[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007174054A - Field transmission system - Google Patents

Field transmission system Download PDF

Info

Publication number
JP2007174054A
JP2007174054A JP2005366380A JP2005366380A JP2007174054A JP 2007174054 A JP2007174054 A JP 2007174054A JP 2005366380 A JP2005366380 A JP 2005366380A JP 2005366380 A JP2005366380 A JP 2005366380A JP 2007174054 A JP2007174054 A JP 2007174054A
Authority
JP
Japan
Prior art keywords
electric field
inductor
variable capacitance
variable
communication system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005366380A
Other languages
Japanese (ja)
Other versions
JP4170337B2 (en
Inventor
Naoshi Minoya
直志 美濃谷
Mitsuru Shinagawa
満 品川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005366380A priority Critical patent/JP4170337B2/en
Publication of JP2007174054A publication Critical patent/JP2007174054A/en
Application granted granted Critical
Publication of JP4170337B2 publication Critical patent/JP4170337B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Near-Field Transmission Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate a high frequency component of frequency bands unnecessary to field transmission, and to reduce effect on surrounding electronics. <P>SOLUTION: The field transmission system comprises a variable capacity diode 1; inductors 2 and 3; resistors 4, 5, and 6; capacitors 7, 8, and 9; a buffer 10; a circuit ground 14; AC signal terminals 11 and 13 for inputting and outputting of a signal to a variable reactance; and a control signal input 12. The inductor 3 and the capacitor 9 are provided to eliminate unwanted high frequency component. Impedance of the inductor 3 is established to a level higher than the capacitor 9, in a frequency domain higher than the frequency bands used for transmission. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電界を電界伝達媒体に誘起し、この誘起した電界を検出して情報の送受信を行う通信に適用する電界通信システムに関する。   The present invention relates to an electric field communication system applied to communication in which an electric field is induced in an electric field transmission medium, and the induced electric field is detected to transmit / receive information.

携帯端末の小型化および高性能化により、生体に装着可能なウェアラブルコンピュータが注目されてきている。従来、このようなウェアラブルコンピュータ間の情報通信として、コンピュータに電界通信トランシーバを接続して装着し、この電界通信トランシーバが誘起する電界を、電界伝達媒体である生体を介して伝達させることによって、情報の送受信を行う方法が提案されている(特許文献1、2参照)。   Due to the miniaturization and high performance of portable terminals, wearable computers that can be attached to living bodies have been attracting attention. Conventionally, as information communication between such wearable computers, an electric field communication transceiver is connected and attached to a computer, and an electric field induced by the electric field communication transceiver is transmitted through a living body which is an electric field transmission medium, thereby Have been proposed (see Patent Documents 1 and 2).

また、図4に示す従来の電界通信トランシーバの構成図では送信と受信の構成のうち送信部分の構成のみを示している。この送信部分は、送信器36から構成されており、送信器36は電界伝達媒体となる生体35に接して送信を行う。送信器36は生体35に接触するための絶縁体37と、絶縁体37を介して生体35へ電界通信(送信)を行う送信電極34と、可変リアクタンス30と、送信回路31と、回路グランド32とを備えている。   Also, in the configuration diagram of the conventional electric field communication transceiver shown in FIG. 4, only the configuration of the transmission portion is shown in the transmission and reception configurations. This transmission part is composed of a transmitter 36, and the transmitter 36 performs transmission in contact with a living body 35 serving as an electric field transmission medium. The transmitter 36 is an insulator 37 for contacting the living body 35, a transmission electrode 34 that performs electric field communication (transmission) to the living body 35 via the insulator 37, a variable reactance 30, a transmission circuit 31, and a circuit ground 32. And.

このような構成において、電界通信において誘起される電界を強くするためには、送信器36の出力に可変リアクタンス30を挿入し、生体35と大地グランド39との間に生じる浮遊容量C33と、および送信器回路グランド32と大地グランド39との間に生じる浮遊容量C38と、でもって共振させることが行われている。 In such a configuration, in order to strengthen the electric field induced in the electric field communication, the variable reactance 30 is inserted into the output of the transmitter 36, and the stray capacitance C g 33 generated between the living body 35 and the earth ground 39 is And the stray capacitance C b 38 generated between the transmitter circuit ground 32 and the ground ground 39 is caused to resonate.

また、図5には図4に示した可変リアクタンス30の構成図を示している。この図5には、可変容量ダイオード40と、インダクタ41と、抵抗42、43と、容量44、45と、交流信号端子46、47と、制御信号入力48と、バッファ49と、が示されている。   FIG. 5 shows a configuration diagram of the variable reactance 30 shown in FIG. FIG. 5 shows a variable capacitance diode 40, an inductor 41, resistors 42 and 43, capacitors 44 and 45, AC signal terminals 46 and 47, a control signal input 48, and a buffer 49. Yes.

こうした構成のインダクタ41と可変容量ダイオード40とで構成される可変リアクタンス30では、可変容量ダイオード40に印加するバイアス電圧(制御信号)を変化させてリアクタンス値を変化させる。そして、搬送波の周波数近傍で浮遊容量C、Cと共振が起きるようにインダクタンス値41と可変容量ダイオード40の容量値を設定している。 In the variable reactance 30 including the inductor 41 and the variable capacitance diode 40 having such a configuration, the reactance value is changed by changing the bias voltage (control signal) applied to the variable capacitance diode 40. The inductance value 41 and the capacitance value of the variable capacitance diode 40 are set so that the stray capacitances C g and C b resonate in the vicinity of the frequency of the carrier wave.

このような構成により、通信媒体である人体に十分な強度の電界を効率よく誘起し、誘起された電界を検出して通信を行う電界通信を利用すると、情報源に触れた人体に情報を送ることができる。
特開2004−153708号公報 United States Patent Application Publication, Pub.No.:US2004/0092296A1 Pub.Date:May 13, 2004
With such a configuration, when electric field communication is performed that efficiently induces an electric field of sufficient strength in the human body, which is a communication medium, and detects the induced electric field, communication is sent to the human body touching the information source. be able to.
JP 2004-153708 A United States Patent Application Publication, Pub. No. : US2004 / 0092296A1 Pub. Date: May 13, 2004

しかしながら上述のような従来の技術においては、可変リアクタンスは高周波領域では容量として振る舞い、送信電極と回路グランド間の負荷(浮遊容量CgとCbの直列)容量よりも大きいため、送信器から出力される信号の高周波成分は可変リアクタンスには印加されず、送信電極と回路グランド間に印加されてしまう。このため、電界通信に使用する周波数帯域外の信号が空間に放射されて、周囲の電子機器に影響を与える可能性があった。   However, in the conventional technology as described above, the variable reactance behaves as a capacitor in the high frequency region and is output from the transmitter because it is larger than the load (series of stray capacitances Cg and Cb) between the transmission electrode and the circuit ground. The high frequency component of the signal is not applied to the variable reactance but applied between the transmission electrode and the circuit ground. For this reason, there is a possibility that a signal outside the frequency band used for electric field communication is radiated to the space and affects surrounding electronic devices.

本発明は上記を鑑みてなされたものであり、その目的は、電界通信に不要な周波数帯の高周波成分を除去し、周囲の電子機器への影響を低減することにある。   The present invention has been made in view of the above, and an object of the present invention is to remove a high-frequency component in a frequency band unnecessary for electric field communication, and to reduce the influence on surrounding electronic devices.

上記の目的を達成するために、請求項1に記載の本発明は、送信すべき情報に基づく電界を電界伝達媒体に誘起し、この誘起した電界を用いて情報の送信を行う電界通信システムにおいて、所定の周波数を有する交流信号で前記送信すべき情報を変調し送信信号を生成して出力する送信手段と、前記送信信号を前記電界伝達媒体に送信するための電極と、前記送信信号と共振するための第1のインダクタと、印加された電圧に応じて静電容量が変化する可変容量ダイオードと、入力された前記送信信号を前記可変容量ダイオードで整流して得られた直流電流に応じて生じた電位差を前記可変容量ダイオードのアノードとカソード間に印加するための第1の抵抗器と、でもってリアクタンス値を変化可能な可変リアクタンスと、を有してなり、前記送信信号が入力される前記可変リアクタンスの入力端に直列に挿入された第2のインダクタと、前記送信信号が出力される前記可変リアクタンスの出力端と前記共振回路の回路グランドとの間に挿入された第1の容量と、を備える。   To achieve the above object, the present invention according to claim 1 is an electric field communication system in which an electric field based on information to be transmitted is induced in an electric field transmission medium and information is transmitted using the induced electric field. Transmitting means for modulating the information to be transmitted with an AC signal having a predetermined frequency to generate and output a transmission signal; an electrode for transmitting the transmission signal to the electric field transmission medium; and resonance with the transmission signal A first inductor for performing the operation, a variable capacitance diode whose capacitance changes according to an applied voltage, and a direct current obtained by rectifying the input transmission signal with the variable capacitance diode. A first resistor for applying the generated potential difference between an anode and a cathode of the variable capacitance diode, and a variable reactance capable of changing a reactance value, The second inductor inserted in series at the input terminal of the variable reactance to which the transmission signal is input, and inserted between the output terminal of the variable reactance from which the transmission signal is output and the circuit ground of the resonance circuit First capacity.

また、請求項2に記載の本発明は、請求項1において、前記第2のインダクタに並列に接続された第2の抵抗器を備える。   According to a second aspect of the present invention, there is provided the second resistor according to the first aspect, wherein the second resistor is connected in parallel to the second inductor.

また、請求項3に記載の本発明は、請求項1または2において、前記第2のインダクタは前記第1のインダクタに比して1/10以下の静電容量である。   According to a third aspect of the present invention, in the first or second aspect, the second inductor has a capacitance of 1/10 or less as compared with the first inductor.

また、請求項4に記載の本発明は、請求項1〜3のいずれかにおいて、前記可変容量ダイオードがすくなくとも2個以上で第2の容量を介して直列接続されている。   According to a fourth aspect of the present invention, in any one of the first to third aspects, at least two of the variable capacitance diodes are connected in series via the second capacitance.

また、請求項5に記載の本発明は、請求項1〜3のいずれかにおいて、前記可変容量ダイオードがすくなくとも2個以上で第2の容量を介して直列接続される構成を2組備え、この構成におけるそれぞれ1つの可変容量ダイオードのアノード同士が容量を介すことなく直列に接続され、もって両構成が互いに接続されている。   Further, the present invention according to claim 5 is provided with two sets of configurations in which at least two of the variable capacitance diodes are connected in series via the second capacitor in any one of claims 1 to 3, The anodes of the respective variable capacitance diodes in the configuration are connected in series without passing through the capacitance, and thus both configurations are connected to each other.

また、請求項6に記載の本発明は、請求項1〜5のいずれかにおいて、前記電界伝達媒体に誘起された受信すべき情報に基づく電界を前記電極を介して受信するための受信手段を備える。   According to a sixth aspect of the present invention, in any one of the first to fifth aspects, the reception means for receiving an electric field based on information to be received induced in the electric field transmission medium via the electrode. Prepare.

本発明によれば、電界通信に不要な周波数帯の高周波成分を除去し、周囲の電子機器への影響を低減することができる。   ADVANTAGE OF THE INVENTION According to this invention, the high frequency component of a frequency band unnecessary for electric field communication can be removed, and the influence on the surrounding electronic device can be reduced.

<第1の実施の形態>
図1には、電界通信システムに係る第1の実施の形態を説明するための構成図を示す。電界通信システムは、その通信において送信時に効率よく十分なレベルの送信信号を電界伝達媒体に伝えるための可変リアクタンスを備えている。この可変リアクタンスは図1に示すように、可変容量ダイオード1と、インダクタ2、3と、抵抗4、5、6と、容量7、8、9と、バッファ10と、回路グランド14と、から構成されている。なお、可変リアクタンスへの信号の入出力のために交流信号端子11、13と、制御信号入力12とを備えている。
<First Embodiment>
FIG. 1 shows a configuration diagram for explaining a first embodiment of an electric field communication system. The electric field communication system includes a variable reactance for efficiently transmitting a sufficient level of transmission signal to the electric field transmission medium during transmission in the communication. As shown in FIG. 1, this variable reactance is composed of a variable capacitance diode 1, inductors 2 and 3, resistors 4, 5 and 6, capacitors 7, 8 and 9, a buffer 10, and a circuit ground 14. Has been. Note that AC signal terminals 11 and 13 and a control signal input 12 are provided for inputting and outputting signals to and from the variable reactance.

このような構成の電界通信システムにおいては、インダクタ2と可変容量ダイオード1で図4に示す浮遊容量Cg33やCb38と共振する回路を構成している。抵抗4と抵抗5は搬送波が回路グランド14やバッファ回路10に漏れるのを防ぐ役割をしている。また、容量7と容量8は可変容量ダイオード1に印加されるバイアス電圧(制御信号)が交流信号端子11に接続される送信回路の出力回路に漏れることや、インダクタ2で短絡されるのを防ぐ役割をしている。   In the electric field communication system having such a configuration, a circuit that resonates with the stray capacitances Cg33 and Cb38 shown in FIG. The resistors 4 and 5 serve to prevent the carrier wave from leaking to the circuit ground 14 and the buffer circuit 10. The capacitors 7 and 8 prevent the bias voltage (control signal) applied to the variable capacitance diode 1 from leaking to the output circuit of the transmission circuit connected to the AC signal terminal 11 or being short-circuited by the inductor 2. Have a role.

そして不要な高周波成分を除去するためのインダクタ3と容量9が設けられている。このインダクタ3と容量9を備えることにより、通信に使用する周波数帯よりも高い周波数領域では、容量9よりもインダクタ3のインピーダンスを高く設定することで信号が遮断され、図4に示す送信電極34と回路グランド14の間には印加されなくなる。これにより通信に使用する周波数帯域外の信号が空間に放射されるのを防ぐことができる。   An inductor 3 and a capacitor 9 are provided for removing unnecessary high frequency components. By providing the inductor 3 and the capacitor 9, the signal is cut off by setting the impedance of the inductor 3 higher than that of the capacitor 9 in a frequency region higher than the frequency band used for communication, and the transmission electrode 34 shown in FIG. And the circuit ground 14 are not applied. As a result, signals outside the frequency band used for communication can be prevented from being radiated into the space.

また、抵抗6はインダクタ3と容量9で起きる直列共振をダンピングするために使用している。このインダクタ3と抵抗6を並列に接続することにより、通信に使用する帯域では図4に示す浮遊容量Cg33やCb38との直列共振に対する、抵抗6によるダンピングを防ぐことができる。さらに、インダクタ3をインダクタ2よりも10分の1以下の大きさにすれば、通信に使用する帯域では浮遊容量Cb33やCg38との直列共振に与える影響はほとんどない。   The resistor 6 is used for damping a series resonance that occurs in the inductor 3 and the capacitor 9. By connecting the inductor 3 and the resistor 6 in parallel, damping by the resistor 6 can be prevented with respect to the series resonance with the stray capacitances Cg33 and Cb38 shown in FIG. 4 in the band used for communication. Furthermore, if the inductor 3 is made a size of 1/10 or less than the inductor 2, there is almost no influence on the series resonance with the stray capacitances Cb33 and Cg38 in the band used for communication.

<第2の実施の形態>
なお、図1の構成では可変容量ダイオード1を1個だけ用いているが、等価的な耐圧を増加させるために図2に示すように可変容量ダイオード1、15の2個を用いて直列に接続する構成でもよい。
<Second Embodiment>
In the configuration of FIG. 1, only one variable capacitance diode 1 is used, but in order to increase the equivalent breakdown voltage, two variable capacitance diodes 1 and 15 are connected in series as shown in FIG. The structure to do may be sufficient.

このような構成により、通信に使用する帯域の交流信号では各容量を短絡とみなせ可変容量ダイオード1、可変容量ダイオード15が直列に接続された構成となり、交流信号の電圧はそれぞれの各可変容量ダイオード1と可変容量ダイオード15に分割されて印加される。   With such a configuration, in the AC signal in the band used for communication, each capacitor can be regarded as a short circuit, and the variable capacitance diode 1 and the variable capacitance diode 15 are connected in series, and the voltage of the AC signal is set to each variable capacitance diode. 1 and the variable capacitance diode 15 are divided and applied.

従って共振状態になって交流信号の電圧が大きくなってもそれぞれの可変容量ダイオードに印加される電圧は半分になり、可変容量ダイオードが1個のときに比べ可変容量ダイオードの印加電圧の制限による共振の抑制が生じにくくなる。   Therefore, even if the voltage of the AC signal increases in the resonance state, the voltage applied to each variable capacitance diode is halved, and resonance occurs due to the limitation of the voltage applied to the variable capacitance diode as compared with a single variable capacitance diode. Is less likely to occur.

本実施の形態では可変容量ダイオードを可変容量ダイオード1と可変容量ダイオード15の計2個で用いているが、2個以上でもかまわない。これに対し、低周波である制御信号では各容量を開放とみなせ、各可変容量ダイオード1、15はバッファアンプ10から見て並列に接続されている。このため制御信号入力12に印加される制御信号の電圧は分割されることなくそのままの大きさで印加される。本実施の形態では印加電圧が可変容量ダイオードの耐電圧よりも大きくなったことによる共振の抑制を防ぎ、かつ容量の可変範囲を減少させない回路構成となっている。   In this embodiment, a total of two variable capacitance diodes, variable capacitance diode 1 and variable capacitance diode 15, are used, but two or more may be used. On the other hand, in the control signal having a low frequency, each capacitor can be regarded as open, and the variable capacitance diodes 1 and 15 are connected in parallel as viewed from the buffer amplifier 10. Therefore, the voltage of the control signal applied to the control signal input 12 is applied as it is without being divided. In this embodiment, the circuit configuration prevents the suppression of resonance due to the applied voltage becoming higher than the withstand voltage of the variable capacitance diode and does not reduce the variable range of the capacitance.

<第3の実施の形態>
また、可変容量ダイオードの非線形による歪みを抑制するために、図3に示すようにアノードとカソードを逆にして接続してもよい。一般に可変容量ダイオードの電流電圧特性は非対称であることから、アノードの電位が高いときには半導体の特性で決まる所定の値より大きい時は短絡になり、交流信号の振幅が抑制される。
<Third Embodiment>
Further, in order to suppress distortion due to nonlinearity of the variable capacitance diode, the anode and the cathode may be reversed and connected as shown in FIG. In general, since the current-voltage characteristics of the variable capacitance diode are asymmetric, when the anode potential is high, a short circuit occurs when the anode potential is higher than a predetermined value determined by the semiconductor characteristics, and the amplitude of the AC signal is suppressed.

これを防ぐために高周波の交流信号に対して可変容量ダイオード1、可変容量ダイオード15、可変容量ダイオード20、可変容量ダイオード21を直列かつ逆方向にも接続している。この構成により一方の可変容量ダイオードが短絡となっても逆方向の可変容量ダイオードは短絡になっていないため交流信号の振幅が抑制されることはない。なお、図1および図2と同様に抵抗4、5、16、17を備え、さらに抵抗23、24、25をも備えている。   In order to prevent this, the variable capacitance diode 1, the variable capacitance diode 15, the variable capacitance diode 20, and the variable capacitance diode 21 are connected in series and in the reverse direction to a high-frequency AC signal. With this configuration, even if one of the variable capacitance diodes is short-circuited, the reverse-direction variable capacitance diode is not short-circuited, so that the amplitude of the AC signal is not suppressed. 1 and 2, resistors 4, 5, 16, and 17 are provided, and resistors 23, 24, and 25 are also provided.

以上説明した実施の形態によれば、電界通信に不要な周波数帯の高周波成分を除去し、周囲の電子機器への影響を低減することができる。   According to the embodiment described above, it is possible to remove high frequency components in a frequency band unnecessary for electric field communication, and to reduce the influence on surrounding electronic devices.

電界通信システムの第1の実施の形態の構成図を示す。The block diagram of 1st Embodiment of an electric field communication system is shown. 電界通信システムの第2の実施の形態の構成図を示す。The block diagram of 2nd Embodiment of an electric field communication system is shown. 電界通信システムの第3の実施の形態の構成図を示す。The block diagram of 3rd Embodiment of an electric field communication system is shown. 従来の技術による電界通信システムの構成図を示す。The block diagram of the electric field communication system by a prior art is shown. 従来の技術による電界通信システムの構成図を示す。The block diagram of the electric field communication system by a prior art is shown.

符号の説明Explanation of symbols

1 可変容量ダイオード
2、3 インダクタ
4、5、6 抵抗
7、8、9 容量
10 バッファ
1 Variable capacitance diode 2, 3 Inductor 4, 5, 6 Resistance 7, 8, 9 Capacity 10 Buffer

Claims (6)

送信すべき情報に基づく電界を電界伝達媒体に誘起し、この誘起した電界を用いて情報の送信を行う電界通信システムにおいて、
所定の周波数を有する交流信号で前記送信すべき情報を変調し送信信号を生成して出力する送信手段と、
前記送信信号を前記電界伝達媒体に送信するための電極と、
前記送信信号と共振するための第1のインダクタと、印加された電圧に応じて静電容量が変化する可変容量ダイオードと、入力された前記送信信号を前記可変容量ダイオードで整流して得られた直流電流に応じて生じた電位差を前記可変容量ダイオードのアノードとカソード間に印加するための第1の抵抗器と、でもってリアクタンス値を変化可能な可変リアクタンスと、を有してなり、
前記送信信号が入力される前記可変リアクタンスの入力端に直列に挿入された第2のインダクタと、
前記送信信号が出力される前記可変リアクタンスの出力端と前記共振回路の回路グランドとの間に挿入された第1の容量と、
を備えることを特徴とする電界通信システム。
In an electric field communication system in which an electric field based on information to be transmitted is induced in an electric field transmission medium and information is transmitted using the induced electric field.
Transmitting means for modulating the information to be transmitted with an AC signal having a predetermined frequency to generate and output a transmission signal;
An electrode for transmitting the transmission signal to the electric field transmission medium;
A first inductor for resonating with the transmission signal, a variable capacitance diode whose capacitance changes in accordance with an applied voltage, and obtained by rectifying the input transmission signal with the variable capacitance diode A first resistor for applying a potential difference generated according to a direct current between an anode and a cathode of the variable capacitance diode, and a variable reactance capable of changing a reactance value.
A second inductor inserted in series at the input end of the variable reactance to which the transmission signal is input;
A first capacitor inserted between the output terminal of the variable reactance from which the transmission signal is output and the circuit ground of the resonance circuit;
An electric field communication system comprising:
前記第2のインダクタに並列に接続された第2の抵抗器を備えることを特徴とする請求項1に記載の電界通信システム。   The electric field communication system according to claim 1, further comprising a second resistor connected in parallel to the second inductor. 前記第2のインダクタは前記第1のインダクタに比して1/10以下の静電容量であることを特徴とする請求項1または2に記載の電界通信システム。   3. The electric field communication system according to claim 1, wherein the second inductor has a capacitance of 1/10 or less of that of the first inductor. 4. 前記可変容量ダイオードがすくなくとも2個以上で第2の容量を介して直列接続されていることを特徴とする請求項1〜3のいずれかに記載の電界通信システム。   The electric field communication system according to any one of claims 1 to 3, wherein at least two of the variable capacitance diodes are connected in series via a second capacitance. 前記可変容量ダイオードがすくなくとも2個以上で第2の容量を介して直列接続される構成を2組備え、
この構成におけるそれぞれ1つの可変容量ダイオードのアノード同士が容量を介すことなく直列に接続され、もって両構成が互いに接続されていることを特徴とする請求項1〜3のいずれかに記載の電界通信システム。
Two sets of configurations in which at least two of the variable capacitance diodes are connected in series via the second capacitance,
The electric field according to any one of claims 1 to 3, wherein the anodes of each one of the variable capacitance diodes in this configuration are connected in series without passing through a capacitance, and thus both configurations are connected to each other. Communications system.
前記電界伝達媒体に誘起された受信すべき情報に基づく電界を前記電極を介して受信するための受信手段を備えることを特徴とする請求項1〜5のいずれかに記載の電界通信システム。

6. The electric field communication system according to claim 1, further comprising receiving means for receiving an electric field based on information to be received induced in the electric field transmission medium via the electrodes.

JP2005366380A 2005-12-20 2005-12-20 Electric field communication system Expired - Fee Related JP4170337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005366380A JP4170337B2 (en) 2005-12-20 2005-12-20 Electric field communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005366380A JP4170337B2 (en) 2005-12-20 2005-12-20 Electric field communication system

Publications (2)

Publication Number Publication Date
JP2007174054A true JP2007174054A (en) 2007-07-05
JP4170337B2 JP4170337B2 (en) 2008-10-22

Family

ID=38300065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005366380A Expired - Fee Related JP4170337B2 (en) 2005-12-20 2005-12-20 Electric field communication system

Country Status (1)

Country Link
JP (1) JP4170337B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177767A (en) * 2009-01-27 2010-08-12 Nippon Telegr & Teleph Corp <Ntt> Electrode adjustment system
KR101026965B1 (en) * 2009-09-02 2011-04-11 한국과학기술원 Apparatus for a wireless communication using series resonance
JP2016526300A (en) * 2013-05-28 2016-09-01 ニューランズ・インコーポレーテッドNewlans,Inc. Variable capacitor array device and method thereof
US9658636B2 (en) 2013-05-28 2017-05-23 Tdk Corporation Apparatus and methods for variable capacitor arrays
US9973155B2 (en) 2015-07-09 2018-05-15 Tdk Corporation Apparatus and methods for tunable power amplifiers
US10042376B2 (en) 2015-03-30 2018-08-07 Tdk Corporation MOS capacitors for variable capacitor arrays and methods of forming the same
US10073482B2 (en) 2015-03-30 2018-09-11 Tdk Corporation Apparatus and methods for MOS capacitor structures for variable capacitor arrays
US10382002B2 (en) 2015-03-27 2019-08-13 Tdk Corporation Apparatus and methods for tunable phase networks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004153708A (en) * 2002-10-31 2004-05-27 Nippon Telegr & Teleph Corp <Ntt> Transceiver
WO2006059684A1 (en) * 2004-12-02 2006-06-08 Nippon Telegraph And Telephone Corporation Transmitter, field communication transceiver, and field communication system
JP2006314053A (en) * 2005-05-09 2006-11-16 Nippon Telegr & Teleph Corp <Ntt> Transmitter and transceiver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004153708A (en) * 2002-10-31 2004-05-27 Nippon Telegr & Teleph Corp <Ntt> Transceiver
WO2006059684A1 (en) * 2004-12-02 2006-06-08 Nippon Telegraph And Telephone Corporation Transmitter, field communication transceiver, and field communication system
JP2006314053A (en) * 2005-05-09 2006-11-16 Nippon Telegr & Teleph Corp <Ntt> Transmitter and transceiver

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010177767A (en) * 2009-01-27 2010-08-12 Nippon Telegr & Teleph Corp <Ntt> Electrode adjustment system
KR101026965B1 (en) * 2009-09-02 2011-04-11 한국과학기술원 Apparatus for a wireless communication using series resonance
JP2016526300A (en) * 2013-05-28 2016-09-01 ニューランズ・インコーポレーテッドNewlans,Inc. Variable capacitor array device and method thereof
US9658636B2 (en) 2013-05-28 2017-05-23 Tdk Corporation Apparatus and methods for variable capacitor arrays
US10382002B2 (en) 2015-03-27 2019-08-13 Tdk Corporation Apparatus and methods for tunable phase networks
US10042376B2 (en) 2015-03-30 2018-08-07 Tdk Corporation MOS capacitors for variable capacitor arrays and methods of forming the same
US10073482B2 (en) 2015-03-30 2018-09-11 Tdk Corporation Apparatus and methods for MOS capacitor structures for variable capacitor arrays
US9973155B2 (en) 2015-07-09 2018-05-15 Tdk Corporation Apparatus and methods for tunable power amplifiers

Also Published As

Publication number Publication date
JP4170337B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
JP5642686B2 (en) Impedance matching circuit for planar antenna and mobile communication device
EP2913923A1 (en) Filter device
JP5828768B2 (en) Protection circuit
CN107644852B (en) Integrated passive device for RF power amplifier package
US9136915B2 (en) Wireless communication device
JP4715666B2 (en) Matching device and antenna matching circuit
CN1771758A (en) Condenser microphone employing wide band stop filter and having improved resistance to electrostatic discharge
WO2007125850A1 (en) Antenna device and electronic device using the same
JP4170337B2 (en) Electric field communication system
US9209760B2 (en) High-frequency, broadband amplifier circuit
US9774310B2 (en) Common mode noise suppressing device
US8639195B2 (en) High voltage swing input/output enabled in a standard IC process using passive impedance transformation
JP4460546B2 (en) Communication system, transmitter and receiver
CN103516388B (en) Mobile communication equipment
JP4209872B2 (en) Electric field communication system
JP4191702B2 (en) Transmitter and transceiver
JP2012065276A (en) Antenna electrostatic protection circuit
JP5597998B2 (en) High frequency double wave oscillator
CN113574799B (en) Capacitive coupling circuit arrangement
JP4191727B2 (en) Electric field communication system
KR100538614B1 (en) Voltage control oscillator
JP2011160262A (en) Limiter circuit
CN203616974U (en) Control circuit of display device and signal conversion circuit
CN216290847U (en) Internal matching circuit and power amplifier
JP5181300B2 (en) Contactless communication system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees