamber 7.

第2加圧室8の油圧を切り換える切換手段101は第2切換弁12および第3切換弁13を備えている。第1加圧室7の油圧は逆止め弁16を経由して第2切換弁12のパイロットポートに加えられるように接続されている。なお、逆止め弁16に並列に絞り弁17が接続されている。
ここで、第2切換弁12は、油圧ポンプ14または油タンク15のいずれか一方を第3切換弁13のパイロットポートに接続するように油圧路を切り換えるように配設されている。この切換は、第2切換弁12のパイロットポートに加えられる第1加圧室7の油圧によって行われ、図1に示すように、第1加圧室7の油圧が低圧(油タンク15の油圧)のとき、第2切換弁12は油圧ポンプ14を第3切換弁13のパイロットポートに接続する状態にある。
さらに、第3切換弁13は、第1加圧室7または油タンク15のいずれか一方を第2加圧室8に接続するように油圧路を切り換えるように配設されている。この切換は、第3切換弁13の前記パイロットポートに加えられる油圧によって行われ、図1に示すように、前記パイロットポートの油圧が高圧(油圧ポンプ14の油圧)のとき、第3切換弁13は油タンク15を第2加圧室8に接続する状態にあり、図3に示すように、前記パイロットポートの油圧が低圧(油タンク15の油圧)になると、第3切換弁13は第1加圧室7と第2加圧室8を接続する状態に切り換わる。
なお、油圧ポンプ14にアキュムレータ19が接続されている。
The switching means 101 for switching the hydraulic pressure in the second pressurizing chamber 8 includes a second switching valve 12 and a third switching valve 13. The hydraulic pressure in the first pressurizing chamber 7 is connected so as to be applied to the pilot port of the second switching valve 12 via the check valve 16. A throttle valve 17 is connected in parallel to the check valve 16.
Here, the second switching valve 12 is arranged to switch the hydraulic path so as to connect either the hydraulic pump 14 or the oil tank 15 to the pilot port of the third switching valve 13. This switching is performed by the hydraulic pressure of the first pressurizing chamber 7 applied to the pilot port of the second switching valve 12, and as shown in FIG. 1, the hydraulic pressure of the first pressurizing chamber 7 is low (the hydraulic pressure of the oil tank 15). ), The second switching valve 12 is in a state of connecting the hydraulic pump 14 to the pilot port of the third switching valve 13.
Further, the third switching valve 13 is arranged to switch the hydraulic path so as to connect either the first pressurizing chamber 7 or the oil tank 15 to the second pressurizing chamber 8. This switching is performed by the hydraulic pressure applied to the pilot port of the third switching valve 13, and as shown in FIG. 1, when the hydraulic pressure of the pilot port is high (hydraulic pressure of the hydraulic pump 14), the third switching valve 13 Is in a state where the oil tank 15 is connected to the second pressurizing chamber 8, and as shown in FIG. 3, when the hydraulic pressure of the pilot port becomes low (the hydraulic pressure of the oil tank 15), the third switching valve 13 is The pressure chamber 7 and the second pressure chamber 8 are switched to a connected state.
An accumulator 19 is connected to the hydraulic pump 14.

上記構成の打撃装置は、以下の動作をする。
まず、図1に示すように、始動時においては、ピストン2の先端(中径部2fの先端)が打点(チゼル3を打撃する位置)にある。このとき、高圧室4の油圧からピストン2の反転用受圧面2wが反転用力(図示右方向の力)を受け、第1加圧室7の油圧(低圧)から打撃用受圧面2uが力(図示左方向の力)を受けず、付加受圧面2vが第2加圧室8の油圧(低圧)から力(図示左方向の力)を受けないので、ピストン2は図示右方向に移動し、図2の状態になる。
The striking device having the above configuration operates as follows.
First, as shown in FIG. 1, at the time of start-up, the tip of the piston 2 (tip of the medium diameter portion 2f) is at the hit point (position where the chisel 3 is hit). At this time, the reversal pressure receiving surface 2w of the piston 2 receives a reversal force (force in the right direction in the figure) from the oil pressure of the high pressure chamber 4, and the striking pressure receiving surface 2u receives a force from the oil pressure (low pressure) of the first pressurizing chamber 7. The additional pressure receiving surface 2v does not receive a force (force in the left direction in the figure) from the hydraulic pressure (low pressure) in the second pressurizing chamber 8, so that the piston 2 moves in the right direction in the figure. It will be in the state of FIG.

図2の状態は、打撃行程を開始する状態である。この状態では、ピストン2の先端が上死点にあり、パイロット室5がシリンダ1の内壁と中径部2fとの隙間を介して高圧室4に連通するので、第1切換弁11が切り換わり、第1加圧室7の油圧が高圧となる。なお、第2加圧室8の油圧は低圧のままである。そして、第1加圧室7の油圧を受ける打撃用受圧面2uの面積が高圧室4の油圧を受ける反転用受圧面2wの面積より大きいので、ピストン2は図示左方に移動する。   The state of FIG. 2 is a state in which the striking stroke is started. In this state, the tip of the piston 2 is at the top dead center, and the pilot chamber 5 communicates with the high-pressure chamber 4 through a gap between the inner wall of the cylinder 1 and the middle diameter portion 2f, so that the first switching valve 11 is switched. The hydraulic pressure in the first pressurizing chamber 7 becomes high. Note that the hydraulic pressure in the second pressurizing chamber 8 remains low. Since the area of the impact pressure receiving surface 2u receiving the hydraulic pressure of the first pressurizing chamber 7 is larger than the area of the reversing pressure receiving surface 2w receiving the hydraulic pressure of the high pressure chamber 4, the piston 2 moves to the left in the figure.

そして、図2に示す状態から図3に示す状態に移行する段階においては、パイロット室5が低圧室6に連通して第1切換弁11が切り換わって、第1加圧室7が第1切換弁11および絞り弁18を介して油タンク15に接続されても、絞り弁18のために第1加圧室7の油圧がしばらくほぼ高圧の状態に保たれている。その状態で、図示しない岩盤等を破砕するチゼル3を打撃したピストン2の跳ね返りが所定値より大きくなり、この跳ね返りのために第1加圧室7の油圧が高圧(油圧ポンプ14の油圧)より所定の値高い圧力を超えて高くなるとき、第2切換弁12は油タンク15を第3切換弁13のパイロットポートに接続する状態に切り換わる。これにより、第3切換弁13が切り換わり、第1加圧室7が第3切換弁13を介して第2加圧室8に接続される。
しかし、上述のように、第1加圧室7は第1切換弁11および絞り弁18を介して油タンク15に接続されているので、第1加圧室7および第2加圧室8の油圧は次第に低下し、油タンク15の油圧になる。このため、図1の場合と同様にピストン2は図示右に移動し、図4の状態になる。
In the stage of transition from the state shown in FIG. 2 to the state shown in FIG. 3, the pilot chamber 5 communicates with the low pressure chamber 6, the first switching valve 11 is switched, and the first pressurizing chamber 7 is in the first state. Even when connected to the oil tank 15 via the switching valve 11 and the throttle valve 18, the hydraulic pressure in the first pressurizing chamber 7 is maintained at a substantially high pressure for a while due to the throttle valve 18. In this state, the rebound of the piston 2 that hits the chisel 3 that crushes the rock (not shown) becomes larger than a predetermined value, and the hydraulic pressure of the first pressurizing chamber 7 is higher than the high pressure (hydraulic pressure of the hydraulic pump 14) for this rebound. When the pressure exceeds a predetermined value and a high pressure, the second switching valve 12 switches to a state in which the oil tank 15 is connected to the pilot port of the third switching valve 13. As a result, the third switching valve 13 is switched, and the first pressurizing chamber 7 is connected to the second pressurizing chamber 8 via the third switching valve 13.
However, as described above, since the first pressurizing chamber 7 is connected to the oil tank 15 via the first switching valve 11 and the throttle valve 18, the first pressurizing chamber 7 and the second pressurizing chamber 8 The oil pressure gradually decreases and becomes the oil pressure of the oil tank 15. For this reason, as in the case of FIG. 1, the piston 2 moves to the right in the figure and enters the state of FIG.

図4の状態では、パイロット室5が図2のときと同様に高圧室4に連通するので、第1切換弁11が切り換わり、油圧ポンプ14が第1切換弁11を介して第1加圧室7に接続され、さらに、第1加圧室7が第3切換弁13を介して第2加圧室8に接続される。このため、第1加圧室7および第2加圧室8の油圧が高圧になる。この状態では、第1加圧室7の油圧を受ける打撃用受圧面2uおよび第2加圧室8の油圧を受ける付加受圧面2vがともに図示左方向の力を受けるので、ピストン2は図2の場合の力に第2加圧室8の油圧により付加受圧面2vが受ける力を加えた大きさの図示左方向の力を受けてチゼル3を打撃する。このとき、絞り弁17は、第2切換弁12の前記パイロットポートの油圧の低下を遅らせる働きをするので、ピストン2がチゼル3を打撃するときまでは、第2切換弁12の状態が保持される。なお、付加受圧面2vが受ける力は付加受圧面2vの面積に比例するので、付加受圧面2vの面積を変えることにより付加受圧面2vが受ける力を変えることができる。   In the state of FIG. 4, the pilot chamber 5 communicates with the high pressure chamber 4 as in FIG. 2, so that the first switching valve 11 is switched and the hydraulic pump 14 is first pressurized via the first switching valve 11. The first pressurizing chamber 7 is connected to the second pressurizing chamber 8 via the third switching valve 13. For this reason, the hydraulic pressure in the first pressurizing chamber 7 and the second pressurizing chamber 8 becomes high. In this state, the striking pressure receiving surface 2u that receives the hydraulic pressure of the first pressurizing chamber 7 and the additional pressure receiving surface 2v that receives the hydraulic pressure of the second pressurizing chamber 8 both receive a leftward force in the figure, and the piston 2 is shown in FIG. The chisel 3 is struck by receiving a force in the left direction in the figure, which is a magnitude obtained by adding the force received by the additional pressure receiving surface 2v by the hydraulic pressure of the second pressurizing chamber 8 to the force in the case of At this time, the throttle valve 17 functions to delay the decrease in the hydraulic pressure of the pilot port of the second switching valve 12, so that the state of the second switching valve 12 is maintained until the piston 2 strikes the chisel 3. . Since the force received by the additional pressure receiving surface 2v is proportional to the area of the additional pressure receiving surface 2v, the force received by the additional pressure receiving surface 2v can be changed by changing the area of the additional pressure receiving surface 2v.

なお、図2の状態からピストン2が図示左方に移動してピストン2がチゼル3を打撃してチゼル3が前記岩盤等を破砕したときに、ピストン2の跳ね返りが前記所定値以下のときは、第1加圧室7の油圧が高圧(油圧ポンプ14の油圧)より前記所定の値高い圧力以下になるので、第2切換弁12および第3切換弁13は切り換わらない。このため、油タンク15が第3切換弁13を介して第2加圧室8に接続されるので、第2加圧室8の油圧が低圧になる。この状態では、ピストン2がチゼル3を打撃する際に第2加圧室8の油圧が打撃力を増加させない。
また、図4のように、第2加圧室8が高圧になった後においても、ピストン2が図示左方に移動してピストン2がチゼル3を打撃してチゼル3が前記岩盤等を破砕したときに、ピストン2の跳ね返りが前記所定値以下のときは、第1加圧室7の油圧が高圧(油圧ポンプ14の油圧)より前記所定の値高い圧力以下になるので、第2切換弁12が切り換わって、油圧ポンプ14が第2切換弁12を介して第3切換弁13のパイロットポートに接続され、第3切換弁13が切り換わって油タンク15が第3切換弁13を介して第2加圧室8に接続される。このため、第2加圧室8は低圧になるので、ピストン2がチゼル3を打撃する際に第2加圧室8の油圧が打撃力を増加させない。
When the piston 2 moves leftward from the state shown in FIG. 2, the piston 2 strikes the chisel 3 and the chisel 3 crushes the rock, etc., and the rebound of the piston 2 is below the predetermined value, Since the hydraulic pressure in the first pressurizing chamber 7 becomes equal to or lower than the pressure higher than the high pressure (hydraulic pressure of the hydraulic pump 14), the second switching valve 12 and the third switching valve 13 are not switched. For this reason, since the oil tank 15 is connected to the second pressurizing chamber 8 via the third switching valve 13, the hydraulic pressure of the second pressurizing chamber 8 becomes low. In this state, when the piston 2 strikes the chisel 3, the hydraulic pressure in the second pressurizing chamber 8 does not increase the striking force.
In addition, as shown in FIG. 4, even after the second pressurizing chamber 8 becomes high pressure, the piston 2 moves to the left in the drawing, the piston 2 strikes the chisel 3 and the chisel 3 crushes the bedrock and the like. When the rebound of the piston 2 is equal to or less than the predetermined value, the hydraulic pressure in the first pressurizing chamber 7 is equal to or lower than the pressure higher than the high pressure (hydraulic pressure of the hydraulic pump 14) by the predetermined value. 12 is switched, the hydraulic pump 14 is connected to the pilot port of the third switching valve 13 via the second switching valve 12, the third switching valve 13 is switched, and the oil tank 15 is switched via the third switching valve 13. Connected to the second pressurizing chamber 8. For this reason, since the second pressurizing chamber 8 has a low pressure, the hydraulic pressure of the second pressurizing chamber 8 does not increase the striking force when the piston 2 strikes the chisel 3.

このようにして、ピストン2に形成された油圧の加圧作用が可能な打撃用の付加受圧面2vに作用する油圧の供給が可能な状態と不可能な状態を切り換える切換手段101が、ピストン2の進動端(打点)にてピストン2がチゼル3を打撃したときの反動によるピストン2の跳ね返りが所定値より大きいときに、付加受圧面2vに前記油圧の供給が可能な状態に切り換えるようにするので、前記跳ね返りが所定値より大きいときに、前記油圧からピストン2が受ける打撃用の力を自動的に大きくすることができる。
さらに、切換手段101が前記跳ね返りにより上昇する油圧により制御されるので、切換手段101が前記跳ね返りを検知することが容易になる。
さらに、切換手段101の第1流体路切換部となる第2切換弁12が前記跳ね返りにより上昇する油圧に制御されて油路を切り換え、この油路の切り換えによって第2の流体路切換部となる第3切換弁13が付加受圧面2vに油圧を供給するので、ピストン2が油圧から受ける打撃用の力を自動的に大きくすることが容易になる。また、第2切換弁12を第3切換弁13より小さくすることができるので、第2切換弁12をシリンダ1と一体に作ることが容易になる。
In this way, the switching means 101 that switches between the state in which the hydraulic pressure acting on the striking additional pressure receiving surface 2v formed on the piston 2 capable of pressurizing the hydraulic pressure can be supplied to the piston 2 is provided. When the rebound of the piston 2 due to the recoil when the piston 2 strikes the chisel 3 at the advancing end (striking point) is larger than a predetermined value, the additional pressure receiving surface 2v is switched to a state where the hydraulic pressure can be supplied. Therefore, when the rebound is larger than a predetermined value, the striking force received by the piston 2 from the hydraulic pressure can be automatically increased.
Furthermore, since the switching means 101 is controlled by the hydraulic pressure that rises due to the rebound, it becomes easy for the switching means 101 to detect the rebound.
Further, the second switching valve 12 serving as the first fluid path switching unit of the switching means 101 is controlled by the hydraulic pressure that rises due to the rebound and switches the oil path. By switching the oil path, the second fluid path switching unit is obtained. Since the third switching valve 13 supplies the hydraulic pressure to the additional pressure receiving surface 2v, it is easy to automatically increase the striking force that the piston 2 receives from the hydraulic pressure. Further, since the second switching valve 12 can be made smaller than the third switching valve 13, it is easy to make the second switching valve 12 integrally with the cylinder 1.

(第2の実施の形態)
さらに、第2の実施の形態は以下のとおりである。
図5に示すように、第2の実施の形態に係る打撃装置は、第1の実施の形態の変形例であり、第1の実施の形態と同様に流体圧として油圧を使用している。油圧により動作するシリンダ21およびこのシリンダ21内にて軸方向に進退可能なピストン22を備えている。ピストン22には、図示右から順に小径部22a、小径部22aより径が大きい中径部22b、中径部22bより径が大きい第1大径部22c、溝状の連通部22d、中径部22bより径が大きい第2大径部22eおよび小径部22aより径が小さい最小径部22fを備えている。そして、第1大径部22cの図示右端面がリング状の打撃用受圧面22uであり、中径部22bの図示右端面がリング状の打撃用の付加受圧面22vである。さらに、第2大径部22eの図示左端面がリング状の反転用受圧面22wである。そして、ピストン22の最小径部22fの図示左側にチゼル23が配設されている。
シリンダ21の内壁には、図示右側から順に第2加圧室28、高圧室24、パイロット室25、低圧室26および第1加圧室27がそれぞれリング状の溝状に形成されている。さらに、シリンダ21の図示右端部にはガス封入室29が形成されている。
(Second Embodiment)
Furthermore, the second embodiment is as follows.
As shown in FIG. 5, the striking device according to the second embodiment is a modification of the first embodiment, and uses hydraulic pressure as the fluid pressure as in the first embodiment. A cylinder 21 that operates by hydraulic pressure and a piston 22 that can advance and retreat in the axial direction within the cylinder 21 are provided. The piston 22 includes a small-diameter portion 22a, a medium-diameter portion 22b having a diameter larger than that of the small-diameter portion 22a, a first large-diameter portion 22c having a diameter larger than that of the medium-diameter portion 22b, a groove-shaped communication portion 22d, and a medium-diameter portion. A second large diameter portion 22e having a diameter larger than 22b and a minimum diameter portion 22f having a diameter smaller than that of the small diameter portion 22a are provided. The illustrated right end surface of the first large-diameter portion 22c is a ring-shaped striking pressure receiving surface 22u, and the illustrated right end surface of the middle diameter portion 22b is a ring-shaped striking additional pressure receiving surface 22v. Furthermore, the illustrated left end surface of the second large diameter portion 22e is a ring-shaped reversal pressure receiving surface 22w. A chisel 23 is disposed on the left side of the minimum diameter portion 22f of the piston 22 in the figure.
On the inner wall of the cylinder 21, a second pressurizing chamber 28, a high pressure chamber 24, a pilot chamber 25, a low pressure chamber 26, and a first pressurizing chamber 27 are formed in a ring-shaped groove in order from the right side in the figure. Further, a gas sealing chamber 29 is formed at the right end of the cylinder 21 in the figure.

油圧源となる油圧ポンプ34は、高圧室24に接続されるとともに、第1切換弁31を介して第1加圧室27に接続可能に配置されている。また、低圧の油タンク35は低圧室26に接続されるとともに、第1切換弁31を介して第1加圧室27に接続可能に配置されている。ここで、第1切換弁31は、油圧ポンプ34または油タンク35のいずれか一方を第1加圧室27に接続するように油圧路を切り換えるように配設されている。この切換は、第1切換弁31のパイロットポートに加えられるパイロット室25の油圧によって行われ、図5に示すように、パイロット室25がシリンダ21の内壁と中径部22bとの隙間を介して高圧室24に連通し、パイロット室25の油圧が高圧(油圧ポンプ34の油圧)のとき、第1切換弁31は油圧ポンプ34を第1加圧室27に接続する状態にあり、図6に示すように、パイロット室25が連通部22dを介して低圧室26に連通し、パイロット室25の油圧が低圧(油タンク35の油圧)のとき、第1切換弁31は油タンク35を第1加圧室27に接続する状態に切り換わる。   The hydraulic pump 34 serving as a hydraulic pressure source is connected to the high pressure chamber 24 and is arranged to be connectable to the first pressurizing chamber 27 via the first switching valve 31. The low-pressure oil tank 35 is connected to the low-pressure chamber 26 and is arranged to be connectable to the first pressurizing chamber 27 via the first switching valve 31. Here, the first switching valve 31 is arranged to switch the hydraulic path so as to connect either the hydraulic pump 34 or the oil tank 35 to the first pressurizing chamber 27. This switching is performed by the hydraulic pressure of the pilot chamber 25 applied to the pilot port of the first switching valve 31, and as shown in FIG. 5, the pilot chamber 25 passes through the gap between the inner wall of the cylinder 21 and the medium diameter portion 22b. When the hydraulic pressure of the pilot chamber 25 is high (hydraulic pressure of the hydraulic pump 34) in communication with the high pressure chamber 24, the first switching valve 31 is in a state of connecting the hydraulic pump 34 to the first pressurizing chamber 27, as shown in FIG. As shown, when the pilot chamber 25 communicates with the low pressure chamber 26 via the communication portion 22d, and the hydraulic pressure in the pilot chamber 25 is low (hydraulic pressure in the oil tank 35), the first switching valve 31 causes the oil tank 35 to The state is switched to the state connected to the pressurizing chamber 27.

第2加圧室28の油圧を切り換える切換手段102は第2切換弁32および第3切換弁33を備えている。高圧室24の油圧は逆止め弁36を経由して第2切換弁32のパイロットポートに加えられるように接続されている。なお、逆止め弁36に並列に絞り弁37が接続されている。ここで、第2切換弁32は、油圧ポンプ34または油タンク35のいずれか一方を第3切換弁33のパイロットポートに接続するように油圧路を切り換えるように配設されている。この切換は、第2切換弁32のパイロットポートに加えられる高圧室24の油圧によって行われ、図5に示すように、通常は、第2切換弁12は油圧ポンプ34を第3切換弁33のパイロットポートに接続する状態にあり、図7に示すように、第1の実施の形態の場合と同様に、ピストン22の跳ね返りにより、高圧室24の油圧が高圧(油圧ポンプ34の油圧)よりも所定値を超えて高くなるとき、第2切換弁32は油タンク35を第3切換弁33のパイロットポートに接続する状態に切り換わる。このとき、絞り弁37は、第2切換弁32の前記パイロットポートの油圧の低下を遅らせる働きをする。
さらに、図5に示すように、第3切換弁33は、油圧ポンプ34または油タンク35のいずれか一方を第2加圧室28に接続するように油圧路を切り換えるように配設されている。この切換は、第3切換弁33の前記パイロットポートに加えられる油圧によって行われ、第3切換弁33の前記パイロットポートの油圧が高圧(油圧タンク34の油圧)のとき、第3切換弁33は油タンク35を第2加圧室28に接続する状態にあり、図7に示すように、第3切換弁33の前記パイロットポートの油圧が低圧(油タンク35の油圧)になると、第3切換弁33は油圧ポンプ34を第2加圧室28に接続する状態に切り換わる。なお、油圧ポンプ34にアキュムレータ38が接続され、油タンク35にアキュムレータ39が接続されている。
The switching means 102 that switches the hydraulic pressure in the second pressurizing chamber 28 includes a second switching valve 32 and a third switching valve 33. The hydraulic pressure in the high pressure chamber 24 is connected to the pilot port of the second switching valve 32 via the check valve 36. A throttle valve 37 is connected in parallel to the check valve 36. Here, the second switching valve 32 is arranged to switch the hydraulic path so as to connect either the hydraulic pump 34 or the oil tank 35 to the pilot port of the third switching valve 33. This switching is performed by the hydraulic pressure in the high-pressure chamber 24 applied to the pilot port of the second switching valve 32, and normally, as shown in FIG. 5, the second switching valve 12 normally connects the hydraulic pump 34 to the third switching valve 33. As shown in FIG. 7, the hydraulic pressure in the high pressure chamber 24 is higher than the high pressure (the hydraulic pressure of the hydraulic pump 34) due to the rebound of the piston 22, as shown in FIG. When it becomes higher than a predetermined value, the second switching valve 32 switches to a state in which the oil tank 35 is connected to the pilot port of the third switching valve 33. At this time, the throttle valve 37 functions to delay the decrease in the hydraulic pressure of the pilot port of the second switching valve 32.
Further, as shown in FIG. 5, the third switching valve 33 is arranged to switch the hydraulic path so as to connect either the hydraulic pump 34 or the oil tank 35 to the second pressurizing chamber 28. . This switching is performed by the hydraulic pressure applied to the pilot port of the third switching valve 33. When the hydraulic pressure of the pilot port of the third switching valve 33 is high (the hydraulic pressure of the hydraulic tank 34), the third switching valve 33 is When the oil tank 35 is connected to the second pressurizing chamber 28 and the hydraulic pressure of the pilot port of the third switching valve 33 becomes low pressure (hydraulic pressure of the oil tank 35) as shown in FIG. The valve 33 is switched to a state where the hydraulic pump 34 is connected to the second pressurizing chamber 28. An accumulator 38 is connected to the hydraulic pump 34, and an accumulator 39 is connected to the oil tank 35.

上記構成の打撃装置は、以下の動作をする。
まず、図5に示すように、始動時においては、ピストン22の先端が打点(チゼル23を打撃する位置)にあり、第2加圧室28の油圧は低圧である。このとき、第1加圧室27の油圧は高圧であり、第1加圧室27の油圧からピストン22の反転用受圧面22wが受ける反転用力(図示右方向の力)が高圧室24の油圧から受けるピストン22の打撃用受圧面22uが受ける力(図示左方向の力)より大きいので、ピストン22は図示右方向に移動し、図6の状態になる。
The striking device having the above configuration operates as follows.
First, as shown in FIG. 5, at the time of start-up, the tip of the piston 22 is at the hit point (position where the chisel 23 is hit), and the hydraulic pressure in the second pressurizing chamber 28 is low. At this time, the hydraulic pressure in the first pressurizing chamber 27 is high, and the reversing force (force in the right direction in the figure) received by the reversing pressure receiving surface 22 w of the piston 22 from the hydraulic pressure in the first pressurizing chamber 27 is the hydraulic pressure in the high pressure chamber 24. 6 is larger than the force received by the striking pressure receiving surface 22u of the piston 22 received from the left (force in the left direction in the figure), the piston 22 moves in the right direction in the figure and enters the state shown in FIG.

図6の状態は、打撃行程を開始する状態である。この状態では、ピストン22の先端が上死点にあり、パイロット室25が低圧室26に連通するので、第1切換弁31が切り換わり、第1加圧室27の油圧が低圧となる。なお、第2加圧室28の油圧は低圧のままである。そして、高圧室24の油圧を打撃用受圧面22uが受けるので、ピストン22は図示左方に移動してチゼル23を打撃する。   The state of FIG. 6 is a state in which the striking stroke is started. In this state, the tip of the piston 22 is at the top dead center, and the pilot chamber 25 communicates with the low pressure chamber 26. Therefore, the first switching valve 31 is switched, and the hydraulic pressure in the first pressurizing chamber 27 is low. The hydraulic pressure in the second pressurizing chamber 28 remains low. Then, since the hydraulic pressure of the high pressure chamber 24 is received by the impact pressure receiving surface 22u, the piston 22 moves to the left in the drawing and strikes the chisel 23.

ピストン22に打撃されたチゼル23が図示しない岩盤等を破砕するとき、前記岩盤等が硬いと、ピストン22はチゼル23から跳ね返りの力を受け、図示右方向に瞬間的に跳ね返る。このピストン22の跳ね返りにより、高圧室24内の油圧が瞬間的に上昇し、この油圧の上昇が前記所定値を超えると、第2切換弁32が切り換わり、これにより第3切換弁33が切り換わり、図7の状態になる。このため、油圧ポンプ34が第3切換弁33を介して第2加圧室28に接続されるので、第2加圧室28の油圧が高圧になる。この状態では、第1加圧室27の油圧を受ける反転用受圧面22wの面積が高圧室24の油圧を受ける打撃用受圧面22uの面積と第2加圧室28の油圧を受ける付加受圧面22vの面積の合計より大きいので、ピストン22は図示右方向に移動し、図8の状態になる。   When the chisel 23 struck by the piston 22 crushes a rock (not shown) or the like, if the rock or the like is hard, the piston 22 receives a rebounding force from the chisel 23 and instantaneously rebounds in the right direction in the figure. Due to the rebound of the piston 22, the hydraulic pressure in the high pressure chamber 24 instantaneously increases, and when the increase in the hydraulic pressure exceeds the predetermined value, the second switching valve 32 is switched, and thereby the third switching valve 33 is switched off. Instead, the state of FIG. 7 is obtained. For this reason, since the hydraulic pump 34 is connected to the second pressurizing chamber 28 via the third switching valve 33, the hydraulic pressure in the second pressurizing chamber 28 becomes high. In this state, the area of the reversal pressure receiving surface 22 w that receives the hydraulic pressure of the first pressurizing chamber 27 is the area of the impact pressure receiving surface 22 u that receives the hydraulic pressure of the high pressure chamber 24 and the additional pressure receiving surface that receives the hydraulic pressure of the second pressurizing chamber 28. Since it is larger than the total area of 22v, the piston 22 moves in the right direction in the figure and enters the state shown in FIG.

図8の状態では、ピストン22の先端は上死点にあり、パイロット室25が低圧室26に連通するので、第1切換弁31が切り換わり、油タンク35が第1切換弁31を介して第1加圧室27に接続される。このため、ピストン22は高圧室24の油圧を受ける打撃用受圧面22uと第2加圧室28の油圧を受ける付加受圧面22vの力により、図示左方向の力を受けてチゼル23を打撃する。   In the state of FIG. 8, the tip of the piston 22 is at top dead center, and the pilot chamber 25 communicates with the low pressure chamber 26, so that the first switching valve 31 is switched and the oil tank 35 is connected via the first switching valve 31. Connected to the first pressurizing chamber 27. Therefore, the piston 22 strikes the chisel 23 by receiving the force in the left direction in the figure by the force of the impact pressure receiving surface 22u receiving the hydraulic pressure of the high pressure chamber 24 and the additional pressure receiving surface 22v receiving the hydraulic pressure of the second pressurizing chamber 28. .

このようにして、ピストン22に形成された油圧の加圧作用が可能な打撃用の付加受圧面22vに作用する油圧の供給が可能な状態と不可能な状態を切り換える切換手段102が、ピストン22の進動端(打点)にてピストン22がチゼル23を打撃したときの反動によるピストン22の跳ね返りが所定値より大きいときに、付加受圧面22vに前記油圧の供給が可能な状態に切り換えるようにするので、前記跳ね返りが所定値より大きいときに、前記油圧からピストン22が受ける打撃用の力を自動的に大きくすることができる。その際、付加受圧面22vの面積を調節することにより、打撃用の力の増加量を細かく調節することができる。さらに、切換手段102が前記跳ね返りにより上昇する油圧により制御されるので、切換手段102が前記跳ね返りを検知することが容易になる。
さらに、第1の実施の形態と同様に、前記ピストン22の跳ね返りが所定値以下のときには、第2切換弁32および第3切換弁33を切り換えて、付加受圧面22vに油圧ポンプ34の油圧が作用しないようになる。
さらに、切換手段102の第1流体路切換部となる第2切換弁32が前記跳ね返りにより上昇する油圧に制御されて油路を切り換え、この油路の切り換えによって第2の流体路切換部となる第3切換弁33が付加受圧面22vに油圧を供給するので、ピストン22が油圧から受ける打撃用の力を自動的に大きくすることが容易になる。また、第2切換弁32を第3切換弁33より小さくすることができるので、第2切換弁32をシリンダ21と一体に作ることが容易になる。
In this way, the switching means 102 that switches between the state in which the hydraulic pressure acting on the striking additional pressure receiving surface 22v that can pressurize the hydraulic pressure formed in the piston 22 can be supplied and the state in which the hydraulic pressure cannot be supplied is provided. When the rebound of the piston 22 due to the recoil when the piston 22 strikes the chisel 23 at the advancing end (striking point) is greater than a predetermined value, the additional pressure receiving surface 22v is switched to a state where the hydraulic pressure can be supplied. Therefore, when the rebound is larger than a predetermined value, the striking force received by the piston 22 from the hydraulic pressure can be automatically increased. At this time, by adjusting the area of the additional pressure receiving surface 22v, it is possible to finely adjust the amount of increase in the striking force. Furthermore, since the switching means 102 is controlled by the hydraulic pressure that rises due to the rebound, it becomes easy for the switching means 102 to detect the rebound.
Further, as in the first embodiment, when the rebound of the piston 22 is not more than a predetermined value, the second switching valve 32 and the third switching valve 33 are switched so that the hydraulic pressure of the hydraulic pump 34 is applied to the additional pressure receiving surface 22v. It will not work.
Further, the second switching valve 32 serving as the first fluid path switching unit of the switching means 102 is controlled by the hydraulic pressure that rises due to the rebound and switches the oil path. By switching the oil path, the second fluid path switching unit is obtained. Since the third switching valve 33 supplies the hydraulic pressure to the additional pressure receiving surface 22v, it is easy to automatically increase the striking force received by the piston 22 from the hydraulic pressure. Further, since the second switching valve 32 can be made smaller than the third switching valve 33, it is easy to make the second switching valve 32 integrally with the cylinder 21.

(第3の実施の形態)
さらに、第3の実施の形態は以下の通りである。第3の実施の形態は第2の実施の形態の変形例であり、図9は第3の実施の形態に係る打撃装置の特徴を示し、図10は図9の打撃装置の動作状態を示す。
図9に示す第3の実施の形態に係る打撃装置は、第2の実施の形態と同様に流体圧として油圧を使用している。油圧により動作するシリンダ41およびこのシリンダ41内にて軸方向に進退可能なピストン42を備えている。ピストン42には、図示右から順に第1径部42a、第1径部42aより径が大きい第2径部42b、第2径部42bより径が大きい第3径部42c、溝状の連通部42d、第3径部42cより径が大きい第4径部42eおよび第4径部42eより径が小さい第5径部42fを備えている。そして、第3径部42cの図示右端面がリング状の打撃用受圧面42uであり、第2径部42bの図示右端面がリング状の打撃用の付加受圧面42vである。さらに、第4径部42eの図示左端面がリング状の反転用受圧面42wである。そして、反転用受圧面42wの面積が打撃用受圧面42uの面積と付加受圧面42vの面積の合計より大きく形成されている。さらに、ピストン42の第5径部42fの図示左側にチゼル43が配設されている。
シリンダ41の内壁には、図示右側から順に第2加圧室48、高圧室44、パイロット室45、第1低圧室46a、第2低圧室46bおよび第1加圧室47がそれぞれリング状の溝状に形成されている。
図示しない油タンクは第1低圧室46a、第2低圧室46bおよび第1切換弁51を介して第1加圧室47に接続される。なお、図9の状態では、第1低圧室46aはシリンダ41の内壁と第3径部42cおよび連通部42dとの隙間を介して第2低圧室46bに連通されている。また、図10の状態では、第1低圧室46aはシリンダ41の内壁と連通部42dとの隙間を介して第2低圧室46bに連通されている。その他は第2の実施の形態と同様である。
(Third embodiment)
Furthermore, the third embodiment is as follows. The third embodiment is a modification of the second embodiment, FIG. 9 shows the characteristics of the striking device according to the third embodiment, and FIG. 10 shows the operating state of the striking device of FIG. .
The striking device according to the third embodiment shown in FIG. 9 uses hydraulic pressure as the fluid pressure as in the second embodiment. A cylinder 41 that operates by hydraulic pressure and a piston 42 that can advance and retreat in the axial direction in the cylinder 41 are provided. The piston 42 includes a first diameter portion 42a, a second diameter portion 42b having a diameter larger than that of the first diameter portion 42a, a third diameter portion 42c having a diameter larger than that of the second diameter portion 42b, and a groove-shaped communication portion. 42d, a fourth diameter part 42e having a diameter larger than that of the third diameter part 42c, and a fifth diameter part 42f having a diameter smaller than that of the fourth diameter part 42e. The illustrated right end surface of the third diameter portion 42c is a ring-shaped striking pressure receiving surface 42u, and the illustrated right end surface of the second diameter portion 42b is a ring-shaped striking additional pressure receiving surface 42v. Furthermore, the illustrated left end surface of the fourth diameter portion 42e is a ring-shaped reversal pressure receiving surface 42w. The area of the reversal pressure receiving surface 42w is formed larger than the sum of the area of the impact pressure receiving surface 42u and the area of the additional pressure receiving surface 42v. Further, a chisel 43 is disposed on the left side of the fifth diameter portion 42f of the piston 42 in the figure.
On the inner wall of the cylinder 41, a second pressurizing chamber 48, a high pressure chamber 44, a pilot chamber 45, a first low pressure chamber 46a, a second low pressure chamber 46b, and a first pressurizing chamber 47 are respectively provided in a ring-shaped groove from the right side in the figure. It is formed in a shape.
An oil tank (not shown) is connected to the first pressurizing chamber 47 via the first low pressure chamber 46 a, the second low pressure chamber 46 b and the first switching valve 51. In the state shown in FIG. 9, the first low pressure chamber 46a communicates with the second low pressure chamber 46b through a gap between the inner wall of the cylinder 41 and the third diameter portion 42c and the communication portion 42d. In the state shown in FIG. 10, the first low-pressure chamber 46a communicates with the second low-pressure chamber 46b through a gap between the inner wall of the cylinder 41 and the communication portion 42d. The rest is the same as in the second embodiment.

以上の構成の打撃装置は、以下の動作をする。
まず、図9に示す始動時においては、第1加圧室47と高圧室44に高圧が作用し、第2加圧室48に低圧が作用しているので、ピストン42は図示右方に移動し、図10の状態になる。
図10の状態は、ピストン42の先端が上死点にある打撃開始時の状態である。打撃時にピストン42が図示左方に移動するので、反転用受圧面42wより図示左側のシリンダ41の内壁と第5径部42fとの隙間の油を第1加圧室47から第1切換弁51および第2低圧室46bを介してシリンダ41の内壁と連通部42dとの隙間に戻すことにより、第1加圧室47から排出される油の抵抗を少なくすることができる。このため、ピストン42が図示左方向に移動する速度が速くなり、チゼル43を強く打撃することができる。その他は第2の実施の形態と同様である。
The striking device having the above configuration operates as follows.
First, at the time of starting shown in FIG. 9, high pressure is applied to the first pressurizing chamber 47 and the high pressure chamber 44, and low pressure is applied to the second pressurizing chamber 48, so that the piston 42 moves to the right in the drawing. As shown in FIG.
The state of FIG. 10 is a state at the start of hitting in which the tip of the piston 42 is at the top dead center. Since the piston 42 moves to the left in the drawing at the time of striking, the oil in the gap between the inner wall of the cylinder 41 on the left side of the drawing and the fifth diameter portion 42f from the pressure receiving surface 42w for reversal is transferred from the first pressurizing chamber 47 to the first switching valve 51. Further, by returning to the gap between the inner wall of the cylinder 41 and the communication portion 42d via the second low pressure chamber 46b, the resistance of the oil discharged from the first pressurizing chamber 47 can be reduced. For this reason, the speed at which the piston 42 moves in the left direction in the figure is increased, and the chisel 43 can be strongly hit. The rest is the same as in the second embodiment.

なお、上記各実施の形態において、切換手段101、102は、それぞれ第2切換弁および第3切換弁を備えているが、これに限定されず、第2切換弁を省いて、第3切換弁のみで構成するようにしてもよい。ただし、この場合、ピストンの跳ね返りによる油圧の瞬間的な上昇が所定値を超えたときに、第3切換弁のパイロットポートがピストンの跳ね返りによる前記油圧の瞬間的な上昇を受けて、第3切換弁が切り換わるようにする必要がある。さらに、流体圧として油圧を使用しているが、油圧に限らず、ピストンを駆動できる空気圧等でもよい。   In each of the above embodiments, the switching means 101 and 102 include the second switching valve and the third switching valve, respectively. However, the present invention is not limited to this, and the third switching valve is omitted. You may make it comprise only. However, in this case, when the momentary increase in hydraulic pressure due to the rebound of the piston exceeds a predetermined value, the pilot port of the third switching valve receives the momentary increase in hydraulic pressure due to the rebound of the piston, and the third switching It is necessary to make the valve switch. Furthermore, although the hydraulic pressure is used as the fluid pressure, it is not limited to the hydraulic pressure but may be an air pressure that can drive the piston.

第1の実施の形態に係る打撃装置の概略を示す説明図である。It is explanatory drawing which shows the outline of the striking device which concerns on 1st Embodiment. 図1の打撃装置の動作状態を示す説明図である。It is explanatory drawing which shows the operation state of the striking device of FIG. 図2の続きの動作状態を示す説明図である。FIG. 3 is an explanatory diagram illustrating an operation state continued from FIG. 2. 図3の続きの動作状態を示す説明図である。FIG. 4 is an explanatory diagram illustrating an operation state continued from FIG. 3. 第2の実施の形態に係る打撃装置の概略を示す説明図である。It is explanatory drawing which shows the outline of the striking device which concerns on 2nd Embodiment. 図5の打撃装置の動作状態を示す説明図である。It is explanatory drawing which shows the operation state of the striking device of FIG. 図6の続きの動作状態を示す説明図である。It is explanatory drawing which shows the operation state of a continuation of FIG. 図7の続きの動作状態を示す説明図である。FIG. 8 is an explanatory diagram illustrating an operation state continued from FIG. 7. 第3の実施の形態に係る打撃装置の特徴を示す説明図である。It is explanatory drawing which shows the characteristic of the striking device which concerns on 3rd Embodiment. 図9の打撃装置の動作状態を示す説明図である。It is explanatory drawing which shows the operation state of the striking device of FIG.

符号の説明Explanation of symbols

1、21、41 シリンダ
2、22、42 ピストン
2u、22u、42u 打撃用受圧面
2v、22v、42v 付加受圧面
2w、22w、42w 反転用受圧面
3、23、43 チゼル
11、31、51 第1切換弁
12、32 第2切換弁
13、33 第3切換弁
14、34 油圧ポンプ
15、35 油タンク
101、102 切換手段
1, 21, 41 Cylinder 2, 22, 42 Piston 2u, 22u, 42u Strike pressure receiving surface 2v, 22v, 42v Additional pressure receiving surface 2w, 22w, 42w Reversing pressure receiving surface 3, 23, 43 Chisel 11, 31, 51 First 1 switching valve 12, 32 2nd switching valve 13, 33 3rd switching valve 14, 34 Hydraulic pump 15, 35 Oil tank 101, 102 switching means

Claims (3)

打撃時に油圧等の流体圧が作用する打撃用受圧面と反転時に前記流体圧が作用する反転用受圧面とを有するピストンがシリンダ内に軸方向への進退動可能に装入された打撃装置であって、
前記ピストンに前記流体圧の加圧作用が可能な打撃用の付加受圧面が形成されるとともに、前記付加受圧面に作用する流体圧の供給が可能な状態と不可能な状態を切り換える切換手段が設けられ、
前記ピストンの進動端にて前記ピストンがチゼルを打撃したときの反動による前記ピストンの跳ね返りが所定値より大きいときに、前記切換手段が前記打撃用の付加受圧面に前記流体圧の供給可能な状態に切り換えるようにすることを特徴とする打撃装置。
A striking device in which a piston having a striking pressure receiving surface to which fluid pressure such as hydraulic pressure acts upon striking and a reversing pressure sensing surface to which the fluid pressure acts upon reversing is inserted into a cylinder so as to be capable of moving back and forth in the axial direction. There,
A switching means for switching between a state in which a fluid pressure acting on the additional pressure receiving surface can be supplied and a state in which the fluid pressure acting on the additional pressure receiving surface can be supplied are formed on the piston, wherein an additional pressure receiving surface capable of pressurizing the fluid pressure is formed. Provided,
The switching means can supply the fluid pressure to the additional pressure receiving surface for impact when the rebound of the piston due to the reaction when the piston strikes the chisel at the moving end of the piston is larger than a predetermined value. A striking device characterized by switching to a state.
請求項1に記載した打撃装置であって、
前記切換手段が前記跳ね返りにより上昇する流体圧により制御されることを特徴とする打撃装置。
The striking device according to claim 1,
The striking device characterized in that the switching means is controlled by a fluid pressure that rises due to the rebound.
請求項2に記載した打撃装置であって、
前記切換手段が第1の流体路切換部およびこの第1の流体路切換部により制御される第2の流体路切換部を備え、前記第1の流体路切換部が前記跳ね返りにより上昇する流体圧により制御され、前記第2の流体路切換部が前記打撃用の付加受圧面に流体圧を供給する状態と供給しない状態を切り換えることを特徴とする打撃装置。
A striking device according to claim 2,
The switching means includes a first fluid path switching unit and a second fluid path switching unit controlled by the first fluid path switching unit, and the first fluid path switching unit increases the fluid pressure by the rebound. And the second fluid path switching unit switches between a state in which the fluid pressure is supplied to the additional pressure receiving surface for impacting and a state in which the fluid pressure is not supplied.
JP2004044757A 2004-02-20 2004-02-20 Hammering device Pending JP2007196293A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004044757A JP2007196293A (en) 2004-02-20 2004-02-20 Hammering device
PCT/JP2004/015246 WO2005080052A1 (en) 2004-02-20 2004-10-15 Hammering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004044757A JP2007196293A (en) 2004-02-20 2004-02-20 Hammering device

Publications (1)

Publication Number Publication Date
JP2007196293A true JP2007196293A (en) 2007-08-09

Family

ID=34879357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004044757A Pending JP2007196293A (en) 2004-02-20 2004-02-20 Hammering device

Country Status (2)

Country Link
JP (1) JP2007196293A (en)
WO (1) WO2005080052A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9840000B2 (en) 2014-12-17 2017-12-12 Caterpillar Inc. Hydraulic hammer having variable stroke control

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2759497B2 (en) * 1989-05-10 1998-05-28 マツダアステック株式会社 Impact tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9840000B2 (en) 2014-12-17 2017-12-12 Caterpillar Inc. Hydraulic hammer having variable stroke control

Also Published As

Publication number Publication date
WO2005080052A1 (en) 2005-09-01

Similar Documents

Publication Publication Date Title
WO2012026571A1 (en) Fluid pressure hammering device
KR101138987B1 (en) Hydraulic breaker with function for changing piston stroke automatic
KR102033235B1 (en) Hydraulic blower
JPH08216051A (en) Method and device to change blow stroke of blow device whichis operated by compressed incompressible fluid
CN105710845B (en) Hydraulic hammer with variable stroke control
JP3967182B2 (en) Stroke adjustment mechanism of hydraulic striking device
KR20160009216A (en) 3 step variable auto stroke hydraulic breaker
JP4488694B2 (en) Hydraulic striking device
JP2005177899A (en) Hydraulic hammering device
JP2003159667A (en) Hydraulic striker stroke adjusting mechanism
JP2007196293A (en) Hammering device
CN112780624A (en) Reversing valve structure of hydraulic breaking hammer
KR20180106562A (en) Hydraulic breaker valve switching control adjuster
JP7171035B2 (en) hydraulic percussion device
US20080230248A1 (en) Floating Piston _ an Oil Pressure Oscillation Dampening Device for Rock Drilling and Breaking Hammers
JP2759497B2 (en) Impact tool
JP7099964B2 (en) Hydraulic striking device
JP6495672B2 (en) Hydraulic striking device, valve timing switching method and valve port setting method
KR102615221B1 (en) Valve control device for hydraulic shocks
JP2000271878A (en) Stroke adjustment device for hydraulic stroke device
JP2018138321A (en) Hydraulic hammering device
JP2003071744A (en) Impact dynamic tool
KR102661101B1 (en) Automatic strike converter of hydraulic hammer
JP2004082257A (en) Striking speed-variable impact tool
JP2024104786A (en) Hydraulic striking device