[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007183045A - Heat pump type air-conditioning equipment - Google Patents

Heat pump type air-conditioning equipment Download PDF

Info

Publication number
JP2007183045A
JP2007183045A JP2006001625A JP2006001625A JP2007183045A JP 2007183045 A JP2007183045 A JP 2007183045A JP 2006001625 A JP2006001625 A JP 2006001625A JP 2006001625 A JP2006001625 A JP 2006001625A JP 2007183045 A JP2007183045 A JP 2007183045A
Authority
JP
Japan
Prior art keywords
refrigerant
heat
heat pump
coolant
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006001625A
Other languages
Japanese (ja)
Inventor
Tetsuya Kitamura
哲也 北村
Shoji Katagiri
庄司 片桐
Masaru Matsuda
賢 松田
Yasumasa Kubota
安正 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Hitachi Appliances Inc
Original Assignee
Tohoku Electric Power Co Inc
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Hitachi Appliances Inc filed Critical Tohoku Electric Power Co Inc
Priority to JP2006001625A priority Critical patent/JP2007183045A/en
Publication of JP2007183045A publication Critical patent/JP2007183045A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve operation efficiency when operating a plurality of indoor loads in heat pump type air-conditioning equipment cooling and heating the indoor loads via a secondary coolant. <P>SOLUTION: The heat pump type air-conditioning equipment has a compressor 1, a four-way valve 2, an outdoor heat exchanger 6, a heat pump circuit 7 forming a closed circuit by connecting expansion valves 5a, 5b and coolant-to-coolant heat exchangers 4a, 4b by coolant piping, and sealing a primary coolant, and load circuits 11a, 11b circulating the secondary coolant to exchange heat with the primary coolant between the coolant-to-coolant heat exchanger 4 and the indoor load 9. It is characterized by that in the heat pump circuit 7, a plurality of the coolant-to-coolant heat exchangers 4a, 4b are arranged in parallel with each other, and a flow adjuster 3 is provided for controlling a flow rate of the primary coolant flowing through each coolant-to-coolant heat exchanger 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ヒートポンプ式冷暖房装置に関する。   The present invention relates to a heat pump type air conditioner.

従来から、空気調和機や電気冷蔵庫などの熱源として、ヒートポンプが広く利用されている。このヒートポンプ式空気調和機には、圧縮機、放熱用熱交換器、膨張弁及び吸熱用熱交換器が環状に接続されたヒートポンプ回路が設けられ、例えば、暖房時には、放熱用熱交換器において高温のフロン系冷媒と外気を熱交換させることにより、外気を加熱するようになっている。   Conventionally, heat pumps have been widely used as heat sources for air conditioners and electric refrigerators. The heat pump air conditioner is provided with a heat pump circuit in which a compressor, a heat dissipation heat exchanger, an expansion valve, and an endothermic heat exchanger are connected in an annular shape. The outside air is heated by exchanging heat between the fluorocarbon refrigerant and the outside air.

ところで、フロン系冷媒は、オゾン層を破壊し、かつ温室効果ガスとなることが知られている。そのため、オゾン層破壊係数がゼロであり、かつ地球温暖化係数もフロン系冷媒と比べて格段に小さい、二酸化炭素(CO)などをヒートポンプ式空気調和機の冷媒として用いる試みが検討されている。この二酸化炭素冷媒によれば、例えば、空気や水の加熱効率を向上させることができる。 By the way, it is known that a chlorofluorocarbon refrigerant destroys an ozone layer and becomes a greenhouse gas. For this reason, attempts have been made to use carbon dioxide (CO 2 ) or the like as a refrigerant for a heat pump air conditioner, which has an ozone layer depletion coefficient of zero and a global warming coefficient that is much smaller than that of a fluorocarbon refrigerant. . According to this carbon dioxide refrigerant, for example, the heating efficiency of air or water can be improved.

しかし、二酸化炭素のように超臨界圧力で作動させる冷媒は、通常、冷媒の高圧側が超高圧帯域で運転されるため、例えば、フロン系冷媒を用いたヒートポンプ式空気調和機のように、室内機と室外機にそれぞれ熱交換器を配置し、これらを配管で接続する構成の場合、何らの高圧対策を講じていなければ、冷媒漏れや配管破裂を生じるおそれがある。そのため、例えば、室外に設置されたヒートポンプ回路に、一次冷媒となる二酸化炭素を循環させる一方、二次冷媒となる水又は不凍液を一次冷媒と熱交換させた後、配管を介して室内へ送り込むことで、室内空調を行う方法が検討されている(例えば、特許文献1参照)。   However, a refrigerant that operates at a supercritical pressure, such as carbon dioxide, is usually operated in the super-high pressure zone on the high-pressure side of the refrigerant. For example, an indoor unit such as a heat pump air conditioner that uses a fluorocarbon refrigerant is used. In the configuration in which heat exchangers are arranged in the outdoor unit and connected to each other by piping, there is a possibility that refrigerant leakage or piping rupture may occur unless any high-pressure measures are taken. Therefore, for example, carbon dioxide as the primary refrigerant is circulated in the heat pump circuit installed outside the room, while water or antifreeze liquid as the secondary refrigerant is heat-exchanged with the primary refrigerant and then sent into the room via a pipe. Therefore, a method of performing indoor air conditioning has been studied (for example, see Patent Document 1).

また、空調機又は床暖房などの室内負荷を一つ備え、これを運転させるヒートポンプ式冷暖房装置が知られている。このような冷暖房装置には、通常、ヒートポンプ回路に設けられた冷媒間熱交換器と室内負荷との間で二次冷媒を循環させる負荷回路が設けられ、この負荷回路の二次冷媒を一次冷媒と熱交換させることにより、室内負荷を運転している。   There is also known a heat pump air conditioner that includes one indoor load such as an air conditioner or floor heating and operates the same. Such an air conditioner is usually provided with a load circuit that circulates the secondary refrigerant between the inter-refrigerant heat exchanger provided in the heat pump circuit and the indoor load, and the secondary refrigerant of the load circuit is used as the primary refrigerant. The indoor load is operated by exchanging heat with.

特開2004−177067号公報JP 2004-177067 A

ところで、複数の負荷回路を有するヒートポンプ式冷暖房装置の場合、例えば、ヒートポンプ回路には、二次冷媒と熱交換する複数の冷媒間熱交換器が接続されることになり、それらの冷媒間熱交換器には、別々の負荷回路が接続されている。また、一般に、空調暖房負荷と床暖房負荷とでは、要求される加熱熱量が異なっている。   By the way, in the case of a heat pump type air conditioning apparatus having a plurality of load circuits, for example, a plurality of inter-refrigerant heat exchangers that exchange heat with a secondary refrigerant are connected to the heat pump circuit, and the heat exchange between these refrigerants A separate load circuit is connected to the device. In general, the required amount of heating heat differs between the air conditioning heating load and the floor heating load.

従って、例えば、暖房運転時に圧縮機から吐出された高温冷媒は、冷媒間熱交換器を通過するのに伴って次第に加熱能力が低下していく。このため、複数の室内負荷を同時に運転させると、それぞれの室内負荷から要求される熱量の供給が困難となり、加熱効率の低下を招くという問題がある。   Therefore, for example, the high-temperature refrigerant discharged from the compressor during the heating operation gradually decreases in heating capacity as it passes through the inter-refrigerant heat exchanger. For this reason, when a plurality of indoor loads are operated at the same time, it becomes difficult to supply the amount of heat required from each of the indoor loads, and there is a problem that heating efficiency is reduced.

本発明は、二次冷媒を介して室内負荷を冷暖房するヒートポンプ式冷暖房装置において、複数の室内負荷を運転する際の運転効率を向上させることを課題とする。   This invention makes it a subject to improve the operation efficiency at the time of drive | operating several indoor load in the heat pump type air conditioning apparatus which air-conditions and cools indoor load via a secondary refrigerant | coolant.

上記課題を解決するため、本発明は、圧縮機、四方弁、室外熱交換器、膨張弁および冷媒間熱交換器を冷媒配管で接続して閉回路を形成し、一次冷媒が封入されているヒートポンプ回路と、この一次冷媒と熱交換する二次冷媒を冷媒間熱交換器と室内負荷との間で循環させる負荷回路とを有するヒートポンプ式冷暖房装置において、ヒートポンプ回路は複数の冷媒間熱交換器が並列に設けられ、それぞれの該冷媒間熱交換器を通流する一次冷媒の流量を調整する流量調整手段を備えることを特徴とする。   In order to solve the above problems, the present invention forms a closed circuit by connecting a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, and an inter-refrigerant heat exchanger with a refrigerant pipe, and a primary refrigerant is enclosed. In a heat pump air conditioner having a heat pump circuit and a load circuit that circulates a secondary refrigerant that exchanges heat with the primary refrigerant between the inter-refrigerant heat exchanger and the indoor load, the heat pump circuit includes a plurality of inter-refrigerant heat exchangers. Are provided in parallel and provided with a flow rate adjusting means for adjusting the flow rate of the primary refrigerant flowing through each of the inter-refrigerant heat exchangers.

このような構成によれば、例えば、暖房運転において複数の室内負荷を同時に運転する場合、まず、圧縮機から吐出された所定温度の一次冷媒は、分岐された後にそれぞれの冷媒間熱交換器に導かれる。そして、それぞれの冷媒間熱交換器に接続される負荷回路の要求熱量に応じて、各々冷媒間熱交換器を通流する一次冷媒の流量を調整することにより、ヒートポンプ回路の加熱能力を適宜分配することができるため、運転効率を向上させることができる。   According to such a configuration, for example, when operating a plurality of indoor loads at the same time in the heating operation, first, the primary refrigerant discharged from the compressor is branched into the respective heat exchangers after being branched. Led. The heating capacity of the heat pump circuit is appropriately distributed by adjusting the flow rate of the primary refrigerant flowing through each of the refrigerant heat exchangers according to the required amount of heat of the load circuit connected to each refrigerant heat exchanger. Therefore, driving efficiency can be improved.

具体的に、流量調整手段は、それぞれの冷媒間熱交換器に対応させて配置される膨張弁を含むものとする。すなわち、それぞれの冷媒間熱交換器に対応する負荷の要求熱量の大きさに応じて膨張弁の絞りを調整することにより、一次冷媒の流量を調整することができるため、ヒートポンプ回路の加熱能力を適宜分配し、運転効率を向上させることができる。   Specifically, it is assumed that the flow rate adjusting means includes an expansion valve arranged in correspondence with each inter-refrigerant heat exchanger. In other words, the flow rate of the primary refrigerant can be adjusted by adjusting the throttle of the expansion valve according to the required amount of heat of the load corresponding to each refrigerant heat exchanger, so the heating capacity of the heat pump circuit is reduced. It can be distributed as appropriate to improve the operation efficiency.

さらに、流量調整手段は、冷媒間熱交換器を挟んで膨張弁と反対側に配置された流量調整弁を含むものとする。これによれば、例えば、暖房運転において、圧縮機から吐出された所定温度の一次冷媒は、それぞれの流量調整弁を介して所定流量に調整された後、冷媒間熱交換器に導入されるため、それぞれの冷媒間熱交換器には所望の加熱能力が分配され、運転効率を向上させることができる。   Furthermore, the flow rate adjusting means includes a flow rate adjusting valve disposed on the opposite side of the expansion valve across the inter-refrigerant heat exchanger. According to this, for example, in heating operation, the primary refrigerant discharged from the compressor at a predetermined temperature is adjusted to a predetermined flow rate via each flow rate adjustment valve and then introduced into the inter-refrigerant heat exchanger. In addition, a desired heating capacity is distributed to each inter-refrigerant heat exchanger, and the operation efficiency can be improved.

また、ヒートポンプ回路は、一次冷媒の高圧側冷媒と低圧側冷媒を熱交換させる補助熱交換器を設けることにより、吸熱工程と放熱工程のエンタルピを増加させることができるため、運転効率を一層向上させることができる。   Further, the heat pump circuit can increase the enthalpy of the heat absorption process and the heat dissipation process by providing an auxiliary heat exchanger that exchanges heat between the high-pressure side refrigerant and the low-pressure side refrigerant of the primary refrigerant, thereby further improving the operation efficiency. be able to.

このような構成において、例えば、一次冷媒として二酸化炭素冷媒を用い、二次冷媒には水又は不凍液を用いることが好ましい。   In such a configuration, for example, a carbon dioxide refrigerant is preferably used as the primary refrigerant, and water or an antifreeze liquid is preferably used as the secondary refrigerant.

本発明によれば、複数の室内負荷を運転する際の運転効率を向上させることができる。   According to the present invention, it is possible to improve the operation efficiency when operating a plurality of indoor loads.

以下、本発明の第1の実施形態を図面に基づいて説明する。図1は本発明を適用してなるヒートポンプ式冷暖房装置の全体構成図である。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a first embodiment of the invention will be described with reference to the drawings. FIG. 1 is an overall configuration diagram of a heat pump type air conditioner to which the present invention is applied.

本実施形態のヒートポンプ式冷暖房装置は、ヒートポンプ回路7、空調回路11a、床暖房回路11bから構成される。ヒートポンプ回路7は、圧縮機1、冷房・暖房サイクル切換え用の四方弁2、サイクル流路切換弁3a,3b、冷媒間熱交換器4a,4b、膨張弁5a,5b、室外熱交換器6を順次冷媒配管で接続した閉回路であり、サイクル流路切換弁3a、冷媒間熱交換器4a、膨張弁5aを結ぶ室内空調用の流路と、サイクル流路切換弁3b、冷媒間熱交換器4b、膨張弁5bを結ぶ床暖房用の流路は、並列になるように配置されている。ここで、ヒートポンプ回路7には、一次冷媒として二酸化炭素が封入されている。   The heat pump type air conditioning apparatus of the present embodiment includes a heat pump circuit 7, an air conditioning circuit 11a, and a floor heating circuit 11b. The heat pump circuit 7 includes a compressor 1, a cooling / heating cycle switching four-way valve 2, cycle flow path switching valves 3a and 3b, refrigerant heat exchangers 4a and 4b, expansion valves 5a and 5b, and an outdoor heat exchanger 6. A closed circuit sequentially connected by refrigerant piping, a flow path switching valve 3a, an inter-refrigerant heat exchanger 4a, a flow path for indoor air conditioning connecting the expansion valve 5a, a cycle flow path switching valve 3b, and an inter-refrigerant heat exchanger The floor heating flow path connecting 4b and the expansion valve 5b is arranged in parallel. Here, carbon dioxide is enclosed in the heat pump circuit 7 as a primary refrigerant.

サイクル流路切換弁3a,3bは、弁の開閉操作により室内空調用の流路と床暖房用の流路を切り換えることができる。また、弁開度の調整により一次冷媒の流量を調整することで、空調と床暖房とを分配して同時に運転することもできる。圧縮機1は、低速回転から高速回転まで回転数が調整自在になっている。室外熱交換器6は、図示しないファンから送られる空気と一次冷媒とを熱交換するものである。   The cycle channel switching valves 3a and 3b can switch between a channel for indoor air conditioning and a channel for floor heating by opening and closing the valve. Further, by adjusting the flow rate of the primary refrigerant by adjusting the valve opening, the air conditioning and the floor heating can be distributed and operated simultaneously. The rotation speed of the compressor 1 can be adjusted freely from low speed rotation to high speed rotation. The outdoor heat exchanger 6 exchanges heat between air sent from a fan (not shown) and the primary refrigerant.

冷媒間熱交換器4aは、一次冷媒が通流する一次側伝熱管4cと、二次冷媒が通流する二次側伝熱管4dとを備えて構成され、冷媒間熱交換器4bは、一次冷媒が通流する一次側伝熱管4eと、二次冷媒が通流する二次側伝熱管4fとを備えて構成される。   The inter-refrigerant heat exchanger 4a includes a primary heat transfer tube 4c through which the primary refrigerant flows and a secondary heat transfer tube 4d through which the secondary refrigerant flows. The inter-refrigerant heat exchanger 4b includes the primary heat transfer tube 4c. A primary side heat transfer tube 4e through which the refrigerant flows and a secondary side heat transfer tube 4f through which the secondary refrigerant flows are configured.

空調回路11aは、循環ポンプ8a、冷媒間熱交換器4a、室内空調用熱交換器9a、バッファタンク10a、循環ポンプ8aを順次冷媒配管で接続した閉回路であり、二次冷媒として水又は不凍液が使用されている。床暖房回路11bは、循環ポンプ8b、冷媒間熱交換器4b、床暖房パネル9b、バッファタンク10b、循環ポンプ8bを順次冷媒配管で接続した閉回路であり、二次冷媒として水又は不凍液が封入されている。バッファタンク10a,10bは、通常、据付時の給水口として使用される。   The air conditioning circuit 11a is a closed circuit in which the circulation pump 8a, the inter-refrigerant heat exchanger 4a, the indoor air conditioning heat exchanger 9a, the buffer tank 10a, and the circulation pump 8a are sequentially connected by refrigerant piping, and water or antifreeze liquid as a secondary refrigerant. Is used. The floor heating circuit 11b is a closed circuit in which the circulation pump 8b, the inter-refrigerant heat exchanger 4b, the floor heating panel 9b, the buffer tank 10b, and the circulation pump 8b are sequentially connected by refrigerant piping, and water or antifreeze liquid is enclosed as a secondary refrigerant. Has been. The buffer tanks 10a and 10b are normally used as water supply ports during installation.

ヒートポンプ回路7、冷媒間熱交換器4a,4bは室外機に設けられ、室内機には、冷媒間熱交換器4a,4bとそれぞれ冷媒配管で接続された室内空調用熱交換器9a,床暖房パネル9bが設けられている。   The heat pump circuit 7 and the inter-refrigerant heat exchangers 4a and 4b are provided in the outdoor unit, and the indoor unit includes an indoor air-conditioning heat exchanger 9a connected to the inter-refrigerant heat exchangers 4a and 4b through refrigerant pipes, and floor heating. A panel 9b is provided.

制御装置16は、例えば、図示しない温度センサからの温度信号、ユーザが入力するリモコンからの運転指令信号などに基づいて、ヒートポンプ回路7、空調回路11a、床暖房回路11bなどの動作を制御する。具体的に、ヒートポンプ回路7では、圧縮機1の動作とともに、サイクル流路切換弁3a,3b、膨張弁5a,5bの弁開度などが操作され、一次冷媒の流量や流路などが制御されている。一方、空調回路11a、床暖房回路11bでは、循環ポンプ8a,8bの動作が制御されることにより、それぞれの室内負荷の起動、停止が行われる。   The control device 16 controls operations of the heat pump circuit 7, the air conditioning circuit 11a, the floor heating circuit 11b, and the like based on, for example, a temperature signal from a temperature sensor (not shown), an operation command signal from a remote controller input by the user, and the like. Specifically, in the heat pump circuit 7, along with the operation of the compressor 1, the valve opening degrees of the cycle flow path switching valves 3a and 3b and the expansion valves 5a and 5b are operated to control the flow rate and flow path of the primary refrigerant. ing. On the other hand, in the air conditioning circuit 11a and the floor heating circuit 11b, the operations of the circulation pumps 8a and 8b are controlled to start and stop the respective indoor loads.

次に、本実施形態の動作について説明する。   Next, the operation of this embodiment will be described.

まず、暖房運転時におけるヒートポンプ回路7の基本的な動作を説明すると、圧縮機1によって圧縮された高温、高圧の一次冷媒は、四方弁2を経由して分岐された後、冷媒間熱交換器4a,4bの一次側伝熱管4c,4eにそれぞれ導入され、二次側伝熱管4d,4fを通流する水を加熱するとともに放熱する。一次側伝熱管4c,4eを通過した後、膨張弁5a,5bに導かれて膨張した一次冷媒は、室外熱交換器6において吸熱により蒸発し、次いで、四方弁2を経由して圧縮機1に吸い込まれる。   First, the basic operation of the heat pump circuit 7 during heating operation will be described. The high-temperature and high-pressure primary refrigerant compressed by the compressor 1 is branched via the four-way valve 2 and then the inter-refrigerant heat exchanger. 4a and 4b are respectively introduced into the primary side heat transfer tubes 4c and 4e to heat and dissipate the water flowing through the secondary side heat transfer tubes 4d and 4f. After passing through the primary heat transfer tubes 4c, 4e, the primary refrigerant that has been expanded by being led to the expansion valves 5a, 5b evaporates due to heat absorption in the outdoor heat exchanger 6, and then passes through the four-way valve 2 to compress the compressor 1. Sucked into.

ここで、床暖房のみ運転を行う場合は、ヒートポンプ回路7の運転を行うとともに、循環ポンプ8bを起動して床暖房回路11b内の二次冷媒を循環させる。また、空調回路11aでは、循環ポンプ8aの起動を行わず停止状態とする。このとき、ヒートポンプ回路7は、サイクル流路切換弁3a,膨張弁5aを全閉とし、サイクル流路切換弁3b,膨張弁5bを全開とすることにより、圧縮機1から送り出される一次冷媒が冷媒間熱交換器4bにのみ導入されるようにする。   Here, when only floor heating is performed, the heat pump circuit 7 is operated, and the circulation pump 8b is activated to circulate the secondary refrigerant in the floor heating circuit 11b. Further, in the air conditioning circuit 11a, the circulation pump 8a is not started but is brought into a stopped state. At this time, the heat pump circuit 7 fully closes the cycle flow path switching valve 3a and the expansion valve 5a, and fully opens the cycle flow path switching valve 3b and the expansion valve 5b, so that the primary refrigerant delivered from the compressor 1 is a refrigerant. It is introduced only into the intermediate heat exchanger 4b.

一方、室内空調のみ運転を行う場合は、ヒートポンプ回路7の運転を行うとともに、循環ポンプ8aを起動して空調回路11a内の二次冷媒を循環させる。また、床暖房回路11bでは、循環ポンプ8bの起動を行わず停止状態とする。このとき、ヒートポンプ回路7は、サイクル流路切換弁3b,膨張弁5bを全閉とし、サイクル流路切換弁3a,膨張弁5aを全開とすることにより、圧縮機1から送り出される一次冷媒が冷媒間熱交換器4aにのみ導入されるようにする。   On the other hand, when operating only indoor air conditioning, while operating the heat pump circuit 7, the circulation pump 8a is started and the secondary refrigerant in the air conditioning circuit 11a is circulated. Further, in the floor heating circuit 11b, the circulation pump 8b is not started but is brought into a stopped state. At this time, the heat pump circuit 7 fully closes the cycle flow path switching valve 3b and the expansion valve 5b and fully opens the cycle flow path switching valve 3a and the expansion valve 5a, so that the primary refrigerant sent out from the compressor 1 is a refrigerant. It is introduced only into the intermediate heat exchanger 4a.

このような動作により室内空調、床暖房がそれぞれ単独で運転されるサイクルを作ることができる。これに対し、室内空調、床暖房を同時に運転する場合は、ヒートポンプ回路7、空調回路11a、床暖房回路11bを運転し、一次冷媒及び二次冷媒をすべて運転状態とする。このとき、ヒートポンプ回路7は、サイクル流路切換弁3a,3b、膨張弁5a,5bの各開度をすべて調整し、室内空調用及び床暖房用の流路における一次冷媒の循環量を調整する。また、これに代えて、膨張弁5a,5bによる減圧量の調整により行ってもよいし、切換弁3a,3bの開度の調整により行ってもよい。   Such an operation makes it possible to create a cycle in which indoor air conditioning and floor heating are independently operated. On the other hand, when operating indoor air conditioning and floor heating simultaneously, the heat pump circuit 7, the air conditioning circuit 11a, and the floor heating circuit 11b are operated, and the primary refrigerant and the secondary refrigerant are all in the operating state. At this time, the heat pump circuit 7 adjusts all the opening degrees of the cycle flow path switching valves 3a and 3b and the expansion valves 5a and 5b, and adjusts the circulation amount of the primary refrigerant in the flow path for indoor air conditioning and floor heating. . Alternatively, it may be performed by adjusting the amount of pressure reduction by the expansion valves 5a and 5b, or by adjusting the opening of the switching valves 3a and 3b.

本実施形態では、暖房運転時において、室内空調用と床暖房用の各流路を切り換えるため、冷媒間熱交換器4a,4bの入り側にそれぞれサイクル流路切換弁3a,3bを設置しているが、このサイクル流路切換弁3a,3bの弁開度を調整することにより、冷媒間熱交換器4a,4bを通過する一次冷媒の流量、つまり減圧量を調整するようにしている。すなわち、室内空調と床暖房の要求負荷(要求熱量)の大きさに応じて、サイクル流路切換弁3a,3bの弁開度を調整し、一次冷媒の流量を調整することにより、ヒートポンプ回路7の加熱能力を冷媒間熱交換器4a,4bに適宜分配することができ、加熱効率を向上させることができる。   In the present embodiment, in the heating operation, in order to switch the flow paths for indoor air conditioning and floor heating, cycle flow path switching valves 3a and 3b are respectively installed on the inlet side of the inter-refrigerant heat exchangers 4a and 4b. However, the flow rate of the primary refrigerant passing through the inter-refrigerant heat exchangers 4a and 4b, that is, the pressure reduction amount is adjusted by adjusting the valve opening degree of the cycle flow path switching valves 3a and 3b. That is, the heat pump circuit 7 is adjusted by adjusting the valve opening degree of the cycle flow path switching valves 3a and 3b and adjusting the flow rate of the primary refrigerant in accordance with the required load (required heat amount) of the indoor air conditioning and floor heating. Can be appropriately distributed to the inter-refrigerant heat exchangers 4a and 4b, and the heating efficiency can be improved.

ここで、例えば、それぞれの室内負荷の負荷変化を検知するとともに、その負荷信号を制御装置16に入力して処理を行い、負荷の大きさに基づいてサイクル流路切換弁3a,3bの弁開度を制御するようにしてもよい。これによれば、各室内負荷の負荷変化に応じて、加熱能力を最適な比率で適宜分配することができるため、高い加熱能力を維持することができる。   Here, for example, the load change of each indoor load is detected, and the load signal is input to the control device 16 for processing, and the cycle flow path switching valves 3a and 3b are opened based on the magnitude of the load. The degree may be controlled. According to this, since a heating capability can be appropriately distributed at an optimal ratio according to a load change of each indoor load, a high heating capability can be maintained.

さらに、例えば、冷媒間熱交換器4a,4bの入り側に一次冷媒の温度を検出する温度センサを設け、その検出温度に基づいて、制御装置16によりサイクル流路切換弁3a,3bの弁開度を制御するようにしてもよい。これによれば、ヒートポンプ回路7の加熱能力を精度よく分配することができる。   Further, for example, a temperature sensor for detecting the temperature of the primary refrigerant is provided on the inlet side of the inter-refrigerant heat exchangers 4a and 4b, and the control device 16 opens the cycle flow path switching valves 3a and 3b based on the detected temperature. The degree may be controlled. According to this, the heating capability of the heat pump circuit 7 can be distributed with high accuracy.

また、冷房運転時には、四方弁2を冷房サイクルに切り換えてヒートポンプ回路7を運転し、循環ポンプ8aを起動させて空調回路11aの二次冷媒を循環させる一方、床暖房回路11bは、循環ポンプ8bの運転を行わず、停止状態とする。そして、サイクル流路切換弁3bと膨張弁5bを全閉とし、サイクル流路切換弁3a,膨張弁5aを全開とすることにより、室外熱交換器6を通過した一次冷媒が冷媒間熱交換器4aにのみ導入されるようにする。これにより、空調回路11aによる冷房運転が可能となる。   Further, during the cooling operation, the four-way valve 2 is switched to the cooling cycle to operate the heat pump circuit 7 and the circulation pump 8a is activated to circulate the secondary refrigerant of the air conditioning circuit 11a, while the floor heating circuit 11b is connected to the circulation pump 8b. No operation is performed and the vehicle is stopped. Then, the cycle flow path switching valve 3b and the expansion valve 5b are fully closed, and the cycle flow path switching valve 3a and the expansion valve 5a are fully opened, so that the primary refrigerant that has passed through the outdoor heat exchanger 6 becomes an inter-refrigerant heat exchanger. It is introduced only in 4a. Thereby, the cooling operation by the air conditioning circuit 11a becomes possible.

なお、本実施形態では、冷房運転の場合、室内空調による単独運転を行うようにしているが、例えば、複数の室内空調を同時に運転させる構成の場合は、膨張弁5とサイクル流路切換弁3により一次冷媒の流量調整を行うことにより、ヒートポンプ回路7の冷却能力をそれぞれの冷媒間熱交換器4に適宜分配できるため、暖房運転と同様、運転効率を向上させることができる。   In the present embodiment, in the case of the cooling operation, the single operation by the indoor air conditioning is performed. However, for example, in the case of a configuration in which a plurality of indoor air conditionings are operated simultaneously, the expansion valve 5 and the cycle flow path switching valve 3 are used. By adjusting the flow rate of the primary refrigerant, the cooling capacity of the heat pump circuit 7 can be appropriately distributed to each inter-refrigerant heat exchanger 4, so that the operating efficiency can be improved as in the heating operation.

次に、本発明の第2の実施形態を図面に基づいて説明する。図2は、本発明を適用してなるヒートポンプ式冷暖房装置の全体構成図である。なお、本実施形態では第1の実施形態と基本的に同一の回路構成を用いるため、同一の構成要素については同一の符号を付して説明を省略する。   Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 2 is an overall configuration diagram of a heat pump air conditioner to which the present invention is applied. In this embodiment, since the same circuit configuration as that of the first embodiment is used, the same components are denoted by the same reference numerals and description thereof is omitted.

本実施形態のヒートポンプ式冷暖房装置は、ヒートポンプ回路15に補助熱交換器14を設けることにより一次冷媒となる二酸化炭素冷媒の高圧側と低圧側を熱交換させている点で、第1の実施形態のヒートポンプ式冷暖房装置と相違する。   The heat pump type air conditioner of the present embodiment is the first embodiment in that the heat pump circuit 15 is provided with the auxiliary heat exchanger 14 to exchange heat between the high pressure side and the low pressure side of the carbon dioxide refrigerant that is the primary refrigerant. It is different from the heat pump type air conditioner.

本実施形態のヒートポンプ式冷暖房装置は、ヒートポンプ回路15、空調回路11a、床暖房回路11bから構成される。ヒートポンプ回路15は、暖房運転時において、圧縮機1によって圧縮された高温、高圧の一次冷媒が、四方弁2を経由して分岐された後、冷媒間熱交換器4a,4bの一次側伝熱管4c,4eにそれぞれ導入され、二次側伝熱管4d,4fを通流する水を加熱するとともに放熱する。一次側伝熱管4c,4eを通過した後、冷房運転用膨張弁12,床暖房用流路切換弁13をそれぞれ経由して合流された一次冷媒は、補助熱交換器14により室外熱交換器6を出た一次冷媒と熱交換を行う。続いて、暖房運転用膨張弁17に導かれて膨張した一次冷媒は、室外熱交換器6において吸熱により蒸発した後、四方弁2を経由して圧縮機1に吸い込まれる。   The heat pump type air conditioning apparatus of the present embodiment includes a heat pump circuit 15, an air conditioning circuit 11a, and a floor heating circuit 11b. The heat pump circuit 15 is configured so that, during the heating operation, the high-temperature and high-pressure primary refrigerant compressed by the compressor 1 is branched through the four-way valve 2 and then the primary heat transfer tubes between the refrigerant heat exchangers 4a and 4b. Introduced into 4c and 4e, the water flowing through the secondary heat transfer tubes 4d and 4f is heated and radiated. After passing through the primary side heat transfer tubes 4c and 4e, the primary refrigerant joined through the cooling operation expansion valve 12 and the floor heating flow path switching valve 13 is supplied to the outdoor heat exchanger 6 by the auxiliary heat exchanger 14. Heat exchange with the primary refrigerant exiting Subsequently, the primary refrigerant that has been led to the expansion valve 17 for heating operation and expanded is evaporated by heat absorption in the outdoor heat exchanger 6 and then sucked into the compressor 1 via the four-way valve 2.

ここで、床暖房のみ運転を行う場合は、ヒートポンプ回路15の運転を行うとともに、循環ポンプ8bを起動して床暖房回路11b内の二次冷媒を循環させる。また、空調回路11aでは、循環ポンプ8aの起動を行わず停止状態とする。このとき、ヒートポンプ回路15は、サイクル流路切換弁3a,冷房運転用膨張弁12を全閉とし、サイクル流路切換弁3b,床暖房用流路切換弁13を全開とすることで、圧縮機1から送り出される一次冷媒が冷媒間熱交換器4bにのみ導入されるようにする。   Here, when only floor heating is operated, the heat pump circuit 15 is operated and the circulation pump 8b is activated to circulate the secondary refrigerant in the floor heating circuit 11b. Further, in the air conditioning circuit 11a, the circulation pump 8a is not started but is brought into a stopped state. At this time, the heat pump circuit 15 fully closes the cycle flow path switching valve 3a and the cooling operation expansion valve 12, and fully opens the cycle flow path switching valve 3b and the floor heating flow path switching valve 13, whereby the compressor 1 is introduced only into the inter-refrigerant heat exchanger 4b.

一方、室内空調のみ運転を行う場合は、ヒートポンプ回路15の運転を行うとともに、循環ポンプ8aを起動して空調回路11a内の二次冷媒を循環させる。また、床暖房回路11bでは、循環ポンプ8bの起動を行わず停止状態とする。このとき、ヒートポンプ回路15は、サイクル流路切換弁3b,床暖房用流路切換弁13を全閉とし、サイクル流路切換弁3a,冷房運転用膨張弁12を全開とすることで、圧縮機1から送り出される一次冷媒が冷媒間熱交換器4aにのみ導入されるようにする。   On the other hand, when operating only indoor air conditioning, while operating the heat pump circuit 15, the circulation pump 8a is started and the secondary refrigerant in the air conditioning circuit 11a is circulated. Further, in the floor heating circuit 11b, the circulation pump 8b is not started but is brought into a stopped state. At this time, the heat pump circuit 15 fully closes the cycle flow path switching valve 3b and the floor heating flow path switching valve 13 and fully opens the cycle flow path switching valve 3a and the cooling operation expansion valve 12, thereby compressing the compressor. 1 is introduced only into the inter-refrigerant heat exchanger 4a.

このような動作により室内空調、床暖房がそれぞれ単独で運転されるサイクルを作ることができる。これに対し、室内空調、床暖房を同時に運転する場合は、ヒートポンプ回路15、空調回路11a、床暖房回路11bを運転し、一次冷媒及びすべての二次冷媒を運転状態とする。このとき、ヒートポンプ回路15は、サイクル流路切換弁3a,3b、冷房運転用膨張弁12、床暖房用流路切換弁13をすべて全開とし、室内空調用及び床暖房用の流路における一次冷媒の循環量の調整は、例えば、暖房運転用膨張弁17、サイクル流路切換弁3a,3bによる流量(減圧量)の調整により行う。   Such an operation makes it possible to create a cycle in which indoor air conditioning and floor heating are independently operated. On the other hand, when operating indoor air conditioning and floor heating at the same time, the heat pump circuit 15, the air conditioning circuit 11a, and the floor heating circuit 11b are operated, and the primary refrigerant and all the secondary refrigerants are set in the operating state. At this time, the heat pump circuit 15 fully opens the cycle flow path switching valves 3a and 3b, the cooling operation expansion valve 12, and the floor heating flow path switching valve 13, and the primary refrigerant in the flow path for indoor air conditioning and floor heating. The circulation amount is adjusted, for example, by adjusting the flow rate (pressure reduction amount) using the heating operation expansion valve 17 and the cycle flow path switching valves 3a and 3b.

特に、室内空調と床暖房の要求負荷(要求熱量)の大きさに応じて、サイクル流路切換弁3a,3bの弁開度を調整し、一次冷媒の流量を調整することで、ヒートポンプ回路15の加熱能力を冷媒間熱交換器4a,4bに適宜分配し、加熱効率を向上させることができる。   In particular, the heat pump circuit 15 is adjusted by adjusting the valve opening degree of the cycle flow path switching valves 3a and 3b and adjusting the flow rate of the primary refrigerant according to the required load (required heat amount) of the indoor air conditioning and floor heating. Can be appropriately distributed to the inter-refrigerant heat exchangers 4a and 4b to improve the heating efficiency.

また、冷房運転時には、四方弁2を冷房サイクルに切り換えてヒートポンプ回路15を運転するとともに、空調回路11aは二次冷媒を循環させ、床暖房回路11bは運転を停止状態とする。そして、サイクル流路切換弁3bと床暖房用流路切換弁13を全閉とし、サイクル流路切換弁3a,冷房運転用膨張弁12を全開とすることにより、室外熱交換器6を通過した一次冷媒が冷媒間熱交換器4aにのみ導入され、空調回路11aによる冷房運転が可能となる。ここで、一次冷媒の循環量の調整は、冷房運転用膨張弁12により行う。   Further, during the cooling operation, the four-way valve 2 is switched to the cooling cycle to operate the heat pump circuit 15, the air conditioning circuit 11a circulates the secondary refrigerant, and the floor heating circuit 11b stops the operation. Then, the cycle flow switching valve 3b and the floor heating flow switching valve 13 are fully closed, and the cycle flow switching valve 3a and the cooling operation expansion valve 12 are fully opened, thereby passing the outdoor heat exchanger 6. A primary refrigerant | coolant is introduce | transduced only into the heat exchanger 4a between refrigerant | coolants, and the cooling operation by the air-conditioning circuit 11a is attained. Here, the adjustment of the circulation amount of the primary refrigerant is performed by the cooling operation expansion valve 12.

さらに、本実施形態では、冷房、暖房運転時において、室外熱交換器6、冷媒間熱交換器4a,4bのそれぞれ出口側の一次冷媒を補助熱交換器14にて熱交換させるようにしている。これにより、第1の実施形態の効果に加えて、放熱工程、吸熱工程のエンタルピを増加させることができ、運転効率を一層向上させることができる。   Furthermore, in the present embodiment, the primary refrigerant at the outlet side of each of the outdoor heat exchanger 6 and the inter-refrigerant heat exchangers 4a and 4b is heat-exchanged by the auxiliary heat exchanger 14 during cooling and heating operations. . Thereby, in addition to the effect of 1st Embodiment, the enthalpy of a thermal radiation process and an endothermic process can be increased, and operating efficiency can be improved further.

以上述べたように、上記実施形態の構成によれば、二次冷媒を介して室内負荷を冷暖房するヒートポンプ式冷暖房装置において、例えば、ルームエアコン用室内機のような室内空調機器や床暖房装置のように、複数の室内熱交換器による負荷運転を同時に、或いは選択的に運転することができる。また、上記実施形態によれば、高圧側で超臨界状態(圧力)により作動する二酸化炭素冷媒などを一次冷媒として用いても、高い加熱及び冷却能力により支障なく冷暖房運転を行うことができる。   As described above, according to the configuration of the above embodiment, in the heat pump air conditioner that cools and heats the indoor load via the secondary refrigerant, for example, an indoor air conditioner such as an indoor unit for a room air conditioner or a floor heater Thus, the load operation by a plurality of indoor heat exchangers can be operated simultaneously or selectively. Moreover, according to the said embodiment, even if it uses as a primary refrigerant | coolant the carbon dioxide refrigerant | coolant etc. which operate | move by a supercritical state (pressure) on the high voltage | pressure side, it can perform an air conditioning operation without trouble with high heating and cooling capability.

また、上記実施形態のヒートポンプ式冷暖房装置では、複数の冷媒間熱交換器4を並列に配置し、各々の冷媒間熱交換器4の一次冷媒の入り側にサイクル流路切換弁3を設けることにより、冷媒間熱交換器4に流入する一次冷媒の流量を調整することができるため、例えば、暖房運転時に加熱能力の異なる室内負荷を複数同時に運転する場合においても、それぞれの要求負荷に応じてヒートポンプ回路の加熱能力を適宜分配することができ、効率的に運転を行うことができる。   Moreover, in the heat pump type air conditioning apparatus of the said embodiment, the several heat exchanger 4 between refrigerant | coolants is arrange | positioned in parallel, and the cycle flow-path switching valve 3 is provided in the entrance side of the primary refrigerant | coolant of each heat exchanger 4 between refrigerant | coolants. Thus, the flow rate of the primary refrigerant flowing into the inter-refrigerant heat exchanger 4 can be adjusted. For example, even when a plurality of indoor loads having different heating capacities are simultaneously operated during the heating operation, according to each required load The heating capacity of the heat pump circuit can be appropriately distributed, and the operation can be performed efficiently.

また、上記実施形態では、二酸化炭素を一次冷媒として用いる例を説明したが、これに限定されるものではなく、例えば、エタンや可燃性冷媒のプロパン,イソブタンなどを用いるようにしてもよい。   In the above embodiment, an example in which carbon dioxide is used as the primary refrigerant has been described. However, the present invention is not limited to this. For example, ethane, flammable refrigerant propane, isobutane, or the like may be used.

また、上記実施形態では、室内負荷としてエアコンなどの空気調和機や床暖房装置を用いる例について説明したが、これに限定されるものではなく、他の冷暖房負荷(例えば、ミストサウナ、壁面冷房、天井冷房)についても適用することができ、さらに、二以上の室内負荷を接続する構成についても適用できる。   Moreover, although the said embodiment demonstrated the example which uses air conditioners, such as an air conditioner, and a floor heating apparatus as an indoor load, it is not limited to this, Other cooling / heating loads (for example, mist sauna, wall surface cooling, It can also be applied to ceiling cooling), and can also be applied to a configuration in which two or more indoor loads are connected.

本発明の第1の実施形態におけるヒートポンプ式冷暖房装置の全体構成図である。1 is an overall configuration diagram of a heat pump air conditioner in a first embodiment of the present invention. 本発明の第2の実施形態におけるヒートポンプ式冷暖房装置の全体構成図である。It is a whole block diagram of the heat pump type air conditioning apparatus in the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 圧縮機
2 四方弁
3a,3b サイクル流路切換弁
4a,4b 冷媒間熱交換器
5a,5b 膨張弁
6 室外熱交換器
7 ヒートポンプ回路
8a,8b 循環ポンプ
9a 室内空調用熱交換器
9b 床暖房パネル
11a 空調回路
11b 床暖房回路
14 補助熱交換器
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3a, 3b Cycle flow path switching valve 4a, 4b Inter-refrigerant heat exchanger 5a, 5b Expansion valve 6 Outdoor heat exchanger 7 Heat pump circuit 8a, 8b Circulation pump 9a Heat exchanger 9a for indoor air conditioning 9b Floor heating Panel 11a Air conditioning circuit 11b Floor heating circuit 14 Auxiliary heat exchanger

Claims (6)

圧縮機、四方弁、室外熱交換器、膨張弁および冷媒間熱交換器を冷媒配管で接続して閉回路を形成し、一次冷媒が封入されているヒートポンプ回路と、前記一次冷媒と熱交換する二次冷媒を前記冷媒間熱交換器と室内負荷との間で循環させる負荷回路とを有するヒートポンプ式冷暖房装置において、
前記ヒートポンプ回路は複数の前記冷媒間熱交換器が並列に設けられ、それぞれの該冷媒間熱交換器を通流する前記一次冷媒の流量を調整する流量調整手段を備えることを特徴とするヒートポンプ式冷暖房装置。
A compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, and an inter-refrigerant heat exchanger are connected by a refrigerant pipe to form a closed circuit, and a heat pump circuit in which the primary refrigerant is enclosed and heat exchange with the primary refrigerant In a heat pump air conditioner having a load circuit for circulating a secondary refrigerant between the inter-refrigerant heat exchanger and an indoor load,
The heat pump circuit is characterized in that a plurality of the inter-refrigerant heat exchangers are provided in parallel, and includes a flow rate adjusting means for adjusting the flow rate of the primary refrigerant flowing through each of the inter-refrigerant heat exchangers. Air conditioning unit.
前記流量調整手段は、それぞれの前記冷媒間熱交換器に対応させて配置される前記膨張弁を含むことを特徴とする請求項1に記載のヒートポンプ式冷暖房装置。 The heat pump air-conditioning / heating apparatus according to claim 1, wherein the flow rate adjusting means includes the expansion valve disposed in correspondence with each of the refrigerant heat exchangers. 前記流量調整手段は、それぞれの前記冷媒間熱交換器を挟んで前記膨張弁と反対側に配置された流量調整弁を含むことを特徴とする請求項2に記載のヒートポンプ式冷暖房装置。 The heat pump air conditioner according to claim 2, wherein the flow rate adjusting means includes a flow rate adjusting valve disposed on the opposite side of the expansion valve across the refrigerant heat exchangers. 前記ヒートポンプ回路は、前記一次冷媒の高圧側冷媒と低圧側冷媒を熱交換させる補助熱交換器を設けたことを特徴とする請求項1乃至3のいずれかに記載のヒートポンプ式冷暖房装置。 The heat pump type air conditioning apparatus according to any one of claims 1 to 3, wherein the heat pump circuit includes an auxiliary heat exchanger that exchanges heat between the high-pressure side refrigerant and the low-pressure side refrigerant of the primary refrigerant. 前記一次冷媒は二酸化炭素冷媒であり、前記二次冷媒は水又は不凍液であることを特徴とする請求項1乃至4のいずれかに記載のヒートポンプ式冷暖房装置。 The heat pump air conditioner according to any one of claims 1 to 4, wherein the primary refrigerant is a carbon dioxide refrigerant, and the secondary refrigerant is water or antifreeze. 前記二酸化炭素冷媒は高圧側で超臨界状態となることを特徴とする請求項5に記載のヒートポンプ式冷暖房装置。
6. The heat pump air conditioner according to claim 5, wherein the carbon dioxide refrigerant is in a supercritical state on the high pressure side.
JP2006001625A 2006-01-06 2006-01-06 Heat pump type air-conditioning equipment Pending JP2007183045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006001625A JP2007183045A (en) 2006-01-06 2006-01-06 Heat pump type air-conditioning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006001625A JP2007183045A (en) 2006-01-06 2006-01-06 Heat pump type air-conditioning equipment

Publications (1)

Publication Number Publication Date
JP2007183045A true JP2007183045A (en) 2007-07-19

Family

ID=38339294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006001625A Pending JP2007183045A (en) 2006-01-06 2006-01-06 Heat pump type air-conditioning equipment

Country Status (1)

Country Link
JP (1) JP2007183045A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131335A1 (en) 2009-05-13 2010-11-18 三菱電機株式会社 Air conditioning apparatus
US8820106B2 (en) 2008-04-30 2014-09-02 Mitsubishi Electric Corporation Air conditioning apparatus
US8881548B2 (en) 2009-05-08 2014-11-11 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2015017751A (en) * 2013-07-10 2015-01-29 サンポット株式会社 Heat pump heat source machine
US9212825B2 (en) 2008-04-30 2015-12-15 Mitsubishi Electric Corporation Air conditioner
EP2428741A4 (en) * 2009-05-08 2018-03-21 Mitsubishi Electric Corporation Air conditioner
US11079122B2 (en) 2013-03-04 2021-08-03 Johnson Controls Technology Company Modular liquid based heating and cooling system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886527A (en) * 1994-09-16 1996-04-02 Toshiba Corp Air conditioner
JP2004232905A (en) * 2003-01-29 2004-08-19 Sanyo Electric Co Ltd Refrigerator
JP2005214556A (en) * 2004-01-30 2005-08-11 Sanyo Electric Co Ltd Heating/cooling system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886527A (en) * 1994-09-16 1996-04-02 Toshiba Corp Air conditioner
JP2004232905A (en) * 2003-01-29 2004-08-19 Sanyo Electric Co Ltd Refrigerator
JP2005214556A (en) * 2004-01-30 2005-08-11 Sanyo Electric Co Ltd Heating/cooling system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8820106B2 (en) 2008-04-30 2014-09-02 Mitsubishi Electric Corporation Air conditioning apparatus
US9212825B2 (en) 2008-04-30 2015-12-15 Mitsubishi Electric Corporation Air conditioner
US8881548B2 (en) 2009-05-08 2014-11-11 Mitsubishi Electric Corporation Air-conditioning apparatus
EP2428741A4 (en) * 2009-05-08 2018-03-21 Mitsubishi Electric Corporation Air conditioner
WO2010131335A1 (en) 2009-05-13 2010-11-18 三菱電機株式会社 Air conditioning apparatus
US11079122B2 (en) 2013-03-04 2021-08-03 Johnson Controls Technology Company Modular liquid based heating and cooling system
JP2015017751A (en) * 2013-07-10 2015-01-29 サンポット株式会社 Heat pump heat source machine

Similar Documents

Publication Publication Date Title
EP2420764B1 (en) Air-conditioning device
EP2535651B1 (en) Building comprising an air conditioner
US8794020B2 (en) Air-conditioning apparatus
JP5611376B2 (en) Air conditioner
US20110113802A1 (en) Air conditioner
WO2011052042A1 (en) Air conditioning device
US20120151949A1 (en) Air conditioning device
US9651287B2 (en) Air-conditioning apparatus
US20150285519A1 (en) Air-conditioning apparatus
US9857113B2 (en) Air-conditioning apparatus
WO2008032558A1 (en) Refrigeration device
WO2015122171A1 (en) Air conditioning device
JP2007183045A (en) Heat pump type air-conditioning equipment
JP6120943B2 (en) Air conditioner
US9188371B2 (en) Air-conditioning apparatus with separate component casings
US10451305B2 (en) Air-conditioning apparatus
US9746222B2 (en) Air-conditioning apparatus
US10436463B2 (en) Air-conditioning apparatus
WO2011064830A1 (en) Air-conditioning device
JP2007321995A (en) Refrigerating cycle device
JP5752135B2 (en) Air conditioner
JP5312616B2 (en) Air conditioner
WO2020174618A1 (en) Air-conditioning device
JP5312681B2 (en) Air conditioner
JP2007163071A (en) Heat pump type cooling/heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308