[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007189906A - Peptidase and method of using the same - Google Patents

Peptidase and method of using the same Download PDF

Info

Publication number
JP2007189906A
JP2007189906A JP2006008345A JP2006008345A JP2007189906A JP 2007189906 A JP2007189906 A JP 2007189906A JP 2006008345 A JP2006008345 A JP 2006008345A JP 2006008345 A JP2006008345 A JP 2006008345A JP 2007189906 A JP2007189906 A JP 2007189906A
Authority
JP
Japan
Prior art keywords
jellyfish
peptidase
present
bacillus
decomposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006008345A
Other languages
Japanese (ja)
Inventor
Keiichi Oda
圭一 小田
Koichi Sanada
浩一 眞田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ikeda Shokken KK
Original Assignee
Ikeda Shokken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ikeda Shokken KK filed Critical Ikeda Shokken KK
Priority to JP2006008345A priority Critical patent/JP2007189906A/en
Publication of JP2007189906A publication Critical patent/JP2007189906A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Catching Or Destruction (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a required new method for decomposing or reducing volume in a good efficiency in the case that jelly fishes invade a water intake of a plant utilizing sea water such as a power generating plant, etc., and fishery facilities, and become a large amount of hardly treatable waste materials, and also a required method for exterminating the jelly fishes, enabling the prevention of the invasion by the jelly fish. <P>SOLUTION: This peptidase and the method for using the same aiming at the decomposition or reduction of volume of the jelly fishes becoming hardly treatable waste materials is provided by treating them with the peptidase classified to EC 3.4, preferably the peptidase produced by Bacillus sp. 97001 strain or its similar enzyme so as to make the final treatment of the jelly fishes becoming the hardly treatable waste materials easy. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ペプチダーゼについて、クラゲを分解しえるペプチダーゼに関し、該ペプチダーゼの製造方法に関する。
また、本発明は、該ペプチダーゼを使用したクラゲの分解方法及び駆除方法に関する。
さらに、本発明は、該ペプチダーゼを含有するクラゲの分解用製剤及び該ペプチダーゼを使用したクラゲ分解装置に関する。
The present invention relates to a peptidase capable of decomposing jellyfish and relates to a method for producing the peptidase.
The present invention also relates to a jellyfish decomposition method and extermination method using the peptidase.
Furthermore, the present invention relates to a preparation for degrading jellyfish containing the peptidase and a jellyfish degrading apparatus using the peptidase.

クラゲは、腔腸動物(刺胞動物)門のヒドロ虫綱とハチクラゲ綱の自由遊泳型と有侯動物の個体の総称である。クラゲは、日本だけでも数百種が分布しており、海生の最大のプランクトンである。
沿岸近くに位置している火力・原子力発電所では、通常、タービンを回転させた蒸気の冷却用として、海水を取水している。この取水管にムラサキイガイ(ムール貝)やフジツボ等が大量に付着すると、取水ポンプの負荷が増す等の問題が発生する。また、クラゲが大量流入すると復水器冷却水の取水が困難になり、発電出力の制限を余儀なくされる。イガイやフジツボ等の付着生物、大量に出現し取水口を詰まらせる。
Jellyfish is a general term for the free-swimming and rodent individuals of the Coleoptera (Cnidaria) genus Hydroworm and Bee jellyfish. There are hundreds of jellyfish in Japan alone, and it is the largest plankton of marine life.
Thermal and nuclear power plants located near the coast usually take seawater to cool the steam that rotates the turbine. If a large amount of mussels (mussels), barnacles, etc. adhere to the intake pipe, problems such as an increase in the load on the intake pump will occur. In addition, if a large amount of jellyfish flows in, it becomes difficult to take in condenser cooling water, and the power generation output must be restricted. A large amount of attached organisms such as mussels and barnacles appear and clog the intake.

クラゲは、火力・原子力発電所等の海水利用プラントの取水口付近に屡々大量に襲来し、海水利用プラントの取水を妨害する。かかるクラゲの大量襲来による海水の取水障害は、発電出力の低下、機器の性能低下、取水及び発電停止等の極めて深刻な被害をもたらす。また、クラゲは漁業施設にも屡々大量に襲来し、定置網等の漁網に入り込み、漁網中の魚類の窒息、死亡、品質低下及び漁網破損等の被害を発生させる。尚、この様な問題の原因となるクラゲとしては、例えば、ミズクラゲやエチゼンクラゲが挙げられる。かかる被害を未然に防ぐ為、古くから対策技術が検討実施されて来たが、完全な流入防止ができていない現状であり、大量襲来した結果陸揚げされたクラゲはその運搬・処理が追いつかず大きな問題となっている。陸揚げされたクラゲの処理法としては、例えば、焼却や、一般廃棄物としての埋め立てが有るが、焼却処理に際して悪臭等の問題が発生し、また廃棄物処理法等の改正によって埋め立て地へのクラゲの廃棄は困難になりつつある。   Jellyfish often strike a large amount near the intake of seawater-using plants such as thermal power and nuclear power plants, obstructing the intake of seawater-using plants. The disturbance of seawater intake caused by such a massive jellyfish invasion causes extremely serious damage such as a decrease in power generation output, performance degradation of equipment, water intake and power generation stoppage. In addition, jellyfish frequently invade fishing facilities and enter fishing nets such as stationary nets, causing damage such as suffocation, death, quality degradation, and damage to the fishing nets. Examples of jellyfish that cause such problems include moon jellyfish and jellyfish jellyfish. In order to prevent such damage, countermeasure technology has been studied and implemented for a long time, but it is not possible to completely prevent inflow, and jellyfish that have been landed as a result of mass attacks are too large to carry and handle. It is a problem. For example, incineration or landfilling as general waste is a disposal method for landed jellyfish, but problems such as foul odors occur during the incineration process. Disposal is becoming difficult.

発電所等の海水利用プラントの取水口や、漁業施設に、クラゲが襲来して大量の難処理廃棄物となった場合に、これを効率よく分解又は減容する新たな手法が求められており、また、クラゲの襲来を未然に防ぐことを可能とするクラゲの駆除方法も求められている。
従来、クラゲの分解又は減容の為の手段としては、微生物法、酵素法、化学法、物理法、またこれらの内何れかの方法の組み合わせ(特許文献1〜5を参照)等が提案されている。しかしこれらは、速度、効率、初期費用、運転費用、等を鑑みれば、必ずしも満足できるものではない。
There is a need for a new method for efficiently decomposing or reducing the volume of jellyfish attacking water intakes at seawater utilization plants such as power plants and fishing facilities, resulting in a large amount of difficult-to-treat waste. There is also a need for a jellyfish extermination method that can prevent jellyfish invasion.
Conventionally, microbial methods, enzyme methods, chemical methods, physical methods, and combinations of any of these methods (see Patent Documents 1 to 5) have been proposed as means for decomposing or reducing the volume of jellyfish. ing. However, these are not always satisfactory in view of speed, efficiency, initial cost, operating cost, and the like.

また、クラゲから有用物質を抽出することを目的として、クラゲの分解にクラゲ自身の内因性のアルカリプロテアーゼや外部から添加されたアルカリプロテアーゼを使用する方法(特許文献6を参照)があるが、該内因性のアルカリプロテアーゼは、本発明の難処理廃棄物であるクラゲを短時間で効率よく分解又は減容するには活性が不足している。さらに、外部から添加するプロテアーゼの例としてペプシンを挙げているが、ペプシンは現状ブタやウシから取られる高価な酵素であり、本発明の難処理廃棄物としてのクラゲを短時間で効率よく分解又は減容する為の触媒には適さない。
クラゲの駆除方法としては、有効であり且つ自然環境への悪影響が軽微なものが、望まれている。
In addition, for the purpose of extracting useful substances from jellyfish, there is a method of using jellyfish's own endogenous alkaline protease or externally added alkaline protease to decompose jellyfish (see Patent Document 6). Endogenous alkaline protease lacks activity to efficiently decompose or reduce jellyfish, which is a difficult-to-treat waste of the present invention, in a short time. Furthermore, although pepsin is mentioned as an example of protease added from the outside, pepsin is an expensive enzyme currently taken from pigs and cattle, and jellyfish as difficult-to-treat waste of the present invention can be decomposed efficiently or in a short time. Not suitable as a catalyst for volume reduction.
As a jellyfish extermination method, a method that is effective and has a slight adverse effect on the natural environment is desired.

特開平05-185065号公報JP 05-185065 A 特開平07-292646号公報Japanese Unexamined Patent Publication No. 07-292646 特開平11-138146号公報Japanese Patent Laid-Open No. 11-138146 特開平11-316008号公報Japanese Patent Laid-Open No. 11-316008 特開2004-255313号公報JP 2004-255313 A 特許第3696018号公報Japanese Patent No. 3696018

本発明は、かかる従来技術の現状を鑑み創案されたものであり、その目的は、発電所等の海水利用プラントの取水口や、漁業施設に、クラゲが襲来して大量の難処理廃棄物となった場合に、これを効率よく分解又は減容する為に使用することができ、またクラゲの駆除にも応用できる、ペプチダーゼとその利用法を提供することにある。   The present invention was devised in view of the current state of the prior art, and its purpose is that a jellyfish attacks a large amount of difficult-to-treat waste when a jellyfish attacks an intake of a seawater utilization plant such as a power plant or a fishery facility. It is an object of the present invention to provide a peptidase and a method for using the peptidase that can be used for efficiently decomposing or reducing the volume of the jellyfish.

本発明は、EC 3.4に分類される酵素であってクラゲを分解しえるペプチダーゼ、少なくともBacillus sp. 97001株由来のペプチダーゼ若しくはその類似酵素を提供し、またその利用法を提供している。本発明は、発電所等の海水利用プラントの取水口、漁業施設等に、クラゲが襲来し、該クラゲが難処理廃棄物となった場合に、これを効率よく、極めて短時間の内に、分解若しくは減容することができ、産業上極めて有用なペプチダーゼとその利用法を提供することが可能である。難処理廃棄物となったクラゲを、EC 3.4に分類されかつクラゲを分解しえるペプチダーゼ、好ましくは、Bacillus sp. 97001株が産生するペプチダーゼ若しくはその類似酵素で処理することにより分解又は減容を図り、該難処理廃棄物となったクラゲの最終処分を容易にならしむるものである。本発明の分解方法により、該クラゲの最終処分が、従来の焼却等と比較して、極めて容易であり、クラゲの襲来による海水利用プラントや漁業施設の運営への悪影響を最小限にすることができる。   The present invention provides an enzyme classified as EC 3.4 and capable of decomposing jellyfish, at least a peptidase derived from Bacillus sp. 97001 or a similar enzyme, and a method for using the same. In the present invention, when a jellyfish attacks an intake of a seawater utilization plant such as a power plant, a fishing facility, etc., and the jellyfish becomes difficult-to-treat waste, this is efficiently performed within an extremely short period of time. It is possible to provide a peptidase that can be decomposed or reduced in volume and is extremely useful in the industry and a method for using the peptidase. Jellyfish that has become difficult-to-process waste is decomposed or reduced in volume by treating it with a peptidase classified as EC 3.4 and capable of decomposing jellyfish, preferably peptidase produced by Bacillus sp. The final disposal of the jellyfish that has become the difficult-to-process waste is facilitated. By the decomposition method of the present invention, the final disposal of the jellyfish is extremely easy compared to conventional incineration and the like, and it is possible to minimize the adverse effects on the operation of seawater utilization plants and fishery facilities due to the jellyfish invasion. it can.

クラゲ成体の約95%は水分であり、約2%がコラーゲンであるとされる。クラゲを効果的に減容するには、このコラーゲン画分を分解することで、その形態を速やかに消失させることが必要であると考えられる。しかし、クラゲ由来コラーゲンを効率よく加水分解できるペプチダーゼは従来知られておらず、また、コラーゲンを分解する酵素としてコラゲナーゼが一般的に知られていたが、非常に高価であるため、研究用試薬等に用途が限られており、廃棄物の処理に使用できるようなものとは言いがたい。   About 95% of the adult jellyfish is assumed to be water, and about 2% is assumed to be collagen. In order to effectively reduce the volume of jellyfish, it is considered necessary to quickly dissipate the form by decomposing this collagen fraction. However, no peptidase that can efficiently hydrolyze jellyfish-derived collagen has been known. Collagenase is generally known as an enzyme that degrades collagen, but it is very expensive. However, it is difficult to say that it can be used for waste disposal.

本発明において注目すべきことは、本発明のペプチダーゼが、化学的、物理的手法と比較して、反応を穏和な条件の下で進行させる働きを持つことである。従って、クラゲを、EC 3.4に分類されるペプチダーゼ、好ましくは、Bacillus sp. 97001株が産生するペプチダーゼ若しくはその類似酵素で処理することにより、常温、常圧で、強酸や強塩基を加えたりすること無く加水分解反応を進行させ、目的を達することができる。これは、加熱したり、強酸や強塩基を加えたり、圧力を掛けたりすることが必要な化学的な方法と比較して、エネルギーコストが低く環境への負荷も少ないという点で圧倒的に有利である。   What should be noted in the present invention is that the peptidase of the present invention has a function of allowing the reaction to proceed under mild conditions as compared with chemical and physical methods. Therefore, when a jellyfish is treated with a peptidase classified as EC 3.4, preferably a peptidase produced by Bacillus sp. Strain 97001 or a similar enzyme, a strong acid or a strong base may be added at normal temperature and pressure. The hydrolysis reaction can proceed without any problems and the objective can be achieved. This is overwhelmingly advantageous in terms of low energy costs and low environmental impact compared to chemical methods that require heating, adding strong acids or bases, or applying pressure. It is.

さらに、EC 3.4に分類されるペプチダーゼ、好ましくは、Bacillus sp. 97001株が産生するペプチダーゼ若しくはその類似酵素で、クラゲを処理することは、化学的な方法と比較して速度と効率の面で勝っており、また加熱処理、強酸や強塩基処理、圧力処理することが必要な化学的処理に使用する設備に比べ、本発明のペプチダーゼ処理に必要な設備は、初期費用と運転費用を低く抑えることができ、有利である。
また、EC 3.4に分類されかつクラゲを分解しえるペプチダーゼ、好ましくは、Bacillus sp. 97001株が産生するペプチダーゼ若しくはその類似酵素は、従来知られていたコラーゲンを分解する酵素と比較して、圧倒的にその生産量と分解活性が高いため、本発明のペプチダーゼを使用することで、難処理廃棄物であるクラゲを分解又は減容することが、産業利用として十分可能である。
Furthermore, treatment of jellyfish with a peptidase classified as EC 3.4, preferably a peptidase produced by Bacillus sp. 97001 or a similar enzyme, is superior in speed and efficiency compared to chemical methods. Compared to equipment used for heat treatment, strong acid or base treatment, and chemical treatment that requires pressure treatment, the equipment required for the peptidase treatment of the present invention keeps the initial cost and operating cost low. Can be advantageous.
In addition, peptidases classified as EC 3.4 and capable of decomposing jellyfish, preferably peptidases produced by Bacillus sp. 97001 or similar enzymes, are overwhelmingly compared to conventionally known enzymes that degrade collagen. Because of its high production amount and decomposition activity, it is sufficiently possible for industrial use to decompose or reduce jellyfish, which are difficult-to-treat waste, by using the peptidase of the present invention.

そこで本発明者らは、上記課題を解決する為にクラゲ由来コラーゲンを効率よく加水分解できるペプチダーゼに着目し、クラゲを効率よく分解又は減容し得る酵素に関し鋭意研究した。その結果、クラゲは、EC 3.4に分類されるペプチダーゼで処理することにより、その形態を消失させることが可能であることが判明した。更に研究を進め、Bacillus sp. 97001株由来のペプチダーゼ若しくはその類似酵素を使用することで、クラゲを効率よく分解又は減容することを見出した。   Therefore, the present inventors paid attention to peptidases capable of efficiently hydrolyzing jellyfish-derived collagen in order to solve the above-mentioned problems, and conducted intensive research on enzymes capable of efficiently degrading or reducing jellyfish. As a result, it was found that jellyfish can be eliminated by treating with peptidases classified as EC 3.4. Further research has been conducted and it has been found that jellyfish can be efficiently decomposed or reduced by using peptidase derived from Bacillus sp. 97001 or similar enzyme.

かかる知見に基づき、本発明者らは、発電所等の海水利用プラントの取水口や漁業施設に襲来して大量の難処理廃棄物となった、クラゲの処理工程に、該酵素を使用すれば、従来困難であったその分解又は減容を容易に行えることに想到し、遂に本発明を完成するに至った。   Based on this knowledge, the present inventors use the enzyme in a jellyfish treatment process that has attacked water intakes and fishery facilities of seawater utilization plants such as power plants, resulting in a large amount of difficult-to-treat waste. As a result, it was conceived that the decomposition or volume reduction that was difficult in the prior art could be easily performed, and the present invention was finally completed.

即ち、発電所等の海水利用プラントの取水口や漁業施設に襲来して大量の難処理廃棄物となったクラゲの分解又は減容の方法は、以下のステップ(1)〜(3)を含んでなる。   That is, the method of decomposing or reducing the volume of jellyfish that has attacked water intakes and fishing facilities of power plants and other fishery facilities and has become a large amount of difficult-to-treat waste includes the following steps (1) to (3). It becomes.

(1) 前記海水利用プラントの取水口又は漁業施設に襲来し、取水路に流入したクラゲを、適当な手段で分別採取する。
(2) 該クラゲを必要に応じて適当な手段で、裁断及び/又は破砕等の前処理を行う。
(3) 前記の前処理済みクラゲを、適当な容器内で所定の時間、Bacillus sp. 97001株由来のペプチダーゼ若しくはその類似酵素と反応させる。
(1) The jellyfish that has attacked the intake or fishery facility of the seawater utilization plant and flowed into the intake channel will be collected by appropriate means.
(2) The jellyfish is subjected to pretreatment such as cutting and / or crushing by an appropriate means as necessary.
(3) The pretreated jellyfish is reacted with a peptidase derived from Bacillus sp. 97001 strain or a similar enzyme in a suitable container for a predetermined time.

本発明の対象となるクラゲは如何なるクラゲであってもよく、例えば、ミズクラゲ及びエチゼンクラゲであることができる。尚、本発明において、「クラゲ」という用語は、成熟クラゲ個体と未成熟クラゲ個体の何れも挙げることができる。   The jellyfish that is the subject of the present invention may be any jellyfish, for example, a jellyfish and an Echizen jellyfish. In the present invention, the term “jellyfish” can include both mature jellyfish individuals and immature jellyfish individuals.

本発明のペプチダーゼは、少なくともクラゲを分解又は減容可能な酵素であればよく、EC 3.4に分類されるペプチダーゼであり、好ましくは、EC 3.4.21に分類されるペプチダーゼであり、更に好ましくは、EC 3.4.21.62に分類されるペプチダーゼである。例えば、Bacillus sp. 97001株由来のペプチダーゼ、Bacillus sp. 97001株が産生するペプチダーゼ若しくはその類似酵素であればよい。また、ペプチダーゼの性質および/または実質的に同等な性質を有するタンパク質またはその塩について、該タンパク質をコードするアミノ酸配列あるいは当該配列に1またはそれ以上のアミノ酸残基の欠失、置換もしくは付加による変異を含むアミノ酸配列を有し、かつ、生物学的に活性で安定なタンパク質であればよい。本発明のペプチダーゼは、少なくともクラゲを分解又は減容可能な酵素であればよく、クラゲを分解しえる活性を有していることが望ましく、本発明のペプチダーゼをクラゲに接触させた瞬間から起算して12時間後にクラゲ体積が接触直後の体積の、好ましくは3分の2以下、より好ましくは2分の1以下、望ましくは3分の1以下になっていればよい。   The peptidase of the present invention may be an enzyme capable of degrading or reducing jellyfish at least, and is a peptidase classified as EC 3.4, preferably a peptidase classified as EC 3.4.21, more preferably It is a peptidase classified as EC 3.4.21.62. For example, a peptidase derived from Bacillus sp. 97001, a peptidase produced by Bacillus sp. 97001 or a similar enzyme may be used. In addition, mutations caused by deletion, substitution or addition of one or more amino acid residues in the amino acid sequence encoding the protein or a protein having a peptidase property and / or substantially equivalent property or a salt thereof As long as it is a biologically active and stable protein. The peptidase of the present invention should be at least an enzyme capable of decomposing or reducing jellyfish, and preferably has an activity capable of decomposing jellyfish. The peptidase of the present invention is calculated from the moment when the peptidase of the present invention is brought into contact with the jellyfish. Thus, after 12 hours, the jellyfish volume should preferably be 2/3 or less, more preferably 1/2 or less, and desirably 1/3 or less of the volume immediately after contact.

本発明のEC 3.4に分類されるペプチダーゼとしては、EC 3.4.1 a-Amino-Acyl-Peptide Hydrolases、EC 3.4.2 Peptidyl-Amino-Acid Hydrolases、EC 3.4.3 Dipeptide Hydrolases、EC 3.4.4 Peptidyl Peptide Hydrolases、EC 3.4.11 Aminopeptidases、EC 3.4.12 Peptidylamino-Acid Hydrolases or Acylamino-Acid Hydrolases、EC 3.4.13 Dipeptidases、EC 3.4.14 Dipeptidyl-peptidases and tripeptidyl-peptidases、EC 3.4.15 Peptidyl-dipeptidases、EC 3.4.16 Serine-type carboxypeptidases、EC 3.4.17 Metallocarboxypeptidases、EC 3.4.18 Cysteine-type carboxypeptidases、EC 3.4.19 Omega peptidases、EC 3.4.21 Serine endopeptidases、EC 3.4.22 Cysteine endopeptidases、EC 3.4.23 Aspartic endopeptidases、EC 3.4.24 Metalloendopeptidases、EC 3.4.25 Threonine endopeptidases、EC 3.4.99 Endopeptidases of unknown catalytic mechanism等が挙げられる。この中で、好ましくは、EC 3.4.21 Serine endopeptidases、EC 3.4.22 Cysteine endopeptidases、EC 3.4.23 Aspartic endopeptidases、EC 3.4.24 Metalloendopeptidasesが挙げられる。   Peptidases classified as EC 3.4 of the present invention include EC 3.4.1 a-Amino-Acyl-Peptide Hydrolases, EC 3.4.2 Peptidyl-Amino-Acid Hydrolases, EC 3.4.3 Dipeptide Hydrolases, EC 3.4.4 Peptidyl Peptide Hydrolases, EC 3.4.11 Aminopeptidases, EC 3.4.12 Peptidylamino-Acid Hydrolases or Acylamino-Acid Hydrolases, EC 3.4.13 Dipeptidases, EC 3.4.14 Dipeptidyl-peptidases and tripeptidyl-peptidases, EC 3.4.15 Peptidyl-dipeptidases, EC 3.4 .16 Serine-type carboxypeptidases, EC 3.4.17 Metallocarboxypeptidases, EC 3.4.18 Cysteine-type carboxypeptidases, EC 3.4.19 Omega peptidases, EC 3.4.21 Serine endopeptidases, EC 3.4.22 Cysteine endopeptidases, EC 3.4.23 Aspartic endopeptidases, EC 3.4.24 Metalloendopeptidases, EC 3.4.25 Threonine endopeptidases, EC 3.4.99 Endopeptidases of unknown catalytic mechanism, and the like. Among these, Preferably, EC 3.4.21 Serine endopeptidases, EC 3.4.22 Cysteine endopeptidases, EC 3.4.23 Aspartic endopeptidases, EC 3.4.24 Metalloendopeptidases are mentioned.

さらに、EC 3.4.21.1 chymotrypsin、EC 3.4.21.2 chymotrypsin C、EC 3.4.21.3 metridin、EC 3.4.21.4 trypsin、EC 3.4.21.5 thrombin、EC 3.4.21.6 coagulation factor Xa、EC 3.4.21.7 plasmin、EC 3.4.21.9 enteropeptidase、EC 3.4.21.10 acrosin、EC 3.4.21.12 a-Lytic endopeptidase、EC 3.4.21.19 glutamyl endopeptidase、EC 3.4.21.20 cathepsin G、EC 3.4.21.21 coagulation factor VIIa、EC 3.4.21.22 coagulation factor IXa、EC 3.4.21.25 cucumisin、EC 3.4.21.26 prolyl oligopeptidase、EC 3.4.21.27 coagulation factor XIa、EC 3.4.21.32 brachyurin、EC 3.4.21.34 plasma kallikrein、EC 3.4.21.35 tissue kallikrein、EC 3.4.21.36 pancreatic elastase、EC 3.4.21.37 leukocyte elastase、EC 3.4.21.38 coagulation factor XIIa、EC 3.4.21.39 chymase、EC 3.4.21.41 complement subcomponent C、EC 3.4.21.42 complement subcomponent C、EC 3.4.21.43 classical-complement-pathway C3/C5 convertase、EC 3.4.21.45 complement factor I、EC 3.4.21.46 complement factor D、EC 3.4.21.47 alternative-complement-pathway C3/C5 convertase、EC 3.4.21.48 cerevisin、EC 3.4.21.49 hypodermin C、EC 3.4.21.50 lysyl endopeptidase、EC 3.4.21.53 endopeptidase La、EC 3.4.21.54 g-renin、EC 3.4.21.55 venombin AB、EC 3.4.21.57 leucyl endopeptidase、EC 3.4.21.59 tryptase、EC 3.4.21.60 scutelarin、EC 3.4.21.61 kexin、EC 3.4.21.62 subtilisin、EC 3.4.21.63 oryzin、EC 3.4.21.64 endopeptidase K、EC 3.4.21.65 thermomycolin、EC 3.4.21.66 thermitase、EC 3.4.21.67 endopeptidase So、EC 3.4.21.68 t-plasminogen activator、EC 3.4.21.69 protein C (activated)、EC 3.4.21.70 pancreatic endopeptidase E、EC 3.4.21.71 pancreatic elastase II、EC 3.4.21.72 IgA-specific serine endopeptidase、EC 3.4.21.73 u-plasminogen activator、EC 3.4.21.74 venombin A、EC 3.4.21.75 furin、EC 3.4.21.76 myeloblastin、EC 3.4.21.77 semenogelase、EC 3.4.21.78 granzyme A、EC 3.4.21.79 granzyme B、EC 3.4.21.80 streptogrisin A、EC 3.4.21.81 streptogrisin B、EC 3.4.21.82 glutamyl endopeptidase II、EC 3.4.21.83 oligopeptidase B、EC 3.4.21.84 limulus clotting factor 、EC 3.4.21.85 limulus clotting factor 、EC 3.4.21.86 limulus clotting enzyme、EC 3.4.21.87 omptin、EC 3.4.21.88 repressor LexA、EC 3.4.21.89 signal peptidase I、EC 3.4.21.90 togavirin、EC 3.4.21.91 flavivirin、EC 3.4.21.92 endopeptidase Clp、EC 3.4.21.93 proprotein convertase 1、EC 3.4.21.94 proprotein convertase 2、EC 3.4.21.95 snake venom factor V activator、EC 3.4.21.96 lactocepin、EC 3.4.21.97 assemblin、EC 3.4.21.98 hepacivirin、EC 3.4.21.99 spermosin 、EC 3.4.21.100 pseudomonalisin、EC 3.4.21.101 xanthomonalisin、EC 3.4.21.102 C-terminal processing peptidase、EC 3.4.21.103 physarolisin、EC 3.4.21.104 mannan-binding lectin-associated serine protease-2、EC 3.4.22.1 cathepsin B、EC 3.4.22.2 papain、EC 3.4.22.3 ficain、EC 3.4.22.6 chymopapain、EC 3.4.22.7 asclepain、EC 3.4.22.8 clostripain、EC 3.4.22.10 streptopain、EC 3.4.22.14 actinidain、EC 3.4.22.15 cathepsin L、EC 3.4.22.16 cathepsin H、EC 3.4.22.24 cathepsin T、EC 3.4.22.25 glycyl endopeptidase、EC 3.4.22.26 cancer procoagulant、EC 3.4.22.27 cathepsin S、EC 3.4.22.28 picornain 3C、EC 3.4.22.29 picornain 2A、EC 3.4.22.30 caricain、EC 3.4.22.31 ananain、EC 3.4.22.32 stem bromelain、EC 3.4.22.33 fruit bromelain、EC 3.4.22.34 legumain、EC 3.4.22.35 histolysain、EC 3.4.22.36 caspase-1、EC 3.4.22.37 gingipain R、EC 3.4.22.38 cathepsin K、EC 3.4.22.39 adenain、EC 3.4.22.40 bleomycin hydrolase、EC 3.4.22.41 cathepsin F 、EC 3.4.22.42 cathepsin O 、EC 3.4.22.43 cathepsin V 、EC 3.4.22.44 nuclear-inclusion-a endopeptidase 、EC 3.4.22.45 helper-component proteinase、EC 3.4.22.46 L-peptidase、EC 3.4.22.47 gingipain K、EC 3.4.22.48 staphopain、EC 3.4.22.49 separase、EC 3.4.22.50 V-cath endopeptidase、EC 3.4.22.51 cruzipain、EC 3.4.22.52 calpain-1、EC 3.4.22.53 calpain-2 、EC 3.4.23.1 pepsin A、EC 3.4.23.2 pepsin B、EC 3.4.23.3 gastricsin、EC 3.4.23.4 chymosin、EC 3.4.23.5 cathepsin D、EC 3.4.23.12 nepenthesin、EC 3.4.23.15 renin、EC 3.4.23.16 HIV-1 retropepsin、EC 3.4.23.17 Pro-opiomelanocortin converting enzyme、EC 3.4.23.18 aspergillopepsin I、EC 3.4.23.19 aspergillopepsin II、EC 3.4.23.20 penicillopepsin、EC 3.4.23.21 rhizopuspepsin、EC 3.4.23.22 endothiapepsin、EC 3.4.23.23 mucorpepsin、EC 3.4.23.24 candidapepsin、EC 3.4.23.25 saccharopepsin、EC 3.4.23.26 rhodotorulapepsin、EC 3.4.23.28 acrocylindropepsin、EC 3.4.23.29 polyporopepsin、EC 3.4.23.30 pycnoporopepsin、EC 3.4.23.31 scytalidopepsin A、EC 3.4.23.32 scytalidopepsin B、EC 3.4.23.34 cathepsin E、EC 3.4.23.35 barrierpepsin、EC 3.4.23.36 signal peptidase II、EC 3.4.23.38 plasmepsin I、EC 3.4.23.39 plasmepsin II、EC 3.4.23.40 phytepsin、EC 3.4.23.41 yapsin 1、EC 3.4.23.42 thermopsin、EC 3.4.23.43 prepilin peptidase、EC 3.4.23.44 nodavirus endopeptidase、EC 3.4.23.45 memapsin 1、EC 3.4.23.46 memapsin 2、EC 3.4.23.47 HIV-2 retropepsin、EC 3.4.23.48 plasminogen activator Pla、EC 3.4.24.1 atrolysin A、EC 3.4.24.3 microbial collagenase、EC 3.4.24.6 leucolysin、EC 3.4.24.7 interstitial collagenase、EC 3.4.24.11 neprilysin、EC 3.4.24.12 envelysin、EC 3.4.24.13 IgA-specific metalloendopeptidase、EC 3.4.24.14 procollagen N-endopeptidase、EC 3.4.24.15 thimet oligopeptidase、EC 3.4.24.16 neurolysin、EC 3.4.24.17 stromelysin 1、EC 3.4.24.18 meprin A、EC 3.4.24.19 procollagen C-endopeptidase、EC 3.4.24.20 peptidyl-Lys metalloendopeptidase、EC 3.4.24.21 astacin、EC 3.4.24.22 stromelysin 2、EC 3.4.24.23 matrilysin、EC 3.4.24.24 gelatinase A、EC 3.4.24.25 vibriolysin、EC 3.4.24.26 pseudolysin、EC 3.4.24.27 thermolysin、EC 3.4.24.28 bacillolysin、EC 3.4.24.29 aureolysin、EC 3.4.24.30 coccolysin、EC 3.4.24.31 mycolysin、EC 3.4.24.32 b-lytic metalloendopeptidase、EC 3.4.24.33 peptidyl-Asp metalloendopeptidase、EC 3.4.24.34 neutrophil collagenase、EC 3.4.24.35 gelatinase B、EC 3.4.24.36 leishmanolysin、EC 3.4.24.37 saccharolysin、EC 3.4.24.38 gametolysin、EC 3.4.24.39 deuterolysin、EC 3.4.24.40 serralysin、EC 3.4.24.41 atrolysin B、EC 3.4.24.42 atrolysin C、EC 3.4.24.43 atroxase、EC 3.4.24.44 atrolysin E、EC 3.4.24.45 atrolysin F、EC 3.4.24.46 adamalysin、EC 3.4.24.47 horrilysin、EC 3.4.24.48 ruberlysin、EC 3.4.24.49 bothropasin、EC 3.4.24.50 bothrolysin、EC 3.4.24.51 ophiolysin、EC 3.4.24.52 trimerelysin I、EC 3.4.24.53 trimerelysin II、EC 3.4.24.54 mucrolysin、EC 3.4.24.55 pitrilysin、EC 3.4.24.56 insulysin、EC 3.4.24.57 O-sialoglycoprotein endopeptidase、EC 3.4.24.58 russellysin、EC 3.4.24.59 mitochondrial intermediate peptidase、EC 3.4.24.60 dactylysin、EC 3.4.24.61 nardilysin、EC 3.4.24.62 magnolysin、EC 3.4.24.63 meprin B、EC 3.4.24.64 mitochondrial processing peptidase、EC 3.4.24.65 macrophage elastase、EC 3.4.24.66 choriolysin L、EC 3.4.24.67 choriolysin H、EC 3.4.24.68 tentoxilysin、EC 3.4.24.69 bontoxilysin、EC 3.4.24.70 oligopeptidase A、EC 3.4.24.71 endothelin-converting enzyme、EC 3.4.24.72 fibrolase、EC 3.4.24.73 jararhagin、EC 3.4.24.74 fragilysin、EC 3.4.24.75 lysostaphin、EC 3.4.24.76 flavastacin、EC 3.4.24.77 snapalysin、EC 3.4.24.78 gpr endopeptidase、EC 3.4.24.79 pappalysin-1、EC 3.4.24.80 membrane-type matrix metalloproteinase-1、EC 3.4.24.81 ADAM10 endopeptidase、EC 3.4.24.82 ADAMTS-4 endopeptidase、EC 3.4.24.83 anthrax lethal factor endopeptidase、EC 3.4.24.84 Ste24 endopeptidase、EC 3.4.24.85 S2P endopeptidase、EC 3.4.24.86 ADAM 17 endopeptidase等が挙げられる。この中で、好ましくは、EC 3.4.21.62 subtilisinが挙げられる。該EC 3.4.21.62は、alcalase、alcalase 0.6L、alcalase 2.5L、ALK-enzyme、bacillopeptidase A、bacillopeptidase B、Bacillus subtilis alkaline proteinase、Bacillus subtilis alkaline proteinase bioprase、Bacillus subtilis carlsberg、bioprase、bioprase AL 15、bioprase APL 30、colistinase、esperase、genenase I、kazusase、maxatase、nagarase、nagarse、opticlean、orientase 10B、protease S、protease VIII、protease XXVII、protin A 3L、savinase、savinase 16.0L、savinase 32.0 L EX、savinase 4.0T、savinase 8.0L、SP 266、subtilisin、subtilisin A、subtilisin BL、subtilisin bpn'、subtilisin carlsberg、subtilisin DY、subtilisin E、subtilisin GX、subtilisin J、subtilisin NOVO、subtilisin S41、subtilisin Sendai、subtilopeptidase、subtilopeptidase A、subtilopeptidase B、subtilopeptidase bpn'、subtilopeptidase C、superase、thermoase、thermoase PC-10、Bacillus sp. 97001株が産生するペプチダーゼ等が含まれる。   In addition, EC 3.4.21.1 chymotrypsin, EC 3.4.21.2 chymotrypsin C, EC 3.4.21.3 metridin, EC 3.4.21.4 trypsin, EC 3.4.21.5 thrombin, EC 3.4.21.6 coagulation factor Xa, EC 3.4.21.7 plasmin, EC 3.4. 21.9 enteropeptidase, EC 3.4.21.10 acrosin, EC 3.4.21.12 a-Lytic endopeptidase, EC 3.4.21.19 glutamyl endopeptidase, EC 3.4.21.20 cathepsin G, EC 3.4.21.21 coagulation factor VIIa, EC 3.4.21.22 coagulation factor IXa, EC 3.4 .21.25 cucumisin, EC 3.4.21.26 prolyl oligopeptidase, EC 3.4.21.27 coagulation factor XIa, EC 3.4.21.32 brachyurin, EC 3.4.21.34 plasma kallikrein, EC 3.4.21.35 tissue kallikrein, EC 3.4.21.36 pancreatic elastase, EC 3.4.21.37 leukocyte elastase, EC 3.4.21.38 coagulation factor XIIa, EC 3.4.21.39 chymase, EC 3.4.21.41 complement subcomponent C, EC 3.4.21.42 complement subcomponent C, EC 3.4.21.43 classical-complement-pathway C3 / C5 convertase, EC 3.4. 21.45 complement factor I, EC 3.4.21.46 complement factor D, EC 3.4.21.47 alternative-complement-pa thway C3 / C5 convertase, EC 3.4.21.48 cerevisin, EC 3.4.21.49 hypodermin C, EC 3.4.21.50 lysyl endopeptidase, EC 3.4.21.53 endopeptidase La, EC 3.4.21.54 g-renin, EC 3.4.21.55 venombin AB, EC 3.4 .21.57 leucyl endopeptidase, EC 3.4.21.59 tryptase, EC 3.4.21.60 scutelarin, EC 3.4.21.61 kexin, EC 3.4.21.62 subtilisin, EC 3.4.21.63 oryzin, EC 3.4.21.64 endopeptidase K, EC 3.4.21.65 thermomycolin, EC 3.4 .21.66 thermitase, EC 3.4.21.67 endopeptidase So, EC 3.4.21.68 t-plasminogen activator, EC 3.4.21.69 protein C (activated), EC 3.4.21.70 pancreatic endopeptidase E, EC 3.4.21.71 pancreatic elastase II, EC 3.4.21.72 IgA-specific serine endopeptidase, EC 3.4.21.73 u-plasminogen activator, EC 3.4.21.74 venombin A, EC 3.4.21.75 furin, EC 3.4.21.76 myeloblastin, EC 3.4.21.77 semenogelase, EC 3.4.21.78 granzyme A, EC 3.4. 21.79 granzyme B, EC 3.4.21.80 streptogrisin A, EC 3.4.21.81 streptogrisin B, EC 3.4.21.82 glutamyl endopeptidase II, EC 3.4.21.83 oligopeptidase B EC 3.4.21.84 limulus clotting factor, EC 3.4.21.85 limulus clotting factor, EC 3.4.21.86 limulus clotting enzyme, EC 3.4.21.87 omptin, EC 3.4.21.88 repressor LexA, EC 3.4.21.89 signal peptidase I, EC 3.4.21.90 togavirin , EC 3.4.21.91 flavivirin, EC 3.4.21.92 endopeptidase Clp, EC 3.4.21.93 proprotein convertase 1, EC 3.4.21.94 proprotein convertase 2, EC 3.4.21.95 snake venom factor V activator, EC 3.4.21.96 lactocepin, EC 3.4.21.97 assemblin, EC 3.4.21.98 hepacivirin, EC 3.4.21.99 spermosin, EC 3.4.21.100 pseudomonalisin, EC 3.4.21.101 xanthomonalisin, EC 3.4.21.102 C-terminal processing peptidase, EC 3.4.21.103 physarolisin, EC 3.4.21.104 mannan-binding lectin -associated serine protease-2, EC 3.4.22.1 cathepsin B, EC 3.4.22.2 papain, EC 3.4.22.3 ficain, EC 3.4.22.6 chymopapain, EC 3.4.22.7 asclepain, EC 3.4.22.8 clostripain, EC 3.4.22.10 streptopain, EC 3.4.22.14 actinidain, EC 3.4.22.15 cathepsin L, EC 3.4.22.16 cathepsin H, EC 3.4.22.24 cathepsin T, EC 3.4.22.25 glycyl endopeptidase, EC 3.4.22.26 cancer procoagulant, EC 3.4.22.27 cathepsin S, EC 3.4.22.28 picornain 3C, EC 3.4.22.29 picornain 2A, EC 3.4.22.30 caricain, EC 3.4.22.31 ananain, EC 3.4.22.32 stem bromelain, EC 3.4.22.33 fruit bromelain, EC 3.4.22.34 legumain, EC 3.4.22.35 histolysain, EC 3.4.22.36 caspase-1, EC 3.4.22.37 gingipain R, EC 3.4.22.38 cathepsin K, EC 3.4. 22.39 adenain, EC 3.4.22.40 bleomycin hydrolase, EC 3.4.22.41 cathepsin F, EC 3.4.22.42 cathepsin O, EC 3.4.22.43 cathepsin V, EC 3.4.22.44 nuclear-inclusion-a endopeptidase, EC 3.4.22.45 helper-component proteinase , EC 3.4.22.46 L-peptidase, EC 3.4.22.47 gingipain K, EC 3.4.22.48 staphopain, EC 3.4.22.49 separase, EC 3.4.22.50 V-cath endopeptidase, EC 3.4.22.51 cruzipain, EC 3.4.22.52 calpain-1 , EC 3.4.22.53 calpain-2, EC 3.4.23.1 pepsin A, EC 3.4.23.2 pepsin B, EC 3.4.23.3 gastricsin, EC 3.4.23.4 chymosin, EC 3.4.23.5 cathepsin D, EC 3.4.23.12 nepenthesin, EC 3 . 4.23.15 renin, EC 3.4.23.16 HIV-1 retropepsin, EC 3.4.23.17 Pro-opiomelanocortin converting enzyme, EC 3.4.23.18 aspergillopepsin I, EC 3.4.23.19 aspergillopepsin II, EC 3.4.23.20 penicillopepsin, EC 3.4.23.21 rhizopuspepsin, EC 3.4.23.22 endothiapepsin, EC 3.4.23.23 mucorpepsin, EC 3.4.23.24 candidapepsin, EC 3.4.23.25 saccharopepsin, EC 3.4.23.26 rhodotorulapepsin, EC 3.4.23.28 acrocylindropepsin, EC 3.4.23.29 polyporopepsin, EC 3.4.23.30 pycno .23.31 scytalidopepsin A, EC 3.4.23.32 scytalidopepsin B, EC 3.4.23.34 cathepsin E, EC 3.4.23.35 barrierpepsin, EC 3.4.23.36 signal peptidase II, EC 3.4.23.38 plasmepsin I, EC 3.4.23.39 plasmepsin II, EC 3.4. 23.40 phytepsin, EC 3.4.23.41 yapsin 1, EC 3.4.23.42 thermopsin, EC 3.4.23.43 prepilin peptidase, EC 3.4.23.44 nodavirus endopeptidase, EC 3.4.23.45 memapsin 1, EC 3.4.23.46 memapsin 2, EC 3.4.23.47 HIV- 2 retropepsin, EC 3.4.23.48 plasminogen activator Pla, EC 3.4.24.1 atrolysin A, EC 3.4.24 .3 microbial collagenase, EC 3.4.24.6 leucolysin, EC 3.4.24.7 interstitial collagenase, EC 3.4.24.11 neprilysin, EC 3.4.24.12 envelysin, EC 3.4.24.13 IgA-specific metalloendopeptidase, EC 3.4.24.14 procollagen N-endopeptidase, EC 3.4 .24.15 thimet oligopeptidase, EC 3.4.24.16 neurolysin, EC 3.4.24.17 stromelysin 1, EC 3.4.24.18 meprin A, EC 3.4.24.19 procollagen C-endopeptidase, EC 3.4.24.20 peptidyl-Lys metalloendopeptidase, EC 3.4.24.21 astacin, EC 3.4.24.22 stromelysin 2, EC 3.4.24.23 matrilysin, EC 3.4.24.24 gelatinase A, EC 3.4.24.25 vibriolysin, EC 3.4.24.26 pseudolysin, EC 3.4.24.27 thermolysin, EC 3.4.24.28 bacillolysin, EC 3.4.24.29 aureolysin, EC 3.4.24.30 coccolysin, EC 3.4.24.31 mycolysin, EC 3.4.24.32 b-lytic metalloendopeptidase, EC 3.4.24.33 peptidyl-Asp metalloendopeptidase, EC 3.4.24.34 neutrophil collagenase, EC 3.4.24.35 gelatinase B, EC 3.4.24.36 leishmanolysin, EC 3.4.24.37 saccharolysin, EC 3.4.24.38 gametolysin, EC 3.4.24.39 deuterol ysin, EC 3.4.24.40 serralysin, EC 3.4.24.41 atrolysin B, EC 3.4.24.42 atrolysin C, EC 3.4.24.43 atroxase, EC 3.4.24.44 atrolysin E, EC 3.4.24.45 atrolysin F, EC 3.4.24.46 adamalysin, EC 3.4 .24.47 horrilysin, EC 3.4.24.48 ruberlysin, EC 3.4.24.49 bothropasin, EC 3.4.24.50 bothrolysin, EC 3.4.24.51 ophiolysin, EC 3.4.24.52 trimerelysin I, EC 3.4.24.53 trimerelysin II, EC 3.4.24.54 mucrolysin, EC 3.4 .24.55 pitrilysin, EC 3.4.24.56 insulysin, EC 3.4.24.57 O-sialoglycoprotein endopeptidase, EC 3.4.24.58 russellysin, EC 3.4.24.59 mitochondrial intermediate peptidase, EC 3.4.24.60 dactylysin, EC 3.4.24.61 nardilysin, EC 3.4.24.62 magnolysin , EC 3.4.24.63 meprin B, EC 3.4.24.64 mitochondrial processing peptidase, EC 3.4.24.65 macrophage elastase, EC 3.4.24.66 choriolysin L, EC 3.4.24.67 choriolysin H, EC 3.4.24.68 tentoxilysin, EC 3.4.24.69 bontoxilysin, EC 3.4.24.70 oligopeptidase A, EC 3.4.24.71 endothelin-converting enzyme, EC 3.4.24.72 fibrolase, EC 3.4.24 .73 jararhagin, EC 3.4.24.74 fragilysin, EC 3.4.24.75 lysostaphin, EC 3.4.24.76 flavastacin, EC 3.4.24.77 snapalysin, EC 3.4.24.78 gpr endopeptidase, EC 3.4.24.79 pappalysin-1, EC 3.4.24.80 membrane-type matrix metalloproteinase-1, EC 3.4.24.81 ADAM10 endopeptidase, EC 3.4.24.82 ADAMTS-4 endopeptidase, EC 3.4.24.83 anthrax lethal factor endopeptidase, EC 3.4.24.84 Ste24 endopeptidase, EC 3.4.24.85 S2P endopeptidase, EC 3.4.24.86 ADAM 17 endopeptidase and the like. Among these, EC 3.4.21.62 subtilisin is preferable. The EC 3.4.21.62 includes alcalase, alcalase 0.6L, alcalase 2.5L, ALK-enzyme, bacillopeptidase A, bacillopeptidase B, Bacillus subtilis alkaline proteinase, Bacillus subtilis alkaline proteinase bioprase, Bacillus subtilis carlsberg, bioprase, bioprase AL15, bioprase APL 30, colistinase, esperase, genenase I, kazusase, maxatase, nagarase, nagarse, opticlean, orientase 10B, protease S, protease VIII, protease XXVII, protin A 3L, savinase, savinase 16.0L, savinase 32.0 L EX, savinase 4.0T savinase 8.0L, SP 266, subtilisin, subtilisin A, subtilisin BL, subtilisin bpn ', subtilisin carlsberg, subtilisin DY, subtilisin E, subtilisin GX, subtilisin J, subtilisin NOVO, subtilisin S41, subtilisin Sendai, subtilopeptidid, subtilopeptidid, subtilopeptopidid , Subtilopeptidase bpn ', subtilopeptidase C, superase, thermoase, thermoase PC-10, peptidase produced by Bacillus sp. 97001 strain, and the like.

本発明のペプチダーゼを産生する微生物は、クラゲを分解又は減容するペプチダーゼの生産能を有していればよく、好ましくは、Bacillus sp. 97001株であり、独立行政法人 産業技術総合研究所 特許生物寄託センターにFERM P-20726として寄託している。本菌株の形態観察や、生理的性状試験等の結果を下記に示す。   The microorganism that produces the peptidase of the present invention is only required to have the ability to produce a peptidase that degrades or reduces jellyfish, and is preferably Bacillus sp. 97001, which is an independent administrative agency, National Institute of Advanced Industrial Science and Technology. Deposited at the deposit center as FERM P-20726. The results of morphological observation and physiological property test of this strain are shown below.

Figure 2007189906
Figure 2007189906

表1の結果と、文献(「バージーズ・マニュアル・オブ・システマティク・バクテリオロジー(Bergey's Manual of Systematic Bacteriology)」 Vol.2 (1986) Williams & Wilkins及び「ザ・ジーナス・バチルス(The Genus Bacillus)」 (1973) U. S. Department of Agriculture」を参考にして、本菌株はBacillus sp. 97001株と命名した。
本発明の微生物は、天然又は人為的変異法等の育種によって得られた微生物菌株であってもよい。
Results in Table 1 and literature ("Bergey's Manual of Systematic Bacteriology" Vol.2 (1986) Williams & Wilkins and "The Genus Bacillus" (1973) US Department of Agriculture ", this strain was named Bacillus sp. 97001 strain.
The microorganism of the present invention may be a microbial strain obtained by breeding such as a natural or artificial mutation method.

本発明のペプチダーゼの製造方法は、培地に上記微生物を接種し、常法に従って培養すればよい。該培養に使用する培地中には、微生物が資化し得る炭素源及び窒素源を適当量含有せしめておくことが望ましい。この炭素源及び窒素源は特に制限されないが、例えば炭素源として可溶性澱粉、ガラクトース、グルコース、シュクロース、フラクトース、マルトース、マンニトール、マンノース、ラフィノースや資化し得る有機酸、例えばクエン酸等が挙げられる。また、窒素源としては、カザミノ酸、コーングルテンミール、コーンスティープリカー、ソイトン、ソイビーンミール、トリプトン、フーマメディア、ポリペプトン、酵母エキス、大豆粉、肉エキス、綿実油粕やカルチベータ等の有機窒素源が有効である。更に、カリウム塩、カルシウム塩、コバルト塩、ナトリウム塩、マグネシウム塩、マンガン塩、亜鉛塩、リン酸塩等の無機塩や、必要であれば、無機又は有機微量栄養素やビタミン類を培地中に適宜添加することができる。培養温度は10〜45℃、特に30℃前後が好ましく、pHは6〜8、特に7前後が好ましく、この条件下において通常1〜5日間で培養が完了する。   In the method for producing the peptidase of the present invention, the above-described microorganism may be inoculated into a medium and cultured according to a conventional method. The medium used for the culture preferably contains appropriate amounts of carbon source and nitrogen source that can be assimilated by microorganisms. The carbon source and nitrogen source are not particularly limited, and examples of the carbon source include soluble starch, galactose, glucose, sucrose, fructose, maltose, mannitol, mannose, raffinose, and organic acids that can be assimilated, such as citric acid. Nitrogen sources include organic nitrogen sources such as casamino acids, corn gluten meal, corn steep liquor, soyton, soy bean meal, tryptone, huma media, polypeptone, yeast extract, soy flour, meat extract, cottonseed meal and cultivator. It is valid. Furthermore, inorganic salts such as potassium salt, calcium salt, cobalt salt, sodium salt, magnesium salt, manganese salt, zinc salt, phosphate, etc., and if necessary, inorganic or organic micronutrients and vitamins are appropriately added to the medium. Can be added. The culture temperature is preferably 10 to 45 ° C., particularly around 30 ° C., and the pH is preferably 6 to 8, particularly around 7. The culture is usually completed in 1 to 5 days under these conditions.

本発明のペプチダーゼは、少なくともクラゲを分解又は減容可能な酵素であればよく、EC 3.4に分類されるペプチダーゼである。本発明のペプチダーゼは、菌体を含む培養液をそのまま用いてもよいし、培養液の濃縮物であってもよい。また、菌体の破砕物であってもよく、自己消化や界面活性剤による可溶化で得られる菌体抽出液であってもよい。本発明のペプチダーゼは、培養液及び/又は菌体抽出液から精製し、純化されたものであってもよい。当該純化の度合いは特に制限されるものではなく、適宜選択し用いればよい。本発明のペプチダーゼを純化するには、一般の酵素採取の手段に準じて行えばよい。例えば、本発明の微生物の培養完了後、該微生物を遠心分離又は濾過等の通常の分離手段により培養液から微生物を除去して粗酵素液を得る。さらに、該粗酵素液を本必要に応じて限外濾過若しくは塩析若しくは溶媒沈澱等の手段により回収し、本発明のペプチダーゼを取得すればよい。本発明のペプチダーゼは粉末化して使用してもよい。また、一般的な酵素精製の手段、例えば、陰イオン交換樹脂、陽イオン交換樹脂、アフィニティークロマトグラフィー、疎水クロマトグラフィー、ハイドロキシアパタイトによるクロマトグラフィー及びゲル濾過等を適宜組み合せることによって精製してもよい。
本発明のBacillus sp. 97001株由来のペプチダーゼは、エンドペプチダーゼに分類され、活性中心はセリン残基、分子量は約26,000、至適温度は55〜70度であり、至適温度は60℃付近で最大活性を示した。至適pHはpH7〜9であり、pH6〜9の範囲で安定である。阻害作用は、ジイソプロピルフルオロリン酸(DEP)、フェニルメタンスルホニルフルオリド(PMSF)、エチレンジアミン四酢酸(EDTA)、大豆トリプシンインヒビターである。
The peptidase of the present invention may be at least an enzyme capable of degrading or reducing jellyfish, and is a peptidase classified as EC 3.4. The peptidase of the present invention may be a culture solution containing bacterial cells, or may be a concentrate of the culture solution. Moreover, the crushed material of a microbial cell may be sufficient, and the microbial cell extract obtained by the solubilization by self-digestion or surfactant may be sufficient. The peptidase of the present invention may be purified from a culture solution and / or a bacterial cell extract and purified. The degree of purification is not particularly limited, and may be appropriately selected and used. In order to purify the peptidase of the present invention, it may be carried out according to a general means for collecting enzymes. For example, after the culture of the microorganism of the present invention is completed, the microorganism is removed from the culture solution by a normal separation means such as centrifugation or filtration to obtain a crude enzyme solution. Furthermore, the crude enzyme solution may be recovered by means such as ultrafiltration, salting out or solvent precipitation as necessary to obtain the peptidase of the present invention. The peptidase of the present invention may be used after powdered. Further, it may be purified by appropriately combining general enzyme purification means, for example, anion exchange resin, cation exchange resin, affinity chromatography, hydrophobic chromatography, chromatography with hydroxyapatite and gel filtration. .
Peptidases derived from the Bacillus sp. 97001 strain of the present invention are classified as endopeptidases, the active center is a serine residue, the molecular weight is about 26,000, the optimum temperature is 55 to 70 degrees, and the optimum temperature is around 60 ° C. Maximum activity was shown. The optimum pH is pH 7-9 and is stable in the range of pH 6-9. Inhibitory action is diisopropylfluorophosphate (DEP), phenylmethanesulfonyl fluoride (PMSF), ethylenediaminetetraacetic acid (EDTA), soybean trypsin inhibitor.

本発明のクラゲの分解用製剤は、少なくとも本発明のペプチダーゼを含有していればよく、例えば、本発明のペプチダーゼの製造工程中に得られる該粗酵素液をそのまま含有してもよいし、本発明のペプチダーゼを生産する微生物を含む培養液を含有してもよく、本発明のペプチダーゼの産生微生物を含有していてもよい。本発明のクラゲの分解用製剤は、少なくとも本発明のペプチダーゼを含有し、その他の配合、形状は特に制限されるものではない。例えば、安定化の目的でグリセロールなど多価アルコールを含有させたり、腐敗防止の目的で安息香酸ナトリウムを任意の割合で配合することが出来る。形状は、液状であっても、粉末であってもよく、粉末を顆粒状にすることも可能であるし、その他の基材を用いてペースト状にすることも可能である。   The preparation for decomposing jellyfish of the present invention only needs to contain at least the peptidase of the present invention. For example, the crude enzyme solution obtained during the production process of the peptidase of the present invention may be contained as it is. A culture solution containing a microorganism that produces the peptidase of the invention may be contained, or a microorganism producing the peptidase of the invention may be contained. The preparation for degrading jellyfish of the present invention contains at least the peptidase of the present invention, and the other formulation and shape are not particularly limited. For example, a polyhydric alcohol such as glycerol can be contained for the purpose of stabilization, or sodium benzoate can be blended in any proportion for the purpose of preventing spoilage. The shape may be liquid or powder, and the powder may be granulated, or may be pasted using another substrate.

本発明のクラゲの分解方法は、本発明のペプチダーゼを使用しクラゲに作用させることで、該クラゲを分解又は減容すればよい。また、本発明のクラゲの分解方法は、クラゲの分解に際して、上記した培養液、培養液の上清、培養液の上清の濃縮物、培養液の上清から適当な程度精製して得た酵素、培養によって得られた本発明の微生物の菌体、培養によって得られた該微生物の菌体処理物等のいずれかを使用することが好ましく、該クラゲを分解又は減容する為の条件等に応じて適宜選択し使用することができる。例えば、以下のステップ(1)〜(3)を実行することによって行われる。   In the method for decomposing jellyfish of the present invention, the jellyfish may be decomposed or reduced in volume by acting on the jellyfish using the peptidase of the present invention. In addition, the jellyfish decomposition method of the present invention was obtained by purifying the jellyfish to an appropriate degree from the above-mentioned culture solution, culture supernatant, culture supernatant concentrate, and culture supernatant. It is preferable to use any one of an enzyme, a microbial cell of the microorganism of the present invention obtained by culturing, a treated product of the microbial cell obtained by culturing, conditions for decomposing or reducing the jellyfish, etc. Can be selected and used as appropriate. For example, it is performed by executing the following steps (1) to (3).

(1) 海水利用プラントの取水口又は漁業施設に襲来し、取水路に流入したクラゲを、適当な手段で分別採取し、
(2) 該クラゲを、必要に応じて、適当な手段で裁断及び/又は破砕等の前処理を行い、
(3) 該前処理済みクラゲを、適当な容器内で所定の時間、本発明の微生物が産生するペプチダーゼ若しくはその類似酵素と反応させ、クラゲの分解又は減容する。
(1) The jellyfish that invaded the intake of the seawater utilization plant or the fishery facility and flowed into the intake channel were separated and collected by appropriate means.
(2) If necessary, the jellyfish is subjected to pretreatment such as cutting and / or crushing by an appropriate means,
(3) The pretreated jellyfish is reacted with a peptidase produced by the microorganism of the present invention or a similar enzyme in a suitable container for a predetermined time to decompose or reduce the volume of the jellyfish.

本発明の分解方法のステップ(1)は、海水利用プラントの取水口又は漁業施設に襲来し、取水路に流入したクラゲが、適当な手段により分別採取される。このクラゲの分別採取の手段は常法により行えばよく、例えば襲来したクラゲを網、金属メッシュ若しくはスクリーンでトラップするなどが挙げられる。また、分別採取されたクラゲ自体が微生物により変敗することを防ぐ為にステップ(3)までの工程は、低温下での保存や作業することが好ましい。さらに、ステップ(3)までの経過時間はなるべく短くすることが好ましい。本発明の方法のステップ(1)において分別採取されたクラゲは、ステップ(2)において、必要に応じ、適当な手段により裁断及び/又は破砕等の前処理を施される。これは、ステップ(3)での反応の効率をより高くすることを目的としている。このクラゲの裁断及び/又は破砕等に使用する装置は、前記目的を達成でき、本発明のクラゲの分解を可能とする装置を使用すればよく、産業的に利用している裁断機、粉砕機等を適宜選択し使用すればよい。本発明の方法のステップ(2)において、必要に応じ、また、適当な裁断及び/又は破砕等の手段により、裁断及び/又は破砕等の処理をしたクラゲは、ステップ(3)において、適当な容器内で所定の時間、本発明のEC 3.4に分類されかつクラゲを分解しえるペプチダーゼ、好ましくは、Bacillus sp. 97001株が産生するペプチダーゼ若しくはその類似酵素と反応する。ステップ(3)においては、反応の効率を高く保つ為、反応系のpH及び/又は温度を適切に制御することが好ましく、さらに、撹拌混合を行うことが望ましい。該撹拌混合に使用する装置は、本発明のクラゲの分解を可能とする装置を使用すればよく、産業的に利用している撹拌装置、反応タンク、ニーダー等を適宜選択して使用すればよい。本発明の分解方法のステップ(2)とステップ(3)を行う順序は特に限定されるものではなく、例えば、ステップ(2)とステップ(3)を同時に行ってもよい。上記するステップ(1)〜(3)を組み合わせることにより、分解又は減容したクラゲは、固形分が大幅に減少し、一般的な汚水と同様の形態となる。分解又は減容した該クラゲは、通常の生物的及び/又は化学的な汚水処理法によって処理することで、BOD(生物化学的酸素要求量)及び/又はCOD(化学的酸素要求量)を低減させることができ、効率よく廃棄することが可能である。発電所等の海水利用プラントの取水口や、漁業施設に、襲来して大量の難処理廃棄物となったクラゲは、適切な手法が無く、該クラゲの最終処分が困難であったが、本発明の分解方法によることでこの課題を容易ならしむるものである。   In step (1) of the decomposition method of the present invention, the jellyfish that has entered the intake or fishery facility of the seawater utilization plant and has flowed into the intake channel is collected by appropriate means. The jellyfish can be separated and collected by a conventional method, such as trapping the attacking jellyfish with a net, a metal mesh or a screen. In addition, in order to prevent the jellyfish itself collected separately from being degraded by microorganisms, it is preferable that the steps up to step (3) are stored and operated at a low temperature. Furthermore, it is preferable to shorten the elapsed time until step (3) as much as possible. In step (2), the jellyfish separated and collected in step (1) of the method of the present invention is subjected to pretreatment such as cutting and / or crushing by appropriate means in step (2). This is intended to increase the efficiency of the reaction in step (3). The apparatus used for cutting and / or crushing of the jellyfish can achieve the above-mentioned object, and an apparatus that can decompose the jellyfish according to the present invention may be used. Etc. may be appropriately selected and used. In step (2) of the method of the present invention, a jellyfish that has been subjected to treatment such as cutting and / or crushing by means of appropriate cutting and / or crushing, etc. It reacts with a peptidase classified as EC 3.4 of the present invention and capable of decomposing jellyfish, preferably a peptidase produced by Bacillus sp. In step (3), in order to keep the efficiency of the reaction high, it is preferable to appropriately control the pH and / or temperature of the reaction system, and further to perform stirring and mixing. The apparatus used for the stirring and mixing may be an apparatus that can decompose the jellyfish of the present invention, and may be used by appropriately selecting an industrially used stirring apparatus, reaction tank, kneader or the like. . The order of performing step (2) and step (3) of the decomposition method of the present invention is not particularly limited. For example, step (2) and step (3) may be performed simultaneously. By combining the steps (1) to (3) described above, the decomposed or reduced volume jellyfish has a solid content that is greatly reduced and has the same form as general wastewater. The decomposed or reduced volume jellyfish can be processed by conventional biological and / or chemical sewage treatment methods to reduce BOD (biochemical oxygen demand) and / or COD (chemical oxygen demand). Can be disposed of efficiently. The jellyfish that attacked the intakes of seawater use plants such as power plants and fishing facilities and became a large amount of difficult-to-treat waste did not have an appropriate method, and the final disposal of the jellyfish was difficult. This problem is facilitated by the decomposition method of the invention.

本発明のクラゲの分解方法に際して、本発明のペプチダーゼは、1Kgの生きたクラゲを処理するのに際して、好ましくは、0.3〜72AUであり、より好ましくは10〜55AUであり、最適には25〜40AUであればよい。本発明で単位とするAUとはアンソン単位であり、ジメチルカゼイン法を用いて測定した蛋白質分解活性の単位を示す。   In the method of decomposing jellyfish of the present invention, the peptidase of the present invention is preferably 0.3 to 72 AU, more preferably 10 to 55 AU, and most preferably 25 to 40 AU in treating 1 kg of live jellyfish. If it is. The AU as a unit in the present invention is an Anson unit, and indicates a unit of proteolytic activity measured using a dimethyl casein method.

本発明のクラゲ分解装置は、本発明のクラゲの分解方法に関連し、処理すべきクラゲの量に応じた容器であって、pH及び/又は温度を適切に制御することが好ましく、さらに好ましくは接触効率を高め、分解速度を高く保つために攪拌装置が設置されていればよい。該pH及び/又は温度の適切な制御は、自動制御手段であっても、手動制御手段であってもよく、該制御装置としては制御手段に応じて適宜選択し設置できる。例えば、産業的に利用している各種の反応タンク、ニーダー等を使用し応用すればよい。   The jellyfish decomposing apparatus of the present invention is related to the jellyfish decomposing method of the present invention, and is a container according to the amount of jellyfish to be processed, preferably controlling pH and / or temperature, more preferably. In order to increase the contact efficiency and keep the decomposition rate high, a stirring device may be installed. Appropriate control of the pH and / or temperature may be automatic control means or manual control means, and the control device can be appropriately selected and installed according to the control means. For example, various reaction tanks and kneaders that are used industrially may be used.

また、上記した本発明の分解方法は、そのまま、本発明のクラゲ分解産物の製造方法としても応用することができる。クラゲの固形分はコラーゲンを含むことから、本発明を応用することで、クラゲ由来コラーゲン及び/又はその分解物を含有するクラゲ分解産物を、効率よく製造できる。該クラゲ由来コラーゲン及び/又はその分解物を含有するクラゲ分解産物は、食品素材や化粧品素材等への応用が可能である。   Moreover, the above-described decomposition method of the present invention can be applied as it is as a method for producing the jellyfish decomposition product of the present invention. Since the solid content of jellyfish contains collagen, by applying the present invention, a jellyfish degradation product containing jellyfish-derived collagen and / or a degradation product thereof can be efficiently produced. The jellyfish degradation product containing the jellyfish-derived collagen and / or degradation product thereof can be applied to food materials, cosmetic materials and the like.

本発明のクラゲ駆除方法は、海中に浮遊している及び/又は海中の物体に固着しているクラゲに対し、本発明のEC 3.4に分類されかつクラゲを分解しえるペプチダーゼ、好ましくは、Bacillus sp. 97001株が産生するペプチダーゼ若しくはその類似酵素を、海中に散布し、該クラゲと接触せしめればよい。本発明のクラゲ駆除方法は、本発明のペプチダーゼを使用することにより、クラゲの死体のみならず、生きたクラゲに対しても分解及び減容の効果が見られることから、海中にあっても実施可能である。本発明のペプチダーゼの使用量や形態等は、散布範囲、駆除するクラゲ量、散布方法、海水の流入量、海水温、塩分濃度等に応じて、適宜選択し使用すればよく、特に制限されず、実際に生きたクラゲを分解しさらには駆除することが可能である。   The jellyfish extermination method of the present invention is a peptidase classified as EC 3.4 of the present invention and capable of decomposing jellyfish, preferably Bacillus sp., For jellyfish floating in the sea and / or adhering to an object in the sea. The peptidase produced by strain 97001 or a similar enzyme may be sprayed into the sea and brought into contact with the jellyfish. The jellyfish extermination method of the present invention is effective not only for jellyfish corpses but also for living jellyfish by using the peptidase of the present invention. Is possible. The amount and form of the peptidase of the present invention may be appropriately selected and used according to the spraying range, the amount of jellyfish to be exterminated, the spraying method, the inflow of seawater, the seawater temperature, the salinity concentration, etc., and is not particularly limited. It is possible to break down and even disinfect live jellyfish.

本発明の方法において、クラゲの分解及び減容の対象となる施設は、海水利用プラントである。海水利用プラントは、取水口から海水を取水してそれを利用するプラントであれば特に限定されないが、例えば、火力発電所、原子力発電所、液化天然ガスの再気化施設、漁業施設等が挙げられる。   In the method of the present invention, the facility targeted for jellyfish decomposition and volume reduction is a seawater utilization plant. The seawater utilization plant is not particularly limited as long as it takes seawater from a water intake and uses it, for example, a thermal power plant, a nuclear power plant, a liquefied natural gas re-vaporization facility, a fishery facility, etc. .

以下に実施例を挙げて本発明を更に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be further described below with reference to examples, but the present invention is not limited to these examples.

[実施例1. Bacillus sp. 97001株の培養]
バチルス培地(酵母エキス(0.4%)、ポリペプトン(0.8%)、塩化ナトリウム(0.2%):水酸化ナトリウム溶液にてpH7.2に調整)をそれぞれ試験管4本に分注し、121℃で20分間殺菌して冷却したのち、Bacillus sp. 97001株を一白金耳ずつ接種し、30℃で18時間振盪培養して、種培養液を調製した。2L容量の培養フラスコ4本に、上記バチルス培地400mlをそれぞれ分注し、これを121℃で20分間殺菌して冷却したのち、上記の種培養液16ml(試験管4本分)を各フラスコに4mlずつ接種し、30℃で18時間振とう培養して、前培養液とした。ついで、上記と同様の組成からなる培地に消泡剤0.01%(W/V)を添加した培地160Lを200L容量のジャーファーメンターに入れ、121℃で20分間殺菌して冷却したのち、上記の前培養液1.6Lを接種し、30℃で18時間、通気攪拌培養した。培養終了後、菌体と培養上清を分別した。
[Example 1. Culture of Bacillus sp. 97001 strain]
Dispense Bacillus medium (yeast extract (0.4%), polypeptone (0.8%), sodium chloride (0.2%): adjusted to pH 7.2 with sodium hydroxide solution) into 4 test tubes each. Then, after sterilizing at 121 ° C. for 20 minutes and cooling, Bacillus sp. 97001 strain was inoculated one by one, and cultured at 30 ° C. with shaking for 18 hours to prepare a seed culture solution. Dispense 400 ml of the Bacillus medium into four 2 L culture flasks, disinfect and cool them at 121 ° C. for 20 minutes, and then add 16 ml of the seed culture solution (for four test tubes) to each flask. Each 4 ml was inoculated and cultured with shaking at 30 ° C. for 18 hours to prepare a preculture solution. Next, 160 L of a medium having the same composition as above with an antifoaming agent 0.01% (W / V) added thereto was placed in a 200 L capacity jar fermenter, sterilized at 121 ° C. for 20 minutes, cooled, 1.6 L of the above preculture solution was inoculated and cultured with aeration and stirring at 30 ° C. for 18 hours. After completion of the culture, the cells and the culture supernatant were separated.

[実施例2. Bacillus sp. 97001株由来ペプチダーゼの調製]
実施例1で得た培養上清を、膜ろ過装置(分画分子量10,000)を用いて4℃で濃縮し、次に同装置で液組成をリン酸カリウム緩衝液(50mM、pH7)に置換し、ペプチダーゼ溶液4Lを得た。得られたペプチダーゼの分子量は約26,000であった。定法に従い至適温度を測定したところ、60℃付近で最大活性を示した。また、pH6-9の範囲で安定であった。
[Example 2. Preparation of peptidase from Bacillus sp. 97001]
The culture supernatant obtained in Example 1 was concentrated at 4 ° C. using a membrane filtration device (fractionated molecular weight 10,000), and the liquid composition was then replaced with potassium phosphate buffer (50 mM, pH 7) using the same device. As a result, 4 L of peptidase solution was obtained. The molecular weight of the obtained peptidase was about 26,000. When the optimum temperature was measured according to a conventional method, the maximum activity was observed at around 60 ° C. Moreover, it was stable in the pH range of 6-9.

[実施例3. Bacillus sp. 97001株由来ペプチダーゼによるミズクラゲの分解]
実施例2で得たペプチダーゼ溶液100mLと、リン酸カリウム緩衝液(50mM、pH7)100mLとを混和し、これに生きたミズクラゲ(傘の直径 約4.5cm)1匹を入れ、30℃で静置し、目視観察した。その結果、約6時間でミズクラゲは完全に分解され、形態が消失し減容した。
また、前記方法のミズクラゲ生体の代りに、ミズクラゲを約2cm角に裁断したものを使用した以外は前記方法と同一条件で実験を行ったところ、約2時間で裁断したミズクラゲは完全に分解され、形態が消失した結果減容した。
[Example 3. Degradation of moon jellyfish by peptidase from Bacillus sp. 97001]
100 mL of the peptidase solution obtained in Example 2 and 100 mL of potassium phosphate buffer (50 mM, pH 7) are mixed, and one living moon jellyfish (umbrella diameter: about 4.5 cm) is added thereto, and the mixture is allowed to stand at 30 ° C. And visually observed. As a result, the moon jellyfish was completely decomposed in about 6 hours, and the form disappeared and the volume was reduced.
In addition, instead of using the jellyfish body of the above method, an experiment was performed under the same conditions as the above method except that the jellyfish was cut into about 2 cm square, and the jellyfish cut in about 2 hours was completely decomposed, Volume decreased as a result of disappearance of form.

なお、対照区として、実施例2で得たペプチダーゼ溶液とリン酸カリウム緩衝液(50mM、pH7)とを混和した溶液を121℃、30分のオートクレーブ処理による酵素失活させた混和溶液を使用した以外は同一条件で行った。該対照区では、ミズクラゲは分解されなかった。   As a control group, a mixed solution obtained by mixing the peptidase solution obtained in Example 2 with potassium phosphate buffer (50 mM, pH 7) and deactivating the enzyme by autoclaving at 121 ° C. for 30 minutes was used. The other conditions were the same. In the control group, moon jellyfish was not decomposed.

[実施例4. Bacillus sp. 97001株由来ペプチダーゼによるエチゼンクラゲの分解]
実施例2で得たペプチダーゼ溶液100mLと、リン酸カリウム緩衝液(50mM、pH7)100mLとを混和し、これをエチゼンクラゲ生体の切り身(20cm×15cm×3cm)に掛け、45℃で静置し、目視観察した。その結果、約5時間でエチゼンクラゲは完全に分解され、形態が消失した結果減容した。
また、前記方法のエチゼンクラゲの切り身の代りに、エチゼンクラゲを約2cm角に裁断したもものを使用した以外は前記方法と同一条件で実験を行ったところ、約0.5時間でエチゼンクラゲは完全に分解され、形態が消失した結果減容した。
[Example 4. Degradation of Echizen jellyfish by peptidase from Bacillus sp. 97001]
100 mL of the peptidase solution obtained in Example 2 and 100 mL of potassium phosphate buffer (50 mM, pH 7) were mixed, and this was applied to a slice of the Echizen jellyfish organism (20 cm × 15 cm × 3 cm) and allowed to stand at 45 ° C., Visual observation was performed. As a result, Echizen jellyfish was completely decomposed in about 5 hours, and the volume was reduced as a result of the disappearance of the form.
In addition, when the experiment was carried out under the same conditions as in the above method except that the Echizen jellyfish cut into about 2 cm square instead of the Echizen jellyfish fillet of the above method, the Echizen jellyfish was completely decomposed in about 0.5 hours. The volume was reduced as a result of the disappearance of the form.

なお、対照区は、実施例2で得たペプチダーゼ溶液とリン酸カリウム緩衝液(50mM、pH7)とを混和した溶液を121℃、30分のオートクレーブ処理による酵素失活させた混和溶液を使用した以外は前述の方法と同一条件で行った。該対照区では、エチゼンクラゲは分解されなかった。   In the control group, a mixed solution in which the enzyme was inactivated by autoclaving at 121 ° C. for 30 minutes was used in a solution obtained by mixing the peptidase solution obtained in Example 2 and potassium phosphate buffer (50 mM, pH 7). Except for the above, the conditions were the same as those described above. In the control group, Echizen jellyfish was not decomposed.

[実施例5. Bacillus sp. 97001株由来ペプチダーゼと他の酵素の比較]
クラゲ分解酵素として、実施例2で得たペプチダーゼ溶液、市販酵素10種類(市販品A, B, C, D, E, F, G, H, I ,J)を使用し、ミズクラゲ及びエチゼンクラゲの生体の切り身を各々2cm角に裁断した以外は、実施例4と同一の条件で行った。この際に、各酵素の使用量は、該酵素のタンパク量に基づいて揃え、50mgで行った。その表方法を表3に、その結果を表2に示した。
[Example 5. Comparison of peptidase from Bacillus sp. 97001 and other enzymes]
Using the peptidase solution obtained in Example 2 and 10 commercially available enzymes (commercial products A, B, C, D, E, F, G, H, I and J) as jellyfish degrading enzymes, This was performed under the same conditions as in Example 4 except that each of the cut pieces was cut into 2 cm squares. At this time, the amount of each enzyme used was adjusted to 50 mg based on the protein amount of the enzyme. The table method is shown in Table 3, and the result is shown in Table 2.

その結果、実施例2で得た、本発明のBacillus sp. 97001株由来ペプチダーゼによるミズクラゲ及びエチゼンクラゲの反応結果は、ミズクラゲを約2時間、エチゼンクラゲを約0.5時間で完全に分解した。他の市販酵素を使用した場合は、全く分解されないか若しくは12時間以上かけて分解した。本発明のペプチダーゼを使用することで、クラゲをより効率に分解し及び減容できることが示された。   As a result, the reaction results of the moon jellyfish and Echizen jellyfish with the peptidase derived from the Bacillus sp. 97001 strain of the present invention obtained in Example 2 were completely degraded in about 2 hours and Echizen jellyfish in about 0.5 hours. When other commercially available enzymes were used, they were not degraded at all or were degraded over 12 hours. It has been shown that by using the peptidase of the present invention, jellyfish can be decomposed and reduced in volume more efficiently.

Figure 2007189906
Figure 2007189906

Figure 2007189906
Figure 2007189906

Claims (10)

EC 3.4 に分類され、かつ、クラゲを分解しえるペプチダーゼ。   A peptidase classified as EC 3.4 and capable of decomposing jellyfish. Bacillus sp. 97001株由来である請求項1に記載のペプチダーゼ。   The peptidase according to claim 1, which is derived from Bacillus sp. 97001 strain. ペプチダーゼの性質および/または実質的に同等な性質を有するタンパク質またはその塩について、該タンパク質をコードするアミノ酸配列あるいは当該配列に1またはそれ以上のアミノ酸残基の欠失、置換もしくは付加による変異を含むアミノ酸配列を有し、かつ、生物学的に活性で安定なタンパク質である請求項1ないし2に記載のペプチダーゼ。   A protein having a peptidase property and / or a substantially equivalent property or a salt thereof includes an amino acid sequence encoding the protein or a mutation caused by deletion, substitution or addition of one or more amino acid residues in the sequence. The peptidase according to claim 1 or 2, which has an amino acid sequence and is a biologically active and stable protein. 請求項1〜3の何れか1項に記載のペプチダーゼの生産能を有する微生物。   A microorganism having the ability to produce the peptidase according to any one of claims 1 to 3. 請求項4に記載の微生物を培養し、ペプチダーゼを生産せしめ、これを採取してなるペプチダーゼの製造方法。   A method for producing a peptidase obtained by culturing the microorganism according to claim 4 to produce a peptidase, and collecting the peptidase. 請求項1〜3の何れか1項に記載のペプチダーゼを使用してなるクラゲの分解方法。   A method for decomposing jellyfish using the peptidase according to any one of claims 1 to 3. 請求項1〜3の何れか1項に記載のペプチダーゼを使用してなるクラゲ分解装置。   A jellyfish decomposing apparatus using the peptidase according to any one of claims 1 to 3. 請求項1〜3の何れか1項に記載のペプチダーゼを含有してなるクラゲ分解用製剤。   A preparation for jellyfish degradation comprising the peptidase according to any one of claims 1 to 3. 請求項1〜3の何れか1項に記載のペプチダーゼを使用してなるクラゲ分解産物。   A jellyfish degradation product obtained by using the peptidase according to any one of claims 1 to 3. 請求項1〜3の何れか1項に記載のペプチダーゼを使用してなるクラゲの駆除方法。
A jellyfish extermination method using the peptidase according to any one of claims 1 to 3.
JP2006008345A 2006-01-17 2006-01-17 Peptidase and method of using the same Withdrawn JP2007189906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006008345A JP2007189906A (en) 2006-01-17 2006-01-17 Peptidase and method of using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006008345A JP2007189906A (en) 2006-01-17 2006-01-17 Peptidase and method of using the same

Publications (1)

Publication Number Publication Date
JP2007189906A true JP2007189906A (en) 2007-08-02

Family

ID=38446069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006008345A Withdrawn JP2007189906A (en) 2006-01-17 2006-01-17 Peptidase and method of using the same

Country Status (1)

Country Link
JP (1) JP2007189906A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009171870A (en) * 2008-01-22 2009-08-06 Nagase & Co Ltd Trypsin-like enzyme
WO2012039483A1 (en) * 2010-09-24 2012-03-29 公益財団法人微生物化学研究会 Microorganism belonging to genus bacillus, thrombolytic enzyme, and method for processing waste

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009171870A (en) * 2008-01-22 2009-08-06 Nagase & Co Ltd Trypsin-like enzyme
WO2012039483A1 (en) * 2010-09-24 2012-03-29 公益財団法人微生物化学研究会 Microorganism belonging to genus bacillus, thrombolytic enzyme, and method for processing waste
JP5715635B2 (en) * 2010-09-24 2015-05-13 公益財団法人微生物化学研究会 Bacillus microorganism, toxin degrading agent, and waste treatment method
US9079229B2 (en) 2010-09-24 2015-07-14 Microbial Chemistry Research Foundation Microorganism belonging to genus Bacillus, thrombolytic enzyme, and method for treating waste
KR101542595B1 (en) * 2010-09-24 2015-08-12 자이단호진 비세이부쯔 가가꾸 겡뀨까이 Microorganism belonging to genus bacillus, thrombolytic enzyme, and method for processing waste

Similar Documents

Publication Publication Date Title
Barzkar Marine microbial alkaline protease: An efficient and essential tool for various industrial applications
US6325934B1 (en) Enzyme and bacterial combination in a slowly dissolvable matrix for septic tanks, grease traps and waste treatment
CN103820427B (en) The preparation method of microorganism purification of water quality microbial inoculum
JP5715635B2 (en) Bacillus microorganism, toxin degrading agent, and waste treatment method
Sundqvist et al. Collagenolytic activity of black‐pigmented Bacteroides species
JPH11239784A (en) Apparatus for cleaning soil and method for restoring polluted soil
JP2006136791A (en) Method and apparatus for treating microcystin-containing water
JP3420460B2 (en) Pollutant decomposition apparatus, method for purifying contaminated medium, and method for decomposing pollutants
JP2001286884A (en) Device and process for treating organic wastewater
JP2006181393A (en) Non-sludge high-speed wastewater treatment system
Souissi et al. Preparation and use of media for protease-producing bacterial strains based on by-products from Cuttlefish (Sepia officinalis) and wastewaters from marine-products processing factories
JP2007189906A (en) Peptidase and method of using the same
JP3641156B2 (en) New microorganisms and biological treatment methods for marine organisms
Møllebjerg et al. Novel high-throughput screening platform identifies enzymes to tackle biofouling on reverse osmosis membranes
US20080287297A1 (en) Method and composition for clearing sewer lines of roots utilizing herbicides and bacteria
JP2004275960A (en) Treating method for organic waste water
Ali et al. A critical review of microplastics in aquatic ecosystems: Degradation mechanisms and removing strategies
JP3432214B2 (en) Algae treatment
CN115232766A (en) Halophilic microorganism sewage cleaning agent and preparation method thereof
JP2003053303A (en) Method for treating jelly fish using collagenase
JP2000254686A (en) Method for rapid removal of blue alga using blue alga decomposable and flocculatable immobilizing microbial cell
JP5372496B2 (en) Apparatus and method for non-chemical stabilization of biological solids
Surti et al. STUDY OF OPTIMIZATION, CHARACTERIZATION AND APPLICATIONS OF KERATINASE PRODUCED BY A BACILLUS STRAIN
JP4439957B2 (en) Wet processing apparatus, method for degrading sparingly soluble protein, jellyfish decomposing composition, and method for decomposing jellyfish using the same
JP2006212612A (en) Method for decomposing and extinguishing excrement and urine of hog raising using composite fermentation method in composite microorganism dynamic system analysis of composite microorganism system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081212

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091026