[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007189129A - Solid-state photographing device, and manufacturing method thereof - Google Patents

Solid-state photographing device, and manufacturing method thereof Download PDF

Info

Publication number
JP2007189129A
JP2007189129A JP2006007139A JP2006007139A JP2007189129A JP 2007189129 A JP2007189129 A JP 2007189129A JP 2006007139 A JP2006007139 A JP 2006007139A JP 2006007139 A JP2006007139 A JP 2006007139A JP 2007189129 A JP2007189129 A JP 2007189129A
Authority
JP
Japan
Prior art keywords
region
light receiving
unit
solid
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006007139A
Other languages
Japanese (ja)
Inventor
Takayori Kano
隆頼 鹿野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006007139A priority Critical patent/JP2007189129A/en
Publication of JP2007189129A publication Critical patent/JP2007189129A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-state photographing device and a manufacturing method thereof which so suppresses the generation of smears even in the peripheries of its photographing portion whereon oblique lights are made incident as to be able to improve its sensibility. <P>SOLUTION: With respect to a photographing portion of the photographing device, there are arranged in a two-dimensional way in a semiconductor substrate 22 light receivers 25 for so receiving lights as to subject them to photoelectric conversions, and a plurality of photographing picture elements 21 having vertical charge transferring portions 29 for transferring the charges stored in the respective light receiving portions 25. There are provided in the form of a grid in the semiconductor substrate 22 separating regions 44 for separating from each other the light receivers 25 of the photographing picture elements 21 adjacent to each other. In this photographing portion, the widths of the separating regions 44 are made different from each other correspondingly to the positions of the separating parts. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は固体撮像装置およびその製造方法に関するものであり、特に、入射光を有効に光電変換するため受光部を基板深く形成している固体撮像装置およびその製造方法に関するものである。   The present invention relates to a solid-state imaging device and a manufacturing method thereof, and more particularly to a solid-state imaging device in which a light receiving portion is formed deep in a substrate in order to effectively photoelectrically convert incident light and a manufacturing method thereof.

以下、図5ないし図7を参照しながら、従来技術の固体撮像装置(特許文献1)を説明する。   Hereinafter, a conventional solid-state imaging device (Patent Document 1) will be described with reference to FIGS.

図5は固体撮像装置の概略構成を示す平面図、図6は図5のVI-VI線の撮像部内の入射光概略図、図7は図5のVII-VII線の画素部の構造断面図である。   5 is a plan view showing a schematic configuration of the solid-state imaging device, FIG. 6 is a schematic diagram of incident light in the imaging unit of the VI-VI line of FIG. 5, and FIG. 7 is a structural sectional view of the pixel unit of the VII-VII line of FIG. It is.

図5において、固体撮像装置は、格子状に配置した複数の撮像画素21と垂直電荷転送部29とからなる撮像部20と、水平電荷転送部12ならびにAMP部(増幅器)11にて構成されている。   In FIG. 5, the solid-state imaging device includes an imaging unit 20 including a plurality of imaging pixels 21 and a vertical charge transfer unit 29 arranged in a grid, a horizontal charge transfer unit 12 and an AMP unit (amplifier) 11. Yes.

撮像画素21は、図7に示すように、第1導電型、例えばn型のシリコンからなる半導体基板22の深い位置に、オーバーフローバリア領域となる第2導電型、即ちp型の第1の半導体ウェル領域23が形成され、第1のp型半導体ウェル領域23上に、例えばp-領域、ノンドープ領域、n-領域等の比抵抗の高い高抵抗領域24が形成される。 As shown in FIG. 7, the imaging pixel 21 has a first conductivity type, for example, a second conductivity type, that is, a p-type first semiconductor, which becomes an overflow barrier region, at a deep position of a semiconductor substrate 22 made of n-type silicon. A well region 23 is formed, and a high resistance region 24 having a high specific resistance, such as a p region, a non-doped region, or an n region, is formed on the first p-type semiconductor well region 23.

高抵抗領域24の表面に、マトリックス配列の各受光部25を構成するn+半導体領域26及びこの上のp+正電荷蓄積領域27が形成される。 On the surface of the high resistance region 24, an n + semiconductor region 26 and a p + positive charge storage region 27 on the light receiving portions 25 in the matrix arrangement are formed.

+正電荷蓄積領域27は、界面準位による暗電流の発生をおさえる。n+半導体領域26は、いわゆる電荷蓄積領域となる。 The p + positive charge accumulation region 27 suppresses generation of dark current due to the interface state. The n + semiconductor region 26 becomes a so-called charge storage region.

+半導体領域26下の高抵抗領域24には、n+半導体領域26から第1のp型半導体ウェル領域、いわゆるオーバーフローバリア領域23に達する電荷収集領域となる、高抵抗領域24よりは濃度の高いn-半導体領域40が形成される。 n + a high resistance region 24 below the semiconductor region 26, n + semiconductor region 26 a first p-type semiconductor well region, a charge collection region to reach the so-called overflow barrier region 23, rather than the high resistance region 24 concentration A high n semiconductor region 40 is formed.

高抵抗領域24の各受光部列の一側に対応する位置に、読み出しゲート領域28を挟んで垂直電荷転送部29となるn型の埋め込み転送チャネル領域(以下、電荷転送部と称する)30が形成される。電荷転送部30の周りを囲むように、第2のp型半導体ウェル領域31が形成される。   An n-type buried transfer channel region (hereinafter referred to as a charge transfer unit) 30 serving as a vertical charge transfer unit 29 across the read gate region 28 is located at a position corresponding to one side of each light receiving unit column of the high resistance region 24. It is formed. A second p-type semiconductor well region 31 is formed so as to surround the charge transfer portion 30.

さらに、受光部25を含む各画素を区画するp型のチャネルストップ領域32が形成される。   Further, a p-type channel stop region 32 that partitions each pixel including the light receiving portion 25 is formed.

電荷転送部30、チャネルストップ領域32及び読み出しゲート部28上に、ゲート絶縁膜34を介して、例えば多結晶シリコンからなる転送電極35が形成され、電荷転送部30、ゲート絶縁膜34及び転送電極35によりCCD構造の垂直電荷転送部29が構成される。   A transfer electrode 35 made of, for example, polycrystalline silicon is formed on the charge transfer unit 30, the channel stop region 32, and the readout gate unit 28 via a gate insulating film 34, and the charge transfer unit 30, the gate insulating film 34, and the transfer electrode are formed. A vertical charge transfer unit 29 having a CCD structure is constituted by 35.

転送電極35上を被覆する層間絶縁膜36を介して、受光部25の開口を除く他部全面に、例えばAlによる遮光膜37が形成される。   A light shielding film 37 made of Al, for example, is formed on the entire surface of the other part except the opening of the light receiving part 25 via the interlayer insulating film 36 covering the transfer electrode 35.

さらに、平坦化膜38、色フィルタ(図示せず)を介して各受光部25に対応して受光部25への入射光を集光する、いわゆるマイクロレンズ39が形成される。   Further, a so-called microlens 39 that collects incident light to the light receiving unit 25 corresponding to each light receiving unit 25 is formed through a planarizing film 38 and a color filter (not shown).

特に、受光部25の電荷蓄積領域となるn+半導体領域26より深く、かつオーバーフローバリア領域として働く第1のp型半導体ウェル領域23よりは浅いn-半導体領域40内の位置に、新たに第2のn型半導体領域41を形成する。 In particular, the n + semiconductor region 26 that is deeper than the n + semiconductor region 26 serving as the charge accumulation region of the light receiving portion 25 and shallower than the first p-type semiconductor well region 23 that functions as the overflow barrier region is newly added to the position in the n semiconductor region 40. Two n-type semiconductor regions 41 are formed.

n型半導体領域41は、n+半導体領域26より広く、本例では読み出しゲート領域28を越えて垂直電荷転送部29の下まで入り込むように形成する。 The n-type semiconductor region 41 is wider than the n + semiconductor region 26, and in this example, is formed so as to enter the vertical charge transfer portion 29 beyond the read gate region 28.

第2のn型半導体領域(以下、n半導体領域と称する)41の濃度は、n+半導体領域26より薄く、例えばn+半導体領域26の少なくとも半分以下の濃度で、かつn-半導体領域40の濃度より大きい濃度にする。 The concentration of the second n-type semiconductor region (hereinafter referred to as n semiconductor region) 41 is lower than that of the n + semiconductor region 26, for example, at least half the concentration of the n + semiconductor region 26, and in the n semiconductor region 40. Make the density higher than the density.

理由は、電荷蓄積される領域をn+半導体領域26の位置にしないと電荷の読み出しができないので、ポテンシャルプロファイルがn半導体領域41からn+半導体領域26に向かって緩やかに上昇するような濃度設定にするためである。 Is because the not to the region that is the charge accumulated in the position of the n + semiconductor region 26 can not charge readout, density setting, such as the potential profile gradually rises toward the n semiconductor region 41 to the n + semiconductor region 26 It is to make it.

ここで、n半導体領域41は、垂直電荷転送部29下とn+半導体領域26下とで分けて形成し、濃度が異なった部分からなっても構わないが、電位的にはn半導体領域41が一体となっていることが必要である。 Here, the n semiconductor region 41 may be formed separately under the vertical charge transfer portion 29 and under the n + semiconductor region 26 and may be composed of portions having different concentrations, but in terms of potential, the n semiconductor region 41. Must be integrated.

このn半導体領域41の深さは、垂直電荷転送部29のオーバーフローバリアとなる第2のp型半導体ウェル領域31のバリアを潰さない程度に深い位置から、つまり第2のp型半導体ウェル領域31の一部にかかってもいいが、電位のバリアをつぶさない程度に深いところから、第1のp型半導体ウェル領域23の手前までの深さのどこであっても構わない。但し、受光部25の飽和信号量を一定とすると、深い位置ほどn半導体領域41は、低濃度にしなければならない。   The depth of the n semiconductor region 41 is set from a position deep enough not to collapse the barrier of the second p-type semiconductor well region 31 serving as an overflow barrier of the vertical charge transfer unit 29, that is, the second p-type semiconductor well region 31. However, it may be anywhere from a depth deep enough not to crush the potential barrier to a depth before the first p-type semiconductor well region 23. However, if the saturation signal amount of the light receiving unit 25 is constant, the n semiconductor region 41 needs to be lighter in the deeper position.

受光部25の光電変換する領域は、n+半導体領域26と、これから基板下方向へ向かって伸びる空乏層のうち第1のp型半導体ウェル領域23の手前のn-半導体領域40と、n半導体領域41とからなる。 The photoelectric conversion region of the light receiving unit 25 includes an n + semiconductor region 26, an n semiconductor region 40 in front of the first p-type semiconductor well region 23 in a depletion layer extending downward from the substrate, and an n semiconductor. It consists of region 41.

さらにn半導体領域41とほぼ同等の深さに、第2のp型半導体ウェル領域31から第1のp型チャネルストップ領域32にかけて、分離領域となる第2のp型チャネルストップ領域44を形成する。   Further, a second p-type channel stop region 44 serving as an isolation region is formed from the second p-type semiconductor well region 31 to the first p-type channel stop region 32 at a depth substantially equal to that of the n semiconductor region 41. .

この構造によれば、n+半導体領域26下の深い位置に垂直電荷転送部29の下まで入り込むようにn半導体領域41を形成することにより、電荷収集領域43を垂直電荷転送部29下まで伸ばすことができる。これにより、斜めに入射した光Lも、受光部25の電荷収集領域41内を通過する割合が多くなり、捨てていた電荷を集めることができ、感度を向上することができる。 According to this structure, the n semiconductor region 41 is formed so as to enter under the vertical charge transfer unit 29 at a deep position below the n + semiconductor region 26, thereby extending the charge collection region 43 to below the vertical charge transfer unit 29. be able to. Thereby, the ratio of the obliquely incident light L passing through the charge collection region 41 of the light receiving unit 25 is increased, so that the discarded charges can be collected and the sensitivity can be improved.

ところで、n半導体領域41により形成される電荷収集領域43を垂直電荷転送部29下部へ伸ばしていくと、やがて隣接の受光部25へ空乏層が伸びてしまい、ブルーミングが発生してしまう。   By the way, when the charge collection region 43 formed by the n semiconductor region 41 is extended to the lower part of the vertical charge transfer unit 29, a depletion layer extends to the adjacent light receiving unit 25 and blooming occurs.

そこで、n半導体領域41とほぼ同等の深さに、第2のp型半導体ウェル領域31から第1のp型チャネルストップ領域32にかけて、第2のp型チャンネルストップ領域44を形成することにより、電位障壁を形成し確実にブルーミングを防止している。   Therefore, by forming the second p-type channel stop region 44 from the second p-type semiconductor well region 31 to the first p-type channel stop region 32 at a depth substantially equal to that of the n semiconductor region 41, A potential barrier is formed to reliably prevent blooming.

第2のp型チャネルストップ領域44を有する構成であれば、n半導体領域41を第2のp型半導体ウェル領域31下へ大きく張り出すことが可能となり、よりぎりぎりまで確実に電荷収集領域43を増加させることができる。また、第2のp型チャネルストップ領域44の濃度が大きければ、このp型チャネルストップ領域44の近くまでn半導体領域41を伸ばすことができる。
特開2001−185711号公報
With the configuration having the second p-type channel stop region 44, the n semiconductor region 41 can be greatly extended below the second p-type semiconductor well region 31, and the charge collection region 43 can be reliably connected to the limit. Can be increased. If the concentration of the second p-type channel stop region 44 is high, the n semiconductor region 41 can be extended to the vicinity of the p-type channel stop region 44.
JP 2001-185711 A

しかしながら、従来の固体撮像装置では、基板に対して斜め光Lが入射しやすい撮像部の周辺部ではスミア特性が悪化するという問題がある。   However, in the conventional solid-state imaging device, there is a problem that smear characteristics deteriorate in the peripheral portion of the imaging unit where the oblique light L is likely to be incident on the substrate.

すなわち、図6に示すように、撮像部の周辺部に配された撮像画素21a,21cにおいては、マイクロレンズ39の光軸が光の入射方向にシフトしていることから、斜め光Lがマイクロレンズ39により有効に受光部25に集光されることとなる。   That is, as shown in FIG. 6, in the imaging pixels 21a and 21c arranged in the peripheral part of the imaging unit, since the optical axis of the micro lens 39 is shifted in the light incident direction, the oblique light L is microscopic. The light is effectively condensed on the light receiving unit 25 by the lens 39.

しかしながら、図7のように、受光部25を深さ方向において深く形成している場合であっても、斜めから入ってくる光が、受光部25の形成領域とは外れた位置において光電変換されて、当該光電変換された信号電荷が受光部25に有効に蓄積されない場合がある。また、一部の光は光電変換されぬままp不純物領域23,44およびシリコン基板22まで進み、電荷が基板に捨てられてしまっている。   However, even when the light receiving portion 25 is formed deep in the depth direction as shown in FIG. 7, light entering obliquely is photoelectrically converted at a position outside the region where the light receiving portion 25 is formed. Thus, the photoelectrically converted signal charge may not be effectively accumulated in the light receiving unit 25. Further, a part of the light proceeds to the p impurity regions 23 and 44 and the silicon substrate 22 without being photoelectrically converted, and the electric charge is thrown away to the substrate.

このように、受光部25を基板深くにまで形成する方法は、特に周辺部において、先に述べたシリコン基板中で光電変換され電荷転送部30に流れ込むスミア発生モードについての有効な対策とはならず、また電荷発生領域の広さが充分でなく電荷を基板に捨てているという問題がある。   As described above, the method of forming the light receiving portion 25 deeply in the substrate is not an effective measure for the smear generation mode in which the photoelectric conversion is performed in the silicon substrate described above and flows into the charge transfer portion 30 particularly in the peripheral portion. In addition, there is a problem that the charge generation region is not wide enough and the charge is thrown away to the substrate.

本発明は上記の事情に鑑みてなされたものであり、その目的は、斜め光が入射する撮像部の周辺部においても、スミアの発生を抑制し感度を向上させることができる固体撮像装置およびその製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a solid-state imaging device capable of suppressing the occurrence of smear and improving sensitivity even in the peripheral portion of the imaging unit where oblique light is incident. It is to provide a manufacturing method.

本発明の固体撮像装置は、半導体基板中に、光を受光して光電変換を行う受光部と、各受光部で蓄積した電荷を転送する垂直電荷転送部を設けた複数の撮像画素が2次元状に配列され、互いに隣接する撮像画素の受光部を分離するための分離領域が格子状に設けられている撮像部において、当該各分離部の位置に応じ前記分離領域の幅が異なることを特徴とする。   The solid-state imaging device according to the present invention has a two-dimensional imaging pixel in which a light receiving unit that receives light and performs photoelectric conversion and a vertical charge transfer unit that transfers charges accumulated in each light receiving unit are provided in a semiconductor substrate. In an imaging unit in which separation regions for separating light receiving units of imaging pixels adjacent to each other are provided in a lattice shape, the width of the separation region varies depending on the position of each separation unit. And

具体的には、前記撮像部における中央部から周辺部へいくに従い、前記分離領域の幅が狭くなる。また、前記撮像部における中央部から周辺部へいくに従い、前記分離領域の幅の比率が垂直方向と水平方方向で異なる。   Specifically, the width of the separation region becomes narrower from the central part to the peripheral part in the imaging unit. Further, the width ratio of the separation region differs in the vertical direction and the horizontal direction as it goes from the central part to the peripheral part in the imaging unit.

本発明の固体撮像装置の製造方法は、シリコン基板中に、光を受光して光電変換を行う受光部と、各受光部で蓄積した電荷を転送する垂直電荷転送部を設けた複数の撮像画素が2次元状に配列され、互いに隣接する撮像画素の受光部を分離するための分離領域が格子状に設けられている撮像部において、当該各分離部の位置に応じ前記分離領域の幅が異なる固体撮像装置の製造方法であり、前記シリコン基板の表面に、シリコンの酸化物または窒化物による無機膜を形成する工程と、前記無機膜の上に、下層レジストを形成する工程と、前記下層レジストの上に、前記下層レジストより反応性イオンエッチングが遅い上層レジストを形成し、さらにこれをパターンニングする工程と、前記上層レジストからなるパターンをマスクとして、前記下層レジストを反応性イオンエッチングによりエッチングする工程と、前記分離領域を形成するために、前記シリコン基板の特定箇所に高い注入エネルギーによるイオン注入を行う工程とを含む。   A method of manufacturing a solid-state imaging device according to the present invention includes a plurality of imaging pixels provided with a light receiving unit that receives light and performs photoelectric conversion in a silicon substrate, and a vertical charge transfer unit that transfers charges accumulated in each light receiving unit. Are two-dimensionally arranged, and in the imaging unit in which the separation regions for separating the light receiving portions of the adjacent imaging pixels are provided in a grid shape, the width of the separation region differs depending on the position of each separation unit A method for manufacturing a solid-state imaging device, the step of forming an inorganic film of silicon oxide or nitride on the surface of the silicon substrate, the step of forming a lower layer resist on the inorganic film, and the lower layer resist On top of the above, a step of forming an upper layer resist whose reactive ion etching is slower than that of the lower layer resist, and patterning this, and using the pattern made of the upper layer resist as a mask, And etching by reactive ion etching a layer resist, in order to form the isolation region, and a step of performing ion implantation with high implantation energy to specific locations of the silicon substrate.

本発明の固体撮像装置およびその製造方法によれば、斜め光が入射する撮像部の周辺部においてもスミアの発生を抑制し、感度を向上させることができる。   According to the solid-state imaging device and the manufacturing method thereof of the present invention, it is possible to suppress the occurrence of smear and improve the sensitivity even in the peripheral portion of the imaging unit where oblique light is incident.

以下、図面を参照して、本発明の実施の形態における固体撮像装置およびその製造方法について説明する。   Hereinafter, a solid-state imaging device and a method for manufacturing the same according to an embodiment of the present invention will be described with reference to the drawings.

図1および図3は固体撮像装置における撮像部の周辺部の断面構成を示すものであり、図2は撮像部の中央部における断面構成を示すものである。本実施の形態では、CCD固体撮像素子に適用している。   1 and 3 show a cross-sectional configuration of the periphery of the imaging unit in the solid-state imaging device, and FIG. 2 shows a cross-sectional configuration of the central part of the imaging unit. In this embodiment, the present invention is applied to a CCD solid-state imaging device.

本固体撮像装置において、n型シリコンからなる半導体基板22には、その深い位置にオーバーフローバリア領域となる第1のp型ウェル領域23が形成されている。受光部25は画素となるものであり、複数の受光部25が画素として格子状(マトリクス状)に配列されている。受光部25は、n+型不純物領域26とこの上のp+型不純物領域27とにより構成されている。n+型不純物領域26は発生した電荷が主に蓄積される電荷蓄積領域であり、p+型不純物領域27は界面順位による暗電流の発生を抑える領域である。n+型不純物領域26下のn-不純物領域40は、光を受光して光電変換により電荷が主に発生する電荷発生領域である。 In the solid-state imaging device, a first p-type well region 23 serving as an overflow barrier region is formed at a deep position on a semiconductor substrate 22 made of n-type silicon. The light receiving unit 25 is a pixel, and a plurality of light receiving units 25 are arranged in a grid (matrix) as pixels. The light receiving portion 25 is composed of an n + type impurity region 26 and a p + type impurity region 27 thereon. The n + -type impurity region 26 is a charge storage region in which generated charges are mainly stored, and the p + -type impurity region 27 is a region that suppresses the generation of dark current due to the interface order. The n impurity region 40 under the n + type impurity region 26 is a charge generation region where light is received and charges are mainly generated by photoelectric conversion.

-不純物領域40の各受光部列の一側に対応する位置に、読み出しゲート部28を挟んでn型の電荷転送部30が形成されている。電荷転送部30の周りを囲むように、第2のp型ウェル領域31が形成されている。また、受光部25を含む各画素を区画するp型のチャネルストップ領域32,44が形成されている。 An n-type charge transfer section 30 is formed at a position corresponding to one side of each light-receiving section row of the n impurity region 40 with the readout gate section 28 interposed therebetween. A second p-type well region 31 is formed so as to surround the charge transfer unit 30. In addition, p-type channel stop regions 32 and 44 that partition each pixel including the light receiving unit 25 are formed.

電荷転送部30、チャネルストップ領域32及び読み出しゲート部28上に、ゲート絶縁膜34を介して、例えば多結晶シリコンからなる転送電極35が形成されている。さらに、転送電極35上を被膜する層間絶縁膜36を介して、受光部25の開口を除く他部全面に、例えばW等による遮光膜37が形成される。   A transfer electrode 35 made of, for example, polycrystalline silicon is formed on the charge transfer unit 30, the channel stop region 32, and the read gate unit 28 via a gate insulating film 34. Further, a light shielding film 37 made of, for example, W is formed on the entire surface of the other part except the opening of the light receiving part 25 through the interlayer insulating film 36 that covers the transfer electrode 35.

さらに、平坦化膜38、カラーフィルタ(図示せず)を介して各受光部25へ入射光を集光する、いわゆるマイクロレンズ39が形成されている。   Furthermore, a so-called microlens 39 that collects incident light to each light receiving portion 25 through a planarizing film 38 and a color filter (not shown) is formed.

以上の構成において、本実施の形態では、撮像部の周辺部の第1のp型のチャネルストップ領域(以下、分離領域と称する)44を中央部より狭く形成している。以下に、このような構造を用いる理由について説明する。   In the above configuration, in the present embodiment, the first p-type channel stop region (hereinafter referred to as the separation region) 44 in the peripheral portion of the imaging unit is formed narrower than the central portion. The reason why such a structure is used will be described below.

一般的に、固体撮像装置は、さらなる画質向上に応えるため、画素の小型化により配列密度を高くし解像度を上げること、それに伴う感度低下を補うことが必要である。画素が小型化された場合、入射する光量は減少し、各画素の受光部25の感度特性が低下する。そこで、感度向上のため受光部25の開口となる遮光膜37の開口部を水平方向に大きくすると、垂直電荷転送部29への光の混入によるスミアが発生し易くなる。また、遮光膜37の開口部を垂直方向に大きくすると、転送電極35が細り抵抗が高くなるため撮像部にて電荷転送電圧の鈍りが生じる。   In general, in order to respond to further improvement in image quality, a solid-state imaging device needs to increase the array density by increasing the size of pixels and increase the resolution, and compensate for the sensitivity reduction associated therewith. When the pixels are downsized, the amount of incident light is reduced, and the sensitivity characteristics of the light receiving unit 25 of each pixel are lowered. Therefore, if the opening of the light shielding film 37 serving as the opening of the light receiving unit 25 is increased in the horizontal direction in order to improve sensitivity, smear due to light mixing into the vertical charge transfer unit 29 is likely to occur. Further, when the opening of the light shielding film 37 is increased in the vertical direction, the transfer electrode 35 is thinned and the resistance is increased, so that the charge transfer voltage becomes dull in the imaging unit.

このように、水平方向ならびに垂直方向に、受光部の開口を大きくするのには限界があるため、受光部25の上方にマイクロレンズ39を設け、受光部25への集光効率を高める工夫がなされている。   As described above, since there is a limit to increasing the opening of the light receiving unit in the horizontal direction and the vertical direction, a microlens 39 is provided above the light receiving unit 25 to improve the light collection efficiency on the light receiving unit 25. Has been made.

また、上述した画素サイズの縮小およびカメラや使用するレンズの小型化により、撮像部の周辺部では斜め光成分が入射しやすくなるため、深いシリコン基板中で光電変換された電荷が電荷転送部30に流れ込み、スミアの発生が顕著になってきている。   Further, due to the reduction in the pixel size and the reduction in the size of the camera and the lens used, oblique light components are likely to be incident on the periphery of the imaging unit. The occurrence of smear has become noticeable.

この対策の一つとして、マイクロレンズ形成用フォトマスク描画時に倍率補正を行い、撮像部の周辺部において開口部に対してマイクロレンズ39の位置をずらすことで斜め光に対しても開口中心に集光する構造が用いられてきた。   As one of countermeasures, magnification correction is performed at the time of drawing a photomask for forming a microlens, and the position of the microlens 39 is shifted with respect to the opening at the periphery of the image pickup unit to collect even oblique light at the center of the opening. Luminous structures have been used.

しかしながら、マイクロレンズ39単独で集光効率を高めることは技術的に困難であるため、近年では深いシリコン基板中で光電変換される電荷をも有効に信号電荷として取り出せるよう、受光部25を従来のものより深く形成する技術が提案されている。   However, since it is technically difficult to increase the light collection efficiency with the microlens 39 alone, in recent years, the light receiving unit 25 is provided in a conventional manner so that charges that are photoelectrically converted in a deep silicon substrate can be effectively extracted as signal charges. Techniques for forming deeper than those have been proposed.

受光部25は、入射光が光電変換された後、電荷の蓄積を行うn+型不純物領域26と、n+型不純物領域26の基板表面部分に形成され、界面順位によって発生する電荷の湧き出し(暗電流)を抑制するためのp+型不純物領域27を形成している。 The light receiving unit 25 is formed on the substrate surface portion of the n + -type impurity region 26 and the n + -type impurity region 26 for accumulating charges after the incident light is photoelectrically converted. A p + -type impurity region 27 for suppressing (dark current) is formed.

さらに受光部25下には、オーバーフローバリア(OFB)を形成するp型ウェル領域23を基板深くに形成しておき、入射光が光電変換された後に電荷の蓄積を行うn+不純物領域26と上記のp型ウェル領域23との間を繋ぐように、n-不純物領域40が形成されており、受光部25の空乏層を滑らかに伸ばすようにしている。 Further, a p-type well region 23 for forming an overflow barrier (OFB) is formed deep in the substrate below the light receiving portion 25, and the n + impurity region 26 for accumulating charges after photoelectric conversion of incident light and the above-mentioned The n impurity region 40 is formed so as to connect to the p-type well region 23, and the depletion layer of the light receiving portion 25 is smoothly extended.

この構造においては、n-不純物領域40は、注入エネルギーを換えて多段階でイオン注入して形成する。 In this structure, the n impurity region 40 is formed by ion implantation in multiple stages while changing the implantation energy.

このように、本実施の形態の固体撮像装置では、入射した光Lは、マイクロレンズ39により受光部25に集光され、受光部25で光電変換された入射光量に応じた量の信号電荷が発生する。この電荷は、受光部25内のn+不純物領域26内で一定期間蓄積され後、電荷として読み出されることから、基板深くにおいて光電変換し発生した電荷を基板に捨てずに有効にn+不純物領域26において蓄積することができ、感度を向上させることができる。 As described above, in the solid-state imaging device according to the present embodiment, the incident light L is condensed on the light receiving unit 25 by the microlens 39 and the signal charge in an amount corresponding to the incident light amount photoelectrically converted by the light receiving unit 25 is generated. appear. Since this charge is accumulated for a certain period in the n + impurity region 26 in the light receiving section 25 and then read out as a charge, the n + impurity region can be effectively used without throwing away the charge generated by photoelectric conversion deep in the substrate. 26, the sensitivity can be improved.

さらに、撮像部20の周辺部21a,21cにおいては斜め光Lが入射するが、周辺部21a,21cの第1のp型のチャネルストップ領域(分離領域)44を中央部21bより狭く形成することにより、電荷発生領域を広げることができる。すなわち、電荷発生領域を通過する光の割合を多くすることができ、より多くの電荷を集めることができ、固体撮像装置の感度特性を向上させることができる。   Further, the oblique light L is incident on the peripheral portions 21a and 21c of the imaging unit 20, but the first p-type channel stop region (separation region) 44 of the peripheral portions 21a and 21c is formed narrower than the central portion 21b. Thus, the charge generation region can be expanded. That is, the proportion of light passing through the charge generation region can be increased, more charges can be collected, and the sensitivity characteristics of the solid-state imaging device can be improved.

なお、固体撮像装置は撮像部20の中央部21bから周辺部21a,21cにいくに従って、基板面の法線に対する入射光の角度が大きくなって斜め光が入射しやすくなる。したがって、本実施の形態は、分離領域44も、撮像部20の中央部21bから周辺部21a,21cにいくに従って連続的に小さくなるように形成されることが好ましい。   Note that in the solid-state imaging device, the angle of incident light with respect to the normal of the substrate surface increases as the distance from the central portion 21b to the peripheral portions 21a and 21c of the imaging portion 20 increases, making it easier for oblique light to enter. Therefore, in the present embodiment, it is preferable that the separation region 44 is also formed so as to continuously decrease from the central portion 21b of the imaging unit 20 to the peripheral portions 21a and 21c.

さらに、本実施の形態では、分離領域44の濃度は、第1のp型半導体ウェル領域23の深さや、n+不純物領域26の不純物量、画素サイズにより全体の電位で決まるため一概に言うことはできないが、電位障壁を形成し確実にブルーミングを防止できるよう設定する。 Furthermore, in the present embodiment, the concentration of the isolation region 44 is generally determined by the overall potential depending on the depth of the first p-type semiconductor well region 23, the amount of impurities in the n + impurity region 26, and the pixel size. However, it is set to prevent potential blooming by forming a potential barrier.

次に、本実施の形態における固体撮像装置の製造方法について、一例を説明する。   Next, an example of the method for manufacturing the solid-state imaging device in the present embodiment will be described.

図1〜3に示すように、半導体基板22に第1のp型半導体ウェル領域23を形成し、このp型半導体ウェル領域23上のn-不純物領域40に電荷転送部30、第2のp型半導体ウェル領域31、p型チャネルストップ領域32,44を形成する。 As shown in FIGS. 1-3, the first p-type semiconductor well region 23 is formed in the semiconductor substrate 22, n on the p-type semiconductor well region 23 - charge transfer section 30 to the impurity region 40, a second p A type semiconductor well region 31 and p type channel stop regions 32 and 44 are formed.

分離領域44の幅および位置で光電変換領域40を制御するためには、これまでより狭い領域に、深い個所にまで不純物を注入しなければならない。そのためには、高い注入エネルギーに十分なイオン阻止能力を確保するため、フォトレジスト層を厚く形成する必要があり、本実施の形態では複数のレジスト層からなる多層レジスト法を用いた。   In order to control the photoelectric conversion region 40 by the width and position of the separation region 44, it is necessary to implant impurities into a deeper portion in a narrower region. For this purpose, it is necessary to form a thick photoresist layer in order to ensure sufficient ion blocking ability for high implantation energy. In this embodiment, a multilayer resist method including a plurality of resist layers is used.

図4に、2層レジスト時のプロセスフロー概要を示す。下層レジスト51は高い注入エネルギーに十分なイオン阻止能力を確保するため、レジストを厚膜に塗布する。下層レジスト51が十分に架橋されてない場合、上層レジスト52を露光した際に発生した酸を下層レジスト51が吸い取り、上層レジスト52のパターン不良になる恐れがあるため、200度程度のベークが必要である。上層レジスト52には、微細パターン形成が可能であり高いエッチング耐性があるレジストが必要であるため、例えばSi含有レジストを塗布する。   FIG. 4 shows an outline of the process flow for the two-layer resist. The lower resist 51 is coated with a thick film in order to ensure sufficient ion blocking ability for high implantation energy. If the lower layer resist 51 is not sufficiently crosslinked, the lower layer resist 51 may absorb the acid generated when the upper layer resist 52 is exposed to cause a pattern defect of the upper layer resist 52. It is. Since the upper resist 52 requires a resist capable of forming a fine pattern and having high etching resistance, for example, a Si-containing resist is applied.

上層レジスト52の露光・現像後、酸素プラズマによるエッチングにより、上層レジスト52の表面をSiO2化させ、その上層レジスト52をマスクとし下層レジストをエッチングする。これにより、高いアスペクト比のレジストを形成し、高い注入エネルギーにより分離領域44を形成する。 After the upper resist 52 is exposed and developed, the surface of the upper resist 52 is changed to SiO 2 by etching with oxygen plasma, and the lower resist is etched using the upper resist 52 as a mask. Thereby, a resist with a high aspect ratio is formed, and the isolation region 44 is formed with high implantation energy.

また、下層レジスト51のエッチング、具体的には酸素プラズマによるエッチングの際、基板にプラズマの影響が及ばぬように、酸化膜や窒化膜等のCVD系無機膜の保護膜上から注入する方が望ましい。   Further, when etching the lower resist 51, specifically, etching with oxygen plasma, it is preferable to implant from above the protective film of the CVD inorganic film such as an oxide film or a nitride film so that the substrate is not affected by the plasma. desirable.

なお、ポリイミド、酸化膜や窒化膜等のCVD系無機膜および金属膜などによる下地レジストパターン形成の際のハードマスクと成りうる材料のパターン形成も考えられるが、ポリイミドでは微細加工が困難であり、CVD系無機膜は一般に引っ張り方向の膜応力が大きいため膜厚を厚くするとクラックを発生し、金属膜は成膜や剥離が難しく、またノックオン現象による金属汚染の原因となり撮像素子の画質を劣化させてしまう。   In addition, pattern formation of a material that can be used as a hard mask in forming a base resist pattern by CVD, inorganic film such as polyimide, oxide film or nitride film and metal film is also considered, but it is difficult to finely process with polyimide, CVD inorganic films generally have a large film stress in the pulling direction, so cracks occur when the film thickness is increased.Metal films are difficult to form and peel off, and cause metal contamination due to the knock-on phenomenon, degrading the image quality of the image sensor. End up.

次に、受光部25のp+不純物領域27を形成し、さらに、ゲート絶縁膜34、転送電極35を形成する。以後の工程は通常と同様であるので、説明を省略する。 Next, the p + impurity region 27 of the light receiving portion 25 is formed, and further, the gate insulating film 34 and the transfer electrode 35 are formed. Since the subsequent steps are the same as usual, description thereof is omitted.

以上説明を行ったように、本実施の形態の構成によれば、従来の製造工程に多層レジスト法の1工程を追加するだけで実現できる。   As described above, according to the configuration of the present embodiment, it can be realized only by adding one process of the multilayer resist method to the conventional manufacturing process.

また、電荷発生領域40を垂直電荷転送部29下まで伸ばすことができる。これにより、マイクロレンズ39を通して斜めに入射した光Lであってもフォトダイオードの電荷発生領域40を通過割合が多くなり、従来捨てていた電荷を集めることができ、感度を向上させることができる。   Further, the charge generation region 40 can be extended to below the vertical charge transfer unit 29. As a result, even if the light L is incident obliquely through the microlens 39, the ratio of passing through the charge generation region 40 of the photodiode increases, so that charges that have been discarded in the past can be collected and the sensitivity can be improved.

さらに、前記実施の形態では、分離領域44を水平方向に並設したものであるが、図示してないが垂直方向においても同様に分離領域44を並設して、撮像部20に分離領域44を格子状に形成してもよい。これにより、斜めに入射した光Lがフォトダイオードの電荷収拾領域40を通過する割合がより一層多くなり、従来捨てていた電荷を集めることができ、感度をより一層向上させることができる。なお、分離領域44の幅の比率は、垂直方向と水平方方向で等しくしてもよく、あるいは異なるようにしてもよい。すなわち、撮像部20に格子状に形成した垂直方向と水平方方向の分離領域44の幅を、撮像部20の中央部21bから周辺部21a,21cにいくに従って、同じ割合にて連続して狭くしてもよく、あるいは異なる割合にて連続して狭くしもよい。例えば、水平方向に並設した分離領域44が周辺に向かって狭くなる割合に対して、垂直方向に並設した分離領域44が周辺に向かって狭くなる割合を小さくしたり、逆に大きくしたりしてもよい。   Further, in the above-described embodiment, the separation regions 44 are arranged in parallel in the horizontal direction. However, although not shown, the separation regions 44 are arranged in the vertical direction in the same manner, and the separation region 44 is arranged in the imaging unit 20. May be formed in a lattice shape. As a result, the rate at which the obliquely incident light L passes through the charge collection region 40 of the photodiode is further increased, and charges that have been discarded in the past can be collected, and the sensitivity can be further improved. The ratio of the width of the separation region 44 may be equal in the vertical direction and the horizontal direction, or may be different. That is, the width of the vertical and horizontal separation regions 44 formed in a grid pattern on the imaging unit 20 is continuously narrowed at the same rate from the central part 21b of the imaging unit 20 to the peripheral parts 21a and 21c. Alternatively, it may be narrowed continuously at different rates. For example, the ratio of the separation regions 44 arranged side by side in the horizontal direction narrowing toward the periphery is reduced, or the ratio of the separation regions 44 arranged in the vertical direction becoming narrow toward the periphery is decreased or vice versa. May be.

なお、本発明の固体撮像装置は、画素の大小に関わらず応用可能である。また、受光部の空乏領域を深く形成して近赤外線領域にも感度を有せしめた固体撮像装置にも好適である。さらに、上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で、その他様々な構成を取り得る。   Note that the solid-state imaging device of the present invention can be applied regardless of the size of pixels. Further, it is also suitable for a solid-state imaging device in which a depletion region of the light receiving unit is formed deeply and sensitivity is also provided in the near infrared region. Furthermore, the present invention is not limited to the above-described embodiment, and various other configurations can be taken without departing from the gist of the present invention.

本発明の固体撮像装置は、スミアの低減や感度が要求されるカラーカメラ等に有用である。   The solid-state imaging device of the present invention is useful for a color camera or the like that requires reduction in smear and sensitivity.

本発明の実施の形態の固体撮像装置における撮像部の周辺部の断面図Sectional drawing of the peripheral part of the imaging part in the solid-state imaging device of embodiment of this invention 本発明の実施の形態の固体撮像装置における撮像部の中央部の断面図Sectional drawing of the center part of the imaging part in the solid-state imaging device of embodiment of this invention 本発明の実施の形態の固体撮像装置における撮像部の周辺部の断面図Sectional drawing of the peripheral part of the imaging part in the solid-state imaging device of embodiment of this invention 本発明の実施の形態における2層レジストプロセスフローの概略図Schematic diagram of a two-layer resist process flow in an embodiment of the present invention 固体撮像装置の概略構成を示す平面図Plan view showing schematic configuration of solid-state imaging device 図5のVI-VI断面図VI-VI cross section of Fig. 5 図5のVII-VII断面図VII-VII sectional view of FIG.

符号の説明Explanation of symbols

20 撮像部
21 撮像画素
22 半導体基板
25 受光部
29 垂直電荷転送部
44 分離領域
20 Image pickup unit 21 Image pickup pixel 22 Semiconductor substrate 25 Light receiving unit 29 Vertical charge transfer unit 44 Separation region

Claims (4)

半導体基板中に、光を受光して光電変換を行う受光部と、各受光部で蓄積した電荷を転送する垂直電荷転送部を設けた複数の撮像画素が2次元状に配列され、互いに隣接する撮像画素の受光部を分離するための分離領域が格子状に設けられている撮像部において、当該各分離部の位置に応じ前記分離領域の幅が異なることを特徴とする固体撮像装置。   In a semiconductor substrate, a plurality of imaging pixels provided with a light receiving portion that receives light and performs photoelectric conversion and a vertical charge transfer portion that transfers charges accumulated in each light receiving portion are arranged two-dimensionally and adjacent to each other. A solid-state imaging device, wherein a separation region for separating a light receiving portion of an imaging pixel is provided in a lattice shape, and the width of the separation region varies depending on the position of each separation portion. 前記撮像部における中央部から周辺部へいくに従い、前記分離領域の幅が狭くなることを特徴とする請求項1記載の固体撮像装置。   The solid-state imaging device according to claim 1, wherein the width of the separation region becomes narrower from the center to the periphery of the imaging unit. 前記撮像部における中央部から周辺部へいくに従い、前記分離領域の幅の比率が垂直方向と水平方方向で異なることを特徴とする請求項1記載の固体撮像装置。   2. The solid-state imaging device according to claim 1, wherein the ratio of the width of the separation region is different between the vertical direction and the horizontal direction as it goes from the central part to the peripheral part in the imaging unit. シリコン基板中に、光を受光して光電変換を行う受光部と、各受光部で蓄積した電荷を転送する垂直電荷転送部を設けた複数の撮像画素が2次元状に配列され、互いに隣接する撮像画素の受光部を分離するための分離領域が格子状に設けられている撮像部において、当該各分離部の位置に応じ前記分離領域の幅が異なる固体撮像装置の製造方法であり、
前記シリコン基板の表面に、シリコンの酸化物または窒化物による無機膜を形成する工程と、
前記無機膜の上に、下層レジストを形成する工程と、
前記下層レジストの上に、前記下層レジストより反応性イオンエッチングが遅い上層レジストを形成し、さらにこれをパターンニングする工程と、
前記上層レジストからなるパターンをマスクとして、前記下層レジストを反応性イオンエッチングによりエッチングする工程と、
前記分離領域を形成するために、前記シリコン基板の特定箇所に高い注入エネルギーによるイオン注入を行う工程とを含む固体撮像装置の製造方法。
In a silicon substrate, a plurality of imaging pixels provided with a light receiving unit that receives light and performs photoelectric conversion and a vertical charge transfer unit that transfers charges accumulated in each light receiving unit are arranged two-dimensionally and adjacent to each other. In the imaging unit in which the separation regions for separating the light receiving units of the imaging pixels are provided in a lattice shape, the width of the separation region differs according to the position of each separation unit,
Forming an inorganic film of silicon oxide or nitride on the surface of the silicon substrate;
Forming a lower layer resist on the inorganic film;
On the lower resist, forming an upper resist that is slower in reactive ion etching than the lower resist, and further patterning this,
Etching the lower layer resist by reactive ion etching using the pattern made of the upper layer resist as a mask;
A method of manufacturing a solid-state imaging device, including a step of performing ion implantation with a high implantation energy in a specific portion of the silicon substrate to form the isolation region.
JP2006007139A 2006-01-16 2006-01-16 Solid-state photographing device, and manufacturing method thereof Pending JP2007189129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006007139A JP2007189129A (en) 2006-01-16 2006-01-16 Solid-state photographing device, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006007139A JP2007189129A (en) 2006-01-16 2006-01-16 Solid-state photographing device, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2007189129A true JP2007189129A (en) 2007-07-26

Family

ID=38344070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006007139A Pending JP2007189129A (en) 2006-01-16 2006-01-16 Solid-state photographing device, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2007189129A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7812382B2 (en) 2008-03-06 2010-10-12 Canon Kabushiki Kaisha Image sensing apparatus and imaging system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7812382B2 (en) 2008-03-06 2010-10-12 Canon Kabushiki Kaisha Image sensing apparatus and imaging system

Similar Documents

Publication Publication Date Title
JP2022046719A (en) Solid-state imaging device and electronic apparatus
JP5055026B2 (en) Image pickup device, image pickup device manufacturing method, and image pickup device semiconductor substrate
JP5767465B2 (en) Solid-state imaging device, manufacturing method thereof, and camera
JP4802520B2 (en) Solid-state imaging device and manufacturing method thereof
JP4599417B2 (en) Back-illuminated solid-state image sensor
JP4751865B2 (en) Back-illuminated solid-state imaging device and manufacturing method thereof
JP2010109295A (en) Solid state imaging apparatus, manufacturing method thereof, and electronic apparatus
KR20080037108A (en) Buried doped region for vertical anti-blooming control and cross-talk reduction for imagers
JP4649390B2 (en) Manufacturing method of back-illuminated image sensor
JP2008103668A (en) Back irradiation image sensor and imaging device with that image sensor
TW201232801A (en) Solid-state imaging device and manufacturing method thereof
JP2008172005A (en) Solid-state image pickup device, electronic module and electronic device
JP2004152819A (en) Solid-state image sensing device and its manufacturing method
JP4751803B2 (en) Back-illuminated image sensor
JP2008147471A (en) Solid-state imaging device
JP2007189129A (en) Solid-state photographing device, and manufacturing method thereof
JP2003086783A (en) Solid-state image pickup element and its manufacturing method
JP5207777B2 (en) Solid-state imaging device and manufacturing method thereof
JP2010232571A (en) Solid-state image pickup element and solid-state image pickup device
JP2011146516A (en) Solid-state image sensor, imaging apparatus, method of manufacturing solid-state image sensor
JP2008028101A (en) Solid-state imaging element and its manufacturing method
JP4882207B2 (en) Solid-state image sensor
JP2007299806A (en) Solid-state image pickup device and manufacturing method thereof
WO2011155182A1 (en) Solid-state imaging element
JP2004356157A (en) Solid-state imaging device and method of manufacturing same