[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007188662A - Method of manufacturing field emission type cold cathode - Google Patents

Method of manufacturing field emission type cold cathode Download PDF

Info

Publication number
JP2007188662A
JP2007188662A JP2006003472A JP2006003472A JP2007188662A JP 2007188662 A JP2007188662 A JP 2007188662A JP 2006003472 A JP2006003472 A JP 2006003472A JP 2006003472 A JP2006003472 A JP 2006003472A JP 2007188662 A JP2007188662 A JP 2007188662A
Authority
JP
Japan
Prior art keywords
carbon nanotube
nanotube film
substrate
oriented carbon
flexible substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006003472A
Other languages
Japanese (ja)
Inventor
Takashi Fujii
尊 藤井
Masao Someya
昌男 染谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2006003472A priority Critical patent/JP2007188662A/en
Publication of JP2007188662A publication Critical patent/JP2007188662A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a field emission type cold cathode allowing uniform electron emission at a low voltage. <P>SOLUTION: The field emission type cold cathode is manufactured by using a flexible substrate engageable with an uneven shape of an electrode surface and having reversible adhesiveness for a transfer process of an orientational carbon nanotube film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、カーボンナノチューブ(以下、CNT)を電子源として用いる電界放出型冷陰極の製造方法に関する。本技術は、例えばフィールド・エミッション・ディスプレイ(以下、FED)などの薄型面発光表示装置や液晶バックライトなどの特殊面光源などに応用できる。 The present invention relates to a method for manufacturing a field emission cold cathode using carbon nanotubes (hereinafter referred to as CNT) as an electron source. The present technology can be applied to, for example, a thin surface emitting display device such as a field emission display (hereinafter referred to as FED) or a special surface light source such as a liquid crystal backlight.

CNTは、1991年に飯島澄男氏によって発見されたもので(非特許文献1参照)、一般的な形状は、直径0.5〜100nm、長さ1〜100μmであり、非常に細長い中空のチューブ状の炭素材料である。近年、CNTは電界電子放出型の電子源としての応用が期待されている。電界電子放出型の電子源が並んだ電極には負の電圧がかかり、熱を放出しないため、冷陰極と呼ばれる。特に、FEDなどの面発光表示装置の電子源としてCNTを用いる場合は、一本のCNTからでは電子放出量が不足なため、多数本が必要である。さらに、均等な面発光を得るためには、面積あたり均等な本数で高さの揃ったCNTに電界を集中させる必要がある。 CNT was discovered by Sumio Iijima in 1991 (see Non-Patent Document 1). The general shape is 0.5-100 nm in diameter and 1-100 μm in length, and is a very elongated hollow tube. Carbon material. In recent years, CNT is expected to be applied as a field electron emission type electron source. A negative voltage is applied to the electrode on which the field electron emission type electron source is arranged, and it is called a cold cathode because it does not emit heat. In particular, when CNT is used as an electron source of a surface-emitting display device such as an FED, a large number of electrons are required because the amount of electron emission from one CNT is insufficient. Furthermore, in order to obtain uniform surface light emission, it is necessary to concentrate the electric field on the CNTs having the same number per area and the same height.

ここで、より低い電圧で効率良くCNTから電子を引き出すために、近接ゲート構造またはエミッターホール構造と呼ばれる構造を、冷陰極表面に形成する手段がある。これは絶縁層とゲート層で構成される二層構造が電極表面で部分的にホールが開いた状態で形成され、そのホールの凹部である電極表面にCNTが付着する構造を採る。ホールの形状は、その冷陰極が用いられるデバイスの種類にもよって異なるが、円形である場合と短冊状である場合が多い。円形である場合は径5〜100μmが多い。短冊状である場合は短い方の辺が5〜100μmが多く、長い方の辺は特に定まらない。 Here, in order to efficiently extract electrons from the CNT at a lower voltage, there is a means for forming a structure called a proximity gate structure or an emitter hole structure on the cold cathode surface. This employs a structure in which a two-layer structure composed of an insulating layer and a gate layer is formed in a state where holes are partially opened on the electrode surface, and CNTs adhere to the electrode surface which is a recess of the hole. The shape of the hole varies depending on the type of device in which the cold cathode is used, but is often circular or strip-shaped. In the case of a circular shape, the diameter is often 5 to 100 μm. In the case of a strip shape, the shorter side is often 5 to 100 μm, and the longer side is not particularly determined.

この近接ゲート構造を有するCNTの冷陰極を製造する方法としては、まず電極表面にホールが開いた絶縁層とゲート層を形成させ、その後でホールの凹部である電極表面にCNTを付着させる方法が好ましい。その理由としては、先に電極表面にCNTを付着させてしまうと、その後の電極表面にホールが開いた絶縁層とゲート層を形成させる工程、すなわちスクリーン印刷法、焼成法、CVD法、レーザー照射法、フォトリソグラフィー法、サンドブラスト法、ノズルプリンティング法またはエッチング法といった操作によってCNTがダメージを受ける場合があるからである。 As a method for manufacturing a cold cathode of CNT having this proximity gate structure, there is a method in which an insulating layer and a gate layer in which holes are opened are first formed on the electrode surface, and then CNT is attached to the electrode surface which is a recess of the hole. preferable. The reason for this is that if CNTs are attached to the electrode surface first, the subsequent step of forming an insulating layer and a gate layer with holes on the electrode surface, that is, screen printing, firing, CVD, laser irradiation This is because the CNT may be damaged by an operation such as a method, a photolithography method, a sand blast method, a nozzle printing method, or an etching method.

先に電極表面にホールが開いた絶縁層とゲート層を形成させ、次にホールの凹部である電極表面に触媒を付着させCVDを行うことで、ホールの凹部にCNTを成長させる方法がある(例えば、特許文献1参照)。しかし、この方法で用いられる電極基板は、高温の炭素析出条件下に曝されるため、電極基板の材質が劣化する場合がある。 There is a method of growing CNTs in the recesses of the holes by first forming an insulating layer and a gate layer in which holes are opened on the electrode surface, and then depositing a catalyst on the electrode surface which is the recesses of the holes and performing CVD (see FIG. For example, see Patent Document 1). However, since the electrode substrate used in this method is exposed to high temperature carbon deposition conditions, the material of the electrode substrate may deteriorate.

また、先に電極表面にホールが開いた絶縁層とゲート層を形成させ、次にホールの凹部である電極表面にCNTを含むペーストを塗布し、さらに電極表面全体をエミッター表面処理体で覆って固形化し、該エミッター表面処理体を電極から剥離することでCNTを露出させるという方法が開示されている(例えば、特許文献2参照)。 Also, an insulating layer and a gate layer with holes opened on the electrode surface are formed first, and then a paste containing CNT is applied to the electrode surface, which is a recess of the hole, and the entire electrode surface is covered with an emitter surface treatment body. A method is disclosed in which CNT is exposed by solidification and peeling the emitter surface treatment body from an electrode (see, for example, Patent Document 2).

このような別途調製したCNTを溶剤やバインダーと混ぜて電極に付着させる方法は、電極とCNTとの密着力を強くし電気的にも良く導通させる。しかしながら、CNTのようなナノスケールの物質は他の流動性物質と混ぜようとしても凝集し易く、均一に混合させるのは難しい。CNTと他の流動性物質とが不均一に混ざったままの状態で電極に付着させると、電極上の各電子源に含まれるCNTの密度が一定でなく、また電子源の表面に凹凸が生じてしまうので、面発光表示装置としてはむらを生じてしまう。ここで、なるべく均一に混ざるように溶剤の比率を増やすという手段もあるが、電極に溶剤が残存すると、高真空中で電界電子放出を行う際の妨げとなるので、溶剤の使用は極力少なくすることが望ましい。 Such a method of mixing separately prepared CNTs with a solvent or a binder and adhering them to the electrode increases the adhesion between the electrode and the CNTs and makes them electrically conductive. However, nanoscale materials such as CNTs tend to aggregate even if they are mixed with other fluid materials, and it is difficult to mix them uniformly. If CNT and other fluid substances are attached to the electrode in an unevenly mixed state, the density of the CNT contained in each electron source on the electrode is not constant, and irregularities occur on the surface of the electron source. Therefore, the surface emitting display device is uneven. Here, there is a means of increasing the ratio of the solvent so that it is mixed as uniformly as possible. However, if the solvent remains in the electrode, it becomes a hindrance when performing field electron emission in a high vacuum, so use of the solvent is minimized. It is desirable.

さらに、特許文献2ではCNTを含むペーストを分割することでCNTを表面に露出させるという、偶然に頼った要素が含まれており、均一に発光する面光源の安定した工業生産には不向きである。 In addition, Patent Document 2 includes an element that relies on chance to divide a paste containing CNT to expose the CNT on the surface, and is not suitable for stable industrial production of a surface light source that emits light uniformly. .

バインダーを用いない方法としては、CNT懸濁液をフィルターに通すことでフィルター表面にCNT層を形成させ、該CNT層を電極に転写する方法がある(例えば、非特許文献2参照)。しかしながら、フィルター上のCNT集合体を直に電極であるテフロン(登録商標)シートに付着させているため、パターン形成には不向きである。また、電極とCNTとの密着力にも問題がある。 As a method not using a binder, there is a method in which a CNT layer is formed on the filter surface by passing a CNT suspension through a filter, and the CNT layer is transferred to an electrode (for example, see Non-Patent Document 2). However, since the CNT aggregate on the filter is directly attached to the Teflon (registered trademark) sheet as an electrode, it is not suitable for pattern formation. There is also a problem with the adhesion between the electrode and the CNT.

上述の非特許文献2に類する転写法としては、電界電子放出型冷陰極の製造方法には触れていないが、基体上に配向性のあるCNT集合体を成長させ、該配向性CNT集合体を第二の基体に転写する方法も開示されている(例えば、特許文献3参照)。しかしながら、この方法も膜状のCNTを一括転写する方法であり、所定の位置に細かく分割して設置する方法は明示していない。 As a transfer method similar to Non-Patent Document 2 described above, although a manufacturing method of a field electron emission type cold cathode is not mentioned, an oriented CNT aggregate is grown on a substrate, and the oriented CNT aggregate is A method of transferring to a second substrate is also disclosed (for example, see Patent Document 3). However, this method is also a method of batch-transferring film-like CNTs, and does not clearly show a method of finely dividing the CNTs at predetermined positions.

配向性のあるCNTを形成させ、成長用支持部材を除いてCNT部分を電極板に移し替え、電子放出層の開口を行う方法も知られている(例えば、特許文献4参照)。しかしながら、配向性はあるが一本が孤立して立っているCNTの形状を維持するため、マトリックス材料に埋め込むという煩雑な作業を必要としている。   A method is also known in which oriented CNTs are formed, the CNT portion is transferred to an electrode plate except for a growth support member, and an electron emission layer is opened (see, for example, Patent Document 4). However, in order to maintain the shape of a single CNT that is oriented but is isolated, a complicated operation of embedding in a matrix material is required.

ここで、電界電子放出型冷陰極用のCNTとしては、各々がより細い方が、より良い電界放出能を有することが知られている。また、CNT集合体としては、電極基板に対し垂直方向に配向していること、および密度がより低い、あるいはCNT集合体の面積がより小さい方が、より良い電界放出能を有することが知られている。本発明者らは、上記の如き現状に鑑み、高さ10μm以上、管径10nm以下のCNTからなる配向性CNT集合体の製造に成功しており(例えば、特許文献5参照)、該配向性CNTからの電子放出にも成功した(例えば、特許文献6参照)。 Here, as CNTs for field electron emission type cold cathodes, it is known that each thinner one has better field emission capability. In addition, it is known that the CNT aggregate is oriented in the direction perpendicular to the electrode substrate, and the density is lower or the smaller the area of the CNT aggregate, the better the field emission ability. ing. In view of the current situation as described above, the present inventors have succeeded in producing an oriented CNT aggregate composed of CNTs having a height of 10 μm or more and a tube diameter of 10 nm or less (see, for example, Patent Document 5). Electron emission from CNT was also successful (see, for example, Patent Document 6).

配向性CNT集合体をμmオーダの微小な面積に位置選択的に成長させる方法としては、触媒金属をマスク法でパターニング配置する方法(例えば、特許文献7参照)、触媒金属をマスク法でパターニング蝕刻する方法(例えば、特許文献8参照)、触媒層をスパッタリングで形成しストライプ状にパターニングする方法(例えば、特許文献4参照)、がある。しかし、これらの方法で製造したCNTは管径が10nm以上と太めであり、電界放出能は必ずしも十分とは言えない。
特開2001−236879号公報 特開2003−7201号公報 特表2003−500325号公報 特開2005−116469号公報 特開2002−338221号公報 特開2004−281388号公報 特表2002−530805号公報 特表2003−500324号公報 S.Iijima, "Helical microtubules of graphite carbon", Nature, 354, p56-58 (1991) W.A.de Heerら, "A Carbon Nanotube Field-Emission Electron Source", Science, 270, p1179-1180 (1995)
As a method for selectively growing an oriented CNT aggregate in a minute area on the order of μm, a method of patterning and arranging a catalytic metal by a mask method (for example, refer to Patent Document 7), and a patterning etching of a catalytic metal by a mask method. And a method of forming a catalyst layer by sputtering and patterning in a stripe shape (for example, see Patent Literature 4). However, CNTs produced by these methods have a tube diameter of 10 nm or more, and the field emission capability is not necessarily sufficient.
JP 2001-236879 A Japanese Patent Laid-Open No. 2003-7201 Special table 2003-500325 gazette JP 2005-116469 A JP 2002-338221 A JP 2004-281388 A Special Table 2002-530805 gazette Special table 2003-500324 gazette S.Iijima, "Helical microtubules of graphite carbon", Nature, 354, p56-58 (1991) WAde Heer et al., "A Carbon Nanotube Field-Emission Electron Source", Science, 270, p1179-1180 (1995)

電界電子放出型冷陰極を用いた面発光表示装置を作動させるには、なるべく低電圧で、かつ均一な強度の電子放出をさせる方が有利である。そのため電界電子放出型冷陰極に用いられる各CNTはなるべく管径の細いほうが望ましい。ただし、単層CNTは強度的に課題があるため、2層以上の多層CNTが望ましい。 In order to operate a surface light emitting display device using a field electron emission type cold cathode, it is advantageous to emit electrons with as low voltage and uniform intensity as possible. Therefore, it is desirable that each CNT used in the field electron emission type cold cathode has as small a tube diameter as possible. However, since single-walled CNT has a problem in strength, a multilayered CNT having two or more layers is desirable.

電界電子放出型冷陰極に用いられるCNT集合体としては、多数のCNTが電極に対して垂直方向に配向し、密度と高さが一定である配向性CNT集合体が好ましい。垂直配向していれば、多数本から成るCNT電子源の総和として垂直方向に最大の電子放出強度が得られる。また、密度と高さが一定であれば、平面方向に対して均一な電子放出が得られる。さらに、電界電子放出の場合、CNTの先端と引き出し電極であるゲート層との距離が近いほど電子を引き出す電圧を低くできるため、電子源の高さが一定であれば、電子源の表面近くにゲート層が設置してあっても距離の均一性を保つことが可能で、同じ電子放出強度を得るのに引き出し電圧を低くできる。   As the CNT aggregate used for the field electron emission type cold cathode, an oriented CNT aggregate in which a large number of CNTs are aligned in a direction perpendicular to the electrode and the density and the height are constant is preferable. If it is vertically aligned, the maximum electron emission intensity can be obtained in the vertical direction as the sum of a plurality of CNT electron sources. Further, if the density and height are constant, uniform electron emission can be obtained in the planar direction. Furthermore, in the case of field electron emission, the closer the distance between the tip of the CNT and the gate layer as the extraction electrode, the lower the voltage for extracting electrons, so if the height of the electron source is constant, it will be near the surface of the electron source. Even if a gate layer is provided, the uniformity of the distance can be maintained, and the extraction voltage can be lowered to obtain the same electron emission intensity.

従って、電界電子放出型冷陰極としては、陰極表面に絶縁層を介してゲート層が積層され、それら二層構造の部分的にホールが開いており、ホールの凹部である電極表面に、高さ、密度が一定で垂直配向したCNT集合体が直立しており、なおかつその集合体のCNTの各々は2層以上の多層で、できるだけ細いCNTであることが好ましい。   Therefore, as a field electron emission type cold cathode, a gate layer is laminated on the cathode surface via an insulating layer, holes are partially opened in these two-layer structures, and a height is formed on the electrode surface which is a recess of the hole. It is preferable that vertically aligned CNT aggregates having a constant density are upright, and each of the CNTs of the aggregate is a multilayer of two or more layers and is as thin as possible.

また上記の電界電子放出型冷陰極の作製手順としては、CNTへの熱的、機械的、化学的ダメージを避けるためには、先にホールが開いた上記二層構造を形成させ、その後でホールの凹部である電極表面に上記CNT集合体を設置する方法が望ましい。 In order to avoid thermal, mechanical, and chemical damage to the CNT, the above-mentioned field electron emission cold cathode is prepared by forming the above-mentioned two-layered structure in which holes are opened, and then forming holes. A method of placing the CNT aggregate on the electrode surface, which is a recess, is desirable.

ここで、配向性CNT集合体の表面全体から電子を引き出すには引き出し電極をアスペクト比1以上離す必要があると言われている。例えば直径1mmの面状に形成した配向性CNT膜全体から電子を引き出すためには、引き出し電極を1mm以上離して設置せねばならず、たとえ形成したCNTのしきい電界が1V/ミクロンという高性能なCNTであっても、1KV以上の電圧をかける必要がある。 Here, it is said that in order to extract electrons from the entire surface of the oriented CNT aggregate, the extraction electrode needs to be separated by an aspect ratio of 1 or more. For example, in order to extract electrons from the entire oriented CNT film formed in a planar shape with a diameter of 1 mm, the extraction electrodes must be placed at least 1 mm apart, and even if the formed CNT has a threshold electric field of 1 V / micron. Even for a CNT, it is necessary to apply a voltage of 1 KV or more.

以上の考察から、高性能な電界電子放出型冷陰極を作製するには、上記二層構造にできるだけ狭い面積のホールを開け、その狭い面積のホールに上記CNT集合体を設置する方法を見出す必要がある。 From the above considerations, in order to fabricate a high-performance field-emission cold cathode, it is necessary to find a method of opening a hole with the smallest possible area in the two-layer structure and installing the CNT aggregate in the hole with the smaller area. There is.

本発明は上記に鑑み、先に微小面積のホールが開いた絶縁層、ゲート層の二層構造を形成させ、該ホールの凹部である電極表面に、垂直配向性があり、高さと密度が一定であり、管径の細いCNTからなる、配向性CNT集合体を設置することにより、低電圧で均一な電子放出を可能とする、電界放出型冷陰極の製造方法を提供することを目的とする。 In view of the above, the present invention forms a two-layer structure of an insulating layer and a gate layer in which a hole with a very small area is first opened, and the electrode surface, which is a concave portion of the hole, has a vertical orientation and a constant height and density. It is an object of the present invention to provide a method for manufacturing a field emission cold cathode that enables uniform electron emission at a low voltage by installing an oriented CNT aggregate composed of CNTs having a thin tube diameter. .

本発明者らは、電界放出型冷陰極の製造方法について鋭意研究を重ねた結果、微小面積のホールが開いた電極表面の形状を記憶した接着性表面を有する可撓性基板を用いる方法を見出し本発明に到達した。すなわち、本発明は次の通りである。
(1) 電極基板表面に配向性カーボンナノチューブ膜をパターン状に形成する電界放出型冷陰極の製造方法であって、
(a)基礎基板表面上に配向性カーボンナノチューブ膜を作製する工程と、
(b)電極基板表面に絶縁層とゲート層とを逐次パターン状に積層する工程と、
(c)前記工程(b)で得られた電極基板の表面の凹凸形状にかみ合わせ可能な、可逆的接着性表面を有する可撓性基板の表面の凸部と、前記工程(a)で作製された配向性カーボンナノチューブ膜の表面とを接着後、可撓性基板表面の凸部と接着した配向性カーボンナノチューブ膜を残して基礎基板を剥離することにより、配向性カーボンナノチューブ膜を可撓性基板側に転写する工程と、
(d)前記工程(b)で得られた電極基板の表面の凹部に導電性バインダーをパターン形成する工程と、
(e)可撓性基板に転写された配向性カーボンナノチューブ膜の表面とパターン形成された導電性バインダーの表面とを接着後、導電性バインダーと接着した配向性カーボンナノチューブ膜を残して可撓性基板を剥離することにより、配向性カーボンナノチューブ膜を電極基板側に転写する工程とを含む、電界放出型冷陰極の製造方法。
(2) 電極基板表面に配向性カーボンナノチューブ膜をパターン状に形成する電界放出型冷陰極の製造方法であって、
(a)基礎基板表面上に配向性カーボンナノチューブ膜を作製する工程と、
(b)前記工程(a)で作製された配向性カーボンナノチューブ膜の表面を、可逆的接着性表面を有する第一の可撓性基板の表面に接着後、第一の可撓性基板表面と接着した配向性カーボンナノチューブ膜を残して基礎基板を剥離することにより、配向性カーボンナノチューブ膜を第一の可撓性基板側に転写する工程と、
(c)電極基板表面に絶縁層とゲート層とを逐次パターン状に積層する工程と、
(d)前記工程(c)で得られた電極基板の表面の凹凸形状にかみ合わせ可能な、可逆的接着性表面を有する第二の可撓性基板の表面の凸部と、第一の可撓性基板に転写された配向性カーボンナノチューブ膜の表面とを接着後、第二の可撓性基板表面の凸部と接着した配向性カーボンナノチューブ膜を残して第一の可撓性基板を剥離することにより、配向性カーボンナノチューブ膜を第二の可撓性基板側に転写する工程と、
(e)前記工程(c)で得られた電極基板の表面の凹部に導電性バインダーをパターン形成する工程と、
(f)第二の可撓性基板に転写された配向性カーボンナノチューブ膜の表面と導電性バインダーの表面とを接着後、導電性バインダーと接着した配向性カーボンナノチューブ膜を残して第二の可撓性基板を剥離することにより、配向性カーボンナノチューブ膜を電極基板側に転写する工程とを含む、電界放出型冷陰極の製造方法。
(3) 電極基板表面に配向性カーボンナノチューブ膜をパターン状に形成する電界放出型冷陰極の製造方法であって、
(a)基礎基板表面上に配向性カーボンナノチューブ膜を作製する工程と、
(b)電極基板表面に絶縁層とゲート層とを逐次パターン状に積層する工程と、
(c)前記工程(b)で得られた電極基板の表面の凹凸形状にかみ合わせ可能な、可逆的接着性表面を有する可撓性基板の表面の凸部と、前記工程(a)で作製された配向性カーボンナノチューブ膜の表面とを接着後、可撓性基板表面の凸部と接着した配向性カーボンナノチューブ膜を残して基礎基板を剥離することにより、配向性カーボンナノチューブ膜を可撓性基板側に転写する工程と、
(d)可撓性基板に転写された配向性カーボンナノチューブ膜の表面に導電性バインダーを付着させる工程と、
(e)配向性カーボンナノチューブ膜の表面に付着した導電性バインダーの表面と、電極基板の表面の凹部とを接着後、導電性バインダーおよび配向性カーボンナノチューブ膜を残して可撓性基板を剥離することにより、配向性カーボンナノチューブ膜を電極基板側に転写する工程とを含む、電界放出型冷陰極の製造方法。
(4) 電極基板表面に配向性カーボンナノチューブ膜をパターン状に形成する電界放出型冷陰極の製造方法であって、
(a)基礎基板表面上に配向性カーボンナノチューブ膜を作製する工程と、
(b)前記工程(a)で作製された配向性カーボンナノチューブ膜の表面を、可逆的接着性表面を有する第一の可撓性基板の表面に接着後、第一の可撓性基板表面と接着した配向性カーボンナノチューブ膜を残して基礎基板を剥離することにより、配向性カーボンナノチューブ膜を第一の可撓性基板側に転写する工程と、
(c)電極基板表面に絶縁層とゲート層とを逐次パターン状に積層する工程と、
(d)前記工程(c)で得られた電極基板の表面の凹凸形状にかみ合わせ可能な、可逆的接着性表面を有する第二の可撓性基板の表面の凸部と、第一の可撓性基板に転写された配向性カーボンナノチューブ膜の表面とを接着後、第二の可撓性基板表面の凸部と接着した配向性カーボンナノチューブ膜を残して第一の可撓性基板を剥離することにより、配向性カーボンナノチューブ膜を第二の可撓性基板側に転写する工程と、
(e)第二の可撓性基板に転写された配向性カーボンナノチューブ膜の表面に導電性バインダーを付着させる工程と、
(f)配向性カーボンナノチューブ膜の表面に付着した導電性バインダーの表面と、電極基板の表面の凹部とを接着後、導電性バインダーおよび配向性カーボンナノチューブ膜を残して第二の可撓性基板を剥離することにより、配向性カーボンナノチューブ膜を電極基板側に転写する工程とを含む、電界放出型冷陰極の製造方法。
(5) 電極基板の表面の凹凸形状にかみ合わせ可能な可逆的接着性表面を有する可撓性基板が、絶縁層とゲート層とを逐次パターン状に積層した電極基板の表面と、該可撓性基板の表面とを接触させ、該電極基板の表面の凹凸形状を反転して記憶させた後、剥離することによって得られるものである、(1)〜(4)のいずれかに記載の電界放出型冷陰極の製造方法。
(6) 電極基板の表面の凹凸形状を反転して記憶させる過程で光照射または加熱を用いる、(5)記載の電界放出型冷陰極の製造方法。
(7) 可逆的接着性表面を有する可撓性基板の表面の材質が、ポリエポキシアクリレート、ポリウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、エポキシ樹脂、フッ素樹脂、ポリアミド、フェノール樹脂およびポリ塩化ビニルからなる群より選ばれた単独または複数の樹脂である、(1)〜(4)のいずれかに記載の電界放出型冷陰極の製造方法。
(8) 電極基板表面に絶縁層とゲート層とを逐次パターン状に積層する工程において、スクリーン印刷法、焼成法、CVD法、レーザー照射法、フォトリソグラフィー法、サンドブラスト法、ノズルプリンティング法およびエッチング法からなる群より選ばれた単独または複数の方法を用いる、(1)〜(4)のいずれかに記載の電界放出型冷陰極の製造方法。
(9) 基礎基板表面上に配向性カーボンナノチューブ膜を作製する工程において、アルミニウムを被覆した支持基板に、遷移金属または遷移金属化合物を含む触媒を担持させてなる基礎基板の存在下、気体状の炭素化合物を分解することにより、該基礎基板表面上に基礎基板と垂直方向に配向したカーボンナノチューブ膜を成長させる、(1)〜(4)のいずれかに記載の電界放出型冷陰極の製造方法。
(10) 支持基板にアルミニウムを被覆する方法が、真空蒸着法、電析法、スパッタリング法またはゾルゲル法である、(9)記載の電界放出型冷陰極の製造方法。
(11) アルミニウムを被覆した支持基板に、遷移金属または遷移金属化合物を含む触媒を担持する方法が、含浸法、浸漬法またはゾルゲル法である、(9)記載の電界放出型冷陰極の製造方法。
(12) 炭素化合物が、飽和炭化水素化合物、不飽和炭化水素化合物、芳香族炭化水素化合物および含酸素炭化水素化合物からなる群より選ばれる1種または2種以上の混合物である、(9)記載の電界放出型冷陰極の製造方法。
(13) カーボンナノチューブの外径が1nm〜10nmの範囲である、(1)〜(4)のいずれかに記載の電界放出型冷陰極の製造方法。
(14) 配向性カーボンナノチューブ膜の表面と可逆的接着性表面を有する可撓性基板の表面とを接着する方法が、配向性カーボンナノチューブ膜の表面と可撓性基板の可逆的接着性表面とを接触させて、乾燥、圧着、加熱または熱圧着を施すものである、(1)〜(4)のいずれかに記載の電界放出型冷陰極の製造方法。
(15) 電極基板が、絶縁性の板の表面に予め導電性の回路を形成した板である、(1)〜(4)のいずれかに記載の電界放出型冷陰極の製造方法。
(16) 配向性カーボンナノチューブ膜の表面と導電性バインダーの表面とを接着する方法が、配向性カーボンナノチューブ膜の表面と導電性バインダーの表面とを接触させて、乾燥、圧着、加熱または熱圧着を施すものである、(1)〜(4)のいずれかに記載の電界放出型冷陰極の製造方法。
(17) 導電性バインダーが、導電性ペーストである、(1)〜(4)のいずれかに記載の電界放出型冷陰極の製造方法。
(18) 導電性バインダーが、導電性銀ペースト、導電性金ペースト、導電性カーボンペーストまたは導電性銅ペーストである、(1)〜(4)のいずれかに記載の電界放出型冷陰極の製造方法。
(19) 導電性バインダーが、インジウム、スズ、鉛、亜鉛、銅またはこれら金属の一種以上を含む合金である、(1)〜(4)のいずれかに記載の電界放出型冷陰極の製造方法。
(20) 可逆的接着性表面を有する可撓性基板が、粘着剤を表面に塗布した樹脂シートである、(1)〜(4)のいずれかに記載の電界放出型冷陰極の製造方法。
(21) (1)〜(20)のいずれかの方法によって得られる電界放出型冷陰極。
As a result of intensive studies on a method of manufacturing a field emission cold cathode, the present inventors have found a method of using a flexible substrate having an adhesive surface in which the shape of an electrode surface having a hole with a small area is memorized. The present invention has been reached. That is, the present invention is as follows.
(1) A method of manufacturing a field emission cold cathode, wherein an oriented carbon nanotube film is formed in a pattern on the surface of an electrode substrate,
(A) producing an oriented carbon nanotube film on the base substrate surface;
(B) a step of sequentially laminating an insulating layer and a gate layer in a pattern on the electrode substrate surface;
(C) Protrusions on the surface of a flexible substrate having a reversible adhesive surface that can be meshed with the concavo-convex shape of the surface of the electrode substrate obtained in the step (b), and produced in the step (a). The oriented carbon nanotube film is bonded to the surface of the oriented carbon nanotube film, and then the base substrate is peeled off, leaving the oriented carbon nanotube film adhered to the convex part of the surface of the flexible substrate. Transferring to the side,
(D) a step of patterning a conductive binder in the recesses on the surface of the electrode substrate obtained in the step (b);
(E) After bonding the surface of the oriented carbon nanotube film transferred to the flexible substrate and the surface of the patterned conductive binder, the flexibility is left leaving the oriented carbon nanotube film adhered to the conductive binder. And a step of transferring the oriented carbon nanotube film to the electrode substrate side by peeling off the substrate.
(2) A method of manufacturing a field emission cold cathode in which an oriented carbon nanotube film is formed in a pattern on the electrode substrate surface,
(A) producing an oriented carbon nanotube film on the base substrate surface;
(B) After bonding the surface of the oriented carbon nanotube film produced in the step (a) to the surface of the first flexible substrate having a reversible adhesive surface, A step of transferring the oriented carbon nanotube film to the first flexible substrate side by peeling the base substrate leaving the adhered oriented carbon nanotube film; and
(C) a step of sequentially laminating an insulating layer and a gate layer on the electrode substrate surface;
(D) A convex portion on the surface of the second flexible substrate having a reversible adhesive surface that can be meshed with the irregular shape on the surface of the electrode substrate obtained in the step (c), and the first flexible After bonding the surface of the oriented carbon nanotube film transferred to the permeable substrate, the first flexible substrate is peeled off leaving the oriented carbon nanotube film bonded to the convex portion of the surface of the second flexible substrate. A step of transferring the oriented carbon nanotube film to the second flexible substrate side;
(E) a step of patterning a conductive binder in the recesses on the surface of the electrode substrate obtained in the step (c);
(F) After the surface of the oriented carbon nanotube film transferred to the second flexible substrate and the surface of the conductive binder are bonded, the second carbon nanotube film bonded with the conductive binder is left and the second possible carbon nanotube film is left. And a step of transferring the oriented carbon nanotube film to the electrode substrate side by peeling the flexible substrate.
(3) A method of manufacturing a field emission cold cathode in which an oriented carbon nanotube film is formed in a pattern on the electrode substrate surface,
(A) producing an oriented carbon nanotube film on the base substrate surface;
(B) a step of sequentially laminating an insulating layer and a gate layer in a pattern on the electrode substrate surface;
(C) Protrusions on the surface of a flexible substrate having a reversible adhesive surface that can be meshed with the concavo-convex shape of the surface of the electrode substrate obtained in the step (b), and produced in the step (a). The oriented carbon nanotube film is bonded to the surface of the oriented carbon nanotube film, and then the base substrate is peeled off, leaving the oriented carbon nanotube film adhered to the convex part of the surface of the flexible substrate. Transferring to the side,
(D) attaching a conductive binder to the surface of the oriented carbon nanotube film transferred to the flexible substrate;
(E) After bonding the surface of the conductive binder adhering to the surface of the oriented carbon nanotube film and the concave portion of the surface of the electrode substrate, the flexible substrate is peeled off leaving the conductive binder and the oriented carbon nanotube film. And a step of transferring the oriented carbon nanotube film to the electrode substrate side.
(4) A method for producing a field emission cold cathode, wherein an oriented carbon nanotube film is formed in a pattern on the electrode substrate surface,
(A) producing an oriented carbon nanotube film on the base substrate surface;
(B) After bonding the surface of the oriented carbon nanotube film produced in the step (a) to the surface of the first flexible substrate having a reversible adhesive surface, A step of transferring the oriented carbon nanotube film to the first flexible substrate side by peeling the base substrate leaving the adhered oriented carbon nanotube film; and
(C) a step of sequentially laminating an insulating layer and a gate layer on the electrode substrate surface;
(D) A convex portion on the surface of the second flexible substrate having a reversible adhesive surface that can be meshed with the irregular shape on the surface of the electrode substrate obtained in the step (c), and the first flexible After bonding the surface of the oriented carbon nanotube film transferred to the permeable substrate, the first flexible substrate is peeled off leaving the oriented carbon nanotube film bonded to the convex portion of the surface of the second flexible substrate. A step of transferring the oriented carbon nanotube film to the second flexible substrate side;
(E) attaching a conductive binder to the surface of the oriented carbon nanotube film transferred to the second flexible substrate;
(F) After bonding the surface of the conductive binder attached to the surface of the oriented carbon nanotube film and the recess on the surface of the electrode substrate, the second flexible substrate leaving the conductive binder and the oriented carbon nanotube film And a step of transferring the oriented carbon nanotube film to the electrode substrate side by peeling the film.
(5) A flexible substrate having a reversible adhesive surface that can be meshed with the concavo-convex shape of the surface of the electrode substrate, the surface of the electrode substrate in which an insulating layer and a gate layer are sequentially laminated, and the flexibility The field emission according to any one of (1) to (4), which is obtained by contacting with the surface of the substrate, reversing and storing the uneven shape on the surface of the electrode substrate, and then peeling off the surface. Type cold cathode manufacturing method.
(6) The method for producing a field emission cold cathode according to (5), wherein light irradiation or heating is used in the process of inverting and storing the irregular shape on the surface of the electrode substrate.
(7) The material of the surface of the flexible substrate having a reversible adhesive surface is made of polyepoxy acrylate, polyurethane acrylate, polyester acrylate, polyether acrylate, epoxy resin, fluororesin, polyamide, phenol resin, and polyvinyl chloride. The method for producing a field emission cold cathode according to any one of (1) to (4), which is a single resin or a plurality of resins selected from the group.
(8) Screen printing method, baking method, CVD method, laser irradiation method, photolithography method, sand blasting method, nozzle printing method, and etching method in the step of sequentially laminating the insulating layer and the gate layer on the electrode substrate surface. The manufacturing method of the field emission type cold cathode in any one of (1)-(4) using the single method or multiple methods chosen from the group which consists of.
(9) In the step of producing an oriented carbon nanotube film on the surface of the base substrate, in the presence of the base substrate formed by supporting a catalyst containing a transition metal or a transition metal compound on a support substrate coated with aluminum, The method for producing a field emission cold cathode according to any one of (1) to (4), wherein a carbon nanotube film oriented in a direction perpendicular to the basic substrate is grown on the surface of the basic substrate by decomposing a carbon compound. .
(10) The method for producing a field emission cold cathode according to (9), wherein the method of coating the support substrate with aluminum is a vacuum deposition method, an electrodeposition method, a sputtering method, or a sol-gel method.
(11) The method for producing a field emission cold cathode according to (9), wherein the method of supporting a catalyst containing a transition metal or a transition metal compound on a support substrate coated with aluminum is an impregnation method, an immersion method, or a sol-gel method. .
(12) The carbon compound is one or a mixture of two or more selected from the group consisting of a saturated hydrocarbon compound, an unsaturated hydrocarbon compound, an aromatic hydrocarbon compound, and an oxygen-containing hydrocarbon compound. A method for producing a field emission cold cathode.
(13) The method for producing a field emission cold cathode according to any one of (1) to (4), wherein the outer diameter of the carbon nanotube is in the range of 1 nm to 10 nm.
(14) A method for adhering a surface of an oriented carbon nanotube film and a surface of a flexible substrate having a reversible adhesive surface includes: a surface of the oriented carbon nanotube film and a reversible adhesive surface of the flexible substrate; The method for producing a field emission cold cathode according to any one of (1) to (4), which is subjected to drying, pressure bonding, heating or thermocompression bonding.
(15) The method for producing a field emission cold cathode according to any one of (1) to (4), wherein the electrode substrate is a plate in which a conductive circuit is previously formed on the surface of an insulating plate.
(16) A method in which the surface of the oriented carbon nanotube film and the surface of the conductive binder are bonded to each other by bringing the surface of the oriented carbon nanotube film and the surface of the conductive binder into contact with each other, followed by drying, pressure bonding, heating, or thermocompression bonding. The method for producing a field emission cold cathode according to any one of (1) to (4), wherein:
(17) The method for producing a field emission cold cathode according to any one of (1) to (4), wherein the conductive binder is a conductive paste.
(18) The field emission cold cathode according to any one of (1) to (4), wherein the conductive binder is a conductive silver paste, a conductive gold paste, a conductive carbon paste, or a conductive copper paste. Method.
(19) The method for producing a field emission cold cathode according to any one of (1) to (4), wherein the conductive binder is indium, tin, lead, zinc, copper, or an alloy containing one or more of these metals. .
(20) The method for producing a field emission cold cathode according to any one of (1) to (4), wherein the flexible substrate having a reversible adhesive surface is a resin sheet having a pressure-sensitive adhesive applied to the surface.
(21) A field emission cold cathode obtained by any one of the methods (1) to (20).

本発明の電界放出型冷陰極の製造方法によれば、先に微小面積のホールが開いた絶縁層、ゲート層の二層構造を形成し、該ホールの凹部である電極表面に、垂直配向性があり高さおよび密度が均一の配向性CNTの集合体を設置した電界放出型冷陰極を、大面積で容易に製造できる。本発明の方法により製造された陰極を用いて、低電圧で作動し、均一な輝度の面発光表示装置を得ることができる。   According to the method of manufacturing a field emission cold cathode of the present invention, a two-layer structure of an insulating layer and a gate layer in which a hole with a small area is first formed is formed, and a vertical alignment property is formed on the electrode surface which is a recess of the hole. Thus, a field emission cold cathode having an assembly of oriented CNTs having uniform height and density can be easily manufactured in a large area. By using the cathode manufactured by the method of the present invention, it is possible to obtain a surface-emitting display device that operates at a low voltage and has uniform luminance.

本実施形態における電界放出型冷陰極の製造法は、以下に示す四通りの方法(A、B、CまたはD法)がある。
A法は図1に示すように、(a)基礎基板表面上に配向性CNT膜を作製する工程と、(b)電極基板表面に絶縁層、ゲート層を逐次パターン状に積層する工程と、(c)前記工程(b)で得られた電極基板の表面の凹凸形状にかみ合わせ可能な、可逆的接着性表面を有する可撓性基板の表面の凸部と、前記工程(a)で作製された配向性CNT膜の表面とを接着後、可撓性基板表面の凸部と接着した配向性CNT膜を残して基礎基板を剥離することにより、配向性CNT膜を可撓性基板側に転写する工程と、(d)前記工程(b)で得られた電極基板の表面の凹部に導電性バインダーをパターン形成する工程と、(e)可撓性基板に転写された配向性CNT膜の表面とパターン形成された導電性バインダーの表面とを接着後、導電性バインダーと接着した配向性CNT膜を残して可撓性基板を剥離することにより、配向性CNT膜を電極基板側に転写する工程とを含む方法である。
There are the following four methods (A, B, C, or D methods) for producing the field emission cold cathode in the present embodiment.
As shown in FIG. 1, method A includes (a) a step of producing an oriented CNT film on the surface of the base substrate, (b) a step of sequentially laminating an insulating layer and a gate layer on the electrode substrate surface, (C) Protrusions on the surface of a flexible substrate having a reversible adhesive surface that can be meshed with the concavo-convex shape of the surface of the electrode substrate obtained in the step (b), and produced in the step (a). After adhering the surface of the oriented CNT film, the oriented CNT film is transferred to the flexible substrate side by peeling the base substrate leaving the oriented CNT film adhered to the convex portion of the surface of the flexible substrate. (D) a step of patterning a conductive binder in the concave portion of the surface of the electrode substrate obtained in the step (b), and (e) a surface of the oriented CNT film transferred to the flexible substrate. After bonding the surface of the patterned conductive binder to the conductive binder By peeling off the flexible substrate to leave the orientation CNT film adhered with over, the method comprising the step of transferring the oriented CNT film on the electrode substrate.

A法の工程(a)で作製する配向性CNT膜としては、電界放出型電子源として用いるため、高さおよび密度が一定であることが好ましい。また、各々のCNTはなるべく管径の細いほうが望ましい。ただし、単層CNTは強度的に課題があるため、2層以上の多層CNTが望ましい。さらに、基礎基板表面上にある配向性CNT膜としては、工程(c)で基礎基板から剥離する操作を行うため、基礎基板と該基礎基板表面上のCNTの密着力が弱い方が好ましい。   The oriented CNT film produced in step (a) of method A is preferably constant in height and density because it is used as a field emission electron source. Each CNT preferably has the smallest possible tube diameter. However, since single-walled CNT has a problem in strength, a multilayered CNT having two or more layers is desirable. Furthermore, the orientation CNT film on the base substrate surface is preferably one having weak adhesion between the base substrate and the CNTs on the base substrate surface in order to perform an operation of peeling from the base substrate in step (c).

上記条件を満たす配向性CNT膜として、例えば、本発明者らが特開2002−338221号公報や特開2004−002182号公報で開示した配向性CNT膜が挙げられる。該CNT膜は特開2002−338221号公報に記載されているように、アルミニウムを蒸着した支持基板上に、CNT生成触媒を担持してCNT成長用の基礎基板を作製し、該基板上で炭素化合物を分解することにより製造できる。また、該CNT膜は特開2004−002182号公報に記載されているように、0.1〜50nmの細孔を有するゾルゲル法多孔質担体を作製した支持基板に、CNT生成触媒を担持してCNT成長用の基礎基板を作製し、該基板上で炭素化合物を分解することにより製造できる。 Examples of the oriented CNT film satisfying the above conditions include oriented CNT films disclosed by the present inventors in JP-A Nos. 2002-338221 and 2004-002182. As described in Japanese Patent Application Laid-Open No. 2002-338221, the CNT film is prepared by forming a base substrate for CNT growth on a support substrate on which aluminum is vapor-deposited by supporting a CNT generation catalyst. It can be produced by decomposing the compound. In addition, as described in JP-A-2004-002182, the CNT film has a CNT-forming catalyst supported on a support substrate on which a sol-gel porous carrier having 0.1 to 50 nm pores is prepared. It can be produced by preparing a basic substrate for CNT growth and decomposing a carbon compound on the substrate.

ここで用いられるCNT生成触媒としては、CNTを形成する触媒であればいずれでも良く、遷移金属または遷移金属化合物を含む触媒が用いられる。例えば、鉄、コバルト、ニッケル、モリブデンまたはこれらの化合物を含む触媒が用いられる。これらの触媒は単独または混合物として用いることができる。 The CNT generation catalyst used here may be any catalyst that forms CNTs, and a catalyst containing a transition metal or a transition metal compound is used. For example, a catalyst containing iron, cobalt, nickel, molybdenum or a compound thereof is used. These catalysts can be used alone or as a mixture.

触媒の担持法としては、担体に触媒を担持させる方法であればいずれでも良く、含浸法、浸漬法、ゾルゲル法等が挙げられる。また、触媒を担持後に、該CNT成長用基板を加熱する場合もある。 Any catalyst loading method may be used as long as the catalyst is supported on a carrier, and examples thereof include an impregnation method, an immersion method, and a sol-gel method. In some cases, the CNT growth substrate is heated after supporting the catalyst.

該CNT成長用基板を用いて炭素化合物を分解することにより、該基板上に配向性CNT膜が生成する。使用される炭素化合物は、適当な触媒の存在下で、CNTを生じさせるものなら何でも良く、例えば、メタン、エタン、プロパンなどの飽和炭化水素化合物、エチレン、プロピレン、アセチレンなどの不飽和炭化水素化合物、ベンゼン、トルエンなどの芳香族炭化水素化合物、メタノール、エタノール、アセトンなどの含酸素炭化水素化合物などが挙げられ、好ましくは、メタン、エチレン、プロピレン、アセチレン、メタノール、エタノール、プロパノールである。 By decomposing the carbon compound using the CNT growth substrate, an oriented CNT film is formed on the substrate. Any carbon compound may be used as long as it generates CNTs in the presence of a suitable catalyst, for example, saturated hydrocarbon compounds such as methane, ethane, and propane, and unsaturated hydrocarbon compounds such as ethylene, propylene, and acetylene. , Aromatic hydrocarbon compounds such as benzene and toluene, and oxygen-containing hydrocarbon compounds such as methanol, ethanol, and acetone, preferably methane, ethylene, propylene, acetylene, methanol, ethanol, and propanol.

該炭素化合物の導入形態としては、ガス状のまま導入しても良いし、アルゴンのような不活性ガスと混合して導入しても良いし、または不活性ガス中の飽和蒸気として導入しても良い。また、ナノチューブに組み込まれるホウ素、窒素などのヘテロ元素を含む化合物を混ぜることで、ヘテロ元素含有ナノチューブとすることも可能である。 As a form of introducing the carbon compound, it may be introduced in a gaseous state, mixed with an inert gas such as argon, or introduced as a saturated vapor in the inert gas. Also good. Further, a hetero element-containing nanotube can be obtained by mixing a compound containing a hetero element such as boron or nitrogen incorporated into the nanotube.

該炭素化合物の分解反応としては、熱分解が最も一般的で、好ましい反応温度は400〜1100℃、より好ましくは500〜900℃である。好ましい反応圧力は1kPa〜1MPa、より好ましくは0.01〜0.12MPaである。 As the decomposition reaction of the carbon compound, thermal decomposition is the most common, and a preferable reaction temperature is 400 to 1100 ° C, more preferably 500 to 900 ° C. A preferable reaction pressure is 1 kPa to 1 MPa, more preferably 0.01 to 0.12 MPa.

本実施形態において、触媒粒子は、CNTの生成後には各CNTの先端部分すなわち配向性CNT膜の先端側に内包されていることが多い。本発明の製造方法によると、高さ1〜100μmの配向性CNT膜を基礎基板上に一様に生成させることができる。この時、個々のCNTの外径は1nm〜10nmの範囲で製造できる。また、該基礎基板と基礎基板上の該CNT膜は物理的に接触しているのみであり、基礎基板と該基板上のCNT膜の密着力は弱い。 In the present embodiment, the catalyst particles are often included in the tip portion of each CNT, that is, the tip side of the oriented CNT film, after the CNTs are generated. According to the manufacturing method of the present invention, an oriented CNT film having a height of 1 to 100 μm can be uniformly formed on a basic substrate. At this time, the outer diameter of each CNT can be manufactured in the range of 1 nm to 10 nm. Further, the basic substrate and the CNT film on the basic substrate are only in physical contact, and the adhesion between the basic substrate and the CNT film on the substrate is weak.

A法における工程(b)、すなわち電極基板表面に絶縁層とゲート層とを逐次パターン状に積層する工程においては、通常のパターン状の積層方法、すなわちスクリーン印刷法、焼成法、CVD法、レーザー照射法、フォトリソグラフィー法、サンドブラスト法、ノズルプリンティング法またはエッチング法などの方法、あるいはこれらの方法を組み合わせた方法を用いる。 In the step (b) in the method A, that is, in the step of sequentially laminating the insulating layer and the gate layer on the surface of the electrode substrate, a normal pattern laminating method, that is, screen printing method, firing method, CVD method, laser An irradiation method, a photolithography method, a sand blast method, a nozzle printing method, an etching method, or a combination of these methods is used.

絶縁層を形成する材料としては、絶縁物から成り真空中でガスを発生させないものが好ましく、真空封止時の温度(約500℃程度)でもその形状を保持できるものが良い。一般的にはケイ素を主成分とするガラス質ゾルと溶剤等からなるペーストをパターン状にスクリーン印刷し、焼成によって溶剤等の有機成分を除いて固める手法がコスト的に有利である。また、近年開発された、感光性有機ケイ酸膜も絶縁層としての機能を満たしており使用することができる。 As a material for forming the insulating layer, an insulating material that does not generate gas in a vacuum is preferable, and a material that can maintain its shape even at a temperature during vacuum sealing (about 500 ° C.) is preferable. In general, it is advantageous in terms of cost to perform a method of screen-printing a paste composed of a glassy sol containing silicon as a main component and a solvent in a pattern and solidifying the organic component such as the solvent by baking. In addition, a photosensitive organic silicate film developed in recent years also has a function as an insulating layer and can be used.

ゲート層を形成する材料としては、導電物からなり真空中でガスを発生させないものが好ましく、真空封止時の温度(約500℃程度)でもその形状を保持できるものが良い。一般的には、金属微粒子と溶剤等からなるペーストを、絶縁層のパターンに上塗りする形でスクリーン印刷し、焼成によって溶剤等の有機成分を除いて固める手法がコスト的に有利である。   As a material for forming the gate layer, a material made of a conductive material that does not generate gas in a vacuum is preferable, and a material that can maintain its shape even at a temperature during vacuum sealing (about 500 ° C.) is preferable. In general, it is advantageous in terms of cost to perform a screen printing process in which a paste composed of fine metal particles and a solvent is overcoated on an insulating layer pattern, and then solidified by removing organic components such as a solvent by baking.

この工程で形成されるパターン状とは、絶縁層とゲート層で構成される二層構造が電極表面で部分的にホールが開いた状態のことを指す。ホールの形状は、最終的に得られる冷陰極の用途によって異なるが、円形である場合と短冊状である場合が多い。円形である場合は直径5〜100μmが多い。短冊状である場合は短い方の辺が5〜100μmが多く、長い方の辺は特に定まらない。 The pattern formed in this step refers to a state in which a two-layer structure including an insulating layer and a gate layer has holes partially opened on the electrode surface. The shape of the hole varies depending on the use of the cold cathode finally obtained, but is often circular or strip-shaped. In the case of a circular shape, the diameter is often 5 to 100 μm. In the case of a strip shape, the shorter side is often 5 to 100 μm, and the longer side is not particularly determined.

A法における工程(c)の接着、転写工程で用いられる可逆的接着性表面を有する可撓性基板とは、対象物をその表面に接着または剥離が可能な可撓性基板で、その表面部分が電極基板の表面の凹凸形状にかみ合わせ可能な形状を有している基板を意味する。構成に関しては、接着成分が支持基板表面に全面的またはパターンに合わせて部分的に塗布してある場合と、基板そのものが接着性を有する材質である場合とがある。機能に関しては、通常の環境下では接着性の機能がない基板でも、湿潤雰囲気や高温など特殊な環境下で機能を発現する基板も使用できる。逆に通常の環境下では機能がある基板でも、光照射や加熱など特殊な操作で機能を失う基板も使用できる。また、このような機能の可逆的発現は段階的に制御することもできる。 The flexible substrate having a reversible adhesive surface used in the adhesion and transfer step of step (c) in method A is a flexible substrate capable of adhering or peeling an object to the surface, and the surface portion Means a substrate having a shape that can be meshed with the uneven shape of the surface of the electrode substrate. Regarding the structure, there are a case where the adhesive component is applied to the entire surface of the supporting substrate or a partial pattern according to a pattern, and a case where the substrate itself is a material having adhesiveness. Regarding the function, a substrate that does not have an adhesive function under a normal environment or a substrate that exhibits a function under a special environment such as a humid atmosphere or high temperature can be used. Conversely, even a substrate that has a function under a normal environment can use a substrate that loses its function by a special operation such as light irradiation or heating. Moreover, the reversible expression of such a function can also be controlled stepwise.

可撓性基板表面が電極基板の表面の凹凸形状にかみ合わせ可能とは、該可撓性基板と該電極基板とを垂直方向から近づけた場合に、互いの凸部どうしが接触せずに近づけることができる形状を言う。最も明快な形状としては図2に示すように、凹凸形状が互いに反転しているものがある。その他、後の工程(e)では転写する配向性CNT膜が該電極基板表面の導電性バインダーに接触すればよいので、図3に示すように該可撓性基板表面の凸部が該電極基板表面の凸部よりも低くても構わない。また、後の工程(e)で該電極基板表面の凹部の一部分に配向性CNT膜を付着させる方法としては、図4のように該可撓性基板表面の凸部が該電極基板表面の凹部よりも狭いもの、図5のように該可撓性基板表面の凸部が分割してあるものも使用可能である。   The flexible substrate surface can be meshed with the uneven shape of the electrode substrate surface when the flexible substrate and the electrode substrate are brought close to each other from the vertical direction so that the convex portions of each other can be brought close to each other without being in contact with each other. A shape that can be used. As the most clear shape, as shown in FIG. In addition, in the subsequent step (e), the alignment CNT film to be transferred may be in contact with the conductive binder on the surface of the electrode substrate. Therefore, as shown in FIG. It may be lower than the convex portion on the surface. Further, as a method of attaching the oriented CNT film to a part of the concave portion on the surface of the electrode substrate in the subsequent step (e), the convex portion on the surface of the flexible substrate is a concave portion on the surface of the electrode substrate as shown in FIG. It is also possible to use a narrower one having a convex portion on the surface of the flexible substrate as shown in FIG.

図2に示すような、電極基板表面の凹凸形状が反転した形状を有する可撓性基板を作製する上で、できるだけ精度良く、かつ広い面積でも簡便に作製する方法として、表面形状が記憶可能な可逆的接着性表面を有する可撓性基板を用いる方法がある。表面形状が記憶可能とは、密着させた相方の表面形状の凸の部分が凹となり、凹の部分が凸となって、形状が反転して記憶されることを言う。この記憶の過程で、光照射や加熱などを必要とする場合もある。   As shown in FIG. 2, the surface shape can be memorized as a method for producing a flexible substrate having a shape in which the uneven shape on the surface of the electrode substrate is reversed as easily as possible even with a large area. There is a method using a flexible substrate having a reversible adhesive surface. “Surface shape can be memorized” means that the convex portion of the opposite surface shape that is in close contact becomes concave, the concave portion becomes convex, and the shape is inverted and stored. In the process of this memory, light irradiation or heating may be required.

特にここで用いられる可撓性基板の表面の材質としては、ポリエポキシアクリレート、ポリウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート等に例示される光硬化型樹脂、あるいはエポキシ樹脂、フッ素樹脂、ポリアミド、フェノール樹脂、ポリ塩化ビニル等に例示される熱硬化型樹脂が好ましい。支持基板が用いられている場合の材質としては、柔らかな樹脂シートや多少曲げることのできるガラス板など、材質には特にこだわらない。   In particular, the material of the surface of the flexible substrate used here is a photocurable resin exemplified by polyepoxy acrylate, polyurethane acrylate, polyester acrylate, polyether acrylate, or the like, or epoxy resin, fluororesin, polyamide, phenol resin Thermosetting resins exemplified by polyvinyl chloride and the like are preferable. When the support substrate is used, the material is not particularly limited, such as a soft resin sheet or a slightly bendable glass plate.

ここで表面形状が記憶可能な可逆的接着性表面を有する可撓性基板を用いて工程(b)で得られた電極基板表面の形状を記憶する場合は、図6に示すように、該可撓性基板表面と電極基板表面とを接触させ、該可撓性基板の表面に該電極基板表面の形状を記憶させた後、剥離する。絶縁層とゲート層からなる二層構造によって電極基板表面に形成されたホールに、可撓性基板表面部分が良く侵入するように、ある程度押圧するのが一般的である。また、形状を記憶する過程においては、可撓性基板表面の材質に応じて、光照射または加熱操作を行う場合もある。この一連の操作によって、可撓性基板表面にはホールが開いた電極表面が凸となり、ゲート層表面が凹となって、電極表面の凹凸形状が反転して記憶される。   Here, when the shape of the electrode substrate surface obtained in the step (b) is memorized using a flexible substrate having a reversible adhesive surface capable of memorizing the surface shape, as shown in FIG. The surface of the flexible substrate is brought into contact with the surface of the electrode substrate, the shape of the surface of the electrode substrate is memorized on the surface of the flexible substrate, and then peeled off. In general, it is pressed to some extent so that the flexible substrate surface portion penetrates well into a hole formed on the electrode substrate surface by a two-layer structure including an insulating layer and a gate layer. In the process of storing the shape, light irradiation or heating operation may be performed depending on the material of the flexible substrate surface. By this series of operations, the surface of the electrode with the holes formed thereon becomes convex on the surface of the flexible substrate, the surface of the gate layer becomes concave, and the uneven shape of the electrode surface is inverted and stored.

A法における工程(c)においては、前記工程(a)で作製した配向性CNT膜を、可撓性基板表面の凸部に貼り付ける。貼り付ける方法としては、配向性CNT膜の膜面と可撓性基板表面の凸部とを接触させて、乾燥、圧着、加熱または熱圧着を施して接触面を接着させた後、配向性CNT膜を剥がすことで行う。配向性CNT膜は物理的に基礎基板に乗っているだけなので膜面が可撓性基板表面の凸部と接着した部分は簡単に剥離することができる。一方、膜面が可撓性基板表面の凸部と接着しなかった部分は剥離せずに残るので、該可撓性基板表面の凸部の部分だけに配向性CNT膜を貼り付けることができる。   In the step (c) in the method A, the oriented CNT film produced in the step (a) is attached to the convex portion on the surface of the flexible substrate. As a method of attaching, the film surface of the oriented CNT film and the convex part of the surface of the flexible substrate are brought into contact, and the contact surface is adhered by drying, pressure bonding, heating or thermocompression bonding, and then the oriented CNT This is done by removing the film. Since the oriented CNT film is only physically on the base substrate, the portion where the film surface is bonded to the convex portion on the surface of the flexible substrate can be easily peeled off. On the other hand, since the portion where the film surface did not adhere to the convex portion on the surface of the flexible substrate remains without being peeled off, the oriented CNT film can be attached only to the convex portion of the surface of the flexible substrate. .

A法における工程(d)、すなわち電極基板の表面の凹部に導電性バインダーをパターン形成する工程では、絶縁層とゲート層とで構成された二層構造によって形成されるホールの電極表面に、導電性バインダーを付着させる。導電性バインダーのパターンとしては、ホールの電極表面に付着していれば良く、ホールの形に添ったパターンでも良いし、ホールの外周部または中央部が抜けたパターンでも良い。   In the step (d) in the method A, that is, in the step of patterning a conductive binder in the concave portion on the surface of the electrode substrate, the conductive surface is formed on the electrode surface of the hole formed by the two-layer structure composed of the insulating layer and the gate layer. Adhesive binder is adhered. The conductive binder pattern may be attached to the electrode surface of the hole, may be a pattern that follows the shape of the hole, or may be a pattern in which the outer peripheral portion or the central portion of the hole is removed.

導電性バインダーとしては、導電性ペーストまたは低融点金属が良く用いられる。導電性バインダーが導電性ペーストである場合は、導電性銀ペースト、導電性金ペースト、導電性カーボンペースト、導電性銅ペーストなどが好ましい。これら導電性ペーストのパターン形成方法としては、インクジェット法などのノズルプリンティング方法が一般的には用いられる。導電性バインダーが低融点金属である場合は、インジウム、スズ、鉛、亜鉛、銅またはこれら金属の一種以上を含む合金を用いることが好ましい。   As the conductive binder, a conductive paste or a low melting point metal is often used. When the conductive binder is a conductive paste, a conductive silver paste, a conductive gold paste, a conductive carbon paste, a conductive copper paste, or the like is preferable. As a pattern forming method of these conductive pastes, a nozzle printing method such as an ink jet method is generally used. When the conductive binder is a low melting point metal, it is preferable to use indium, tin, lead, zinc, copper, or an alloy containing one or more of these metals.

ここで、本発明において製造される電界放出型冷陰極をFEDなどのような画像表示装置の電子源として使用する場合、電極基板としては絶縁性の板の表面に予め導電性の回路を形成させた板を用いることが好ましい。絶縁性の板としては大面積でも安価なガラスが好ましい。これに対し配向性CNT膜を電極基板にパターン形成させた後で、電極基板に導電性の回路を形成する方法は非常に煩雑である。 Here, when the field emission type cold cathode manufactured in the present invention is used as an electron source of an image display device such as an FED, a conductive circuit is previously formed on the surface of an insulating plate as an electrode substrate. It is preferable to use a flat plate. As the insulating plate, glass which is inexpensive even in a large area is preferable. On the other hand, a method of forming a conductive circuit on an electrode substrate after forming an oriented CNT film on the electrode substrate is very complicated.

A法における最後の工程(e)では、工程(c)の接着、転写工程で可撓性基板表面の凸部に転写した配向性CNT膜の表面と、工程(d)で電極基板の表面の凹部にパターン形成した導電性バインダーの表面とを接着させ、可撓性基板を剥離する。具体的には、配向性CNT膜の表面と導電性バインダーの表面とを接触させて、乾燥、圧着、加熱または熱圧着を施して接触面を接着させた後、可撓性基板表面の凸部から配向性CNT膜を剥がす。   In the last step (e) in the method A, the surface of the orientation CNT film transferred to the convex portion of the flexible substrate surface in the adhesion and transfer step in the step (c), and the surface of the electrode substrate in the step (d) The surface of the conductive binder patterned in the recess is adhered, and the flexible substrate is peeled off. Specifically, the surface of the oriented CNT film and the surface of the conductive binder are brought into contact with each other, dried, pressure-bonded, heated or heat-bonded to bond the contact surface, and then the convex portion on the surface of the flexible substrate. The orientation CNT film is peeled off from the substrate.

剥がす操作においては、配向性CNT膜と導電性バインダーとの間の接着力が、配向性CNT膜と可撓性基板表面の凸部との接着力を上回れば良い。通常、工程(e)の前半の接着操作により上回らせることは容易に可能であるが、上述した可撓性基板表面の接着力を下げる操作も付加することで、より確実に転写を完了できる。   In the peeling operation, the adhesive force between the oriented CNT film and the conductive binder only needs to exceed the adhesive force between the oriented CNT film and the convex portion on the surface of the flexible substrate. Usually, it is possible to easily exceed the first half of the bonding operation in the step (e), but the transfer can be completed more reliably by adding the above-described operation for reducing the adhesive force of the flexible substrate surface.

上記A法で得られる電界放出型冷陰極に転写された配向性CNT膜の電子放出面は、工程(a)において得られた配向性CNT膜の膜面側である。しかしながら工程(a)の操作次第では得られた配向性CNT膜の膜面側と基礎基板側との電子放出性能が異なる場合がある。上記A法と同様な製造方法であるが、基礎基板側を電子放出面に用いた方が有利な場合は、可撓性基板を二種類導入した以下のB法を用いる。 The electron emission surface of the oriented CNT film transferred to the field emission cold cathode obtained by the method A is the film surface side of the oriented CNT film obtained in the step (a). However, depending on the operation of the step (a), the electron emission performance may differ between the film surface side of the obtained oriented CNT film and the base substrate side. Although the manufacturing method is the same as the above-mentioned method A, when it is more advantageous to use the base substrate side as the electron emission surface, the following method B in which two types of flexible substrates are introduced is used.

本実施形態における電界放出型冷陰極の製造方法のうち、B法は図7に示すように、(a)基礎基板表面上に配向性CNT膜を作製する工程と、(b)前記工程(a)で作製された配向性CNT膜の表面を、可逆的接着性表面を有する第一の可撓性基板の表面に接着後、第一の可撓性基板表面と接着した配向性CNT膜を残して基礎基板を剥離することにより配向性CNT膜を第一の可撓性基板側に転写する工程と、(c)電極基板表面に絶縁層、ゲート層を逐次パターン状に積層する工程と、(d)前記工程(c)で得られた電極基板の表面の凹凸形状にかみ合わせ可能な、可逆的接着性表面を有する第二の可撓性基板の表面の凸部と、配向性CNT膜の表面とを接着後、可撓性基板表面の凸部と接着した配向性CNT膜を残して基礎基板を剥離することにより、配向性CNT膜を第二の可撓性基板側に転写する工程と、(e)前記工程(c)で得られた電極基板の表面の凹部に導電性バインダーをパターン形成する工程と、(f)第二の可撓性基板に転写された配向性CNT膜の表面と導電性バインダーの表面とを接着後、導電性バインダーと接着した配向性CNT膜を残して第二の可撓性基板を剥離することにより、配向性CNT膜を電極基板側に転写する工程とを含む方法である。 Of the method for manufacturing a field emission cold cathode according to the present embodiment, as shown in FIG. 7, method B includes (a) a step of forming an oriented CNT film on the surface of the base substrate, and (b) the step (a After the surface of the oriented CNT film prepared in step 1) is adhered to the surface of the first flexible substrate having a reversible adhesive surface, the oriented CNT film adhered to the surface of the first flexible substrate is left. A step of transferring the oriented CNT film to the first flexible substrate side by peeling the base substrate, and (c) a step of sequentially laminating an insulating layer and a gate layer on the surface of the electrode substrate, d) Convex part of the surface of the second flexible substrate having a reversible adhesive surface that can mesh with the uneven shape of the surface of the electrode substrate obtained in the step (c), and the surface of the oriented CNT film After bonding, the base substrate leaving the oriented CNT film bonded to the convex part of the flexible substrate surface A step of transferring the oriented CNT film to the second flexible substrate side by peeling, and (e) pattern-forming a conductive binder in the concave portion of the surface of the electrode substrate obtained in the step (c). And (f) after bonding the surface of the oriented CNT film transferred to the second flexible substrate and the surface of the conductive binder, leaving the oriented CNT film adhered to the conductive binder, And a step of transferring the oriented CNT film to the electrode substrate side by peeling off the flexible substrate.

B法における工程(a)は、A法における工程(a)と同様である。B法における工程(b)の転写工程において用いられる可逆的接着性表面を有する第一の可撓性基板は、A法で用いる可逆的接着性表面を有する可撓性基板と同様な基板であるが、凹凸形状の表面を必要としない点では異なる。但し、第一の可撓性基板を構成する材質としてはA法で述べた可撓性基板を構成する材質を使うことが好ましい。   Step (a) in Method B is the same as Step (a) in Method A. The first flexible substrate having a reversible adhesive surface used in the transfer step of step (b) in Method B is the same substrate as the flexible substrate having a reversible adhesive surface used in Method A. However, it is different in that it does not require an uneven surface. However, it is preferable to use the material constituting the flexible substrate described in the method A as the material constituting the first flexible substrate.

B法における工程(c)はA法における工程(b)と同様である。 Step (c) in Method B is the same as Step (b) in Method A.

B法における工程(d)で用いられる第二の可逆的接着性表面を有する可撓性基板は、A法において用いられる可逆的接着性表面を有する可撓性基板と同様でありここでは説明を省略する。 The flexible substrate having the second reversible adhesive surface used in step (d) in the method B is the same as the flexible substrate having the reversible adhesive surface used in the method A. Omitted.

以下、B法における工程(e)および(f)は、A法における工程(d)および(e)とそれぞれ同様である。 Hereinafter, steps (e) and (f) in Method B are the same as steps (d) and (e) in Method A, respectively.

本実施形態における電界放出型冷陰極の製造方法のうち、C法は図8に示すように、(a)基礎基板表面上に配向性CNT膜を作製する工程と、(b)電極基板表面に絶縁層、ゲート層を逐次パターン状に積層する工程と、(c)前記工程(b)で得られた電極基板の表面の凹凸形状にかみ合わせ可能な、可逆的接着性表面を有する可撓性基板の表面の凸部と、配向性CNT膜の表面とを接着後、可撓性基板表面の凸部と接着した配向性CNT膜を残して基礎基板を剥離することにより、配向性CNT膜を可撓性基板側に転写する工程と、(d)可撓性基板に転写された配向性CNT膜の表面に導電性バインダーを付着させる工程と、(e)配向性CNT膜の表面に付着した導電性バインダーの表面と、電極基板の表面の凹部とを接着後、導電性バインダーおよび配向性CNT膜を残して可撓性基板を剥離することにより、配向性CNT膜を電極基板側に転写する工程とを含む方法である。   Of the method for manufacturing a field emission cold cathode according to the present embodiment, as shown in FIG. 8, method C includes (a) a step of producing an oriented CNT film on the base substrate surface, and (b) a surface of the electrode substrate. A step of laminating an insulating layer and a gate layer in a sequential pattern; and (c) a flexible substrate having a reversible adhesive surface that can be meshed with the irregular shape of the surface of the electrode substrate obtained in the step (b). After aligning the convex part of the surface of the substrate and the surface of the oriented CNT film, the oriented CNT film can be made by peeling off the base substrate leaving the oriented CNT film adhered to the convex part of the surface of the flexible substrate. A step of transferring to the flexible substrate side, (d) a step of attaching a conductive binder to the surface of the oriented CNT film transferred to the flexible substrate, and (e) a conductive material attached to the surface of the oriented CNT film. After bonding the surface of the conductive binder and the recesses on the surface of the electrode substrate, By peeling off the flexible substrate to leave the sex binder and orientation CNT film, the method comprising the step of transferring the oriented CNT film on the electrode substrate.

C法における工程(a)〜(c)は、A法における工程(a)〜(c)とそれぞれ同様なのでここでは説明を省略する。   Steps (a) to (c) in the method C are the same as steps (a) to (c) in the method A, respectively, so description thereof is omitted here.

C法における工程(d)で用いられる導電性バインダーは、A法における工程(d)で用いられる導電性バインダーと同様である。付着方法としては特に制限はないが、別途基板上に導電性バインダーの薄膜を形成し、そこに工程(c)で得られた可撓性基板表面の凸部上の配向性CNT膜を接触させ、乾燥、圧着、加熱または熱圧着を施すことにより接触面を接着させる方法が一般的である。すなわち工程(d)後には、可撓性基板表面の凸部上には配向性CNT膜、導電性バインダーの順に積層されている。   The conductive binder used in step (d) in method C is the same as the conductive binder used in step (d) in method A. The attachment method is not particularly limited, but a thin film of a conductive binder is separately formed on the substrate, and the oriented CNT film on the convex portion of the surface of the flexible substrate obtained in step (c) is brought into contact therewith. Generally, the contact surface is adhered by drying, pressure bonding, heating, or heat pressure bonding. That is, after the step (d), an oriented CNT film and a conductive binder are laminated in this order on the convex portion on the surface of the flexible substrate.

C法における工程(e)で、前半の接着には特に制限はないが、一般的には両者を接触させ、乾燥、圧着、加熱または熱圧着を施す。後半の転写は、電極基板と導電性バインダーとの間の接着力が、配向性CNT膜と可撓性基板表面の凸部との接着力を上回れば良い。通常、前半の接着操作により上回らせることは容易に可能であるが、上述した可撓性基板表面の接着力を下げる操作も付加することで、より確実に転写を完了できる。   In the step (e) in the method C, there is no particular limitation on the adhesion in the first half, but in general, both are brought into contact with each other and subjected to drying, pressure bonding, heating or thermocompression bonding. In the latter half of the transfer, the adhesive force between the electrode substrate and the conductive binder only needs to exceed the adhesive force between the oriented CNT film and the convex portion on the surface of the flexible substrate. Usually, it is possible to easily exceed the first half by the bonding operation, but the transfer can be completed more reliably by adding the above-described operation for lowering the adhesive force of the flexible substrate surface.

上記C法で得られる電界放出型冷陰極に転写された配向性CNT膜の電子放出面は、工程(a)において得られた配向性CNT膜の膜面側である。しかしながら工程(a)の操作次第では得られた配向性CNT膜の膜面側と基礎基板側との電子放出性能が異なる場合がある。上記C法と同様な製造方法であるが、基礎基板側を電子放出面に用いた方が有利な場合は、可撓性基板を二種類導入した以下のD法を用いる。 The electron emission surface of the oriented CNT film transferred to the field emission cold cathode obtained by the C method is the film surface side of the oriented CNT film obtained in the step (a). However, depending on the operation of the step (a), the electron emission performance may differ between the film surface side of the obtained oriented CNT film and the base substrate side. Although the manufacturing method is the same as the above-mentioned method C, when it is more advantageous to use the base substrate side as the electron emission surface, the following method D in which two types of flexible substrates are introduced is used.

本実施形態における電界放出型冷陰極の製造方法のうち、D法は、図9に示すように、(a)基礎基板表面上に配向性CNT膜を作製する工程と、(b)前記工程(a)で作製された配向性CNT膜の表面を、可逆的接着性表面を有する第一の可撓性基板の表面に接着後、第一の可撓性基板表面と接着した配向性CNT膜を残して基礎基板を剥離することにより、配向性CNT膜を第一の可撓性基板側に転写する工程と、(c)電極基板表面に絶縁層、ゲート層を逐次パターン状に積層する工程と、(d)前記工程(c)で得られた電極基板の表面の凹凸形状にかみ合わせ可能な、可逆的接着性表面を有する第二の可撓性基板の表面の凸部と、第一の可撓性基板に転写された配向性CNT膜の表面とを接着後、第二の可撓性基板表面の凸部と接着した配向性CNT膜を残して第一の可撓性基板を剥離することにより、配向性CNT膜を第二の可撓性基板側に転写する工程と、(e)第二の可撓性基板に転写された配向性CNT膜の表面に導電性バインダーを付着させる工程と、(f)配向性CNT膜の表面に付着した導電性バインダーの表面と、電極基板の表面の凹部とを接着後、導電性バインダーおよび配向性CNT膜を残して第二の可撓性基板を剥離することにより、配向性CNT膜を転写する工程とを含む方法である。   Among the methods for manufacturing a field emission cold cathode according to the present embodiment, as shown in FIG. 9, the method D includes (a) a step of producing an oriented CNT film on the base substrate surface, and (b) the step ( After the surface of the oriented CNT film produced in a) is adhered to the surface of the first flexible substrate having a reversible adhesive surface, the oriented CNT film adhered to the surface of the first flexible substrate is A step of transferring the oriented CNT film to the first flexible substrate side by peeling off the base substrate, and (c) a step of sequentially laminating an insulating layer and a gate layer in a pattern on the electrode substrate surface; (D) a convex portion on the surface of the second flexible substrate having a reversible adhesive surface that can mesh with the irregular shape on the surface of the electrode substrate obtained in the step (c); After bonding the surface of the oriented CNT film transferred to the flexible substrate, the convex portion on the surface of the second flexible substrate A step of transferring the oriented CNT film to the second flexible substrate side by peeling off the first flexible substrate while leaving the attached oriented CNT film; and (e) a second flexibility. A step of attaching a conductive binder to the surface of the oriented CNT film transferred to the substrate; (f) after bonding the surface of the conductive binder attached to the surface of the oriented CNT film and the concave portion of the surface of the electrode substrate; And transferring the oriented CNT film by peeling the second flexible substrate while leaving the conductive binder and the oriented CNT film.

D法における工程(a)〜(d)は、B法における工程(a)〜(d)とそれぞれ同様であり、D法における工程(e)と(f)は、C法における工程(d)と(e)とそれぞれ同様であるので、ここでは説明を省略する。   Steps (a) to (d) in Method D are the same as Steps (a) to (d) in Method B. Steps (e) and (f) in Method D are steps (d) in Method C. And (e) are the same as each other, and the description is omitted here.

以上、本発明の電界放出型冷陰極の製造方法によれば、先に微小面積のホールが開いた絶縁層とゲート層とからなる二層構造を電極基板上に形成し、該ホールの凹部である電極表面に、垂直配向性があり高さおよび密度が均一の配向性CNTの集合体を設置した電界放出型冷陰極を提供できる。本発明の方法により製造された陰極を用いて、低電圧で作動し、大面積で均一な輝度の面発光表示装置を得ることができる。   As described above, according to the method of manufacturing a field emission cold cathode of the present invention, a two-layer structure including an insulating layer and a gate layer, in which a hole with a very small area is opened, is formed on an electrode substrate, and a recess is formed in the hole. A field emission cold cathode in which an assembly of oriented CNTs having a vertical orientation and a uniform height and density is installed on a certain electrode surface can be provided. By using the cathode manufactured by the method of the present invention, a surface-emitting display device that operates at a low voltage and has a large area and uniform luminance can be obtained.

実施例1(B法)
(a)基礎基板表面上に配向性CNT膜を作製する工程:
シリカ25%、アルミナ75%の組成で、厚さ2mm、一辺30mmの角型シリカアルミナ板を支持基板として選び、真空蒸着法にてアルミニウムの蒸着により被覆した。この際のアルミニウム薄膜の厚さは0.5μmであった。次いで、濃度0.2mol/lの硝酸コバルト水溶液に2時間浸漬した。基板を引き上げた後、400℃、3時間空気中で焼成し、基礎基板を得た。焼成後、アルミニウム蒸着側を水平上向きにして、基礎基板を石英管状炉内に設置した。水平方向にアルゴンを1000cm/minで送風しながら管状炉を700℃まで昇温した。続いて、700℃に保持したまま、1000cm/minのアルゴンにプロピレンを300cm/minで混合させて管状炉内に送風した。プロピレン/アルゴン混合ガスを3分間流した後、再びアルゴンのみに切り替えて流しながら、管状炉の加熱を止めて、室温まで放冷した。反応終了後、基礎基板表面を走査型電子顕微鏡(SEM)観察した結果、基礎基板上側に厚さ15μmの配向性CNT膜が形成されたことが確認できた。
当該膜は、垂直方向に配向したCNTからなっており、厚さは一定で膜の表面は平滑であった。また、この配向膜の透過型電子顕微鏡(TEM)観察を行ったところ、配向膜を構成するCNTは、外径5〜8nm、5〜7層程度の多層CNTであった。
Example 1 (Method B)
(A) Step of producing an oriented CNT film on the base substrate surface:
A square silica alumina plate having a composition of 25% silica and 75% alumina and a thickness of 2 mm and a side of 30 mm was selected as a support substrate, and was coated by vacuum evaporation of aluminum. At this time, the thickness of the aluminum thin film was 0.5 μm. Subsequently, it was immersed in a cobalt nitrate aqueous solution having a concentration of 0.2 mol / l for 2 hours. After raising the substrate, the substrate was baked in air at 400 ° C. for 3 hours to obtain a basic substrate. After firing, the base substrate was placed in a quartz tube furnace with the aluminum deposition side facing up horizontally. The tube furnace was heated to 700 ° C. while blowing argon at 1000 cm 3 / min in the horizontal direction. Then, while holding 700 ° C., and blown into a tubular furnace of propylene to argon 1000 cm 3 / min was mixed with 300 cm 3 / min. After flowing a propylene / argon mixed gas for 3 minutes, while switching to only argon again, the heating of the tubular furnace was stopped and the mixture was allowed to cool to room temperature. After completion of the reaction, the surface of the basic substrate was observed with a scanning electron microscope (SEM). As a result, it was confirmed that an oriented CNT film having a thickness of 15 μm was formed on the upper side of the basic substrate.
The film was made of CNTs oriented in the vertical direction, and had a constant thickness and a smooth surface. When this alignment film was observed with a transmission electron microscope (TEM), the CNT constituting the alignment film was a multilayer CNT having an outer diameter of 5 to 8 nm and about 5 to 7 layers.

(b)配向性CNT膜の表面を第一の可撓性基板の表面に接着後、第一の可撓性基板表面と接着した配向性CNT膜を残して基礎基板を剥離することにより、配向性CNT膜を第一の可撓性基板側に転写する工程:
アクリル樹脂/ポリオレフィンからなる接着性シートの表面と、(a)で得られた配向性CNT膜の表面とを接触させ、プレス機で2Kg/cmかけて圧着した。圧着後、接着性シートを引っ張り、配向性CNT膜を残して基礎基板を剥離することで、接着性シート上に配向性CNT膜を転写した。
(B) After bonding the surface of the oriented CNT film to the surface of the first flexible substrate, the base substrate is peeled off while leaving the oriented CNT film adhered to the surface of the first flexible substrate. Transferring the conductive CNT film to the first flexible substrate side:
The surface of the adhesive sheet made of acrylic resin / polyolefin and the surface of the oriented CNT film obtained in (a) were brought into contact with each other and pressed with a press machine at 2 kg / cm 2 . After the pressure bonding, the adhesive sheet was pulled to leave the oriented CNT film, and the base substrate was peeled off to transfer the oriented CNT film onto the adhesive sheet.

(c)電極基板表面に絶縁層、ゲート層を逐次パターン状に積層する工程:
一辺30mmの角型ITO基板を電極基板として選び、ライン幅50μm、ライン間隔70μmのストライプ状にガラスペーストをスクリーン印刷し、500℃で空気焼成した。同じ印刷、焼成を2度繰り返すことにより、高さ50μmの絶縁層を形成した。この絶縁層表面に導電性銀ペーストをスクリーン印刷し、500℃で空気焼成することにより、絶縁層上に厚み1μmのゲート層を形成した。
(C) Step of sequentially laminating an insulating layer and a gate layer in a pattern on the electrode substrate surface:
A square ITO substrate having a side of 30 mm was selected as an electrode substrate, and a glass paste was screen-printed in a stripe shape having a line width of 50 μm and a line interval of 70 μm, followed by air baking at 500 ° C. By repeating the same printing and baking twice, an insulating layer having a height of 50 μm was formed. A conductive silver paste was screen-printed on the surface of this insulating layer and air-baked at 500 ° C. to form a gate layer having a thickness of 1 μm on the insulating layer.

(d)電極基板の表面の凹凸形状にかみ合わせ可能な可逆的接着性表面を有する第二の可撓性基板の表面の凸部と、第一の可撓性基板に転写された配向性CNT膜の表面とを接着後、第二の可撓性基板表面の凸部と接着した配向性CNT膜を残して第一の可撓性基板を剥離することにより、配向性CNT膜を第二の可撓性基板側に転写する工程:
ポリエポキシアクリレートを主成分とするUV硬化型接着性シートを、工程(c)で得られた電極基板表面にラミネートした。次にラミネートしたままの状態でUV硬化型接着性シート側から250mJ/cmのUVを15分間照射した。照射後、UV硬化型接着性シートを電極基板から剥離したところ、表面にライン幅70μm、ライン間隔50μmのストライプ状の凸部が形成された。このUV硬化型接着性シートの凸部と、工程(b)で得られた接着性シート上の配向性CNT膜の表面とを接触させ、プレス機で2Kg/cmかけて圧着した。圧着後、UV硬化型接着性シートを引っ張り、配向性CNT膜を残して接着性シートを剥離することで、UV硬化型接着性シートの凸部上に、高さ15μm、ライン幅70μmのストライプ状の配向性CNT膜を転写した。
(D) A convex portion on the surface of the second flexible substrate having a reversible adhesive surface that can be meshed with the irregular shape on the surface of the electrode substrate, and an oriented CNT film transferred to the first flexible substrate. After adhering to the surface of the second flexible substrate, the first flexible substrate is peeled off, leaving the oriented CNT film adhered to the convex portion of the surface of the second flexible substrate. The process of transferring to the flexible substrate side:
A UV curable adhesive sheet mainly composed of polyepoxy acrylate was laminated on the surface of the electrode substrate obtained in the step (c). Next, 250 mJ / cm 2 of UV was irradiated for 15 minutes from the UV curable adhesive sheet side in the laminated state. After the irradiation, the UV curable adhesive sheet was peeled off from the electrode substrate. As a result, stripe-shaped convex portions having a line width of 70 μm and a line interval of 50 μm were formed on the surface. The convex part of this UV curable adhesive sheet and the surface of the oriented CNT film on the adhesive sheet obtained in the step (b) were brought into contact with each other and pressure-bonded with a press at 2 kg / cm 2 . After pressure bonding, the UV curable adhesive sheet is pulled to leave the orientation CNT film, and the adhesive sheet is peeled off to form a stripe shape having a height of 15 μm and a line width of 70 μm on the convex portion of the UV curable adhesive sheet. The oriented CNT film was transferred.

(e)電極基板の表面の凹部に導電性バインダーをパターン形成する工程:
工程(c)で得られた電極基板表面の凹部にノズルプリンティング法で導電性銀ペーストを塗布し、電極基板表面の凹部上に厚み5μm、ライン幅70μmのストライプ状に導電性銀ペースト薄膜を形成した。
(E) A step of patterning the conductive binder in the recesses on the surface of the electrode substrate:
A conductive silver paste is applied to the recesses on the surface of the electrode substrate obtained in step (c) by a nozzle printing method, and a conductive silver paste thin film is formed in a stripe shape having a thickness of 5 μm and a line width of 70 μm on the recesses on the surface of the electrode substrate. did.

(f)第二の可撓性基板に転写された配向性CNT膜の表面と導電性バインダーの表面とを接着後、導電性バインダーと接着した配向性CNT膜を残して第二の可撓性基板を剥離することにより配向性CNT膜を転写する工程:
工程(d)で得られた配向性CNT膜の表面と工程(e)で形成した導電性銀ペースト薄膜の表面とを接触させ、プレス機で4Kg/cmかけて圧着した。さらに配向性CNT膜が接着しているUV硬化型接着性シート側から250mJ/cmのUVを15分間照射した。照射後、UV硬化型接着性シートを電極基板から剥離することにより、表面凹部に配向性CNT膜が転写された電界放出型冷陰極を得た。
(F) After bonding the surface of the oriented CNT film transferred to the second flexible substrate and the surface of the conductive binder, the second flexible film is left with the oriented CNT film adhered to the conductive binder. Step of transferring the oriented CNT film by peeling off the substrate:
The surface of the oriented CNT film obtained in the step (d) and the surface of the conductive silver paste thin film formed in the step (e) were brought into contact with each other and pressure-bonded with a press machine at 4 kg / cm 2 . Furthermore, 250 mJ / cm 2 of UV was irradiated for 15 minutes from the side of the UV curable adhesive sheet to which the oriented CNT film was adhered. After irradiation, the UV curable adhesive sheet was peeled from the electrode substrate to obtain a field emission cold cathode in which the oriented CNT film was transferred to the concave surface.

実施例2(D法)
工程(a)〜(d):
実施例1におけるB法の工程(a)〜(d)に同じ。
Example 2 (Method D)
Steps (a) to (d):
Same as steps (a) to (d) of Method B in Example 1.

(e)第二の可撓性基板に転写された配向性CNT膜の表面に導電性バインダーを付着させる工程:
ガラス板上に導電性銀ペーストをスクリーン印刷し、厚み5μmの導電性銀ペースト薄膜を形成した。工程(d)で得られた配向性CNT膜の表面とガラス板上の導電性銀ペースト薄膜の表面とを接触させ、プレス機で2Kg/cmかけて圧着した。ガラス板を剥離し、配向性CNT膜上に厚み5μmの導電性銀ペーストを付着させた。
(E) A step of attaching a conductive binder to the surface of the oriented CNT film transferred to the second flexible substrate:
A conductive silver paste was screen-printed on a glass plate to form a conductive silver paste thin film having a thickness of 5 μm. The surface of the oriented CNT film obtained in the step (d) and the surface of the conductive silver paste thin film on the glass plate were brought into contact with each other and pressed with a press at 2 kg / cm 2 . The glass plate was peeled off, and a conductive silver paste having a thickness of 5 μm was deposited on the oriented CNT film.

(f)配向性CNT膜の表面に付着した導電性バインダーの表面と、電極基板の表面の凹部とを接着後、導電性バインダーおよび配向性CNT膜を残して第二の可撓性基板を剥離することにより、配向性CNT膜を転写する工程:
工程(c)で得られた電極基板表面の凹部と工程(e)で付着させた導電性銀ペースト薄膜の表面とを接触させ、プレス機で4Kg/cmかけて圧着した。さらに配向性CNT膜が接着しているUV硬化型接着性シート側から250mJ/cmのUVを15分間照射した。照射後、UV硬化型接着性シートを電極基板から剥離することにより、表面凹部に配向性CNT膜が転写された電界放出型冷陰極を得た。
(F) After bonding the surface of the conductive binder attached to the surface of the oriented CNT film and the recess on the surface of the electrode substrate, the second flexible substrate is peeled off leaving the conductive binder and the oriented CNT film. The step of transferring the oriented CNT film by:
The concave portion on the surface of the electrode substrate obtained in the step (c) and the surface of the conductive silver paste thin film adhered in the step (e) were brought into contact with each other and pressure-bonded at 4 kg / cm 2 with a press. Furthermore, 250 mJ / cm 2 of UV was irradiated for 15 minutes from the side of the UV curable adhesive sheet to which the oriented CNT film was adhered. After irradiation, the UV curable adhesive sheet was peeled from the electrode substrate to obtain a field emission cold cathode in which the oriented CNT film was transferred to the concave surface.

電界放出型冷陰極の製造方法(A法)Manufacturing method of field emission cold cathode (Method A) 電極基板の表面の凹凸形状にかみ合わせ可能な、可逆的接着性表面を有する可撓性基板の一例An example of a flexible substrate having a reversible adhesive surface that can mesh with the irregular shape of the surface of the electrode substrate 電極基板の表面の凹凸形状にかみ合わせ可能な、可逆的接着性表面を有する可撓性基板の一例An example of a flexible substrate having a reversible adhesive surface that can mesh with the irregular shape of the surface of the electrode substrate 電極基板の表面の凹凸形状にかみ合わせ可能な、可逆的接着性表面を有する可撓性基板の一例An example of a flexible substrate having a reversible adhesive surface that can mesh with the irregular shape of the surface of the electrode substrate 電極基板の表面の凹凸形状にかみ合わせ可能な、可逆的接着性表面を有する可撓性基板の一例An example of a flexible substrate having a reversible adhesive surface that can mesh with the irregular shape of the surface of the electrode substrate 凹凸形状を記憶した可撓性基板の作製方法Method for manufacturing flexible substrate storing uneven shape 電界放出型冷陰極の製造方法(B法)Manufacturing method of field emission cold cathode (Method B) 電界放出型冷陰極の製造方法(C法)Manufacturing method of field emission cold cathode (Method C) 電界放出型冷陰極の製造方法(D法)Manufacturing method of field emission cold cathode (Method D)

符号の説明Explanation of symbols

1 基礎基板
2 配向性カーボンナノチューブ膜
3 電極基板
4 絶縁層
5 ゲート層
6 電極基板の表面の凹凸形状にかみ合わせ可能な、可逆的接着性表面を有する可撓性基板
7 導電性バインダー
8 形状記憶が可能な可逆的接着性表面を有する可撓性基板
9 可逆的接着性表面を有する第一の可撓性基板
10 電極基板の表面の凹凸形状にかみ合わせ可能な、可逆的接着性表面を有する第二の可撓性基板
DESCRIPTION OF SYMBOLS 1 Base substrate 2 Oriented carbon nanotube film 3 Electrode substrate 4 Insulating layer 5 Gate layer 6 A flexible substrate having a reversible adhesive surface that can be meshed with the irregular shape on the surface of the electrode substrate 7 Conductive binder 8 Shape memory Flexible substrate 9 having a reversible adhesive surface capable First first flexible substrate 10 having a reversible adhesive surface Second having a reversible adhesive surface that can mesh with the irregular shape of the surface of the electrode substrate Flexible substrate

Claims (21)

電極基板表面に配向性カーボンナノチューブ膜をパターン状に形成する電界放出型冷陰極の製造方法であって、
(a)基礎基板表面上に配向性カーボンナノチューブ膜を作製する工程と、
(b)電極基板表面に絶縁層とゲート層とを逐次パターン状に積層する工程と、
(c)前記工程(b)で得られた電極基板の表面の凹凸形状にかみ合わせ可能な、可逆的接着性表面を有する可撓性基板の表面の凸部と、前記工程(a)で作製された配向性カーボンナノチューブ膜の表面とを接着後、可撓性基板表面の凸部と接着した配向性カーボンナノチューブ膜を残して基礎基板を剥離することにより、配向性カーボンナノチューブ膜を可撓性基板側に転写する工程と、
(d)前記工程(b)で得られた電極基板の表面の凹部に導電性バインダーをパターン形成する工程と、
(e)可撓性基板に転写された配向性カーボンナノチューブ膜の表面とパターン形成された導電性バインダーの表面とを接着後、導電性バインダーと接着した配向性カーボンナノチューブ膜を残して可撓性基板を剥離することにより、配向性カーボンナノチューブ膜を電極基板側に転写する工程とを含む、電界放出型冷陰極の製造方法。
A method of manufacturing a field emission cold cathode in which an oriented carbon nanotube film is formed in a pattern on an electrode substrate surface,
(A) producing an oriented carbon nanotube film on the base substrate surface;
(B) a step of sequentially laminating an insulating layer and a gate layer in a pattern on the electrode substrate surface;
(C) Protrusions on the surface of a flexible substrate having a reversible adhesive surface that can be meshed with the concavo-convex shape of the surface of the electrode substrate obtained in the step (b), and produced in the step (a). The oriented carbon nanotube film is bonded to the surface of the oriented carbon nanotube film, and then the base substrate is peeled off, leaving the oriented carbon nanotube film adhered to the convex part of the surface of the flexible substrate. Transferring to the side,
(D) a step of patterning a conductive binder in the recesses on the surface of the electrode substrate obtained in the step (b);
(E) After bonding the surface of the oriented carbon nanotube film transferred to the flexible substrate and the surface of the patterned conductive binder, the flexibility is left leaving the oriented carbon nanotube film adhered to the conductive binder. And a step of transferring the oriented carbon nanotube film to the electrode substrate side by peeling off the substrate.
電極基板表面に配向性カーボンナノチューブ膜をパターン状に形成する電界放出型冷陰極の製造方法であって、
(a)基礎基板表面上に配向性カーボンナノチューブ膜を作製する工程と、
(b)前記工程(a)で作製された配向性カーボンナノチューブ膜の表面を、可逆的接着性表面を有する第一の可撓性基板の表面に接着後、第一の可撓性基板表面と接着した配向性カーボンナノチューブ膜を残して基礎基板を剥離することにより、配向性カーボンナノチューブ膜を第一の可撓性基板側に転写する工程と、
(c)電極基板表面に絶縁層とゲート層とを逐次パターン状に積層する工程と、
(d)前記工程(c)で得られた電極基板の表面の凹凸形状にかみ合わせ可能な、可逆的接着性表面を有する第二の可撓性基板の表面の凸部と、第一の可撓性基板に転写された配向性カーボンナノチューブ膜の表面とを接着後、第二の可撓性基板表面の凸部と接着した配向性カーボンナノチューブ膜を残して第一の可撓性基板を剥離することにより、配向性カーボンナノチューブ膜を第二の可撓性基板側に転写する工程と、
(e)前記工程(c)で得られた電極基板の表面の凹部に導電性バインダーをパターン形成する工程と、
(f)第二の可撓性基板に転写された配向性カーボンナノチューブ膜の表面と導電性バインダーの表面とを接着後、導電性バインダーと接着した配向性カーボンナノチューブ膜を残して第二の可撓性基板を剥離することにより、配向性カーボンナノチューブ膜を電極基板側に転写する工程とを含む、電界放出型冷陰極の製造方法。
A method of manufacturing a field emission cold cathode in which an oriented carbon nanotube film is formed in a pattern on an electrode substrate surface,
(A) producing an oriented carbon nanotube film on the base substrate surface;
(B) After bonding the surface of the oriented carbon nanotube film produced in the step (a) to the surface of the first flexible substrate having a reversible adhesive surface, A step of transferring the oriented carbon nanotube film to the first flexible substrate side by peeling the base substrate leaving the adhered oriented carbon nanotube film; and
(C) a step of sequentially laminating an insulating layer and a gate layer on the electrode substrate surface;
(D) A convex portion on the surface of the second flexible substrate having a reversible adhesive surface that can be meshed with the irregular shape on the surface of the electrode substrate obtained in the step (c), and the first flexible After bonding the surface of the oriented carbon nanotube film transferred to the permeable substrate, the first flexible substrate is peeled off leaving the oriented carbon nanotube film bonded to the convex portion of the surface of the second flexible substrate. A step of transferring the oriented carbon nanotube film to the second flexible substrate side;
(E) a step of patterning a conductive binder in the recesses on the surface of the electrode substrate obtained in the step (c);
(F) After the surface of the oriented carbon nanotube film transferred to the second flexible substrate and the surface of the conductive binder are bonded, the second carbon nanotube film bonded with the conductive binder is left and the second possible carbon nanotube film is left. And a step of transferring the oriented carbon nanotube film to the electrode substrate side by peeling the flexible substrate.
電極基板表面に配向性カーボンナノチューブ膜をパターン状に形成する電界放出型冷陰極の製造方法であって、
(a)基礎基板表面上に配向性カーボンナノチューブ膜を作製する工程と、
(b)電極基板表面に絶縁層とゲート層とを逐次パターン状に積層する工程と、
(c)前記工程(b)で得られた電極基板の表面の凹凸形状にかみ合わせ可能な、可逆的接着性表面を有する可撓性基板の表面の凸部と、前記工程(a)で作製された配向性カーボンナノチューブ膜の表面とを接着後、可撓性基板表面の凸部と接着した配向性カーボンナノチューブ膜を残して基礎基板を剥離することにより、配向性カーボンナノチューブ膜を可撓性基板側に転写する工程と、
(d)可撓性基板に転写された配向性カーボンナノチューブ膜の表面に導電性バインダーを付着させる工程と、
(e)配向性カーボンナノチューブ膜の表面に付着した導電性バインダーの表面と、電極基板の表面の凹部とを接着後、導電性バインダーおよび配向性カーボンナノチューブ膜を残して可撓性基板を剥離することにより、配向性カーボンナノチューブ膜を電極基板側に転写する工程とを含む、電界放出型冷陰極の製造方法。
A method of manufacturing a field emission cold cathode in which an oriented carbon nanotube film is formed in a pattern on an electrode substrate surface,
(A) producing an oriented carbon nanotube film on the base substrate surface;
(B) a step of sequentially laminating an insulating layer and a gate layer in a pattern on the electrode substrate surface;
(C) Protrusions on the surface of a flexible substrate having a reversible adhesive surface that can be meshed with the concavo-convex shape of the surface of the electrode substrate obtained in the step (b), and produced in the step (a). The oriented carbon nanotube film is bonded to the surface of the oriented carbon nanotube film, and then the base substrate is peeled off, leaving the oriented carbon nanotube film adhered to the convex part of the surface of the flexible substrate. Transferring to the side,
(D) attaching a conductive binder to the surface of the oriented carbon nanotube film transferred to the flexible substrate;
(E) After bonding the surface of the conductive binder adhering to the surface of the oriented carbon nanotube film and the concave portion of the surface of the electrode substrate, the flexible substrate is peeled off leaving the conductive binder and the oriented carbon nanotube film. And a step of transferring the oriented carbon nanotube film to the electrode substrate side.
電極基板表面に配向性カーボンナノチューブ膜をパターン状に形成する電界放出型冷陰極の製造方法であって、
(a)基礎基板表面上に配向性カーボンナノチューブ膜を作製する工程と、
(b)前記工程(a)で作製された配向性カーボンナノチューブ膜の表面を、可逆的接着性表面を有する第一の可撓性基板の表面に接着後、第一の可撓性基板表面と接着した配向性カーボンナノチューブ膜を残して基礎基板を剥離することにより、配向性カーボンナノチューブ膜を第一の可撓性基板側に転写する工程と、
(c)電極基板表面に絶縁層とゲート層とを逐次パターン状に積層する工程と、
(d)前記工程(c)で得られた電極基板の表面の凹凸形状にかみ合わせ可能な、可逆的接着性表面を有する第二の可撓性基板の表面の凸部と、第一の可撓性基板に転写された配向性カーボンナノチューブ膜の表面とを接着後、第二の可撓性基板表面の凸部と接着した配向性カーボンナノチューブ膜を残して第一の可撓性基板を剥離することにより、配向性カーボンナノチューブ膜を第二の可撓性基板側に転写する工程と、
(e)第二の可撓性基板に転写された配向性カーボンナノチューブ膜の表面に導電性バインダーを付着させる工程と、
(f)配向性カーボンナノチューブ膜の表面に付着した導電性バインダーの表面と、電極基板の表面の凹部とを接着後、導電性バインダーおよび配向性カーボンナノチューブ膜を残して第二の可撓性基板を剥離することにより、配向性カーボンナノチューブ膜を電極基板側に転写する工程とを含む、電界放出型冷陰極の製造方法。
A method of manufacturing a field emission cold cathode in which an oriented carbon nanotube film is formed in a pattern on an electrode substrate surface,
(A) producing an oriented carbon nanotube film on the base substrate surface;
(B) After bonding the surface of the oriented carbon nanotube film produced in the step (a) to the surface of the first flexible substrate having a reversible adhesive surface, A step of transferring the oriented carbon nanotube film to the first flexible substrate side by peeling the base substrate leaving the adhered oriented carbon nanotube film; and
(C) a step of sequentially laminating an insulating layer and a gate layer on the electrode substrate surface;
(D) A convex portion on the surface of the second flexible substrate having a reversible adhesive surface that can be meshed with the irregular shape on the surface of the electrode substrate obtained in the step (c), and the first flexible After bonding the surface of the oriented carbon nanotube film transferred to the permeable substrate, the first flexible substrate is peeled off leaving the oriented carbon nanotube film bonded to the convex portion of the surface of the second flexible substrate. A step of transferring the oriented carbon nanotube film to the second flexible substrate side;
(E) attaching a conductive binder to the surface of the oriented carbon nanotube film transferred to the second flexible substrate;
(F) After bonding the surface of the conductive binder attached to the surface of the oriented carbon nanotube film and the recess on the surface of the electrode substrate, the second flexible substrate leaving the conductive binder and the oriented carbon nanotube film And a step of transferring the oriented carbon nanotube film to the electrode substrate side by peeling the film.
電極基板の表面の凹凸形状にかみ合わせ可能な可逆的接着性表面を有する可撓性基板が、絶縁層とゲート層とを逐次パターン状に積層した電極基板の表面と、該可撓性基板の表面とを接触させ、該電極基板の表面の凹凸形状を反転して記憶させた後、剥離することによって得られるものである、請求項1〜4のいずれかに記載の電界放出型冷陰極の製造方法。   A flexible substrate having a reversible adhesive surface that can be meshed with the concavo-convex shape of the surface of the electrode substrate, the surface of the electrode substrate in which an insulating layer and a gate layer are sequentially laminated, and the surface of the flexible substrate The field emission cold cathode according to any one of claims 1 to 4, which is obtained by bringing the electrode substrate into contact with each other, reversing and storing the irregular shape of the surface of the electrode substrate, and then peeling off. Method. 電極基板の表面の凹凸形状を反転して記憶させる過程で光照射または加熱を用いる、請求項5記載の電界放出型冷陰極の製造方法。   6. The method of manufacturing a field emission cold cathode according to claim 5, wherein light irradiation or heating is used in the process of inverting and storing the irregular shape on the surface of the electrode substrate. 可逆的接着性表面を有する可撓性基板の表面の材質が、ポリエポキシアクリレート、ポリウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、エポキシ樹脂、フッ素樹脂、ポリアミド、フェノール樹脂およびポリ塩化ビニルからなる群より選ばれた単独または複数の樹脂である、請求項1〜4のいずれかに記載の電界放出型冷陰極の製造方法。   The material of the surface of the flexible substrate having a reversible adhesive surface is selected from the group consisting of polyepoxy acrylate, polyurethane acrylate, polyester acrylate, polyether acrylate, epoxy resin, fluororesin, polyamide, phenol resin and polyvinyl chloride The method for producing a field emission cold cathode according to any one of claims 1 to 4, wherein the field emission cold cathode is a single resin or a plurality of resins. 電極基板表面に絶縁層とゲート層とを逐次パターン状に積層する工程において、スクリーン印刷法、焼成法、CVD法、レーザー照射法、フォトリソグラフィー法、サンドブラスト法、ノズルプリンティング法およびエッチング法からなる群より選ばれた単独または複数の方法を用いる、請求項1〜4のいずれかに記載の電界放出型冷陰極の製造方法。   A group consisting of a screen printing method, a baking method, a CVD method, a laser irradiation method, a photolithography method, a sand blasting method, a nozzle printing method, and an etching method in the step of sequentially laminating an insulating layer and a gate layer on the surface of the electrode substrate. The manufacturing method of the field emission type cold cathode in any one of Claims 1-4 using the method chosen more than one or more. 基礎基板表面上に配向性カーボンナノチューブ膜を作製する工程において、アルミニウムを被覆した支持基板に、遷移金属または遷移金属化合物を含む触媒を担持させてなる基礎基板の存在下、気体状の炭素化合物を分解することにより、該基礎基板表面上に基礎基板と垂直方向に配向したカーボンナノチューブ膜を成長させる、請求項1〜4のいずれかに記載の電界放出型冷陰極の製造方法。   In the step of producing an oriented carbon nanotube film on the surface of the base substrate, a gaseous carbon compound is formed in the presence of the base substrate in which a support substrate coated with aluminum is loaded with a catalyst containing a transition metal or a transition metal compound. The method of manufacturing a field emission cold cathode according to any one of claims 1 to 4, wherein a carbon nanotube film oriented in a direction perpendicular to the base substrate is grown on the surface of the base substrate by decomposition. 支持基板にアルミニウムを被覆する方法が、真空蒸着法、電析法、スパッタリング法またはゾルゲル法である、請求項9記載の電界放出型冷陰極の製造方法。   The method for producing a field emission cold cathode according to claim 9, wherein the method of coating the support substrate with aluminum is a vacuum deposition method, an electrodeposition method, a sputtering method or a sol-gel method. アルミニウムを被覆した支持基板に、遷移金属または遷移金属化合物を含む触媒を担持する方法が、含浸法、浸漬法またはゾルゲル法である、請求項9記載の電界放出型冷陰極の製造方法。   The method for producing a field emission cold cathode according to claim 9, wherein the method of supporting a catalyst containing a transition metal or a transition metal compound on a support substrate coated with aluminum is an impregnation method, an immersion method or a sol-gel method. 炭素化合物が、飽和炭化水素化合物、不飽和炭化水素化合物、芳香族炭化水素化合物および含酸素炭化水素化合物からなる群より選ばれる1種または2種以上の混合物である、請求項9記載の電界放出型冷陰極の製造方法。   The field emission according to claim 9, wherein the carbon compound is one or a mixture of two or more selected from the group consisting of a saturated hydrocarbon compound, an unsaturated hydrocarbon compound, an aromatic hydrocarbon compound, and an oxygen-containing hydrocarbon compound. Type cold cathode manufacturing method. カーボンナノチューブの外径が1nm〜10nmの範囲である、請求項1〜4のいずれかに記載の電界放出型冷陰極の製造方法。   The manufacturing method of the field emission type cold cathode in any one of Claims 1-4 whose outer diameter of a carbon nanotube is the range of 1 nm-10 nm. 配向性カーボンナノチューブ膜の表面と可逆的接着性表面を有する可撓性基板の表面とを接着する方法が、配向性カーボンナノチューブ膜の表面と可撓性基板の可逆的接着性表面とを接触させて、乾燥、圧着、加熱または熱圧着を施すものである、請求項1〜4のいずれかに記載の電界放出型冷陰極の製造方法。   A method for adhering the surface of an oriented carbon nanotube film and the surface of a flexible substrate having a reversible adhesive surface brings the surface of the oriented carbon nanotube film into contact with the reversible adhesive surface of the flexible substrate. The method for producing a field emission cold cathode according to any one of claims 1 to 4, wherein drying, pressure bonding, heating or thermocompression bonding is performed. 電極基板が、絶縁性の板の表面に予め導電性の回路を形成した板である、請求項1〜4のいずれかに記載の電界放出型冷陰極の製造方法。   The method of manufacturing a field emission cold cathode according to any one of claims 1 to 4, wherein the electrode substrate is a plate in which a conductive circuit is previously formed on the surface of an insulating plate. 配向性カーボンナノチューブ膜の表面と導電性バインダーの表面とを接着する方法が、配向性カーボンナノチューブ膜の表面と導電性バインダーの表面とを接触させて、乾燥、圧着、加熱または熱圧着を施すものである、請求項1〜4のいずれかに記載の電界放出型冷陰極の製造方法。   The method of adhering the surface of the oriented carbon nanotube film and the surface of the conductive binder is such that the surface of the oriented carbon nanotube film and the surface of the conductive binder are brought into contact with each other and dried, pressure-bonded, heated or thermo-compressed. The manufacturing method of the field emission type cold cathode in any one of Claims 1-4 which are these. 導電性バインダーが、導電性ペーストである、請求項1〜4のいずれかに記載の電界放出型冷陰極の製造方法。   The method for producing a field emission cold cathode according to any one of claims 1 to 4, wherein the conductive binder is a conductive paste. 導電性バインダーが、導電性銀ペースト、導電性金ペースト、導電性カーボンペーストまたは導電性銅ペーストである、請求項1〜4のいずれかに記載の電界放出型冷陰極の製造方法。   The manufacturing method of the field emission type cold cathode in any one of Claims 1-4 whose conductive binder is a conductive silver paste, a conductive gold paste, a conductive carbon paste, or a conductive copper paste. 導電性バインダーが、インジウム、スズ、鉛、亜鉛、銅またはこれら金属の一種以上を含む合金である、請求項1〜4のいずれかに記載の電界放出型冷陰極の製造方法。   The method for producing a field emission cold cathode according to any one of claims 1 to 4, wherein the conductive binder is indium, tin, lead, zinc, copper, or an alloy containing one or more of these metals. 可逆的接着性表面を有する可撓性基板が、粘着剤を表面に塗布した樹脂シートである、請求項1〜4のいずれかに記載の電界放出型冷陰極の製造方法。   The manufacturing method of the field emission type cold cathode in any one of Claims 1-4 whose flexible substrate which has a reversible adhesive surface is a resin sheet which apply | coated the adhesive to the surface. 請求項1〜20のいずれかの方法によって得られる電界放出型冷陰極。   A field emission cold cathode obtained by the method according to claim 1.
JP2006003472A 2006-01-11 2006-01-11 Method of manufacturing field emission type cold cathode Pending JP2007188662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006003472A JP2007188662A (en) 2006-01-11 2006-01-11 Method of manufacturing field emission type cold cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006003472A JP2007188662A (en) 2006-01-11 2006-01-11 Method of manufacturing field emission type cold cathode

Publications (1)

Publication Number Publication Date
JP2007188662A true JP2007188662A (en) 2007-07-26

Family

ID=38343697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006003472A Pending JP2007188662A (en) 2006-01-11 2006-01-11 Method of manufacturing field emission type cold cathode

Country Status (1)

Country Link
JP (1) JP2007188662A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042614A (en) * 2005-06-30 2007-02-15 Furukawa Electric Co Ltd:The Method for manufacturing component with functional material
JP2009277373A (en) * 2008-05-12 2009-11-26 Nippon Hoso Kyokai <Nhk> Cold cathode element, method for manufacturing the same, and cold cathode display, lighting device, and backlight for liquid-crystal display element respectively having the same
KR100977312B1 (en) * 2008-08-18 2010-08-24 고려대학교 산학협력단 Flexible light emission device and display device, and fabrication method the devices
KR101106121B1 (en) 2010-04-22 2012-01-20 고려대학교 산학협력단 Electron emitter and method for manufacturing the same
US8735274B2 (en) 2008-02-15 2014-05-27 Fujitsu Limited Manufacture method for semiconductor device with bristled conductive nanotubes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042614A (en) * 2005-06-30 2007-02-15 Furukawa Electric Co Ltd:The Method for manufacturing component with functional material
US8735274B2 (en) 2008-02-15 2014-05-27 Fujitsu Limited Manufacture method for semiconductor device with bristled conductive nanotubes
JP2009277373A (en) * 2008-05-12 2009-11-26 Nippon Hoso Kyokai <Nhk> Cold cathode element, method for manufacturing the same, and cold cathode display, lighting device, and backlight for liquid-crystal display element respectively having the same
KR100977312B1 (en) * 2008-08-18 2010-08-24 고려대학교 산학협력단 Flexible light emission device and display device, and fabrication method the devices
KR101106121B1 (en) 2010-04-22 2012-01-20 고려대학교 산학협력단 Electron emitter and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US7150801B2 (en) Process for producing cold field-emission cathodes
US7662732B2 (en) Method of preparing patterned carbon nanotube array and patterned carbon nanotube array prepared thereby
CN1959896B (en) Field emission of Nano carbon tube, and preparation method
JP2006008473A (en) Method for manufacturing cylindrical aggregate obtained by patterning oriented carbon nanotube and field emission type cold cathode
EP2096659B1 (en) Electron emission source, electric device using the same, and method of manufacturing the electron emission source
JP2003286017A (en) Method for transferring aligned carbon nanotube film
JP2007188662A (en) Method of manufacturing field emission type cold cathode
US7728497B2 (en) Carbon nanotube, electron emission source including the carbon nanotube, electron emission device including the electron emission source, and method of manufacturing the electron emission device
JP4355928B2 (en) Manufacturing method of field emission cold cathode
JP4484047B2 (en) Method for producing patterned columnar aggregate of oriented carbon nanotubes and field emission cold cathode
JP2006120636A (en) Composition for forming electron emission source, method for manufacturing electron emission source using the same, and electron emission source
KR20060108165A (en) An electron emitter and an electron emission device comprising the electron emitter
KR100977312B1 (en) Flexible light emission device and display device, and fabrication method the devices
JP2005129406A (en) Transferring method of carbon nanotube
JP2006143576A (en) Carbon nanotube, electron-emitting source including carbon nanotube, electron-emitting element provided with the source, and method for production of the element
JP2007287478A (en) Manufacturing method of oriented carbon nanotube wiring
KR101015150B1 (en) Field emission device using metal nanoparticle and method thereof
JP2007073217A (en) Manufacturing method of field emission type cold cathode
JP3597740B2 (en) Cold cathode and method of manufacturing the same
KR100990231B1 (en) fabrication method the electron emission source
JP5444893B2 (en) Nanocarbon material composite substrate manufacturing method, electron-emitting device using the same, and illumination lamp
JP5376197B2 (en) Method for producing nanocarbon material composite
JP4984130B2 (en) Nanocarbon emitter, manufacturing method thereof, and surface light emitting device
JP5604926B2 (en) Nanocarbon material composite substrate manufacturing method and nanocarbon material composite substrate
JP5283031B2 (en) Electronic devices using coin-stacked nanocarbon material composites